JPH046355A - Multiple-room type air-conditioner - Google Patents

Multiple-room type air-conditioner

Info

Publication number
JPH046355A
JPH046355A JP2107917A JP10791790A JPH046355A JP H046355 A JPH046355 A JP H046355A JP 2107917 A JP2107917 A JP 2107917A JP 10791790 A JP10791790 A JP 10791790A JP H046355 A JPH046355 A JP H046355A
Authority
JP
Japan
Prior art keywords
outdoor
heat exchanger
outdoor heat
valve
pressure pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2107917A
Other languages
Japanese (ja)
Other versions
JP2893844B2 (en
Inventor
Fumio Matsuoka
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2107917A priority Critical patent/JP2893844B2/en
Priority to AU72991/91A priority patent/AU636726B2/en
Priority to ES91302356T priority patent/ES2047984T3/en
Priority to DE69100574T priority patent/DE69100574T2/en
Priority to EP91302356A priority patent/EP0448345B1/en
Priority to EP92202252A priority patent/EP0509619B1/en
Priority to DE69116855T priority patent/DE69116855T2/en
Priority to ES92202252T priority patent/ES2085552T3/en
Priority to US07/672,071 priority patent/US5142879A/en
Publication of JPH046355A publication Critical patent/JPH046355A/en
Application granted granted Critical
Publication of JP2893844B2 publication Critical patent/JP2893844B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To allow capacity self-control of an outdoor unit by a method wherein a capacity change amount of a variable capacity compressor and a heat exchange capacity change amount of an outdoor side heat exchanger are obtained based on the deviations between the pressures detected by high and low pressure detectors equipped on the outdoor unit and the target high and low pressures, and capacity controls of the compressor and the outdoor side heat exchanger are carried out based on the obtained results. CONSTITUTION:An outdoor unit 1 of a multiple-room type air-conditioner is provided with a high pressure detector Pd and a low pressure detector Ps, and the compressor capacity change amount DELTAQcomp and the heat exchange capacity change amount DELTAAko are determined corresponding to the deviation DELTAPd and DELTAPs from the target high and low pressures Pd* and Ps*, that is, DELTAPd = Pd* - Pd and DELTAPs = Ps* - Ps, by using a formula I. Especially when the outdoor side heat exchanger is used as a condenser, two or more heat exchangers 4a and 4b into which the outdoor side heat exchanger is divided and a gas bypass pipe 29 can be optionally selected corresponding to the magni tude of Ako.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、室外機と複数の室内機との間を2本の冷媒
配管で接続し、各室内機の運転モードを冷房と暖房の混
在を可能とする冷暖同時マ)Lナーてアコンの自律分散
協調副部に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] This invention connects an outdoor unit and a plurality of indoor units with two refrigerant pipes, and sets the operation mode of each indoor unit to a mixture of cooling and heating. This article relates to an autonomous decentralized cooperative subsection of an air conditioner that enables simultaneous cooling and heating.

〔従来の技術〕[Conventional technology]

第5図は例えば特開平1−302074号公報に示され
た従来の多室式空気調和機を示す構成図であり、図にお
いて、(1)は室外機、(2)は容量可変圧縮機、(3
)は四方弁、+41 +、f室外側熱交換器、(5)は
室外側膨張弁、(6al 、 (6b) 、 (6c)
は室内機、(8a) 。
FIG. 5 is a configuration diagram showing a conventional multi-room air conditioner disclosed in, for example, Japanese Patent Application Laid-Open No. 1-302074. In the figure, (1) is an outdoor unit, (2) is a variable capacity compressor, (3
) is a four-way valve, +41 +, f outdoor heat exchanger, (5) is outdoor expansion valve, (6al, (6b), (6c)
is an indoor unit, (8a).

(8bl 、 (8c)は室内側熱交換器、(9)は室
外側送風機、(10a) 、 (10b) 、 (10
c)は室内側送風機、(1))はヘッダー (12a)
 、 (12b) 、 (12c)は室内側第に方弁、
(13a) 、 (13b) 、 (13clは室内側
第2二方弁、(14a) 、 (14b) 、 (14
c)は室内側第1膨張弁、(15a)。
(8bl, (8c) is the indoor heat exchanger, (9) is the outdoor blower, (10a), (10b), (10
c) is the indoor blower, (1)) is the header (12a)
, (12b), (12c) are the indoor side valves,
(13a), (13b), (13cl is the second two-way valve on the indoor side, (14a), (14b), (14
c) is a first indoor expansion valve (15a);

(15b)   (15c)は室内側第2膨張弁、(1
6)は二方弁である。次に動作tζついて説明する。圧
縮機(2)によって圧縮された高温高圧ガス冷媒は、四
方弁(3)を通り室外側熱交換M(4)で一部凝縮液化
し、中圧の二相冷媒として室外側膨張弁(5)を経由し
て室内に送られる。室内機(6a)が暖房モードで室内
機(6b) 、  (6c)が冷房モードの時、室内に
送られた中圧の二相冷媒は室内側第に方弁(12a)を
経由して室内側熱交換器(8a)で凝縮液化し、室内側
第2膨張弁(15a)を経てヘッダー(1))に液とし
て溜まる。この中圧液冷媒が室内機(6b)、 (6c
)の室内第1膨張弁(14b) 、 (14c)を通っ
て各々室内熱交換器(8bl 、  (8c)に入り、
こごて低圧蒸発してガス化した冷媒は室内側第2二方弁
(13bJ 、 <13c)を経て室外機(1)に帰る
。そして四方弁(3)を経て再び圧縮機(2)に帰り、
冷媒サイクルが形成される。
(15b) (15c) is the second indoor expansion valve, (1
6) is a two-way valve. Next, the operation tζ will be explained. The high-temperature, high-pressure gas refrigerant compressed by the compressor (2) passes through the four-way valve (3) and is partially condensed and liquefied in the outdoor heat exchanger M (4). ) into the room. When the indoor unit (6a) is in the heating mode and the indoor units (6b) and (6c) are in the cooling mode, the medium-pressure two-phase refrigerant sent indoors passes through the indoor side valve (12a) and returns to the room. It is condensed and liquefied in the inner heat exchanger (8a), passes through the second indoor expansion valve (15a), and accumulates as a liquid in the header (1)). This medium pressure liquid refrigerant is supplied to the indoor unit (6b), (6c
) into the indoor heat exchangers (8bl, (8c)) through the indoor first expansion valves (14b), (14c), respectively;
The refrigerant evaporated at low pressure and gasified by the iron returns to the outdoor unit (1) via the second indoor two-way valve (13bJ, <13c). Then, it returns to the compressor (2) via the four-way valve (3), and then returns to the compressor (2) again.
A refrigerant cycle is formed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の多室式空気調和機は以上のように構成されている
ので、圧縮機(2)の容量制御、室外側送風機(9)の
風量制御、室外側膨張弁(5)の制御、暖房モードの室
内機(6a)の出口の膨張弁(15a)や冷房モードの
室内機(6b) p (6e)の入口の膨張弁(14b
l。
Since the conventional multi-room air conditioner is configured as described above, the capacity control of the compressor (2), the air volume control of the outdoor fan (9), the control of the outdoor expansion valve (5), and the heating mode are performed. The expansion valve (15a) at the outlet of the indoor unit (6a) in the cooling mode and the expansion valve (14b) at the inlet of the indoor unit (6b) in cooling mode (6e)
l.

(14elの制御が必要であり、その制御のための信号
が室内−室外間を行き来して制御が複雑になり、従って
信頼性、運転性能の安定性に欠けろという問題があった
(It is necessary to control the 14el, and signals for the control go back and forth between indoors and outdoors, making the control complicated. Therefore, there is a problem that reliability and stability of driving performance are lacking.

この発明は上記のような問題点を解消するためになされ
たもので、室外機におし)で自律的に能力制御が行え、
イ=頼性運転性能の安定性のよい自律分散型冷暖同時空
気調和ができろ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and allows the outdoor unit to autonomously control its capacity.
A. The purpose of the present invention is to obtain an autonomous decentralized system capable of simultaneous cooling and heating air conditioning with good reliability and stable operation performance.

〔課題を解決するための手段〕[Means to solve the problem]

乙の発明に掛かる多室式空気調和機は、室外機側に高圧
圧力検知器Pdと低圧圧力検知器Psを設け、目標高圧
圧力Pdrと目標低圧圧力Psゞとの各偏差ΔPd=P
d’−Pd、△Ps=Ps”−Psに応じて圧縮機能力
変更量ΔQcompと室外熱交換器の熱交換能力変更量
△Ak、をにて決定し、特に室外熱交換器を凝縮器とし
て使用する時、AKcの大きさに応して、複数に分割し
た熱交換器とガスバイパス管を選択的選ぶことができる
ようにしたものである。
The multi-room air conditioner according to the invention of B is provided with a high pressure detector Pd and a low pressure detector Ps on the outdoor unit side, and each deviation ΔPd=P between the target high pressure Pdr and the target low pressure Ps.
The compression function power change amount ΔQcomp and the heat exchange capacity change amount ΔAk of the outdoor heat exchanger are determined according to d'-Pd, △Ps=Ps''-Ps, and in particular, the outdoor heat exchanger is used as a condenser. When used, a plurality of divided heat exchangers and gas bypass pipes can be selectively selected according to the magnitude of AKc.

〔作用〕[Effect]

この発明における多室式空気調和機は、冷凍サイクルの
高圧圧力の目標値Pd’と低圧圧力の目標値Ps’に対
し、実時間計測の高圧圧力Pdと低圧圧力Psを圧力セ
ンサーにて集録し、その偏差ΔPdと△Psを演算し、
定数マ)・リックス熱交換器の熱交換能力が制御される
The multi-chamber air conditioner according to the present invention uses a pressure sensor to collect real-time measured high pressure Pd and low pressure Ps with respect to the high pressure target value Pd' and the low pressure target value Ps' of the refrigeration cycle. , calculate the deviations ΔPd and ΔPs,
The heat exchange capacity of the constant matrix heat exchanger is controlled.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図において、(1)1,を室外機、(2)はこの室外機
(1)内の容量可変圧縮機、(3)は四方弁、(4al
 、 (4b)は並列に接続された室外熱交換器、(6
&)〜(6C)は室内機、(7)Lよアキュムレータ、
(8a)〜(8C)は室内熱交換器、(12a)〜(1
2c)はこの室内熱交換器(8a)〜(8c)の一端に
接続された電子膨張弁、(17)。
An embodiment of the present invention will be described below with reference to the drawings. 1st
In the figure, (1) 1 is an outdoor unit, (2) is a variable capacity compressor in this outdoor unit (1), (3) is a four-way valve, (4al
, (4b) is an outdoor heat exchanger connected in parallel, (6
&) ~ (6C) is the indoor unit, (7) L is the accumulator,
(8a) to (8C) are indoor heat exchangers, (12a) to (1
2c) is an electronic expansion valve (17) connected to one end of the indoor heat exchangers (8a) to (8c).

(18)は上記室外機(1)と分流コントローラ(19
)とを結ぶ連絡配管、(20)は上記分流コントローラ
(19)内の高圧管部、(21)は低圧管部、(22)
は中圧管部、(23)は電子膨張弁、(24a)〜(2
4c) 、 (25λ)〜(25e)は電磁開閉弁であ
る。分流コントローラ(19)から各室内機(6a)〜
(6C)へはそれぞれ2本の配管で接続されており、各
室内機(6m)〜(6C)へはそれぞれ2本の配管で接
続されており、各室内機(6a)〜(6C)ノ一端はそ
れぞれ電子膨張弁(12a) 〜(12clを介して分
流コントローラ(19)の中圧管部(22)に接続され
、また他端はそれぞれ分流コントローラ(19)の電磁
開閉弁(24a) 〜(24c)および(25a)〜(
25c)を介して高圧管部(20)および低圧管部(2
1)につながっている。
(18) is the outdoor unit (1) and the shunt controller (19).
), (20) is the high-pressure pipe section in the branch controller (19), (21) is the low-pressure pipe section, (22)
is a medium pressure pipe section, (23) is an electronic expansion valve, (24a) to (2
4c), (25λ) to (25e) are electromagnetic on-off valves. From the shunt controller (19) to each indoor unit (6a)
(6C) is connected with two pipes each, and each indoor unit (6m) to (6C) is connected with two pipes each, and each indoor unit (6a) to (6C) is connected with two pipes. One end is connected to the medium pressure pipe section (22) of the branch controller (19) via the electronic expansion valve (12a) to (12cl), and the other end is connected to the electromagnetic on-off valve (24a) to (24a) of the branch controller (19), respectively. 24c) and (25a) to (
25c) to the high pressure pipe section (20) and the low pressure pipe section (2
It is connected to 1).

(26m) 、 (26b) 、 (27a) 、 (
27b)は各室外熱交換器(4a) 、 (4b)の両
側にそれぞれ接続された開閉弁、(28)は室外熱交換
器(4a) 、 (4b)に並列に設けられたバイパス
路、(29)はこのバイパス# (28)に設けられた
バイパス開閉弁である。
(26m), (26b), (27a), (
27b) is an on-off valve connected to both sides of each outdoor heat exchanger (4a), (4b), (28) is a bypass path provided in parallel to the outdoor heat exchanger (4a), (4b), ( 29) is a bypass opening/closing valve provided in this bypass # (28).

また、(30)は容量可変圧縮機(2)の冷媒吐出側に
設けられその圧力Pdを検知する高圧検知器、(31)
はアキュムレータ(7)の冷媒入口側に設けられその圧
力Psと検知する低圧検知器、(32)は上記高圧検知
! (30) 、低圧検知器(31)の検知出力に基づ
いて四方弁(3)、室外側送風機(9)、開閉弁(26
&) 。
Further, (30) is a high pressure detector provided on the refrigerant discharge side of the variable capacity compressor (2) to detect the pressure Pd; (31)
is a low pressure detector installed on the refrigerant inlet side of the accumulator (7) to detect its pressure Ps, and (32) is the high pressure detector! (30), four-way valve (3), outdoor blower (9), on-off valve (26) based on the detection output of the low pressure detector (31).
&).

(26b) 、 (27al 、 (27b) 、バイ
パス開閉弁(29)を制御する制御装置である。また(
33)は四方弁である。
(26b), (27al, (27b), a control device that controls the bypass on-off valve (29).
33) is a four-way valve.

このような構成の空気調和機において、室内機(6a)
が暖房運転モード、室内機(6b) 、 (6c)が冷
房運転モードである場合の動作を説明する。
In an air conditioner with such a configuration, the indoor unit (6a)
The operation when is in the heating operation mode and the indoor units (6b) and (6c) are in the cooling operation mode will be explained.

室外機(1)内の圧縮機(2)で圧縮された高1高圧の
ガス冷媒は四方弁(3)を経て、室外熱交換器(4m)
 。
The high-pressure gas refrigerant compressed by the compressor (2) in the outdoor unit (1) passes through the four-way valve (3) and is transferred to the outdoor heat exchanger (4 m).
.

(4b)で一部凝縮し、二相冷媒となって高圧連絡配管
(17)を経由して室内の分流コンI・ローラ(19)
に入る。ここで気液分離器(30)で分離された高圧ガ
ス冷媒は高圧ガス管部(20)を経て電磁開閉弁(25
a)より室内機(6a)に流入し、その室内熱交換式(
8&)で暖房に供される。その後、冷媒は電子膨張弁(
12a)を経て中圧管部(22)に流入する。この冷媒
は、気液分離器(30)の液層部から電子膨張弁(23
)を経由して中圧管部(22)に流入する冷媒と合流し
て室内機(6b) 、 (6c)に流入する。そして、
各々電子膨張弁(12b) 、 (12e)で低圧にな
り室内熱交換器(8b) 、 (8c)で冷房に供され
てガス化し、その後電磁開閉弁(24b) 、 (24
e)を経て低圧管部(21)に合流し分流コノトローラ
(19)を出て室外への連絡配管(18)に入る。そし
て、室外1)i!(1)の四方弁(3)、アキュムレー
タ(7)を通り再び圧縮部(2)に循環して冷暖同時冷
媒回路が構成されている。
(4b), becomes a two-phase refrigerant, and passes through the high-pressure connecting pipe (17) to the indoor distribution controller I/roller (19).
to go into. Here, the high-pressure gas refrigerant separated by the gas-liquid separator (30) passes through the high-pressure gas pipe section (20) and then passes through the electromagnetic on-off valve (25).
a) flows into the indoor unit (6a), and its indoor heat exchange type (
8&) is used for heating. Then, the refrigerant is transferred to the electronic expansion valve (
12a) and flows into the medium pressure pipe section (22). This refrigerant is transferred from the liquid layer part of the gas-liquid separator (30) to the electronic expansion valve (23).
), the refrigerant flows into the indoor units (6b) and (6c). and,
The pressure is reduced to low by the electronic expansion valves (12b) and (12e), respectively, and then cooled and gasified by the indoor heat exchangers (8b) and (8c), after which the electromagnetic on-off valves (24b) and (24
e), joins the low-pressure pipe section (21), exits the branch controller (19), and enters the connecting pipe (18) to the outside. And outdoor 1) i! The refrigerant is circulated through the four-way valve (3) of (1) and the accumulator (7) and back to the compression section (2) to form a simultaneous cooling and heating refrigerant circuit.

以上の冷媒回路において、室内機(6a)の熱交換@I
(8a)ば凝縮器として作用し、室内機(6b) 、 
 f6e)の熱交換器(gb)、 (8c)は蒸発器と
して作用している。
In the above refrigerant circuit, the indoor unit (6a) heat exchange @I
(8a) acts as a condenser, and indoor unit (6b),
The heat exchanger (gb), (8c) of f6e) is acting as an evaporator.

上記のような動作においては、各室内機(12a)〜(
12b)の能力の変化あるいは暖房モードと冷房モード
の切り換えにより室外機(1)側に要求される熱交換能
力も変わるが、これに対応して室外機(1)の液交換能
力を制御する必要がある。この実施例においては、高圧
検知W (30)が検知した高圧Pdを示す信号と低圧
検知器(31)が検知した低圧Psを示す信号とが制御
装置(32)に伝えられるが、般に圧縮機能力をアップ
すると高圧Pdは上昇し、低圧Psは下降する。又蒸発
器能力をアップすると高圧Pdも低圧Psも上昇し、逆
に凝1)a@IF能力をアップすると高圧Pdも低圧P
sも下降する。
In the above operation, each indoor unit (12a) to (
12b) or switching between heating mode and cooling mode, the heat exchange capacity required of the outdoor unit (1) also changes, and it is necessary to control the liquid exchange capacity of the outdoor unit (1) accordingly. There is. In this embodiment, a signal indicating the high pressure Pd detected by the high pressure detector W (30) and a signal indicating the low pressure Ps detected by the low pressure detector (31) are transmitted to the control device (32). When the functional power is increased, the high pressure Pd increases and the low pressure Ps decreases. Also, when the evaporator capacity is increased, both the high pressure Pd and the low pressure Ps increase, and conversely, when the condensation capacity is increased, the high pressure Pd and the low pressure Ps are increased.
s also decreases.

この高圧Pdおよび低圧が一定値を維持した定常状態で
あれば、室内側と室外側の熱交換能力が平衡していると
いうことであるから、これら高圧Pdおよび低圧Psを
、所定の目標高圧圧力Pdxおよび目標低圧圧力Ps’
になるように室外機1))の熱交換能力を制御すれば室
外機(1)内で閉じた自律的制御ができる。圧縮機能力
Q compの変更量を△Q eomp、室外熱交換器
の熱交換能力Ak、の変更量をΔA k oとした場合
、上述のPd、Psとの関係は次の(1)式になる。
If this high pressure Pd and low pressure are in a steady state where they maintain constant values, it means that the heat exchange capacity between the indoor side and the outdoor side is balanced, so these high pressure Pd and low pressure Ps are set to a predetermined target high pressure Pdx and target low pressure Ps'
If the heat exchange capacity of the outdoor unit 1) is controlled so that If the amount of change in the compression function Q comp is ΔQ eomp, and the amount of change in the heat exchange capacity Ak of the outdoor heat exchanger is ΔA k o, then the relationship with Pd and Ps described above is expressed by the following equation (1). Become.

a、  b、  c、  d>0      (1また
だし、a、b、c、dは予しめ決められる定数であり、
またΔPd、ΔPsはそれぞれ目標値との偏差すなわち
ΔPd=Pd’−Pd、△Ps=Ps”−Psである。
a, b, c, d>0 (1, but a, b, c, d are predetermined constants,
Further, ΔPd and ΔPs are deviations from the target values, that is, ΔPd=Pd′−Pd and ΔPs=Ps″−Ps, respectively.

この(1)式を変形すれば、となる。If we transform this equation (1), we get the following.

このようにして求められた△Q eompLこ基づし)
で圧縮機(2)の容量側部を行う。また求められた基づ
き室外熱交換器(4a) 、 (4b)を凝m器にして
放熱源として使うか蒸発器にして吸熱源として使うかを
判断して四方弁(31,(33)を制御する。例えば、
上記の動作状態てあれば、前の熱交換能力と求められた
熱交換能力とにより得られる熱交換能力が、正であると
きはそのまま室外熱交換器(4a) 、 (4b)を凝
縮器とするサイクルとし、負となったときは室外熱交換
器(4m) 、 (4b)を蒸発器とするサイクルにす
る。そして、サイクルにおける熱交換能力(正のときA
Ke、負のときAK c)の可変制御は、室外側送風機
(9)の回転数制御および開閉弁(26a)  (26
b) 、 (27a) 、 (27b) 、バイパス弁
(29)の開閉制御によりなされる。すなわち、求めら
れる熱交換能力に応じて動作させる室外熱交換器の選択
およびバイパス路(28)による冷媒のバイパス要否の
決定を行うとともに、そのときの室外送風機(9)の回
転数を可変することにより熱交換能力を連続的に制御す
るものである。第2図にこのようなff1J御における
ftlNmブロック図を示す。
△Q eompL obtained in this way)
Perform the capacity side of the compressor (2). Also, based on the obtained results, it is determined whether the outdoor heat exchangers (4a) and (4b) are used as condensers as heat radiation sources or evaporators as heat absorption sources, and the four-way valves (31, (33) are controlled. For example,
Under the above operating conditions, if the heat exchange capacity obtained from the previous heat exchange capacity and the determined heat exchange capacity is positive, the outdoor heat exchangers (4a) and (4b) are converted into condensers. When the value becomes negative, the cycle uses the outdoor heat exchanger (4m) and (4b) as the evaporator. Then, the heat exchange capacity in the cycle (when positive, A
Ke, AK when negative c) Variable control is the rotation speed control of the outdoor fan (9) and the on-off valve (26a) (26
b) , (27a) , (27b) This is done by controlling the opening and closing of the bypass valve (29). That is, it selects the outdoor heat exchanger to be operated according to the required heat exchange capacity and determines whether or not it is necessary to bypass the refrigerant using the bypass path (28), and at the same time, varies the rotational speed of the outdoor blower (9) at that time. This allows continuous control of heat exchange capacity. FIG. 2 shows a block diagram of ftlNm in such ff1J control.

例えば室外熱交換器(4a) 、 (4bl凝縮器とし
て用いる場合、必要な熱交換能力に応じて室外熱交換器
(4m)、 (4b)両方を用いるか、室外熱交換式(
4b)のみを用いるか、小るいはバイパス路(28)に
より冷媒を一部バイパスさせながら室外熱交換器を用い
るかが選択されて各開閉弁(26a) 、 (26bl
 、 (27a)(27b)、バイパス弁(29)の開
閉がなされ、さらに室外送風機(9)の回転数が制御さ
れる。第3図にそれぞれの場合における室外送風機の回
転数と凝縮器の熱交換能力の関係を示し、室外熱交換器
(4a) 、 (4b)両方を用いた場合、室外熱交換
器(4b)のみを用いた場合、バイパス路(28)によ
りバイパスする場合の順にAKcも低くなり、かつそれ
ぞれにおいて室外送風機(9)の回転数に対してAKc
が連続的に変化している。
For example, when using an outdoor heat exchanger (4a), (4bl condenser), depending on the required heat exchange capacity, both the outdoor heat exchanger (4m) and (4b) may be used, or the outdoor heat exchanger (4b) may be used.
4b) or use an outdoor heat exchanger while partially bypassing the refrigerant through the bypass passage (28).
, (27a) (27b), the bypass valve (29) is opened and closed, and the rotation speed of the outdoor blower (9) is further controlled. Figure 3 shows the relationship between the rotational speed of the outdoor fan and the heat exchange capacity of the condenser in each case. When both outdoor heat exchangers (4a) and (4b) are used, only the outdoor heat exchanger (4b) is used. When using the bypass path (28), AKc also decreases in the order of bypass, and in each case, AKc decreases with respect to the rotation speed of the outdoor blower (9).
is changing continuously.

このようにすれば室外機(1)内で自律的な能力制御が
行える。
In this way, autonomous capacity control can be performed within the outdoor unit (1).

また、第4図は上記高圧Pd、低圧Psのかわりにこの
空気調和装置全体における冷媒の凝縮温度CT、蒸発温
度ETを検出して室外機(1)の制御を行う場合の構成
図を示す。(34)は各室内機(6al〜(6c)に設
けられた冷媒温度センサー (35)はこの冷媒温度セ
ンサー(34)の検知温度に基づき電子膨張弁(12a
)〜(12c)を制御し、各室内機(6a)〜(6c)
の自律制御を行うためのマイコノ、(36)は室外熱交
換器(4b)に設けられた温度センサーである。
Moreover, FIG. 4 shows a configuration diagram when the outdoor unit (1) is controlled by detecting the condensation temperature CT and evaporation temperature ET of the refrigerant in the entire air conditioner instead of the above-mentioned high pressure Pd and low pressure Ps. (34) is a refrigerant temperature sensor (35) provided in each indoor unit (6al to (6c)). Based on the detected temperature of this refrigerant temperature sensor (34), an electronic expansion valve (12a) is installed.
) to (12c), and each indoor unit (6a) to (6c)
The microcontroller (36) for autonomous control is a temperature sensor installed in the outdoor heat exchanger (4b).

このような場合、冷媒温度センサー(34)、温度セン
サー(36)の検知温度中、最大のものを凝縮温度CT
、最小のものを蒸発温度ETとし、それぞれ目標凝縮温
度CT’、目標蒸発温度ET”との偏差ΔCT、△ET
を求め、上記高圧Pd、低圧PSの場合と同様にして次
式から△Q eomp、△AKOを求め、 同様に熱交換能力を制御してもよい。この場合、例えば
室内側において最大と最小の温度をマイコン(35)等
で選択し、これを室外側に伝送し、室外側の検知温度と
比較するなどの方法があるが、少なくとも室内−室外間
に(=号の伝送路がひとつは必要となる。しかしながら
圧力検知器に比べ温度センサーの方がコスト面で有利で
ある。
In such a case, the maximum temperature detected by the refrigerant temperature sensor (34) and temperature sensor (36) is determined as the condensing temperature CT.
, the smallest one is taken as the evaporation temperature ET, and the deviations from the target condensation temperature CT' and the target evaporation temperature ET' are ΔCT and ΔET, respectively.
Then, ΔQ eomp and ΔAKO are determined from the following equations in the same manner as in the case of the high pressure Pd and low pressure PS, and the heat exchange capacity may be controlled in the same manner. In this case, for example, there is a method in which the maximum and minimum temperatures on the indoor side are selected by a microcomputer (35), etc., and these are transmitted to the outdoor side and compared with the detected temperature on the outdoor side. At least one transmission line is required. However, a temperature sensor is more cost-effective than a pressure sensor.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、室外機内の圧縮機と
室外熱交換器と四方弁の制御を、室外機内の高圧圧力と
低圧圧力のみの検知で制御するようにしたので、室内機
と室外機との自律分散制御が可能となす、イ=頼性の向
上、運転性能の安定化がLまかられる効果がある。
As described above, according to the present invention, the compressor, outdoor heat exchanger, and four-way valve in the outdoor unit are controlled by detecting only the high pressure and low pressure in the outdoor unit. Autonomous decentralized control with the outdoor unit is possible, which has the effect of improving reliability and stabilizing driving performance.

また高圧圧力、低圧圧力のかわりに冷媒サイクル中の凝
縮温度、蒸発温度を検知して同様に制御することにより
、室外機運転の安定化がはかられる。
Furthermore, by detecting the condensation temperature and evaporation temperature in the refrigerant cycle instead of the high pressure and low pressure and controlling them in the same way, the operation of the outdoor unit can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による多室式空気調和機を
示す構成図、第2図は制御ブロック図、第3図はその動
作制御を説明する説明図、第4図は別の発明の実施例に
よる多室式空気調和機の構成図、第5図は多室式空気調
和機を示す構成図である。 図において、(1)は室外機、(6a)〜(6C)は室
内機、(8a) 〜(8c)は室内熱交換器、(12a
) 〜(12c)は電子膨張弁、(17)、 (18)
は連絡配管、(19)は分流コンI、ローラ、(20)
は高圧管部、(21)は低圧管部、(22)は中圧管部
、(24a) 〜(24c) 、 (25a) 〜(2
5c)は電磁開閉弁、(26a) 、 (26b) 、
 (27a) 、 (27b)は開閉弁、(28)はバ
イパス路、(29)はバイパス弁、(30)は高圧検知
器、(31)は低圧検知器、(32)は制御装置、(3
4)は冷媒温度センサー (36)は温度センサーであ
る。 なお、各図中同一符号は同一または相当部分を示す。
Fig. 1 is a configuration diagram showing a multi-room air conditioner according to an embodiment of the present invention, Fig. 2 is a control block diagram, Fig. 3 is an explanatory diagram explaining its operation control, and Fig. 4 is another invention. Fig. 5 is a block diagram showing a multi-room air conditioner according to an embodiment of the present invention. In the figure, (1) is an outdoor unit, (6a) to (6C) are indoor units, (8a) to (8c) are indoor heat exchangers, and (12a) are indoor units.
) ~ (12c) are electronic expansion valves, (17), (18)
is the connecting pipe, (19) is the diverter controller I, roller, (20)
is a high pressure pipe section, (21) is a low pressure pipe section, (22) is a medium pressure pipe section, (24a) to (24c), (25a) to (2
5c) are electromagnetic on-off valves, (26a), (26b),
(27a), (27b) are on-off valves, (28) are bypass paths, (29) are bypass valves, (30) are high pressure detectors, (31) are low pressure detectors, (32) are control devices, (3
4) is a refrigerant temperature sensor. (36) is a temperature sensor. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (2)

【特許請求の範囲】[Claims] (1)室外機に容量可変圧縮機と四方弁と室外熱交換器
と室外側送風機とを備え、室外から室内への連絡配管を
高圧管と低圧管との2本で構成し、上記2本の連絡配管
を分流コントローラに接続し、この分流コントローラ内
で高圧管部と低圧管部と中圧管部に三分割し、複数の室
内機を各々個別の電子膨張弁を介して上記中圧管部に接
続し、各室内機の他端は上記高圧管部もしくは上記低圧
管部に選択的に接続できるごとく構成された多室式空気
調和機において、上記室外熱交換器を複数並列に設け、
この室外熱交換器のひとつに開閉弁を接続し、室外熱交
換器と並列にバイパス開閉弁を有するバイパス路を接続
するとともに、上記室外機内にその高圧圧力Pdを検知
する高圧検知器と低圧圧力Psを検知する低圧検知器と
を設け、これら高圧検知器、低圧検知器の検知圧力と設
定された目標高圧圧力Pd^*、目標低圧圧力Ps^*
との各偏差ΔPd=Pd^*−Pd、ΔPs=Ps^*
−Psに基づいて圧縮機能力変更量ΔQcompと室外
熱交換器の熱交換能力変更量ΔAk_0を求め、その求
められたΔQcompに基づいて上記容量可変圧縮機の
能力制御を行うとともに、ΔAk_0に基づいて上記室
外熱交換器の開閉弁、バイパス開閉弁、室外側送風機を
制御して室外側熱交換器の熱交換能力制御を行う制御手
段を設けたことを特徴とする多室式空気調和機。
(1) The outdoor unit is equipped with a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor fan. Connect the connecting piping to a branch controller, divide it into three parts: a high-pressure pipe, a low-pressure pipe, and a medium-pressure pipe, and connect multiple indoor units to the medium-pressure pipe through individual electronic expansion valves. In a multi-room air conditioner configured such that the other end of each indoor unit can be selectively connected to the high-pressure pipe section or the low-pressure pipe section, a plurality of the outdoor heat exchangers are provided in parallel,
An on-off valve is connected to one of the outdoor heat exchangers, a bypass passage having a bypass on-off valve is connected in parallel with the outdoor heat exchanger, and a high pressure detector and a low pressure detector are installed in the outdoor unit to detect the high pressure Pd. A low pressure detector is provided to detect Ps, and the detected pressures of these high pressure detectors and low pressure detectors and the set target high pressure Pd^* and target low pressure Ps^* are installed.
Each deviation ΔPd=Pd^*-Pd, ΔPs=Ps^*
Based on -Ps, the compression function force change amount ΔQcomp and the heat exchange capacity change amount ΔAk_0 of the outdoor heat exchanger are determined, and the capacity of the variable capacity compressor is controlled based on the determined ΔQcomp. A multi-room air conditioner comprising a control means for controlling the heat exchange capacity of the outdoor heat exchanger by controlling the on-off valve, the bypass on-off valve, and the outdoor fan of the outdoor heat exchanger.
(2)室外機に容量可変圧縮機と四方弁と室外熱交換器
と室外側送風機とを備え、室外から室内への連絡配管を
高圧管と低圧管との2本で構成し、正気2本の連絡配管
を分流コントローラに接続し、この分流コントローラ内
で高圧管部と低圧管部と中圧管部に三分割し、複数の室
内機を各々個別の電子膨張弁を介して上記中圧管部に接
続し、各室内機の他端は上記高圧管部もしくは上記低圧
管部に選択的に接続できるごとく構成された多室式空気
調和機において、上記室外熱交換器を複数並列に設けこ
の室外熱交換器のひとつに開閉弁を接続し、室外熱交換
器と並列にバイパス開閉弁を有するバイパス路を接続す
るとともに、上記室外機および室内機における冷媒の凝
縮温度CTと蒸発温度ETとを検知する凝縮温度検知器
、蒸発温度検知器を設け、これら凝縮温度検知器、蒸発
温度検知器の検知温度と設定された目標凝縮温度CT^
*、目標蒸発温度ET^*との各偏差ΔCT=CT^*
−CT、ΔET=ET^*−ETに基づいて圧縮機能力
変更量ΔQcompと室外熱交換器の熱交換能力変更量
ΔAk_0を求め、その求められたΔQcompに基づ
いて上記容量可変圧縮機の能力制御を行うとともに、Δ
Ak_0に基づいて上記室外熱交換器の開閉弁、バイパ
ス開閉弁、室外側送風機を制御して室外側熱交換器の熱
交換能力制御を行う制御手段を設けたことを特徴とする
多室式空気調和機。
(2) The outdoor unit is equipped with a variable capacity compressor, a four-way valve, an outdoor heat exchanger, and an outdoor fan. Connect the connecting piping to a branch controller, divide it into three parts: a high-pressure pipe, a low-pressure pipe, and a medium-pressure pipe, and connect multiple indoor units to the medium-pressure pipe through individual electronic expansion valves. In a multi-room air conditioner configured such that the other end of each indoor unit can be selectively connected to the high-pressure pipe section or the low-pressure pipe section, a plurality of the above outdoor heat exchangers are installed in parallel to transfer this outdoor heat. An on-off valve is connected to one of the exchangers, a bypass path having a bypass on-off valve is connected in parallel with the outdoor heat exchanger, and the condensation temperature CT and evaporation temperature ET of the refrigerant in the outdoor unit and indoor unit are detected. A condensing temperature detector and an evaporating temperature detector are provided, and the detected temperatures of these condensing temperature detectors and evaporating temperature detector and the set target condensing temperature CT^
*, each deviation ΔCT from the target evaporation temperature ET^* = CT^*
Based on -CT, ΔET=ET^*-ET, the compression function force change amount ΔQcomp and the heat exchange capacity change amount ΔAk_0 of the outdoor heat exchanger are determined, and the capacity control of the variable capacity compressor is controlled based on the determined ΔQcomp. At the same time, Δ
A multi-room air system characterized by comprising a control means for controlling the heat exchange capacity of the outdoor heat exchanger by controlling the on-off valve, the bypass on-off valve, and the outdoor blower of the outdoor heat exchanger based on Ak_0. harmonizer.
JP2107917A 1990-03-19 1990-04-23 Air conditioner Expired - Lifetime JP2893844B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2107917A JP2893844B2 (en) 1990-04-23 1990-04-23 Air conditioner
AU72991/91A AU636726B2 (en) 1990-03-19 1991-03-18 Air conditioning system
DE69100574T DE69100574T2 (en) 1990-03-19 1991-03-19 Air conditioner.
EP91302356A EP0448345B1 (en) 1990-03-19 1991-03-19 Air conditioning system
ES91302356T ES2047984T3 (en) 1990-03-19 1991-03-19 AIR CONDITIONING SYSTEM.
EP92202252A EP0509619B1 (en) 1990-03-19 1991-03-19 Air conditioning system
DE69116855T DE69116855T2 (en) 1990-03-19 1991-03-19 air conditioner
ES92202252T ES2085552T3 (en) 1990-03-19 1991-03-19 AIR CONDITIONING SYSTEM.
US07/672,071 US5142879A (en) 1990-03-19 1991-03-19 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2107917A JP2893844B2 (en) 1990-04-23 1990-04-23 Air conditioner

Publications (2)

Publication Number Publication Date
JPH046355A true JPH046355A (en) 1992-01-10
JP2893844B2 JP2893844B2 (en) 1999-05-24

Family

ID=14471328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2107917A Expired - Lifetime JP2893844B2 (en) 1990-03-19 1990-04-23 Air conditioner

Country Status (1)

Country Link
JP (1) JP2893844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540555A (en) * 1994-10-04 1996-07-30 Unosource Controls, Inc. Real time remote sensing pressure control system using periodically sampled remote sensors
WO2014192139A1 (en) 2013-05-31 2014-12-04 三菱電機株式会社 Heat-medium conversion device, and air conditioner provided with heat-medium conversion device
WO2018003096A1 (en) * 2016-06-30 2018-01-04 三菱電機株式会社 Air-conditioning device
JPWO2020217379A1 (en) * 2019-04-25 2021-10-21 三菱電機株式会社 Refrigeration cycle equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11060771B2 (en) 2016-10-25 2021-07-13 Samsung Electronics Co., Ltd. Air conditioner with a refrigerant ratio adjustor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110859A (en) * 1984-11-02 1986-05-29 ダイキン工業株式会社 Heat recovery type air conditioner
JPH0257873A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for heat recovery type air conditioner
JPH02103352A (en) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110859A (en) * 1984-11-02 1986-05-29 ダイキン工業株式会社 Heat recovery type air conditioner
JPH0257873A (en) * 1988-08-19 1990-02-27 Daikin Ind Ltd Operation controller for heat recovery type air conditioner
JPH02103352A (en) * 1988-10-12 1990-04-16 Mitsubishi Electric Corp Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540555A (en) * 1994-10-04 1996-07-30 Unosource Controls, Inc. Real time remote sensing pressure control system using periodically sampled remote sensors
WO2014192139A1 (en) 2013-05-31 2014-12-04 三菱電機株式会社 Heat-medium conversion device, and air conditioner provided with heat-medium conversion device
US10001304B2 (en) 2013-05-31 2018-06-19 Mitsubishi Electric Corporation Heat medium relay unit and air-conditioning apparatus including the heat medium relay unit
WO2018003096A1 (en) * 2016-06-30 2018-01-04 三菱電機株式会社 Air-conditioning device
GB2564995A (en) * 2016-06-30 2019-01-30 Mitsubishi Electric Corp Air-conditioning device
JPWO2018003096A1 (en) * 2016-06-30 2019-02-14 三菱電機株式会社 Air conditioner
GB2564995B (en) * 2016-06-30 2021-04-28 Mitsubishi Electric Corp Air-conditioning apparatus
JPWO2020217379A1 (en) * 2019-04-25 2021-10-21 三菱電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2893844B2 (en) 1999-05-24

Similar Documents

Publication Publication Date Title
EP0509619B1 (en) Air conditioning system
EP0676595B1 (en) Air conditioning apparatus
CN104838211A (en) Air conditioner
JP2002081767A (en) Air conditioner
JPH0599525A (en) Multi-chamber type air conditioner
KR950003124B1 (en) Cooling and heating concurrent operation type of multiple refrigeration cycle
JPH05172429A (en) Air conditioner
JPH046355A (en) Multiple-room type air-conditioner
JP2000018766A (en) Air conditioner
JP2760500B2 (en) Multi-room air conditioner
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
JP3661014B2 (en) Refrigeration equipment
JP2598550B2 (en) Air conditioner
JP2800362B2 (en) Multi-room air conditioner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP2008232617A (en) Air conditioner
JPH04214153A (en) Refrigerating cycle device
JP2765970B2 (en) Air conditioner
JP2904354B2 (en) Air conditioner
JPH0689923B2 (en) Air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPH0320574A (en) Air-conditioning apparatus
JP2534926B2 (en) Multi-room air conditioner
JP2522371B2 (en) Air conditioner
JPH01127866A (en) Cold and hot simultaneous type multi-chamber air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080305

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090305

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100305

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110305

Year of fee payment: 12