WO2018003096A1 - Air-conditioning device - Google Patents

Air-conditioning device Download PDF

Info

Publication number
WO2018003096A1
WO2018003096A1 PCT/JP2016/069539 JP2016069539W WO2018003096A1 WO 2018003096 A1 WO2018003096 A1 WO 2018003096A1 JP 2016069539 W JP2016069539 W JP 2016069539W WO 2018003096 A1 WO2018003096 A1 WO 2018003096A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
valve
unit
pressure
cooling
Prior art date
Application number
PCT/JP2016/069539
Other languages
French (fr)
Japanese (ja)
Inventor
博幸 岡野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2018524688A priority Critical patent/JP6636151B2/en
Priority to GB1817754.3A priority patent/GB2564995B/en
Priority to PCT/JP2016/069539 priority patent/WO2018003096A1/en
Publication of WO2018003096A1 publication Critical patent/WO2018003096A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/24Arrangement of shut-off valves for disconnecting a part of the refrigerant cycle, e.g. an outdoor part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/005Arrangement or mounting of control or safety devices of safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/221Preventing leaks from developing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/22Preventing, detecting or repairing leaks of refrigeration fluids
    • F25B2500/222Detecting refrigerant leaks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner having a relay that distributes a refrigerant supplied from a heat source unit to a plurality of indoor units.
  • a heat source unit having a compressor and a heat source side heat exchanger and an indoor unit having an expansion valve and a load side heat exchanger are connected by a pipe, and the refrigerant is It has a flowing refrigerant circuit.
  • the air conditioner absorbs heat or dissipates heat from the air in the air-conditioning space that is the heat exchange target, and changes the pressure and temperature of the refrigerant flowing in the refrigerant circuit.
  • Air conditioning is performed while there has also been proposed an air conditioner including a heat source unit, a plurality of indoor units, and a relay unit that distributes the refrigerant supplied from the heat source unit to the plurality of indoor units.
  • a cooling operation or a heating operation is necessary in each of a plurality of indoor units is automatically determined according to a set temperature of a remote controller attached to the indoor unit and a temperature around the indoor unit.
  • the cooling / heating simultaneous operation in which the cooling operation or the heating operation is performed for each indoor unit is performed.
  • Patent Document 1 In recent years, from the viewpoint of preventing global warming and the impact on human bodies due to leakage of flammable refrigerant into the room and preventing combustion, it is necessary to take safety measures against refrigerant leakage.
  • Patent Document 1 in an air conditioner that performs simultaneous cooling and heating operations, a valve device is newly provided between the relay machine and the indoor unit, and when the refrigerant leaks, the valve device is closed, Prevents refrigerant from leaking outside the indoor unit.
  • Patent Document 1 requires a new valve device between the relay unit and the indoor unit in order to prevent the refrigerant from leaking outside the indoor unit. Or the cost becomes high as a system. In addition, there is a problem that if the valve is only closed to prevent leakage of the refrigerant, it takes time to recover the refrigerant when the device is repaired thereafter.
  • the present invention has been made to solve the above-described problems, and provides an air conditioner that can suppress the leakage of the refrigerant and reduce the time for collecting the refrigerant with an inexpensive configuration. is there.
  • An air conditioner includes a compressor, a flow path switching valve, a heat source device having a heat source side heat exchanger, and a plurality of indoor units having a load side heat exchanger and performing a cooling operation or a heating operation.
  • a first on-off valve that switches one of the load side heat exchangers to be connected to the low-pressure pipe, and a low-pressure pipe and a high-pressure pipe that connect the heat source machine and each indoor unit, and
  • a relay having a second branching portion connected to the high-pressure liquid pipe through the second expansion valve and connected to the return intermediate pressure pipe, a leakage detection unit for detecting refrigerant leakage, and the first And a control device for controlling the second expansion valve. After detecting refrigerant leakage by parts, and performs pump down operation for collecting the refrigerant into the heat source apparatus by closing all of the first expansion valve and the second expansion valve.
  • the air conditioner according to the present invention includes a leakage detection unit that detects refrigerant leakage.
  • the control device closes all expansion valves and performs pump-down operation. And recover the refrigerant to the heat source machine side.
  • the indoor unit is shut off by the expansion valve to suppress the refrigerant leakage to the outside of the indoor unit, and the refrigerant is recovered from the indoor unit to the heat source unit side.
  • it is not necessary to provide a new valve in addition to the expansion valve in order to suppress the leakage of the refrigerant to the outside of the indoor unit an inexpensive configuration can be achieved.
  • FIG. 1 is a refrigerant circuit diagram showing an air conditioner 1 according to an embodiment of the present invention.
  • the air-conditioning apparatus 1 includes a heat source unit 100, a plurality of indoor units 300a and 300b, a relay unit 200, and a control unit 10.
  • the case where two indoor units 300a and 300b are connected to one heat source unit 100 is illustrated, but the number of heat source units 100 may be two or more.
  • the number of indoor units 300a and 300b may be three or more.
  • the air conditioner 1 includes a heat source device 100, indoor units 300 a and 300 b, and a relay device 200 connected by a pipe to configure a refrigerant circuit in which a refrigerant circulates.
  • the heat source unit 100 has a function of supplying hot or cold to the two indoor units 300a and 300b.
  • the two indoor units 300a and 300b are connected in parallel to each other and have the same configuration.
  • the indoor units 300a and 300b have a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the heat source device 100.
  • the repeater 200 is interposed between the heat source unit 100 and the indoor units 300a and 300b, and has a function of switching the flow of refrigerant supplied from the heat source unit 100 in response to a request from the indoor units 300a and 300b. .
  • the air conditioner 1 also includes a load capacity detection unit 20 that detects the heating / cooling load capacity of the plurality of indoor units 300a and 300b.
  • the cooling / heating load capacity is a cooling load capacity and a heating load capacity in the plurality of indoor units 300a and 300b.
  • the load capacity detection unit 20 includes liquid tube temperature detection units 303a and 303b and gas tube temperature detection units 304a and 304b.
  • the heat source unit 100 and the relay unit 200 are connected on the high-pressure side by a high-pressure pipe 402 through which a high-pressure refrigerant flows, and on the low-pressure side by a low-pressure pipe 401 through which a low-pressure refrigerant flows.
  • the repeater 200 and the indoor units 300a and 300b are connected by gas branch pipes 403a and 403b, respectively.
  • a gas-state refrigerant mainly flows through the gas branch pipes 403a and 403b.
  • the relay machine 200 and the indoor units 300a and 300b are connected by liquid branch pipes 404a and 404b, respectively.
  • a liquid refrigerant mainly flows through the liquid branch pipes 404a and 404b.
  • the heat source device 100 has a function of supplying warm or cold to the indoor units 300a and 300b.
  • the heat source unit 100 is connected to a variable capacity compressor 101, a flow path switching valve 102 that switches a direction in which the refrigerant flows in the heat source unit 100, a heat source side heat exchange unit 120, and a suction side of the compressor 101, and is in a liquid state.
  • An accumulator 104 that stores the refrigerant and a heat source side flow path adjustment unit 140 that restricts the direction in which the refrigerant flows.
  • the flow path switching valve 102 is illustrated as a four-way valve, but may be configured by combining a two-way valve or a three-way valve.
  • the heat source side heat exchange unit 120 includes a main pipe 114, a heat source side heat exchanger 103, and a heat source side blower 112.
  • the heat source side heat exchanger 103 functions as an evaporator or a condenser.
  • the heat source side heat exchanger 103 is for exchanging heat between the refrigerant and the outdoor air in the case of the air cooling type, and for exchanging heat between the refrigerant and water or brine in the case of the water cooling type.
  • the heat source side blower 112 varies the amount of air blown to the heat source side heat exchanger 103 and controls the heat exchange capacity.
  • One of the main pipes 114 is connected to the flow path switching valve 102 and the other is connected to the high-pressure pipe 402, and the heat source side heat exchanger 103 is provided in the middle.
  • the heat source side flow path adjustment unit 140 includes a third check valve 105, a fourth check valve 106, a fifth check valve 107, and a sixth check valve 108.
  • the third check valve 105 is provided in a pipe connecting the heat source side heat exchange unit 120 and the high pressure pipe 402 and allows the refrigerant to flow from the heat source side heat exchange unit 120 toward the high pressure pipe 402.
  • the fourth check valve 106 is provided in a pipe connecting the flow path switching valve 102 of the heat source apparatus 100 and the low pressure pipe 401, and allows the refrigerant to flow from the low pressure pipe 401 toward the flow path switching valve 102.
  • the fifth check valve 107 is provided in a pipe connecting the flow path switching valve 102 and the high pressure pipe 402 of the heat source device 100 and allows the refrigerant to flow from the flow path switching valve 102 toward the high pressure pipe 402.
  • the sixth check valve 108 is provided in a pipe connecting the heat source side heat exchange unit 120 and the low pressure pipe 401, and allows the refrigerant to flow from the low pressure pipe 401 toward the heat source side heat exchange unit 120.
  • the heat source apparatus 100 is provided with a discharge pressure detection unit 126 and a suction pressure detection unit 127.
  • the discharge pressure detection unit 126 is provided in a pipe connecting the flow path switching valve 102 and the discharge side of the compressor 101, and detects the discharge pressure of the compressor 101.
  • the discharge pressure detection unit 126 includes, for example, a pressure sensor and transmits a detected discharge pressure signal to the control device 10.
  • the discharge pressure detection unit 126 may have a storage device or the like. In this case, the discharge pressure detection unit 126 accumulates the detected discharge pressure data in a storage device or the like for a predetermined period, and transmits a signal including the discharge pressure data detected every predetermined cycle to the control device 10.
  • the suction pressure detection unit 127 is provided in a pipe connecting the flow path switching valve 102 and the accumulator 104 and detects the suction pressure of the compressor 101.
  • the suction pressure detection unit 127 includes a pressure sensor, for example, and transmits a signal of the detected suction pressure to the control device 10.
  • the suction pressure detection unit 127 may include a storage device or the like. In this case, the suction pressure detection unit 127 accumulates the detected suction pressure data in a storage device or the like for a predetermined period, and transmits a signal including the suction pressure data detected every predetermined cycle to the control device 10.
  • the indoor units 300a and 300b include load-side heat exchangers 301a and 301b that function as condensers or evaporators, respectively.
  • the indoor units 300a and 300b are provided with gas pipe temperature detectors 304a and 304b and liquid pipe temperature detectors 303a and 303b, respectively.
  • the gas pipe temperature detection units 304a and 304b are respectively provided between one of the load side heat exchangers 301a and 301b and the relay machine 200, and connect the load side heat exchangers 301a and 301b and the relay machine 200, respectively.
  • the temperature of the refrigerant flowing in the gas branch pipes 403a and 403b is detected.
  • the gas pipe temperature detection units 304 a and 304 b are configured by, for example, a thermistor and transmit a detected temperature signal to the control device 10.
  • the gas pipe temperature detection units 304a and 304b may have a storage device or the like.
  • the gas pipe temperature detection units 304a and 304b accumulate the detected temperature data in a storage device or the like for a predetermined period, and transmit a signal including the detected temperature data for each predetermined period to the control device 10. .
  • the liquid pipe temperature detection units 303a and 303b are respectively provided between the other of the load side heat exchangers 301a and 301b and the relay machine 200, and connect the load side heat exchangers 301a and 301b and the relay machine 200, respectively.
  • the temperature of the refrigerant flowing through the liquid branch pipes 404a and 404b is detected.
  • the liquid tube temperature detection units 303 a and 303 b are configured by, for example, a thermistor and transmit a detected temperature signal to the control device 10.
  • the liquid tube temperature detection units 303a and 303b may have a storage device or the like.
  • the liquid tube temperature detection units 303a and 303b accumulate the detected temperature data in a storage device or the like for a predetermined period, and transmit a signal including the detected temperature data for each predetermined period to the control device 10. .
  • the relay unit 200 is interposed between the heat source unit 100 and the indoor units 300a and 300b, switches the flow of the refrigerant supplied from the heat source unit 100 in response to a request from the indoor units 300a and 300b, and supplies it from the heat source unit 100
  • the refrigerant to be distributed is distributed to the plurality of indoor units 300a and 300b.
  • the relay machine 200 includes a first branch part 240, a second branch part 250, a gas-liquid separator 201, a relay bypass pipe 209, a high pressure gas pipe 402A, a high pressure liquid pipe 402B, and a return intermediate pressure pipe 401A.
  • the first branching section 240 includes heating solenoid valves 202a and 202b and cooling solenoid valves 203a and 203b.
  • One of the heating solenoid valves 202a and 202b is connected to the gas branch pipes 403a and 403b and the other is connected to the high-pressure gas pipe 402A, and is opened during the heating operation and closed during the cooling operation. It is.
  • Each of the cooling electromagnetic valves 203a and 203b is connected to the gas branch pipes 403a and 403b and the other is connected to the low pressure pipe 401, and is opened during the cooling operation and closed during the heating operation. is there.
  • the cooling electromagnetic valves 203a and 203b correspond to the “first on-off valve” of the present invention, and the heating electromagnetic valves 202a and 202b correspond to the “second on-off valve” of the present invention.
  • the second branch portion 250 includes first expansion valves 210a and 210b and second expansion valves 211a and 211b.
  • the first expansion valves 210a and 210b and the second expansion valves 211a and 211b have a function of adjusting the flow rate of the refrigerant flowing through the indoor units 300a and 300b.
  • the first expansion valves 210a and 210b and the second expansion valves 211a and 211b are configured by, for example, electric expansion valves with variable opening degrees.
  • One of the first expansion valves 210a and 210b is connected to the liquid branch pipes 404a and 404b, and the other of the first expansion valves 210a and 210b is connected to the high-pressure liquid pipe 402B.
  • the load-side heat exchangers 301a and 210b are connected.
  • the degree of opening is controlled in order to control the superheat amount on the outlet side of 301b.
  • One of the second expansion valves 211a and 211b is connected to the liquid branch pipes 404a and 404b, and the other of the second expansion valves 211a and 211b is connected to the return intermediate pressure pipe 401A.
  • the load-side heat exchangers 301a The degree of opening is controlled to control the amount of subcooling on the outlet side of 301b.
  • Each of the indoor units 300a and 300b has a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the heat source device 100.
  • the gas-liquid separator 201 separates the refrigerant in the gas state and the refrigerant in the liquid state, the inflow side is connected to the high pressure pipe 402, and the gas outflow side is connected to the first branch 240 through the high pressure gas pipe 402A.
  • the liquid outlet side is connected to the second branch 250 through the high-pressure liquid pipe 402B.
  • the relay bypass pipe 209 connects the second branch 250 and the low pressure pipe 401 with the high pressure liquid pipe 402B.
  • the liquid outflow side flow rate adjustment valve 204 is connected to the liquid outflow side of the gas-liquid separator 201, and is composed of, for example, an electric expansion valve with variable opening.
  • the liquid outflow-side flow rate adjustment valve 204 adjusts the flow rate of the liquid refrigerant flowing out of the gas-liquid separator 201.
  • the heat exchange unit 26 includes a first heat exchange unit 206 and a second heat exchange unit 207.
  • the first heat exchanging unit 206 is provided in a pipe between the liquid outflow side of the gas-liquid separator 201 and the liquid outflow side flow rate adjustment valve 204 and the relay bypass pipe 209.
  • the first heat exchanging unit 206 exchanges heat between the liquid refrigerant flowing out of the gas-liquid separator 201 and the refrigerant flowing through the relay bypass pipe 209 toward the low pressure pipe 401.
  • the second heat exchange unit 207 is provided in the pipe on the downstream side of the liquid outflow side flow rate adjustment valve 204 and the relay bypass pipe 209.
  • the second heat exchange unit 207 exchanges heat between the refrigerant that has flowed out of the liquid outflow side flow rate adjustment valve 204 and the refrigerant that flows through the relay bypass pipe 209 toward the low-pressure pipe 401.
  • the relay bypass flow rate adjustment valve 205 is connected to the upstream side of the second heat exchanging unit 207 in the relay bypass pipe 209, and is configured by, for example, an electric expansion valve having a variable opening.
  • the relay bypass flow rate adjustment valve 205 adjusts the flow rate of the refrigerant flowing into the relay bypass pipe 209 out of the refrigerant flowing out from the second heat exchange unit 207.
  • the relay machine 200 is provided with a first liquid outflow pressure detection unit 231, a second liquid outflow pressure detection unit 232, and a relay bypass temperature detection unit 208.
  • the first liquid outflow pressure detection unit 231 is provided between the first heat exchange unit 206 and the liquid outflow side flow rate adjustment valve 204 and detects the pressure of the refrigerant on the liquid outflow side of the gas-liquid separator 201. Is.
  • the first liquid outflow pressure detection unit 231 includes, for example, a pressure sensor, and transmits a detected pressure signal to the control device 10.
  • the first liquid outflow pressure detector 231 may include a storage device or the like. In this case, the first liquid outflow pressure detection unit 231 accumulates the detected pressure data in a storage device or the like for a predetermined period, and transmits a signal including the detected pressure data for each predetermined period to the control device 10. .
  • the second liquid outflow pressure detection unit 232 is provided between the liquid outflow side flow rate adjustment valve 204 and the second heat exchange unit 207, and detects the pressure of the refrigerant flowing out of the liquid outflow side flow rate adjustment valve 204. Is.
  • the second liquid outflow pressure detection unit 232 includes, for example, a pressure sensor and transmits a detected pressure signal to the control device 10.
  • the second liquid outflow pressure detection unit 232 may include a storage device or the like. In this case, the second liquid outflow pressure detector 232 accumulates the detected pressure data in a storage device or the like for a predetermined period, and transmits a signal including the detected pressure data for each predetermined period to the control device 10. .
  • the liquid outflow side flow rate adjustment valve 204 has an opening degree so that the difference between the pressure detected by the first liquid outflow pressure detection unit 231 and the pressure detected by the second liquid outflow pressure detection unit 232 is constant. Has been adjusted.
  • the relay bypass temperature detector 208 is provided in the relay bypass pipe 209 and detects the pressure of the refrigerant flowing through the relay bypass pipe 209.
  • the relay bypass temperature detection unit 208 is configured by, for example, a thermistor and transmits a detected temperature signal to the control device 10.
  • the relay bypass temperature detection unit 208 may have a storage device or the like. In this case, the relay bypass temperature detection unit 208 accumulates the detected temperature data in a storage device or the like for a predetermined period, and transmits a signal including the detected temperature data for each predetermined period to the control device 10.
  • the relay bypass flow rate adjustment valve 205 is detected by the pressure detected by the first liquid outflow pressure detector 231, the pressure detected by the second liquid outflow pressure detector 232, and the relay bypass temperature detector 208.
  • the opening degree is adjusted based on at least one of the measured temperatures.
  • refrigerant In the air conditioner 1, a refrigerant is filled in a pipe.
  • the refrigerant for example, natural refrigerant such as carbon dioxide (CO 2 ), hydrocarbon, helium, HFC410A, combustible R32 refrigerant, or the like is used.
  • the inside of the piping of the air conditioning apparatus 1 may be filled with a heat medium instead of the refrigerant.
  • the heat medium is, for example, water, brine or the like.
  • the leak detection unit 400 is a refrigerant leak detection unit that detects a refrigerant leak and outputs a signal. For example, a change in resistance value that occurs when a metal oxide semiconductor comes into contact with the refrigerant gas is detected in the refrigerant gas in the air.
  • This is a semiconductor gas sensor that detects the concentration.
  • it may be other than a semiconductor gas sensor, for example, a non-dispersive infrared sensor that detects the amount of infrared rays absorbed by the gas, a refrigerant gas concentration cannot be measured, but a detector that can detect the presence or absence of a refrigerant gas, An oxygen concentration meter or the like that measures the oxygen concentration in the room may be used.
  • Information that the leakage of the refrigerant is detected by the leakage detector 400 is transmitted to the control device 10 and is used as a trigger for the pump-down operation.
  • the leak detection part 400 is 1: for each indoor unit or each living room. If it is set as the structure provided by 1 relationship, it can be judged in which indoor unit system or which living room system the refrigerant
  • the control device 10 controls the entire system of the air conditioner 1, and is configured by a microprocessor unit including, for example, a CPU and a memory.
  • the control device 10 includes gas pipe temperature detection units 304a and 304b, liquid pipe temperature detection units 303a and 303b, a first liquid outflow pressure detection unit 231, a second liquid outflow pressure detection unit 232, a relay bypass temperature detection unit 208, and a discharge pressure.
  • the drive frequency of the compressor 101 the rotation speed of the heat source side blower 112, the load side heat
  • the drive frequency of the compressor 101 the rotation speed of the heat source side blower 112
  • the load side heat The number of rotations of an indoor fan (not shown) provided in the exchangers 301a and 301b, switching of the flow path switching valve 102, opening and closing of the heating solenoid valves 202a and 202b and the cooling solenoid valves 203a and 203b, the first Control the opening degree of the expansion valves 210a and 210b, the second expansion valves 211a and 211b, the liquid outflow side flow rate adjustment valve 204, and the relay bypass flow rate adjustment valve 205.
  • control apparatus 10 is comprised by the 1st control apparatus 141 provided in the heat-source equipment 100, and the 2nd control apparatus 220 provided in the relay machine 200, it is not limited to this, A heat-source equipment 100, indoor units 300a, 300b, and repeater 200 may be installed only, or may be installed in all of them. Further, the control device 10 may be mounted separately from the heat source unit 100, the indoor units 300a and 300b, and the relay unit 200. Note that the first control device 141 and the second control device 220 are communicably connected to each other by wireless or wired communication, and can transmit and receive various data. Furthermore, the control device 10 may be configured by a single control device.
  • control device 10 includes a storage unit 11 and a setting unit 12.
  • the storage unit 11 and the setting unit 12 are provided in the heat source unit 100, but may be provided in addition to the heat source unit 100. Further, the storage unit 11 and the setting unit 12 may be provided separately from the control device 10.
  • the storage unit 11 stores data necessary for the control device 10 to perform processing temporarily or for a long period of time, and includes, for example, a memory.
  • the setting means 12 has a function of determining whether the air conditioner 1 is a cooling main operation or a heating main operation. Further, the setting unit 12 has a function of determining whether or not the condensation target temperature of the heat source side heat exchanger 103 is equal to or higher than the condensation target temperature threshold in the cooling main operation.
  • the setting means 12 calculates the heating / cooling load capacity from the number of indoor units that are performing the cooling operation and the number of indoor units that are performing the heating operation among the plurality of indoor units 300a and 300b. Also good.
  • the setting unit 12 may calculate the heating / cooling load capacity from the discharge pressure detected by the discharge pressure detection unit 126 or the suction pressure detected by the suction pressure detection unit 127.
  • the discharge pressure detection unit 126 or the suction pressure detection unit 127 is a component of the load capacity detection unit 20.
  • the air conditioner 1 includes a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation as operation modes.
  • the all cooling operation is a mode in which all the indoor units 300a and 300b perform the cooling operation.
  • the all heating operation is a mode in which all the indoor units 300a and 300b perform the heating operation.
  • the cooling main operation is a mode in which the capacity of the cooling operation is larger than the capacity of the heating operation among the simultaneous cooling and heating operations.
  • the heating main operation is a mode in which the heating operation capacity is larger than the cooling operation capacity in the simultaneous cooling and heating operation.
  • FIG. 2 is a refrigerant circuit diagram illustrating a state during a cooling only operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
  • the high-pressure refrigerant is indicated by a solid line arrow
  • the low-pressure refrigerant is indicated by a broken line arrow.
  • FIGS. 3 to 5 described later.
  • the cooling only operation of the air conditioner 1 will be described with reference to FIG. In the all-cooling operation, in the air conditioner 1, all the indoor units 300a and 300b are performing the cooling operation. As shown in FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102 and is heat-exchanged with outdoor air blown by the heat-source side blower 112 in the heat-source side heat exchanger 103. To condense. The condensed and liquefied refrigerant passes through the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 of the repeater 200.
  • the refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201.
  • the liquid refrigerant flowing out from the liquid outflow side of the gas-liquid separator 201 passes through the first heat exchange unit 206, the liquid outflow side flow rate adjustment valve 204, the second heat exchange unit 207, and the high pressure liquid pipe 402B.
  • the second branching section 250 is reached and branches there.
  • the branched refrigerant flows into the indoor units 300a and 300b through the first expansion valves 210a and 210b and the liquid branch pipes 404a and 404b, respectively.
  • the refrigerant that has flowed into the indoor units 300a and 300b is depressurized to a low pressure by the first expansion valves 210a and 210b controlled by the superheat amount on the outlet side of the load side heat exchangers 301a and 301b, respectively.
  • the decompressed refrigerant flows into the load-side heat exchangers 301a and 301b, and is heat-exchanged with indoor air in the load-side heat exchangers 301a and 301b to be evaporated. At that time, the entire room is cooled. Then, the refrigerant in a gas state passes through the gas branch pipes 403a and 403b and the cooling electromagnetic valves 203a and 203b of the first branch portion 240, and then merges and passes through the low pressure pipe 401.
  • a part of the refrigerant that has passed through the second heat exchange unit 207 flows into the relay bypass pipe 209.
  • the refrigerant flowing into the relay bypass pipe 209 is decompressed to a low pressure by the relay bypass flow rate adjustment valve 205, and then passes through the liquid outflow side flow rate adjustment valve 204 in the second heat exchange unit 207, that is, the relay bypass.
  • Heat exchange with the refrigerant before branching to the pipe 209 evaporates.
  • the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204.
  • the evaporated refrigerant flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valves 203a and 203b. Thereafter, the merged refrigerant passes through the fourth check valve 106, the flow path switching valve 102, and the accumulator 104 and is sucked into the compressor 101.
  • the heating solenoid valves 202a and 202b are closed.
  • the cooling electromagnetic valves 203a and 203b are opened. Since the low pressure pipe 401 is low pressure and the high pressure pipe 402 is high pressure, the refrigerant flows through the third check valve 105 and the fourth check valve 106. Further, the second expansion valves 211a and 211b are closed so that no refrigerant flows.
  • FIG. 3 is a refrigerant circuit diagram illustrating a state of the air-conditioning apparatus 1 according to the embodiment of the present invention during a heating only operation.
  • the heating only operation of the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 all the indoor units 300a and 300b perform the heating operation.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, passes through the fifth check valve 107 and the high-pressure pipe 402, and the gas-liquid of the relay machine 200.
  • the separator 201 is reached.
  • the refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201.
  • the gaseous refrigerant that has flowed out from the gas outflow side of the gas-liquid separator 201 passes through the high-pressure gas pipe 402A, reaches the first branching section 240, and branches there.
  • the branched refrigerant flows into the indoor units 300a and 300b through the heating solenoid valves 202a and 202b and the gas branch pipes 403a and 403b, respectively.
  • the refrigerant that has flowed into the indoor units 300a and 300b undergoes heat exchange with the indoor air in the load-side heat exchangers 301a and 301b, respectively, and is condensed and liquefied. At that time, the entire room is heated.
  • the condensed and liquefied refrigerant passes through the second expansion valves 211a and 211b controlled by the subcool amounts on the outlet side of the load side heat exchangers 301a and 301b, respectively.
  • the refrigerant that has passed through the second expansion valves 211a and 211b passes through the return intermediate pressure pipe 401A and the second heat exchange unit 207, flows into the relay bypass pipe 209, and is reduced to a low pressure by the relay bypass flow rate adjustment valve 205.
  • the second heat exchange unit 207 heat is exchanged with the refrigerant that has passed through the liquid outflow side flow rate adjustment valve 204, that is, the refrigerant before branching to the relay bypass pipe 209, and evaporates.
  • the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204.
  • the evaporated refrigerant flows into the low pressure pipe 401, passes through the sixth check valve 108, undergoes heat exchange with the outdoor air blown by the heat source side blower 112 in the heat source side heat exchanger 103, and evaporates into gas.
  • the gasified refrigerant passes through the flow path switching valve 102 and the accumulator 104 and is sucked into the compressor 101.
  • the heating solenoid valves 202a and 202b are opened.
  • the cooling electromagnetic valves 203a and 203b are closed.
  • the refrigerant flows through the fifth check valve 107 and the sixth check valve 108.
  • the liquid outflow side flow rate adjustment valve 204 is closed.
  • the first expansion valves 210a and 210b are closed so that the refrigerant does not flow.
  • FIG. 4 is a refrigerant circuit diagram illustrating a state during the cooling main operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
  • the cooling main operation of the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 has a cooling request from the indoor unit 300a and a heating request from the indoor unit 300b.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, and is heat-exchanged with outdoor air blown by the heat source side blower 112 in the heat source side heat exchanger 103.
  • the condensed and liquefied refrigerant passes through the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 of the repeater 200.
  • the refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201.
  • the liquid refrigerant flowing out from the liquid outflow side of the gas-liquid separator 201 passes through the first heat exchange unit 206, the liquid outflow side flow rate adjustment valve 204, the second heat exchange unit 207, and the high pressure liquid pipe 402B. 2 branching section 250 is reached.
  • coolant flows in into the indoor unit 300a through the 1st expansion valve 210a of the 2nd branch part 250, and the liquid branch pipe 404a.
  • the refrigerant flowing into the indoor unit 300a is depressurized to a low pressure by controlling the superheat on the outlet side of the load-side heat exchanger 301a by the first expansion valve 210a.
  • the decompressed refrigerant flows into the load-side heat exchanger 301a, and is heat-exchanged with indoor air in the load-side heat exchanger 301a to be evaporated and gasified.
  • the room in which the indoor unit 300a is installed is cooled.
  • the refrigerant in a gas state flows into the low-pressure pipe 401 through the gas branch pipe 403a and the cooling electromagnetic valve 203a of the first branch 240.
  • the gaseous refrigerant flowing out from the gas outflow side of the gas-liquid separator 201 passes through the high-pressure gas pipe 402A, the heating solenoid valve 202b of the first branch 240, and the gas branch pipe 403b to the indoor unit 300b. Inflow.
  • the refrigerant that has flowed into the indoor unit 300b is heat-exchanged with indoor air in the load-side heat exchanger 301b to be condensed and liquefied. At that time, the room where the indoor unit 300b is installed is heated.
  • the condensed and liquefied refrigerant passes through the liquid branch pipe 404b, the subcooling amount on the outlet side is controlled by the second expansion valve 211b, and becomes a liquid state of intermediate pressure between high pressure and low pressure.
  • the refrigerant in the intermediate pressure liquid state flows into the second heat exchange unit 207 through the return intermediate pressure tube 401A.
  • the refrigerant flows into the relay bypass pipe 209 and is depressurized to a low pressure by the relay bypass flow rate adjustment valve 205, and then passes through the liquid outflow side flow rate adjustment valve 204 in the second heat exchange unit 207, that is, the relay.
  • Heat exchanges with the refrigerant before branching to the bypass pipe 209 evaporates.
  • the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204.
  • the evaporated refrigerant flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valve 203a. Thereafter, the merged refrigerant passes through the fourth check valve 106, the flow path switching valve 102, and the accumulator 104 and is sucked into the compressor 101.
  • the heating solenoid valve 202a is closed and the heating solenoid valve 202b is opened.
  • the cooling electromagnetic valve 203a is opened, and the cooling electromagnetic valve 203b is closed.
  • the low pressure pipe 401 is low pressure and the high pressure pipe 402 is high pressure
  • the refrigerant flows through the third check valve 105 and the fourth check valve 106.
  • the second expansion valve 211a is closed, the refrigerant does not flow.
  • the first expansion valve 210b is closed, the refrigerant does not flow.
  • FIG. 5 is a refrigerant circuit diagram illustrating a state of the air-conditioning apparatus 1 according to the embodiment of the present invention during a heating main operation.
  • the heating main operation of the air conditioner 1 will be described with reference to FIG.
  • the air conditioner 1 has a heating request from the indoor unit 300b and a cooling request from the indoor unit 300a.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, passes through the fifth check valve 107 and the high-pressure pipe 402, and reaches the gas-liquid of the relay machine 200.
  • the separator 201 is reached.
  • the refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201.
  • the gaseous refrigerant that has flowed out from the gas outflow side of the gas-liquid separator 201 passes through the high-pressure gas pipe 402A and reaches the first branch 240.
  • coolant flows in into the indoor unit 300b through the heating solenoid valve 202b of the 1st branch part 240, and the gas branch pipe 403b.
  • the refrigerant that has flowed into the indoor unit 300b is heat-exchanged with indoor air in the load-side heat exchanger 301b to be condensed and liquefied.
  • the room where the indoor unit 300b is installed is heated.
  • the condensed and liquefied refrigerant is controlled by the second expansion valve 211b at the subcooling amount on the outlet side, and becomes a liquid state at an intermediate pressure between the high pressure and the low pressure.
  • the refrigerant in the intermediate pressure liquid state passes through the liquid branch pipe 404b, the second expansion valve 211b of the second branch section 250, and the return intermediate pressure pipe 401A, and flows into the second heat exchange section 207.
  • the gas-liquid separator 201 flows out from the liquid outflow side of the gas-liquid separator 201 and merges with the refrigerant in the liquid state that has passed through the first heat exchange unit 206 and the liquid outflow side flow rate adjustment valve 204.
  • the merged refrigerant branches into a refrigerant that flows into the second branch portion 250 through the high-pressure liquid pipe 402B and a refrigerant that flows into the relay bypass pipe 209.
  • the refrigerant that has flowed into the second branch section 250 flows into the indoor unit 300a through the first expansion valve 210a and the liquid branch pipe 404a of the second branch section 250.
  • the refrigerant flowing into the indoor unit 300a is depressurized to a low pressure by controlling the superheat on the outlet side of the load side heat exchanger 301a by the first expansion valve 210a.
  • the decompressed refrigerant flows into the load-side heat exchanger 301a, and is heat-exchanged with indoor air in the load-side heat exchanger 301a to be evaporated and gasified. At that time, the room in which the indoor unit 300a is installed is cooled.
  • the refrigerant in a gas state flows into the low-pressure pipe 401 through the gas branch pipe 403a and the cooling electromagnetic valve 203a of the first branch 240.
  • the refrigerant flowing into the relay bypass pipe 209 is decompressed to a low pressure by the relay bypass flow rate adjustment valve 205 and then passed through the liquid outflow side flow rate adjustment valve 204 in the second heat exchange unit 207, that is, the relay bypass.
  • Heat exchange with the refrigerant before branching to the pipe 209 evaporates.
  • the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204.
  • the evaporated refrigerant flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valve 203a. Thereafter, the merged refrigerant passes through the sixth check valve 108 and flows into the heat source side heat exchanger 103.
  • the refrigerant exchanges heat with outdoor air blown by the heat source side blower 112 in the heat source side heat exchanger 103 to evaporate and then is sucked into the compressor 101 through the flow path switching valve 102 and the accumulator 104. .
  • the heating solenoid valve 202b is opened, and the heating solenoid valve 202a is closed.
  • the cooling electromagnetic valve 203a is opened, and the cooling electromagnetic valve 203b is closed.
  • the refrigerant flows through the fifth check valve 107 and the sixth check valve 108.
  • the second expansion valve 211a is closed, the refrigerant does not flow.
  • the first expansion valve 210b is closed, the refrigerant does not flow.
  • FIG. 6 is a flowchart showing the operation of the air-conditioning apparatus 1 according to the embodiment of the present invention when refrigerant leakage is detected.
  • the leak detection unit 400 detects whether or not the refrigerant has leaked from the refrigerant circuit (step S1). And when it is detected by the leak detection part 400 that the refrigerant
  • step S3 when the air conditioner 1 is in the cooling only operation (Yes in step S3), the operation is continued with the operation mode as it is.
  • the operation mode is other than the cooling only operation, that is, when any of the heating only operation, the cooling main operation, and the heating main operation is stopped (No in step S3), the control device 10 Is forcibly switched to the cooling only operation (step S4).
  • the control device 10 is in the cooling only operation, but closes all the first expansion valves 210a and 210b and the second expansion valves 211a and 211b (step S5). Note that the indoor unit is set so as not to be thermo-off even when the suction temperature reaches the set temperature.
  • step S6 the control device 10 opens only the cooling electromagnetic valve 203a or 203b of the system in which the refrigerant has leaked (step S7).
  • step S7 the control device 10 opens all the cooling electromagnetic valves 203a and 203b (step S8).
  • all the cooling electromagnetic valves 203a and 203b may be opened.
  • step S9 the control apparatus 10 starts the pump down driving
  • the details of the pump-down operation will be described later.
  • the pump-down operation is performed until the recovery of the refrigerant is completed.
  • the control device 10 stops the compressor 101 and closes all the cooling electromagnetic valves 203a and 203b. (Step S11), the process ends.
  • the refrigerant recovery determination for example, by attaching a liquid level determination means to the accumulator 104, it is possible to determine that the recovery is complete when a certain amount is exceeded. Or if it collects with a liquid refrigerant, since the suction side of compressor 101 will be sucked in with a gas refrigerant, suction pressure will fall. This can be detected by the suction pressure detection unit 127, and it can be determined that the recovery is completed when the pressure becomes a predetermined pressure, for example, less than 1 kg / cm 2 .
  • FIG. 7 is a refrigerant circuit diagram illustrating a state during the pump-down operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
  • the pump-down operation of the air conditioner 1 will be described with reference to FIG.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102 and is heat-exchanged with outdoor air blown by the heat-source side blower 112 in the heat-source side heat exchanger 103.
  • the condensed and liquefied refrigerant passes through the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 of the repeater 200.
  • the refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201.
  • the liquid refrigerant that flows out from the liquid outflow side of the gas-liquid separator 201 flows in the order of the first heat exchange unit 206, the liquid outflow side flow rate adjustment valve 204, and the second heat exchange unit 207, but the first expansion valve. Since 210a, 210b and the second expansion valves 211a, 211b are closed, the refrigerant does not flow into the indoor units 300a, 300b.
  • the heating solenoid valves 202a and 202b are closed, the cooling solenoid valves 203a and 203b are opened, and the refrigerant present in the indoor units 300a and 300b is cooled by the cooling solenoid valves 203a and 203b. Therefore, the amount of refrigerant existing in the indoor units 300a and 300b is reduced by evaporating and is eventually recovered.
  • each indoor unit can be operated as a cooling operation to operate the indoor fan, promote evaporative gasification and agitate the indoor air with the fan, but it is necessary to operate the indoor fan. It is not something to do. Then, the refrigerant that has become a gas state in the indoor units 300a and 300b passes through the gas branch pipes 403a and 403b and the cooling electromagnetic valves 203a and 203b of the first branch section 240, respectively, and then merges to pass through the low-pressure pipe 401. Pass through.
  • the liquid refrigerant that has flowed into the relay bypass pipe 209 flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valves 203a and 203b. Thereafter, the merged refrigerant passes through the fourth check valve 106 and the flow path switching valve 102 and is collected in the accumulator 104.
  • the compressor 101 is automatically stopped and all the cooling solenoid valves 203a and 203b are closed.
  • the air conditioning apparatus 1 which concerns on this Embodiment
  • the air conditioning apparatus 1 which concerns on this Embodiment
  • the control apparatus 10 is leak detection.
  • the refrigerant leakage is detected by the section 400, all the expansion valves that are the refrigerant inflow gates to the indoor units 300a and 300b are closed, the pump down operation is performed, and the refrigerant is recovered to the accumulator 104 of the heat source unit 100 It is.
  • the indoor unit when refrigerant leakage is detected, the indoor unit is shut off to prevent refrigerant leakage outside the indoor unit, and the refrigerant is recovered from the indoor unit to the heat source unit 100, thereby reducing the refrigerant recovery time. be able to.
  • the indoor unit is blocked by an expansion valve to prevent refrigerant leakage outside the indoor unit, and it is not necessary to provide a new valve to prevent refrigerant leakage outside the indoor unit. Can be.
  • the refrigerant when the pump-down operation is performed, the refrigerant is recovered to the accumulator 104 of the heat source apparatus 100, but is not limited thereto, and is recovered to the compressor 101, the piping, etc. of the heat source apparatus 100. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This air-conditioning device comprises: a heat source unit that has a compressor, a flow path switching valve, and a heat-source-side heat exchanger; a plurality of indoor units that have load-side heat exchangers and perform cooling operations or heating operations; a low-pressure pipe and a high-pressure pipe that connect the heat source unit and the indoor units; a relay unit that has a first branch portion, which has first opening-closing valves which are switched to connect one end of the load-side heat exchangers to the low-pressure pipe, and second opening-closing valves which are switched to connect said ends of the load-side heat exchangers to the high-pressure pipe, and a second branch portion, which connects the other end of the load-side heat exchangers to the high-pressure pipe through first expansion valves and to a medium-pressure return pipe through second expansion valves; a leakage detection unit that detects leakage of a refrigerant; and a control device that controls the first expansion valves and the second expansion valves. The control device performs pump down operation for closing all the first expansion valves and the second expansion valves and recovering the refrigerant to the heat source unit when the leakage of the refrigerant is detected by the leakage detection unit.

Description

空気調和装置Air conditioner
 本発明は、熱源機から供給される冷媒を複数台の室内機に分配する中継機を有する空気調和装置に関するものである。 The present invention relates to an air conditioner having a relay that distributes a refrigerant supplied from a heat source unit to a plurality of indoor units.
 従来、ヒートポンプサイクルといった冷凍サイクルを利用した空気調和装置は、圧縮機及び熱源側熱交換器を有する熱源機と、膨張弁及び負荷側熱交換器を有する室内機とが配管によって接続され、冷媒が流れる冷媒回路を備えている。空気調和装置は、負荷側熱交換器において冷媒が蒸発又は凝縮する際に、熱交換対象である空調対象空間の空気に対し吸熱又は放熱して、冷媒回路に流れる冷媒の圧力及び温度等を変化させながら、空気調和を行っている。また、熱源機と、複数台の室内機と、熱源機から供給される冷媒を複数台の室内機に分配する中継機とを備える空気調和装置も提案されている。このような空気調和装置では、室内機に付属するリモートコントローラ等の設定温度及び室内機の周囲の温度等に応じて、複数台の室内機において、それぞれ冷房運転又は暖房運転の要否が自動的に判断され、室内機毎に冷房運転又は暖房運転が行われる冷暖同時運転が実施される。 Conventionally, in an air conditioner using a refrigeration cycle such as a heat pump cycle, a heat source unit having a compressor and a heat source side heat exchanger and an indoor unit having an expansion valve and a load side heat exchanger are connected by a pipe, and the refrigerant is It has a flowing refrigerant circuit. When the refrigerant evaporates or condenses in the load-side heat exchanger, the air conditioner absorbs heat or dissipates heat from the air in the air-conditioning space that is the heat exchange target, and changes the pressure and temperature of the refrigerant flowing in the refrigerant circuit. Air conditioning is performed while There has also been proposed an air conditioner including a heat source unit, a plurality of indoor units, and a relay unit that distributes the refrigerant supplied from the heat source unit to the plurality of indoor units. In such an air conditioner, whether or not a cooling operation or a heating operation is necessary in each of a plurality of indoor units is automatically determined according to a set temperature of a remote controller attached to the indoor unit and a temperature around the indoor unit. Thus, the cooling / heating simultaneous operation in which the cooling operation or the heating operation is performed for each indoor unit is performed.
 昨今では、地球温暖化防止及び可燃性冷媒の居室内への漏洩による人体への影響、燃焼防止の観点から、冷媒の漏洩に対しては安全上の対処を実施する必要があり、冷媒の漏洩の対策が施された空気調和装置が提案されている(例えば、特許文献1参照)。
 特許文献1では、冷暖同時運転が実施される空気調和装置において、中継機と室内機との間に弁装置を新たに設け、冷媒の漏洩が発生した場合には弁装置を閉止することで、室内機外への冷媒の漏洩を防止している。
In recent years, from the viewpoint of preventing global warming and the impact on human bodies due to leakage of flammable refrigerant into the room and preventing combustion, it is necessary to take safety measures against refrigerant leakage. There has been proposed an air conditioner in which the above measures have been taken (see, for example, Patent Document 1).
In Patent Document 1, in an air conditioner that performs simultaneous cooling and heating operations, a valve device is newly provided between the relay machine and the indoor unit, and when the refrigerant leaks, the valve device is closed, Prevents refrigerant from leaking outside the indoor unit.
特許第4076753号公報Japanese Patent No. 4076753
 しかしながら、特許文献1に開示された空気調和装置は、室内機外への冷媒の漏洩を防止するために、中継機と室内機との間に弁装置を新たに設ける必要があることから、機器あるいはシステムとしてコスト高となる。また、冷媒の漏洩防止のために弁を閉止しただけでは、その後機器を補修する際の冷媒回収に時間を要してしまうという課題があった。 However, the air conditioner disclosed in Patent Document 1 requires a new valve device between the relay unit and the indoor unit in order to prevent the refrigerant from leaking outside the indoor unit. Or the cost becomes high as a system. In addition, there is a problem that if the valve is only closed to prevent leakage of the refrigerant, it takes time to recover the refrigerant when the device is repaired thereafter.
 本発明は、以上のような課題を解決するためになされたもので、安価な構成で冷媒の漏洩を抑制し、かつ、冷媒回収の時間を短縮することができる空気調和装置を提供するものである。 The present invention has been made to solve the above-described problems, and provides an air conditioner that can suppress the leakage of the refrigerant and reduce the time for collecting the refrigerant with an inexpensive configuration. is there.
 本発明に係る空気調和装置は、圧縮機、流路切替弁、及び、熱源側熱交換器を有する熱源機と、負荷側熱交換器を有し、冷房運転又は暖房運転を行う複数台の室内機と、前記熱源機と各前記室内機とを接続する低圧管及び高圧管と、各前記負荷側熱交換器の一方を前記低圧管に接続するように切り替える第1の開閉弁、及び、各前記負荷側熱交換器の前記一方を前記高圧管に接続するように切り替える第2の開閉弁を有する第1の分岐部と、各前記負荷側熱交換器の他方を、第1の膨張弁を介して高圧液管に、及び、第2の膨張弁を介して戻り中圧管に接続する第2の分岐部と、を有する中継機と、冷媒の漏洩を検知する漏洩検知部と、前記第1の膨張弁及び前記第2の膨張弁を制御する制御装置と、を備え、前記制御装置は、前記漏洩検知部により冷媒の漏洩を検知したら、全ての前記第1の膨張弁及び前記第2の膨張弁を閉止して冷媒を前記熱源機に回収するポンプダウン運転を行うものである。 An air conditioner according to the present invention includes a compressor, a flow path switching valve, a heat source device having a heat source side heat exchanger, and a plurality of indoor units having a load side heat exchanger and performing a cooling operation or a heating operation. A first on-off valve that switches one of the load side heat exchangers to be connected to the low-pressure pipe, and a low-pressure pipe and a high-pressure pipe that connect the heat source machine and each indoor unit, and A first branch portion having a second on-off valve that switches the one of the load-side heat exchangers to be connected to the high-pressure pipe, and the other of the load-side heat exchangers is connected to a first expansion valve. A relay having a second branching portion connected to the high-pressure liquid pipe through the second expansion valve and connected to the return intermediate pressure pipe, a leakage detection unit for detecting refrigerant leakage, and the first And a control device for controlling the second expansion valve. After detecting refrigerant leakage by parts, and performs pump down operation for collecting the refrigerant into the heat source apparatus by closing all of the first expansion valve and the second expansion valve.
 本発明に係る空気調和装置によれば、冷媒の漏洩を検知する漏洩検知部を備え、制御装置は、漏洩検知部により冷媒の漏洩を検知したら、全ての膨張弁を閉止してポンプダウン運転を行い、熱源機側へ冷媒を回収する。つまり、冷媒の漏洩を検知したら、膨張弁により室内機を遮断して室内機外への冷媒の漏洩を抑制し、かつ、室内機から熱源機側へ冷媒を回収することで、冷媒回収の時間を短縮することができる。また、室内機外への冷媒の漏洩抑制のために前記膨張弁の他に新たな弁を設ける必要がないため、安価な構成にすることができる。 The air conditioner according to the present invention includes a leakage detection unit that detects refrigerant leakage. When the leakage detection unit detects refrigerant leakage, the control device closes all expansion valves and performs pump-down operation. And recover the refrigerant to the heat source machine side. In other words, when refrigerant leakage is detected, the indoor unit is shut off by the expansion valve to suppress the refrigerant leakage to the outside of the indoor unit, and the refrigerant is recovered from the indoor unit to the heat source unit side. Can be shortened. Further, since it is not necessary to provide a new valve in addition to the expansion valve in order to suppress the leakage of the refrigerant to the outside of the indoor unit, an inexpensive configuration can be achieved.
本発明の実施の形態に係る空気調和装置を示す冷媒回路図である。It is a refrigerant circuit figure showing the air harmony device concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和装置の全冷房運転時の状態を示す冷媒回路図である。It is a refrigerant circuit figure which shows the state at the time of the cooling operation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の全暖房運転時の状態を示す冷媒回路図である。It is a refrigerant circuit figure which shows the state at the time of the heating only operation of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の冷房主体運転時の状態を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the state at the time of the cooling main operation | movement of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置の暖房主体運転時の状態を示す冷媒回路図である。It is a refrigerant circuit figure showing the state at the time of heating main operation of the air harmony device concerning an embodiment of the invention. 本発明の実施の形態に係る空気調和装置の冷媒の漏洩検知時の動作を示すフローチャートである。It is a flowchart which shows the operation | movement at the time of the refrigerant | coolant leakage detection of the air conditioning apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る空気調和装置のポンプダウン運転時の状態を示す冷媒回路図である。It is a refrigerant circuit figure showing the state at the time of pump down operation of the air harmony device concerning an embodiment of the invention.
 以下、本発明の実施の形態を図面に基づいて説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings, the relationship of the size of each component may be different from the actual one.
 実施の形態.
 以下、本発明に係る空気調和装置の実施の形態について、図面を参照しながら説明する。
 図1は、本発明の実施の形態に係る空気調和装置1を示す冷媒回路図である。
 以下、本実施の形態に係る空気調和装置1の構成について、図1を用いて説明する。
 図1に示すように、空気調和装置1は、熱源機100と、複数台の室内機300a,300bと、中継機200と、制御装置10とを備えている。
Embodiment.
Hereinafter, embodiments of an air-conditioning apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is a refrigerant circuit diagram showing an air conditioner 1 according to an embodiment of the present invention.
Hereinafter, the structure of the air conditioning apparatus 1 which concerns on this Embodiment is demonstrated using FIG.
As shown in FIG. 1, the air-conditioning apparatus 1 includes a heat source unit 100, a plurality of indoor units 300a and 300b, a relay unit 200, and a control unit 10.
 なお、本実施の形態では、1台の熱源機100に2台の室内機300a,300bが接続された場合について例示するが、熱源機100の台数は、2台以上でもよい。また、室内機300a,300bの台数は、3台以上でもよい。 In the present embodiment, the case where two indoor units 300a and 300b are connected to one heat source unit 100 is illustrated, but the number of heat source units 100 may be two or more. The number of indoor units 300a and 300b may be three or more.
 図1に示すように、空気調和装置1は、熱源機100と、室内機300a,300bと、中継機200とが配管で接続されて、冷媒が循環する冷媒回路が構成されている。
 熱源機100は、2台の室内機300a,300bに温熱又は冷熱を供給する機能を有している。2台の室内機300a,300bは、それぞれ互いに並列に接続されており、それぞれ同じ構成となっている。
As shown in FIG. 1, the air conditioner 1 includes a heat source device 100, indoor units 300 a and 300 b, and a relay device 200 connected by a pipe to configure a refrigerant circuit in which a refrigerant circulates.
The heat source unit 100 has a function of supplying hot or cold to the two indoor units 300a and 300b. The two indoor units 300a and 300b are connected in parallel to each other and have the same configuration.
 室内機300a,300bは、熱源機100から供給される温熱又は冷熱によって、室内等の空調対象空間を冷房又は暖房する機能を有している。
 中継機200は、熱源機100と室内機300a,300bとの間に介在し、室内機300a,300bからの要求に応じて熱源機100から供給される冷媒の流れを切り替える機能を有している。
The indoor units 300a and 300b have a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the heat source device 100.
The repeater 200 is interposed between the heat source unit 100 and the indoor units 300a and 300b, and has a function of switching the flow of refrigerant supplied from the heat source unit 100 in response to a request from the indoor units 300a and 300b. .
 また、空気調和装置1は、複数台の室内機300a,300bの冷暖房負荷容量を検知する負荷容量検知部20を備えている。ここで、冷暖房負荷容量とは、複数台の室内機300a,300bにおける冷房負荷容量及び暖房負荷容量である。負荷容量検知部20は、液管温度検知部303a,303b及びガス管温度検知部304a,304bを有している。 The air conditioner 1 also includes a load capacity detection unit 20 that detects the heating / cooling load capacity of the plurality of indoor units 300a and 300b. Here, the cooling / heating load capacity is a cooling load capacity and a heating load capacity in the plurality of indoor units 300a and 300b. The load capacity detection unit 20 includes liquid tube temperature detection units 303a and 303b and gas tube temperature detection units 304a and 304b.
 熱源機100と中継機200とは、高圧側において、高圧の冷媒が流れる高圧管402によって接続され、低圧側において、低圧の冷媒が流れる低圧管401によって接続されている。また、中継機200と室内機300a,300bとは、それぞれ、ガス枝管403a,403bによって接続されている。ガス枝管403a,403bには、主にガス状態の冷媒が流れる。また、中継機200と室内機300a,300bとは、それぞれ、液枝管404a,404bによって接続されている。液枝管404a,404bには、主に液状態の冷媒が流れる。 The heat source unit 100 and the relay unit 200 are connected on the high-pressure side by a high-pressure pipe 402 through which a high-pressure refrigerant flows, and on the low-pressure side by a low-pressure pipe 401 through which a low-pressure refrigerant flows. Further, the repeater 200 and the indoor units 300a and 300b are connected by gas branch pipes 403a and 403b, respectively. A gas-state refrigerant mainly flows through the gas branch pipes 403a and 403b. Moreover, the relay machine 200 and the indoor units 300a and 300b are connected by liquid branch pipes 404a and 404b, respectively. A liquid refrigerant mainly flows through the liquid branch pipes 404a and 404b.
 (熱源機100)
 熱源機100は、室内機300a,300bに温熱又は冷熱を供給する機能を有している。
 熱源機100は、容量可変の圧縮機101と、熱源機100において冷媒が流れる方向を切り替える流路切替弁102と、熱源側熱交換ユニット120と、圧縮機101の吸入側に接続され、液状態の冷媒を貯留するアキュムレータ104と、冷媒が流れる方向を制限する熱源側流路調整ユニット140とを備えている。
 なお、流路切替弁102は、四方弁である場合について例示しているが、二方弁又は三方弁等を組み合わせることによって構成されてもよい。
(Heat source machine 100)
The heat source device 100 has a function of supplying warm or cold to the indoor units 300a and 300b.
The heat source unit 100 is connected to a variable capacity compressor 101, a flow path switching valve 102 that switches a direction in which the refrigerant flows in the heat source unit 100, a heat source side heat exchange unit 120, and a suction side of the compressor 101, and is in a liquid state. An accumulator 104 that stores the refrigerant and a heat source side flow path adjustment unit 140 that restricts the direction in which the refrigerant flows.
The flow path switching valve 102 is illustrated as a four-way valve, but may be configured by combining a two-way valve or a three-way valve.
 熱源側熱交換ユニット120は、主管114と、熱源側熱交換器103と、熱源側送風機112とを備えている。
 熱源側熱交換器103は、蒸発器又は凝縮器として機能する。熱源側熱交換器103は、空冷式の場合、冷媒と室外空気とを熱交換するものであり、水冷式の場合、冷媒と水又はブライン等とを熱交換するものである。
The heat source side heat exchange unit 120 includes a main pipe 114, a heat source side heat exchanger 103, and a heat source side blower 112.
The heat source side heat exchanger 103 functions as an evaporator or a condenser. The heat source side heat exchanger 103 is for exchanging heat between the refrigerant and the outdoor air in the case of the air cooling type, and for exchanging heat between the refrigerant and water or brine in the case of the water cooling type.
 熱源側送風機112は、熱源側熱交換器103に送風する空気の送風量を可変し、熱交換容量を制御するものである。
 主管114は、一方が流路切替弁102に接続され、他方が高圧管402に接続されており、途中に熱源側熱交換器103が設けられている。
The heat source side blower 112 varies the amount of air blown to the heat source side heat exchanger 103 and controls the heat exchange capacity.
One of the main pipes 114 is connected to the flow path switching valve 102 and the other is connected to the high-pressure pipe 402, and the heat source side heat exchanger 103 is provided in the middle.
 熱源側流路調整ユニット140は、第3の逆止弁105と、第4の逆止弁106と、第5の逆止弁107と、第6の逆止弁108とを有している。
 第3の逆止弁105は、熱源側熱交換ユニット120と高圧管402とを接続する配管に設けられ、熱源側熱交換ユニット120から高圧管402に向かう冷媒の流れを許容する。
 第4の逆止弁106は、熱源機100の流路切替弁102と低圧管401とを接続する配管に設けられ、低圧管401から流路切替弁102に向かう冷媒の流れを許容する。
The heat source side flow path adjustment unit 140 includes a third check valve 105, a fourth check valve 106, a fifth check valve 107, and a sixth check valve 108.
The third check valve 105 is provided in a pipe connecting the heat source side heat exchange unit 120 and the high pressure pipe 402 and allows the refrigerant to flow from the heat source side heat exchange unit 120 toward the high pressure pipe 402.
The fourth check valve 106 is provided in a pipe connecting the flow path switching valve 102 of the heat source apparatus 100 and the low pressure pipe 401, and allows the refrigerant to flow from the low pressure pipe 401 toward the flow path switching valve 102.
 第5の逆止弁107は、熱源機100の流路切替弁102と高圧管402とを接続する配管に設けられ、流路切替弁102から高圧管402に向かう冷媒の流れを許容する。
 第6の逆止弁108は、熱源側熱交換ユニット120と低圧管401とを接続する配管に設けられ、低圧管401から熱源側熱交換ユニット120に向かう冷媒の流れを許容する。
The fifth check valve 107 is provided in a pipe connecting the flow path switching valve 102 and the high pressure pipe 402 of the heat source device 100 and allows the refrigerant to flow from the flow path switching valve 102 toward the high pressure pipe 402.
The sixth check valve 108 is provided in a pipe connecting the heat source side heat exchange unit 120 and the low pressure pipe 401, and allows the refrigerant to flow from the low pressure pipe 401 toward the heat source side heat exchange unit 120.
 また、熱源機100には、吐出圧力検知部126及び吸入圧力検知部127が設けられている。
 吐出圧力検知部126は、流路切替弁102と圧縮機101の吐出側とを接続する配管に設けられており、圧縮機101の吐出圧力を検知するものである。吐出圧力検知部126は、例えば圧力センサ等で構成されており、検知された吐出圧力の信号を制御装置10に送信する。
 なお、吐出圧力検知部126は、記憶装置等を有していてもよい。この場合、吐出圧力検知部126は、検知された吐出圧力のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された吐出圧力のデータを含む信号を制御装置10に送信する。
Further, the heat source apparatus 100 is provided with a discharge pressure detection unit 126 and a suction pressure detection unit 127.
The discharge pressure detection unit 126 is provided in a pipe connecting the flow path switching valve 102 and the discharge side of the compressor 101, and detects the discharge pressure of the compressor 101. The discharge pressure detection unit 126 includes, for example, a pressure sensor and transmits a detected discharge pressure signal to the control device 10.
The discharge pressure detection unit 126 may have a storage device or the like. In this case, the discharge pressure detection unit 126 accumulates the detected discharge pressure data in a storage device or the like for a predetermined period, and transmits a signal including the discharge pressure data detected every predetermined cycle to the control device 10.
 吸入圧力検知部127は、流路切替弁102とアキュムレータ104とを接続する配管に設けられており、圧縮機101の吸入圧力を検知するものである。吸入圧力検知部127は、例えば圧力センサ等で構成されており、検知された吸入圧力の信号を制御装置10に送信する。
 なお、吸入圧力検知部127は、記憶装置等を有していてもよい。この場合、吸入圧力検知部127は、検知された吸入圧力のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された吸入圧力のデータを含む信号を制御装置10に送信する。
The suction pressure detection unit 127 is provided in a pipe connecting the flow path switching valve 102 and the accumulator 104 and detects the suction pressure of the compressor 101. The suction pressure detection unit 127 includes a pressure sensor, for example, and transmits a signal of the detected suction pressure to the control device 10.
Note that the suction pressure detection unit 127 may include a storage device or the like. In this case, the suction pressure detection unit 127 accumulates the detected suction pressure data in a storage device or the like for a predetermined period, and transmits a signal including the suction pressure data detected every predetermined cycle to the control device 10.
 (室内機300a,300b)
 室内機300a,300bは、それぞれ、凝縮器又は蒸発器として機能する負荷側熱交換器301a,301bを備えている。
( Indoor units 300a, 300b)
The indoor units 300a and 300b include load- side heat exchangers 301a and 301b that function as condensers or evaporators, respectively.
 室内機300a,300bには、それぞれ、ガス管温度検知部304a,304b及び液管温度検知部303a,303bが設けられている。
 ガス管温度検知部304a,304bは、それぞれ、負荷側熱交換器301a,301bの一方と中継機200との間に設けられており、負荷側熱交換器301a,301bと中継機200とを接続するガス枝管403a,403bに流れる冷媒の温度を検知するものである。ガス管温度検知部304a,304bは、例えばサーミスタ等で構成されており、検知された温度の信号を制御装置10に送信する。
The indoor units 300a and 300b are provided with gas pipe temperature detectors 304a and 304b and liquid pipe temperature detectors 303a and 303b, respectively.
The gas pipe temperature detection units 304a and 304b are respectively provided between one of the load side heat exchangers 301a and 301b and the relay machine 200, and connect the load side heat exchangers 301a and 301b and the relay machine 200, respectively. The temperature of the refrigerant flowing in the gas branch pipes 403a and 403b is detected. The gas pipe temperature detection units 304 a and 304 b are configured by, for example, a thermistor and transmit a detected temperature signal to the control device 10.
 なお、ガス管温度検知部304a,304bは、記憶装置等を有していてもよい。この場合、ガス管温度検知部304a,304bは、検知された温度のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された温度のデータを含む信号を制御装置10に送信する。 Note that the gas pipe temperature detection units 304a and 304b may have a storage device or the like. In this case, the gas pipe temperature detection units 304a and 304b accumulate the detected temperature data in a storage device or the like for a predetermined period, and transmit a signal including the detected temperature data for each predetermined period to the control device 10. .
 液管温度検知部303a,303bは、それぞれ、負荷側熱交換器301a,301bの他方と中継機200との間に設けられており、負荷側熱交換器301a,301bと中継機200とを接続する液枝管404a,404bに流れる冷媒の温度を検知するものである。液管温度検知部303a,303bは、例えばサーミスタ等で構成されており、検知された温度の信号を制御装置10に送信する。 The liquid pipe temperature detection units 303a and 303b are respectively provided between the other of the load side heat exchangers 301a and 301b and the relay machine 200, and connect the load side heat exchangers 301a and 301b and the relay machine 200, respectively. The temperature of the refrigerant flowing through the liquid branch pipes 404a and 404b is detected. The liquid tube temperature detection units 303 a and 303 b are configured by, for example, a thermistor and transmit a detected temperature signal to the control device 10.
 なお、液管温度検知部303a,303bは、記憶装置等を有していてもよい。この場合、液管温度検知部303a,303bは、検知された温度のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された温度のデータを含む信号を制御装置10に送信する。 Note that the liquid tube temperature detection units 303a and 303b may have a storage device or the like. In this case, the liquid tube temperature detection units 303a and 303b accumulate the detected temperature data in a storage device or the like for a predetermined period, and transmit a signal including the detected temperature data for each predetermined period to the control device 10. .
 (中継機200)
 中継機200は、熱源機100と室内機300a,300bとの間に介在し、室内機300a,300bからの要求に応じて熱源機100から供給される冷媒の流れを切り替え、熱源機100から供給される冷媒を複数台の室内機300a,300bに分配する機能を有している。
 中継機200は、第1の分岐部240と、第2の分岐部250と、気液分離器201と、中継バイパス配管209と、高圧ガス管402Aと、高圧液管402Bと、戻り中圧管401Aと、液流出側流量調整弁204と、熱交換部26と、中継バイパス流量調整弁205とを備えている。
(Repeater 200)
The relay unit 200 is interposed between the heat source unit 100 and the indoor units 300a and 300b, switches the flow of the refrigerant supplied from the heat source unit 100 in response to a request from the indoor units 300a and 300b, and supplies it from the heat source unit 100 The refrigerant to be distributed is distributed to the plurality of indoor units 300a and 300b.
The relay machine 200 includes a first branch part 240, a second branch part 250, a gas-liquid separator 201, a relay bypass pipe 209, a high pressure gas pipe 402A, a high pressure liquid pipe 402B, and a return intermediate pressure pipe 401A. A liquid outflow side flow rate adjustment valve 204, a heat exchange unit 26, and a relay bypass flow rate adjustment valve 205.
 第1の分岐部240は、一方がガス枝管403a,403bに接続され、他方が低圧管401及び高圧ガス管402Aに接続され、冷房運転時の冷媒の流通方向と暖房運転時の冷媒の流通方向とが異なるものである。第1の分岐部240は、暖房用電磁弁202a,202b及び冷房用電磁弁203a,203bを備えている。 One of the first branch parts 240 is connected to the gas branch pipes 403a and 403b, and the other is connected to the low pressure pipe 401 and the high pressure gas pipe 402A. The refrigerant flow direction during the cooling operation and the refrigerant flow during the heating operation. The direction is different. The first branching section 240 includes heating solenoid valves 202a and 202b and cooling solenoid valves 203a and 203b.
 暖房用電磁弁202a,202bは、それぞれの一方がガス枝管403a,403bに接続され、それぞれの他方が高圧ガス管402Aに接続されており、暖房運転時に開放され、冷房運転時に閉止されるものである。
 冷房用電磁弁203a,203bは、それぞれの一方がガス枝管403a,403bに接続され、それぞれの他方が低圧管401に接続されており、冷房運転時に開放され、暖房運転時に閉止されるものである。
One of the heating solenoid valves 202a and 202b is connected to the gas branch pipes 403a and 403b and the other is connected to the high-pressure gas pipe 402A, and is opened during the heating operation and closed during the cooling operation. It is.
Each of the cooling electromagnetic valves 203a and 203b is connected to the gas branch pipes 403a and 403b and the other is connected to the low pressure pipe 401, and is opened during the cooling operation and closed during the heating operation. is there.
 なお、冷房用電磁弁203a,203bは本発明の「第1の開閉弁」に相当し、暖房用電磁弁202a,202bは本発明の「第2の開閉弁」に相当する。 The cooling electromagnetic valves 203a and 203b correspond to the “first on-off valve” of the present invention, and the heating electromagnetic valves 202a and 202b correspond to the “second on-off valve” of the present invention.
 第2の分岐部250は、一方が液枝管404a,404bに接続され、他方が戻り中圧管401A及び高圧液管402Bに接続され、冷房運転時の冷媒の流通方向と暖房運転時の冷媒の流通方向とが異なるものである。第2の分岐部250は、第1の膨張弁210a,210b及び第2の膨張弁211a,211bを備えている。 One of the second branch parts 250 is connected to the liquid branch pipes 404a and 404b, and the other is connected to the return intermediate pressure pipe 401A and the high pressure liquid pipe 402B. The refrigerant flow direction during the cooling operation and the refrigerant flow during the heating operation are connected. The distribution direction is different. The second branch portion 250 includes first expansion valves 210a and 210b and second expansion valves 211a and 211b.
 第1の膨張弁210a,210b及び第2の膨張弁211a,211bは、室内機300a,300bに流通する冷媒の流量を調整する機能を備えている。第1の膨張弁210a,210b及び第2の膨張弁211a,211bは、例えば開度可変の電気式膨張弁等で構成されている。 The first expansion valves 210a and 210b and the second expansion valves 211a and 211b have a function of adjusting the flow rate of the refrigerant flowing through the indoor units 300a and 300b. The first expansion valves 210a and 210b and the second expansion valves 211a and 211b are configured by, for example, electric expansion valves with variable opening degrees.
 第1の膨張弁210a,210bは、それぞれの一方が液枝管404a,404bに接続され、それぞれの他方が高圧液管402Bに接続されており、冷房運転時において、負荷側熱交換器301a,301bの出口側のスーパーヒート量を制御するために開度が制御されるものである。
 第2の膨張弁211a,211bは、それぞれの一方が液枝管404a,404bに接続され、それぞれの他方が戻り中圧管401Aに接続されており、暖房運転時において、負荷側熱交換器301a,301bの出口側のサブクール量を制御するために開度が制御されるものである。
One of the first expansion valves 210a and 210b is connected to the liquid branch pipes 404a and 404b, and the other of the first expansion valves 210a and 210b is connected to the high-pressure liquid pipe 402B. During the cooling operation, the load- side heat exchangers 301a and 210b are connected. The degree of opening is controlled in order to control the superheat amount on the outlet side of 301b.
One of the second expansion valves 211a and 211b is connected to the liquid branch pipes 404a and 404b, and the other of the second expansion valves 211a and 211b is connected to the return intermediate pressure pipe 401A. During the heating operation, the load-side heat exchangers 301a, The degree of opening is controlled to control the amount of subcooling on the outlet side of 301b.
 室内機300a,300bは、それぞれ、熱源機100から供給される温熱又は冷熱によって、室内等の空調対象空間を冷房又は暖房する機能を有している。
 気液分離器201は、ガス状態の冷媒と液状態の冷媒とを分離するものであり、流入側が高圧管402に接続され、ガス流出側が高圧ガス管402Aを介して第1の分岐部240に接続され、液流出側が高圧液管402Bを介して第2の分岐部250に接続されている。
 中継バイパス配管209は、高圧液管402Bとで、第2の分岐部250と低圧管401とを接続するものである。
Each of the indoor units 300a and 300b has a function of cooling or heating an air-conditioning target space such as a room by using heat or cold supplied from the heat source device 100.
The gas-liquid separator 201 separates the refrigerant in the gas state and the refrigerant in the liquid state, the inflow side is connected to the high pressure pipe 402, and the gas outflow side is connected to the first branch 240 through the high pressure gas pipe 402A. The liquid outlet side is connected to the second branch 250 through the high-pressure liquid pipe 402B.
The relay bypass pipe 209 connects the second branch 250 and the low pressure pipe 401 with the high pressure liquid pipe 402B.
 液流出側流量調整弁204は、気液分離器201の液流出側に接続されており、例えば開度可変の電気式膨張弁等で構成されている。液流出側流量調整弁204は、気液分離器201から流出する液状態の冷媒の流量を調整するものである。 The liquid outflow side flow rate adjustment valve 204 is connected to the liquid outflow side of the gas-liquid separator 201, and is composed of, for example, an electric expansion valve with variable opening. The liquid outflow-side flow rate adjustment valve 204 adjusts the flow rate of the liquid refrigerant flowing out of the gas-liquid separator 201.
 熱交換部26は、第1の熱交換部206と第2の熱交換部207とから構成されている。
 第1の熱交換部206は、気液分離器201の液流出側と液流出側流量調整弁204との間の配管、及び、中継バイパス配管209に設けられている。第1の熱交換部206は、気液分離器201から流出した液状態の冷媒と、低圧管401に向かって中継バイパス配管209を流れる冷媒とを熱交換するものである。
 第2の熱交換部207は、液流出側流量調整弁204の下流側の配管、及び、中継バイパス配管209に設けられている。第2の熱交換部207は、液流出側流量調整弁204から流出した冷媒と、低圧管401に向かって中継バイパス配管209を流れる冷媒とを熱交換するものである。
The heat exchange unit 26 includes a first heat exchange unit 206 and a second heat exchange unit 207.
The first heat exchanging unit 206 is provided in a pipe between the liquid outflow side of the gas-liquid separator 201 and the liquid outflow side flow rate adjustment valve 204 and the relay bypass pipe 209. The first heat exchanging unit 206 exchanges heat between the liquid refrigerant flowing out of the gas-liquid separator 201 and the refrigerant flowing through the relay bypass pipe 209 toward the low pressure pipe 401.
The second heat exchange unit 207 is provided in the pipe on the downstream side of the liquid outflow side flow rate adjustment valve 204 and the relay bypass pipe 209. The second heat exchange unit 207 exchanges heat between the refrigerant that has flowed out of the liquid outflow side flow rate adjustment valve 204 and the refrigerant that flows through the relay bypass pipe 209 toward the low-pressure pipe 401.
 中継バイパス流量調整弁205は、中継バイパス配管209において、第2の熱交換部207の上流側に接続されており、例えば開度可変の電気式膨張弁等で構成されている。中継バイパス流量調整弁205は、第2の熱交換部207から流出する冷媒のうち、中継バイパス配管209に流入した冷媒の流量を調整するものである。 The relay bypass flow rate adjustment valve 205 is connected to the upstream side of the second heat exchanging unit 207 in the relay bypass pipe 209, and is configured by, for example, an electric expansion valve having a variable opening. The relay bypass flow rate adjustment valve 205 adjusts the flow rate of the refrigerant flowing into the relay bypass pipe 209 out of the refrigerant flowing out from the second heat exchange unit 207.
 また、中継機200には、第1液流出圧力検知部231、第2液流出圧力検知部232、及び、中継バイパス温度検知部208が設けられている。
 第1液流出圧力検知部231は、第1の熱交換部206と液流出側流量調整弁204との間に設けられており、気液分離器201の液流出側の冷媒の圧力を検知するものである。第1液流出圧力検知部231は、例えば圧力センサ等で構成されており、検知された圧力の信号を制御装置10に送信する。なお、第1液流出圧力検知部231は、記憶装置等を有していてもよい。この場合、第1液流出圧力検知部231は、検知された圧力のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された圧力のデータを含む信号を制御装置10に送信する。
Further, the relay machine 200 is provided with a first liquid outflow pressure detection unit 231, a second liquid outflow pressure detection unit 232, and a relay bypass temperature detection unit 208.
The first liquid outflow pressure detection unit 231 is provided between the first heat exchange unit 206 and the liquid outflow side flow rate adjustment valve 204 and detects the pressure of the refrigerant on the liquid outflow side of the gas-liquid separator 201. Is. The first liquid outflow pressure detection unit 231 includes, for example, a pressure sensor, and transmits a detected pressure signal to the control device 10. Note that the first liquid outflow pressure detector 231 may include a storage device or the like. In this case, the first liquid outflow pressure detection unit 231 accumulates the detected pressure data in a storage device or the like for a predetermined period, and transmits a signal including the detected pressure data for each predetermined period to the control device 10. .
 第2液流出圧力検知部232は、液流出側流量調整弁204と第2の熱交換部207との間に設けられており、液流出側流量調整弁204から流出した冷媒の圧力を検知するものである。第2液流出圧力検知部232は、例えば圧力センサ等で構成されており、検知された圧力の信号を制御装置10に送信する。なお、第2液流出圧力検知部232は、記憶装置等を有していてもよい。この場合、第2液流出圧力検知部232は、検知された圧力のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された圧力のデータを含む信号を制御装置10に送信する。 The second liquid outflow pressure detection unit 232 is provided between the liquid outflow side flow rate adjustment valve 204 and the second heat exchange unit 207, and detects the pressure of the refrigerant flowing out of the liquid outflow side flow rate adjustment valve 204. Is. The second liquid outflow pressure detection unit 232 includes, for example, a pressure sensor and transmits a detected pressure signal to the control device 10. The second liquid outflow pressure detection unit 232 may include a storage device or the like. In this case, the second liquid outflow pressure detector 232 accumulates the detected pressure data in a storage device or the like for a predetermined period, and transmits a signal including the detected pressure data for each predetermined period to the control device 10. .
 ここで、液流出側流量調整弁204は、第1液流出圧力検知部231によって検知された圧力と第2液流出圧力検知部232によって検知された圧力との差が一定となるように開度が調整されている。 Here, the liquid outflow side flow rate adjustment valve 204 has an opening degree so that the difference between the pressure detected by the first liquid outflow pressure detection unit 231 and the pressure detected by the second liquid outflow pressure detection unit 232 is constant. Has been adjusted.
 中継バイパス温度検知部208は、中継バイパス配管209に設けられており、中継バイパス配管209に流れる冷媒の圧力を検知するものである。中継バイパス温度検知部208は、例えばサーミスタ等で構成されており、検知された温度の信号を制御装置10に送信する。なお、中継バイパス温度検知部208は、記憶装置等を有していてもよい。この場合、中継バイパス温度検知部208は、検知された温度のデータを記憶装置等に所定期間蓄積し、所定の周期毎に検知された温度のデータを含む信号を制御装置10に送信する。 The relay bypass temperature detector 208 is provided in the relay bypass pipe 209 and detects the pressure of the refrigerant flowing through the relay bypass pipe 209. The relay bypass temperature detection unit 208 is configured by, for example, a thermistor and transmits a detected temperature signal to the control device 10. The relay bypass temperature detection unit 208 may have a storage device or the like. In this case, the relay bypass temperature detection unit 208 accumulates the detected temperature data in a storage device or the like for a predetermined period, and transmits a signal including the detected temperature data for each predetermined period to the control device 10.
 ここで、中継バイパス流量調整弁205は、第1液流出圧力検知部231によって検知された圧力、第2液流出圧力検知部232によって検知された圧力、及び、中継バイパス温度検知部208によって検知された温度のうち、少なくとも一つ以上に基づいて開度が調整されている。 Here, the relay bypass flow rate adjustment valve 205 is detected by the pressure detected by the first liquid outflow pressure detector 231, the pressure detected by the second liquid outflow pressure detector 232, and the relay bypass temperature detector 208. The opening degree is adjusted based on at least one of the measured temperatures.
 (冷媒)
 空気調和装置1は、配管の内部に冷媒が充填されている。冷媒は、例えば二酸化炭素(CO)、炭化水素、ヘリウム等の自然冷媒、HFC410A、可燃性のR32冷媒等が使用される。なお、空気調和装置1の配管の内部に、冷媒ではなく熱媒体が充填されていてもよい。熱媒体は、例えば水、ブライン等である。
(Refrigerant)
In the air conditioner 1, a refrigerant is filled in a pipe. As the refrigerant, for example, natural refrigerant such as carbon dioxide (CO 2 ), hydrocarbon, helium, HFC410A, combustible R32 refrigerant, or the like is used. In addition, the inside of the piping of the air conditioning apparatus 1 may be filled with a heat medium instead of the refrigerant. The heat medium is, for example, water, brine or the like.
 (漏洩検知部)
 漏洩検知部400は、冷媒の漏洩を検知して信号を出力する冷媒の漏洩検知手段であり、例えば、金属酸化物半導体が冷媒ガスと接触した時に発生する抵抗値の変化を空気中の冷媒ガス濃度として検出する半導体式ガスセンサである。なお、半導体式ガスセンサ以外でもよく、例えば、赤外線がガスによって吸収される量で検知する非分散型赤外線方式のセンサ、冷媒ガス濃度の測定はできないが、冷媒ガスの有無は検知できる方式のもの、室内の酸素濃度を測定する酸素濃度計等であってもよい。漏洩検知部400により冷媒の漏洩を検知した情報は制御装置10に送信され、ポンプダウン運転のトリガーとする。
(Leakage detection part)
The leak detection unit 400 is a refrigerant leak detection unit that detects a refrigerant leak and outputs a signal. For example, a change in resistance value that occurs when a metal oxide semiconductor comes into contact with the refrigerant gas is detected in the refrigerant gas in the air. This is a semiconductor gas sensor that detects the concentration. In addition, it may be other than a semiconductor gas sensor, for example, a non-dispersive infrared sensor that detects the amount of infrared rays absorbed by the gas, a refrigerant gas concentration cannot be measured, but a detector that can detect the presence or absence of a refrigerant gas, An oxygen concentration meter or the like that measures the oxygen concentration in the room may be used. Information that the leakage of the refrigerant is detected by the leakage detector 400 is transmitted to the control device 10 and is used as a trigger for the pump-down operation.
 なお、本実施の形態では、漏洩検知部400を全システムに対して1個備えた構成であるが、それに限定されず、漏洩検知部400を個々の室内機又は個々の居室に対して1:1の関係で備えた構成とすれば、どの室内機系統又はどの居室系統で冷媒の漏洩が発生したかを判断することができる。 In addition, in this Embodiment, although it is the structure provided with the one leak detection part 400 with respect to all the systems, it is not limited to it, The leak detection part 400 is 1: for each indoor unit or each living room. If it is set as the structure provided by 1 relationship, it can be judged in which indoor unit system or which living room system the refrigerant | coolant leaked.
 (制御装置10)
 制御装置10は、空気調和装置1のシステム全体を制御するものであり、例えばCPU及びメモリ等を備えるマイクロプロセッサユニットによって構成されている。制御装置10は、ガス管温度検知部304a,304b、液管温度検知部303a,303b、第1液流出圧力検知部231、第2液流出圧力検知部232、中継バイパス温度検知部208、吐出圧力検知部126、及び、吸入圧力検知部127から受信した検知情報、及び、リモコン(図示せず)からの指示に基づいて、圧縮機101の駆動周波数、熱源側送風機112の回転数、負荷側熱交換器301a,301bに設けられている室内送風機(図示せず)の回転数、流路切替弁102の切り替え、暖房用電磁弁202a,202b及び冷房用電磁弁203a,203bの開閉、第1の膨張弁210a,210b、第2の膨張弁211a,211b、液流出側流量調整弁204、及び、中継バイパス流量調整弁205の開度等を制御する。
(Control device 10)
The control device 10 controls the entire system of the air conditioner 1, and is configured by a microprocessor unit including, for example, a CPU and a memory. The control device 10 includes gas pipe temperature detection units 304a and 304b, liquid pipe temperature detection units 303a and 303b, a first liquid outflow pressure detection unit 231, a second liquid outflow pressure detection unit 232, a relay bypass temperature detection unit 208, and a discharge pressure. Based on the detection information received from the detection unit 126 and the suction pressure detection unit 127 and the instruction from the remote controller (not shown), the drive frequency of the compressor 101, the rotation speed of the heat source side blower 112, the load side heat The number of rotations of an indoor fan (not shown) provided in the exchangers 301a and 301b, switching of the flow path switching valve 102, opening and closing of the heating solenoid valves 202a and 202b and the cooling solenoid valves 203a and 203b, the first Control the opening degree of the expansion valves 210a and 210b, the second expansion valves 211a and 211b, the liquid outflow side flow rate adjustment valve 204, and the relay bypass flow rate adjustment valve 205.
 なお、制御装置10は、熱源機100に設けられた第1の制御装置141と中継機200に設けられた第2の制御装置220とで構成されているが、これに限定されず、熱源機100、室内機300a,300b、中継機200のいずれかのみに搭載されてもよいし、それらの全てに搭載されてもよい。また、熱源機100、室内機300a,300b、中継機200とは別に制御装置10を搭載してもよい。なお、第1の制御装置141と第2の制御装置220とは、互いに無線又は有線によって通信可能に接続され、各種データ等を送受信することができる。さらに、制御装置10は、1個の制御装置によって構成されてもよい。 In addition, although the control apparatus 10 is comprised by the 1st control apparatus 141 provided in the heat-source equipment 100, and the 2nd control apparatus 220 provided in the relay machine 200, it is not limited to this, A heat-source equipment 100, indoor units 300a, 300b, and repeater 200 may be installed only, or may be installed in all of them. Further, the control device 10 may be mounted separately from the heat source unit 100, the indoor units 300a and 300b, and the relay unit 200. Note that the first control device 141 and the second control device 220 are communicably connected to each other by wireless or wired communication, and can transmit and receive various data. Furthermore, the control device 10 may be configured by a single control device.
 また、制御装置10は、記憶手段11と設定手段12とを備えている。なお、本実施の形態では、記憶手段11と設定手段12とを熱源機100に設けているが、熱源機100以外に設けてもよい。また、記憶手段11と設定手段12とを、制御装置10と別体として設けてもよい。 Further, the control device 10 includes a storage unit 11 and a setting unit 12. In the present embodiment, the storage unit 11 and the setting unit 12 are provided in the heat source unit 100, but may be provided in addition to the heat source unit 100. Further, the storage unit 11 and the setting unit 12 may be provided separately from the control device 10.
 記憶手段11は、制御装置10が処理を行うために必要となるデータを一時的又は長期的に記憶するものであり、例えば、メモリ等で構成されている。
 設定手段12は、空気調和装置1が冷房主体運転であるか暖房主体運転であるかを判断する機能を有する。さらに、設定手段12は、冷房主体運転の場合、熱源側熱交換器103の凝縮目標温度が凝縮目標温度閾値以上であるか否かを判断する機能を有する。なお、設定手段12は、複数台の室内機300a,300bのうち冷房運転が行われている室内機の台数と暖房運転が行われている室内機の台数とから、冷暖房負荷容量を演算してもよい。また、設定手段12は、吐出圧力検知部126によって検知された吐出圧力又は吸入圧力検知部127によって検知された吸入圧力等から、冷暖房負荷容量を演算してもよい。この場合、吐出圧力検知部126又は吸入圧力検知部127は、負荷容量検知部20の構成要素となる。
The storage unit 11 stores data necessary for the control device 10 to perform processing temporarily or for a long period of time, and includes, for example, a memory.
The setting means 12 has a function of determining whether the air conditioner 1 is a cooling main operation or a heating main operation. Further, the setting unit 12 has a function of determining whether or not the condensation target temperature of the heat source side heat exchanger 103 is equal to or higher than the condensation target temperature threshold in the cooling main operation. The setting means 12 calculates the heating / cooling load capacity from the number of indoor units that are performing the cooling operation and the number of indoor units that are performing the heating operation among the plurality of indoor units 300a and 300b. Also good. The setting unit 12 may calculate the heating / cooling load capacity from the discharge pressure detected by the discharge pressure detection unit 126 or the suction pressure detected by the suction pressure detection unit 127. In this case, the discharge pressure detection unit 126 or the suction pressure detection unit 127 is a component of the load capacity detection unit 20.
 次に、空気調和装置1の動作について説明する。
 空気調和装置1は、運転モードとして、全冷房運転、全暖房運転、冷房主体運転、及び、暖房主体運転を備えている。
 全冷房運転は、全ての室内機300a,300bが冷房運転を行うモードである。
 全暖房運転は、全ての室内機300a,300bが暖房運転を行うモードである。
 冷房主体運転は、冷暖同時運転のうち、冷房運転の容量が暖房運転の容量よりも大きいモードである。
 暖房主体運転は、冷暖同時運転のうち、暖房運転の容量が冷房運転の容量よりも大きいモードである。
Next, the operation of the air conditioner 1 will be described.
The air conditioner 1 includes a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation as operation modes.
The all cooling operation is a mode in which all the indoor units 300a and 300b perform the cooling operation.
The all heating operation is a mode in which all the indoor units 300a and 300b perform the heating operation.
The cooling main operation is a mode in which the capacity of the cooling operation is larger than the capacity of the heating operation among the simultaneous cooling and heating operations.
The heating main operation is a mode in which the heating operation capacity is larger than the cooling operation capacity in the simultaneous cooling and heating operation.
 (全冷房運転)
 図2は、本発明の実施の形態に係る空気調和装置1の全冷房運転時の状態を示す冷媒回路図である。なお、図2において、高圧冷媒を実線矢印で示し、低圧冷媒を破線矢印で示す。また、後述する図3~図5についても同様である。
 先ず、空気調和装置1の全冷房運転について、図2を参照して説明する。全冷房運転では、空気調和装置1において、全ての室内機300a,300bが冷房運転を行っている。
 図2に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、熱源側熱交換器103において熱源側送風機112によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、第3の逆止弁105、高圧管402を通って、中継機200の気液分離器201に至る。
(Cooling only)
FIG. 2 is a refrigerant circuit diagram illustrating a state during a cooling only operation of the air-conditioning apparatus 1 according to the embodiment of the present invention. In FIG. 2, the high-pressure refrigerant is indicated by a solid line arrow, and the low-pressure refrigerant is indicated by a broken line arrow. The same applies to FIGS. 3 to 5 described later.
First, the cooling only operation of the air conditioner 1 will be described with reference to FIG. In the all-cooling operation, in the air conditioner 1, all the indoor units 300a and 300b are performing the cooling operation.
As shown in FIG. 2, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102 and is heat-exchanged with outdoor air blown by the heat-source side blower 112 in the heat-source side heat exchanger 103. To condense. The condensed and liquefied refrigerant passes through the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 of the repeater 200.
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201の液流出側から流出した液状の冷媒は、第1の熱交換部206、液流出側流量調整弁204、第2の熱交換部207、高圧液管402Bを通って、第2の分岐部250に至り、そこで分岐する。分岐した冷媒は、それぞれ、第1の膨張弁210a,210b、液枝管404a,404bを通って、室内機300a,300bに流入する。 The refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201. The liquid refrigerant flowing out from the liquid outflow side of the gas-liquid separator 201 passes through the first heat exchange unit 206, the liquid outflow side flow rate adjustment valve 204, the second heat exchange unit 207, and the high pressure liquid pipe 402B. The second branching section 250 is reached and branches there. The branched refrigerant flows into the indoor units 300a and 300b through the first expansion valves 210a and 210b and the liquid branch pipes 404a and 404b, respectively.
 室内機300a,300bに流入した冷媒は、それぞれ、負荷側熱交換器301a,301bの出口側のスーパーヒート量によって制御された第1の膨張弁210a,210b、によって、低圧まで減圧される。減圧された冷媒は、負荷側熱交換器301a,301bに流入し、負荷側熱交換器301a,301bで室内空気と熱交換されて蒸発ガス化する。その際、全室内が冷房される。そして、ガス状態となった冷媒は、それぞれ、ガス枝管403a,403b、第1の分岐部240の冷房用電磁弁203a,203bを通り、その後合流し、低圧管401を通る。 The refrigerant that has flowed into the indoor units 300a and 300b is depressurized to a low pressure by the first expansion valves 210a and 210b controlled by the superheat amount on the outlet side of the load side heat exchangers 301a and 301b, respectively. The decompressed refrigerant flows into the load- side heat exchangers 301a and 301b, and is heat-exchanged with indoor air in the load- side heat exchangers 301a and 301b to be evaporated. At that time, the entire room is cooled. Then, the refrigerant in a gas state passes through the gas branch pipes 403a and 403b and the cooling electromagnetic valves 203a and 203b of the first branch portion 240, and then merges and passes through the low pressure pipe 401.
 また、第2の熱交換部207を通った冷媒の一部は、中継バイパス配管209に流入する。そして、中継バイパス配管209に流入した冷媒は、中継バイパス流量調整弁205で低圧まで減圧された後、第2の熱交換部207において、液流出側流量調整弁204を通った冷媒、すなわち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1の熱交換部206において、液流出側流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、冷房用電磁弁203a,203bを通った冷媒と合流する。その後、合流した冷媒は、第4の逆止弁106、流路切替弁102、アキュムレータ104を通って、圧縮機101に吸入される。 Also, a part of the refrigerant that has passed through the second heat exchange unit 207 flows into the relay bypass pipe 209. The refrigerant flowing into the relay bypass pipe 209 is decompressed to a low pressure by the relay bypass flow rate adjustment valve 205, and then passes through the liquid outflow side flow rate adjustment valve 204 in the second heat exchange unit 207, that is, the relay bypass. Heat exchange with the refrigerant before branching to the pipe 209 evaporates. Further, in the first heat exchange unit 206, the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204. The evaporated refrigerant flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valves 203a and 203b. Thereafter, the merged refrigerant passes through the fourth check valve 106, the flow path switching valve 102, and the accumulator 104 and is sucked into the compressor 101.
 なお、全冷房運転において、暖房用電磁弁202a,202bは閉止されている。また、冷房用電磁弁203a,203bは開放されている。そして、低圧管401が低圧、高圧管402が高圧であるため、冷媒は、第3の逆止弁105及び第4の逆止弁106に流通する。また、第2の膨張弁211a,211bは閉止されており冷媒が流れない。 In the cooling only operation, the heating solenoid valves 202a and 202b are closed. The cooling electromagnetic valves 203a and 203b are opened. Since the low pressure pipe 401 is low pressure and the high pressure pipe 402 is high pressure, the refrigerant flows through the third check valve 105 and the fourth check valve 106. Further, the second expansion valves 211a and 211b are closed so that no refrigerant flows.
 (全暖房運転)
 図3は、本発明の実施の形態に係る空気調和装置1の全暖房運転時の状態を示す冷媒回路図である。
 次に、空気調和装置1の全暖房運転について、図3を参照して説明する。全暖房運転では、空気調和装置1において、全ての室内機300a,300bが暖房運転を行っている。
 図3に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、第5の逆止弁107、高圧管402を通って、中継機200の気液分離器201に至る。
(All heating operation)
FIG. 3 is a refrigerant circuit diagram illustrating a state of the air-conditioning apparatus 1 according to the embodiment of the present invention during a heating only operation.
Next, the heating only operation of the air conditioner 1 will be described with reference to FIG. In the all heating operation, in the air conditioner 1, all the indoor units 300a and 300b perform the heating operation.
As shown in FIG. 3, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, passes through the fifth check valve 107 and the high-pressure pipe 402, and the gas-liquid of the relay machine 200. The separator 201 is reached.
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201のガス流出側から流出したガス状態の冷媒は、高圧ガス管402Aを通って、第1の分岐部240に至り、そこで分岐する。分岐した冷媒は、それぞれ、暖房用電磁弁202a,202b、ガス枝管403a,403bを通って、室内機300a,300bに流入する。 The refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201. The gaseous refrigerant that has flowed out from the gas outflow side of the gas-liquid separator 201 passes through the high-pressure gas pipe 402A, reaches the first branching section 240, and branches there. The branched refrigerant flows into the indoor units 300a and 300b through the heating solenoid valves 202a and 202b and the gas branch pipes 403a and 403b, respectively.
 室内機300a,300bに流入した冷媒は、それぞれ、負荷側熱交換器301a,301bで室内空気と熱交換されて凝縮液化する。その際、全室内が暖房される。そして、凝縮液化した冷媒は、それぞれ、負荷側熱交換器301a,301bの出口側のサブクール量によって制御された第2の膨張弁211a,211bを通る。 The refrigerant that has flowed into the indoor units 300a and 300b undergoes heat exchange with the indoor air in the load- side heat exchangers 301a and 301b, respectively, and is condensed and liquefied. At that time, the entire room is heated. The condensed and liquefied refrigerant passes through the second expansion valves 211a and 211b controlled by the subcool amounts on the outlet side of the load side heat exchangers 301a and 301b, respectively.
 第2の膨張弁211a,211bを通った冷媒は、戻り中圧管401A、第2の熱交換部207を通り、中継バイパス配管209に流入し、中継バイパス流量調整弁205で低圧まで減圧された後、第2の熱交換部207において、液流出側流量調整弁204を通った冷媒、すなわち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1の熱交換部206において、液流出側流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、第6の逆止弁108を通って、熱源側熱交換器103において熱源側送風機112によって送風される室外空気と熱交換されて蒸発ガス化する。ガス化した冷媒は、流路切替弁102、アキュムレータ104を通って、圧縮機101に吸入される。 The refrigerant that has passed through the second expansion valves 211a and 211b passes through the return intermediate pressure pipe 401A and the second heat exchange unit 207, flows into the relay bypass pipe 209, and is reduced to a low pressure by the relay bypass flow rate adjustment valve 205. In the second heat exchange unit 207, heat is exchanged with the refrigerant that has passed through the liquid outflow side flow rate adjustment valve 204, that is, the refrigerant before branching to the relay bypass pipe 209, and evaporates. Further, in the first heat exchange unit 206, the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204. The evaporated refrigerant flows into the low pressure pipe 401, passes through the sixth check valve 108, undergoes heat exchange with the outdoor air blown by the heat source side blower 112 in the heat source side heat exchanger 103, and evaporates into gas. The gasified refrigerant passes through the flow path switching valve 102 and the accumulator 104 and is sucked into the compressor 101.
 なお、全暖房運転において、暖房用電磁弁202a,202bは開放されている。また、冷房用電磁弁203a,203bは閉止されている。また、低圧管401が低圧、高圧管402が高圧であるため、冷媒は第5の逆止弁107及び第6の逆止弁108に流通する。なお、液流出側流量調整弁204は閉止されている。また、第1の膨張弁210a,210bは閉止されており冷媒が流れない。 In the all heating operation, the heating solenoid valves 202a and 202b are opened. The cooling electromagnetic valves 203a and 203b are closed. In addition, since the low pressure pipe 401 has a low pressure and the high pressure pipe 402 has a high pressure, the refrigerant flows through the fifth check valve 107 and the sixth check valve 108. In addition, the liquid outflow side flow rate adjustment valve 204 is closed. Further, the first expansion valves 210a and 210b are closed so that the refrigerant does not flow.
 (冷房主体運転)
 図4は、本発明の実施の形態に係る空気調和装置1の冷房主体運転時の状態を示す冷媒回路図である。
 次に、空気調和装置1の冷房主体運転について、図4を参照して説明する。冷房主体運転では、空気調和装置1において、室内機300aから冷房要求があり、室内機300bから暖房要求がある。
 図4に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、熱源側熱交換器103において熱源側送風機112によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、第3の逆止弁105、高圧管402を通って、中継機200の気液分離器201に至る。
(Cooling operation)
FIG. 4 is a refrigerant circuit diagram illustrating a state during the cooling main operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
Next, the cooling main operation of the air conditioner 1 will be described with reference to FIG. In the cooling main operation, the air conditioner 1 has a cooling request from the indoor unit 300a and a heating request from the indoor unit 300b.
As shown in FIG. 4, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, and is heat-exchanged with outdoor air blown by the heat source side blower 112 in the heat source side heat exchanger 103. To condense. The condensed and liquefied refrigerant passes through the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 of the repeater 200.
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201の液流出側から流出した液状の冷媒は、第1の熱交換部206、液流出側流量調整弁204、第2の熱交換部207、高圧液管402Bを通って、第2の分岐部250に至る。そして、冷媒は、第2の分岐部250の第1の膨張弁210a、液枝管404aを通って、室内機300aに流入する。 The refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201. The liquid refrigerant flowing out from the liquid outflow side of the gas-liquid separator 201 passes through the first heat exchange unit 206, the liquid outflow side flow rate adjustment valve 204, the second heat exchange unit 207, and the high pressure liquid pipe 402B. 2 branching section 250 is reached. And a refrigerant | coolant flows in into the indoor unit 300a through the 1st expansion valve 210a of the 2nd branch part 250, and the liquid branch pipe 404a.
 室内機300aに流入した冷媒は、第1の膨張弁210aによって負荷側熱交換器301aの出口側のスーパーヒートを制御され、低圧まで減圧される。減圧された冷媒は、負荷側熱交換器301aに流入し、負荷側熱交換器301aで室内空気と熱交換されて蒸発ガス化する。その際、室内機300aが設置された室内が冷房される。そして、ガス状態となった冷媒は、ガス枝管403a、第1の分岐部240の冷房用電磁弁203aを通り、低圧管401に流入する。 The refrigerant flowing into the indoor unit 300a is depressurized to a low pressure by controlling the superheat on the outlet side of the load-side heat exchanger 301a by the first expansion valve 210a. The decompressed refrigerant flows into the load-side heat exchanger 301a, and is heat-exchanged with indoor air in the load-side heat exchanger 301a to be evaporated and gasified. At that time, the room in which the indoor unit 300a is installed is cooled. The refrigerant in a gas state flows into the low-pressure pipe 401 through the gas branch pipe 403a and the cooling electromagnetic valve 203a of the first branch 240.
 一方、気液分離器201のガス流出側から流出したガス状の冷媒は、高圧ガス管402A、第1の分岐部240の暖房用電磁弁202b、ガス枝管403bを通って、室内機300bに流入する。室内機300bに流入した冷媒は、負荷側熱交換器301bで室内空気と熱交換されて凝縮液化する。その際、室内機300bが設置された室内が暖房される。そして、凝縮液化した冷媒は、液枝管404bを通り、第2の膨張弁211bによって出口側のサブクール量を制御され、高圧と低圧との中間の中間圧の液状態となる。中間圧の液状態となった冷媒は、戻り中圧管401Aを通って、第2の熱交換部207に流入する。 On the other hand, the gaseous refrigerant flowing out from the gas outflow side of the gas-liquid separator 201 passes through the high-pressure gas pipe 402A, the heating solenoid valve 202b of the first branch 240, and the gas branch pipe 403b to the indoor unit 300b. Inflow. The refrigerant that has flowed into the indoor unit 300b is heat-exchanged with indoor air in the load-side heat exchanger 301b to be condensed and liquefied. At that time, the room where the indoor unit 300b is installed is heated. Then, the condensed and liquefied refrigerant passes through the liquid branch pipe 404b, the subcooling amount on the outlet side is controlled by the second expansion valve 211b, and becomes a liquid state of intermediate pressure between high pressure and low pressure. The refrigerant in the intermediate pressure liquid state flows into the second heat exchange unit 207 through the return intermediate pressure tube 401A.
 その後、冷媒は、中継バイパス配管209に流入し、中継バイパス流量調整弁205で低圧まで減圧された後、第2の熱交換部207において、液流出側流量調整弁204を通った冷媒、すなわち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1の熱交換部206において、液流出側流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、冷房用電磁弁203aを通った冷媒と合流する。その後、合流した冷媒は、第4の逆止弁106、流路切替弁102、アキュムレータ104を通って、圧縮機101に吸入される。 Thereafter, the refrigerant flows into the relay bypass pipe 209 and is depressurized to a low pressure by the relay bypass flow rate adjustment valve 205, and then passes through the liquid outflow side flow rate adjustment valve 204 in the second heat exchange unit 207, that is, the relay. Heat exchanges with the refrigerant before branching to the bypass pipe 209 evaporates. Further, in the first heat exchange unit 206, the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204. The evaporated refrigerant flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valve 203a. Thereafter, the merged refrigerant passes through the fourth check valve 106, the flow path switching valve 102, and the accumulator 104 and is sucked into the compressor 101.
 なお、冷房主体運転において、暖房用電磁弁202aは閉止され、暖房用電磁弁202bは開放されている。また、冷房用電磁弁203aは開放され、冷房用電磁弁203bは閉止されている。また、低圧管401が低圧、高圧管402が高圧であるため、冷媒は、第3の逆止弁105及び第4の逆止弁106に流通する。また、第2の膨張弁211aは閉止されているため冷媒が流れない。また、第1の膨張弁210bは閉止されているため冷媒が流れない。 In the cooling main operation, the heating solenoid valve 202a is closed and the heating solenoid valve 202b is opened. The cooling electromagnetic valve 203a is opened, and the cooling electromagnetic valve 203b is closed. Further, since the low pressure pipe 401 is low pressure and the high pressure pipe 402 is high pressure, the refrigerant flows through the third check valve 105 and the fourth check valve 106. Further, since the second expansion valve 211a is closed, the refrigerant does not flow. Further, since the first expansion valve 210b is closed, the refrigerant does not flow.
 (暖房主体運転)
 図5は、本発明の実施の形態に係る空気調和装置1の暖房主体運転時の状態を示す冷媒回路図である。
 次に、空気調和装置1の暖房主体運転について、図5を参照して説明する。暖房主体運転では、空気調和装置1において、室内機300bから暖房要求があり、室内機300aから冷房要求がある。
 図5に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、第5の逆止弁107、高圧管402を通って、中継機200の気液分離器201に至る。
(Heating-based operation)
FIG. 5 is a refrigerant circuit diagram illustrating a state of the air-conditioning apparatus 1 according to the embodiment of the present invention during a heating main operation.
Next, the heating main operation of the air conditioner 1 will be described with reference to FIG. In the heating main operation, the air conditioner 1 has a heating request from the indoor unit 300b and a cooling request from the indoor unit 300a.
As shown in FIG. 5, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102, passes through the fifth check valve 107 and the high-pressure pipe 402, and reaches the gas-liquid of the relay machine 200. The separator 201 is reached.
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201のガス流出側から流出したガス状の冷媒は、高圧ガス管402Aを通って、第1の分岐部240に至る。そして、冷媒は、第1の分岐部240の暖房用電磁弁202b、ガス枝管403bを通って、室内機300bに流入する。 The refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201. The gaseous refrigerant that has flowed out from the gas outflow side of the gas-liquid separator 201 passes through the high-pressure gas pipe 402A and reaches the first branch 240. And a refrigerant | coolant flows in into the indoor unit 300b through the heating solenoid valve 202b of the 1st branch part 240, and the gas branch pipe 403b.
 室内機300bに流入した冷媒は、負荷側熱交換器301bで室内空気と熱交換されて凝縮液化する。その際、室内機300bが設置された室内が暖房される。そして、凝縮液化した冷媒は、第2の膨張弁211bによって出口側のサブクール量を制御され、高圧と低圧との中間の中間圧の液状態となる。中間圧の液状態となった冷媒は、液枝管404b、第2の分岐部250の第2の膨張弁211b、戻り中圧管401Aを通り、第2の熱交換部207に流入する。このとき、気液分離器201の液流出側から流出し、第1の熱交換部206、液流出側流量調整弁204を通った液状態の冷媒と合流する。合流した冷媒は、高圧液管402Bを通って第2の分岐部250に流入する冷媒と中継バイパス配管209に流入する冷媒とに分岐する。 The refrigerant that has flowed into the indoor unit 300b is heat-exchanged with indoor air in the load-side heat exchanger 301b to be condensed and liquefied. At that time, the room where the indoor unit 300b is installed is heated. Then, the condensed and liquefied refrigerant is controlled by the second expansion valve 211b at the subcooling amount on the outlet side, and becomes a liquid state at an intermediate pressure between the high pressure and the low pressure. The refrigerant in the intermediate pressure liquid state passes through the liquid branch pipe 404b, the second expansion valve 211b of the second branch section 250, and the return intermediate pressure pipe 401A, and flows into the second heat exchange section 207. At this time, it flows out from the liquid outflow side of the gas-liquid separator 201 and merges with the refrigerant in the liquid state that has passed through the first heat exchange unit 206 and the liquid outflow side flow rate adjustment valve 204. The merged refrigerant branches into a refrigerant that flows into the second branch portion 250 through the high-pressure liquid pipe 402B and a refrigerant that flows into the relay bypass pipe 209.
 第2の分岐部250に流入した冷媒は、第2の分岐部250の第1の膨張弁210a、液枝管404aを通って、室内機300aに流入する。そして、室内機300aに流入した冷媒は、第1の膨張弁210aによって負荷側熱交換器301aの出口側のスーパーヒートを制御され、低圧まで減圧される。減圧された冷媒は、負荷側熱交換器301aに流入し、負荷側熱交換器301aで室内空気と熱交換されて蒸発ガス化する。その際、室内機300aが設置された室内が冷房される。そして、ガス状態となった冷媒は、ガス枝管403a、第1の分岐部240の冷房用電磁弁203aを通り、低圧管401に流入する。 The refrigerant that has flowed into the second branch section 250 flows into the indoor unit 300a through the first expansion valve 210a and the liquid branch pipe 404a of the second branch section 250. The refrigerant flowing into the indoor unit 300a is depressurized to a low pressure by controlling the superheat on the outlet side of the load side heat exchanger 301a by the first expansion valve 210a. The decompressed refrigerant flows into the load-side heat exchanger 301a, and is heat-exchanged with indoor air in the load-side heat exchanger 301a to be evaporated and gasified. At that time, the room in which the indoor unit 300a is installed is cooled. The refrigerant in a gas state flows into the low-pressure pipe 401 through the gas branch pipe 403a and the cooling electromagnetic valve 203a of the first branch 240.
 一方、中継バイパス配管209に流入した冷媒は、中継バイパス流量調整弁205で低圧まで減圧された後、第2の熱交換部207において、液流出側流量調整弁204を通った冷媒、すなわち中継バイパス配管209に分岐する前の冷媒との間で熱交換されて蒸発する。さらに、冷媒は、第1の熱交換部206において、液流出側流量調整弁204に流入する前の冷媒との間で熱交換されて蒸発する。蒸発した冷媒は、低圧管401に流入し、冷房用電磁弁203aを通った冷媒と合流する。その後、合流した冷媒は、第6の逆止弁108を通って、熱源側熱交換器103に流入する。 On the other hand, the refrigerant flowing into the relay bypass pipe 209 is decompressed to a low pressure by the relay bypass flow rate adjustment valve 205 and then passed through the liquid outflow side flow rate adjustment valve 204 in the second heat exchange unit 207, that is, the relay bypass. Heat exchange with the refrigerant before branching to the pipe 209 evaporates. Further, in the first heat exchange unit 206, the refrigerant is evaporated by exchanging heat with the refrigerant before flowing into the liquid outflow side flow rate adjustment valve 204. The evaporated refrigerant flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valve 203a. Thereafter, the merged refrigerant passes through the sixth check valve 108 and flows into the heat source side heat exchanger 103.
 冷媒は、熱源側熱交換器103において熱源側送風機112によって送風される室外空気と熱交換されて蒸発ガス化した後、流路切替弁102、アキュムレータ104を通って、圧縮機101に吸入される。 The refrigerant exchanges heat with outdoor air blown by the heat source side blower 112 in the heat source side heat exchanger 103 to evaporate and then is sucked into the compressor 101 through the flow path switching valve 102 and the accumulator 104. .
 なお、暖房主体運転において、暖房用電磁弁202bは開放され、暖房用電磁弁202aは閉止されている。また、冷房用電磁弁203aは開放され、冷房用電磁弁203bは閉止されている。また、低圧管401が低圧、高圧管402が高圧であるため、冷媒は、第5の逆止弁107及び第6の逆止弁108に流通する。また、第2の膨張弁211aは閉止しているため冷媒が流れない。また、第1の膨張弁210bは閉止しているため冷媒が流れない。 In the heating main operation, the heating solenoid valve 202b is opened, and the heating solenoid valve 202a is closed. The cooling electromagnetic valve 203a is opened, and the cooling electromagnetic valve 203b is closed. In addition, since the low pressure pipe 401 has a low pressure and the high pressure pipe 402 has a high pressure, the refrigerant flows through the fifth check valve 107 and the sixth check valve 108. Further, since the second expansion valve 211a is closed, the refrigerant does not flow. Further, since the first expansion valve 210b is closed, the refrigerant does not flow.
 図6は、本発明の実施の形態に係る空気調和装置1の冷媒の漏洩検知時の動作を示すフローチャートである。
 次に、空気調和装置1の冷媒の漏洩検知時の動作について、図6を参照して説明する。
 漏洩検知部400は、冷媒回路から冷媒が漏洩したかどうかを検知している(ステップS1)。
 そして、漏洩検知部400によって冷媒が漏洩したことが検知された場合(ステップS1のYes)、その検知信号は制御装置10へ送信される(ステップS2)。
FIG. 6 is a flowchart showing the operation of the air-conditioning apparatus 1 according to the embodiment of the present invention when refrigerant leakage is detected.
Next, the operation | movement at the time of the refrigerant | coolant leakage detection of the air conditioning apparatus 1 is demonstrated with reference to FIG.
The leak detection unit 400 detects whether or not the refrigerant has leaked from the refrigerant circuit (step S1).
And when it is detected by the leak detection part 400 that the refrigerant | coolant leaked (Yes of step S1), the detection signal is transmitted to the control apparatus 10 (step S2).
 この時、空気調和装置1が全冷房運転である場合は(ステップS3のYes)、運転モードはそのままで運転を継続する。
 一方、運転モードが全冷房運転以外の場合、すなわち全暖房運転、冷房主体運転、及び、暖房主体運転のいずれか、又は停止である場合は(ステップS3のNo)、制御装置10は、運転モードを全冷房運転へ強制的に切り替えて運転する(ステップS4)。
At this time, when the air conditioner 1 is in the cooling only operation (Yes in step S3), the operation is continued with the operation mode as it is.
On the other hand, when the operation mode is other than the cooling only operation, that is, when any of the heating only operation, the cooling main operation, and the heating main operation is stopped (No in step S3), the control device 10 Is forcibly switched to the cooling only operation (step S4).
 そして、制御装置10は、全冷房運転であるが、全ての第1の膨張弁210a,210b、第2の膨張弁211a,211bを閉止する(ステップS5)。なお、室内機は吸込み温度が設定温度に達してもサーモOFFしない設定としておく。 The control device 10 is in the cooling only operation, but closes all the first expansion valves 210a and 210b and the second expansion valves 211a and 211b (step S5). Note that the indoor unit is set so as not to be thermo-off even when the suction temperature reaches the set temperature.
 次に、例えば、漏洩検知部400と室内機又は居室がそれぞれ対応できていれば、つまり、漏洩検知部400によって室内機系統毎又は居室系統毎に冷媒の漏洩を検知することが可能であれば(ステップS6のYes)、制御装置10は、冷媒の漏洩が発生した系統の冷房用電磁弁203a又は203bだけを開放する(ステップS7)。
 一方、漏洩検知部400と室内機又は居室がそれぞれ対応できていなければ、つまり、漏洩検知部400によって室内機系統毎又は居室系統毎に冷媒の漏洩を検知することが可能でなければ(ステップS6のNo)、制御装置10は、全ての冷房用電磁弁203a及び203bを開放する(ステップS8)。
 なお、漏洩検知部400と室内機又は居室がそれぞれ対応できていても、空気調和装置1のシステム全体を点検したい場合には、全ての冷房用電磁弁203a,203bを開放してもよい。
Next, for example, if the leak detection unit 400 and the indoor unit or the living room can correspond to each other, that is, if the leak detection unit 400 can detect the leakage of the refrigerant for each indoor unit system or each room system, for example. (Yes in step S6), the control device 10 opens only the cooling electromagnetic valve 203a or 203b of the system in which the refrigerant has leaked (step S7).
On the other hand, if the leak detection unit 400 and the indoor unit or the room are not compatible with each other, that is, if the leak detection unit 400 cannot detect the refrigerant leak for each indoor unit system or each room system (step S6). No), the control device 10 opens all the cooling electromagnetic valves 203a and 203b (step S8).
In addition, even if the leak detection unit 400 and the indoor unit or the living room can respectively correspond, when it is desired to check the entire system of the air conditioner 1, all the cooling electromagnetic valves 203a and 203b may be opened.
 このとき、全冷房運転のため、全ての暖房用電磁弁202a,202bは閉止されている。 At this time, all the heating solenoid valves 202a and 202b are closed for the cooling only operation.
 その後、制御装置10は、空気調和装置1のポンプダウン運転を開始する(ステップS9)。なお、ポンプダウン運転の詳細については後述する。
 ポンプダウン運転は冷媒の回収が完了するまで行い、冷媒の回収が完了したら(ステップS10のYes)、制御装置10は、圧縮機101を停止し、全ての冷房用電磁弁203a,203bを閉止し(ステップS11)、終了となる。
Then, the control apparatus 10 starts the pump down driving | operation of the air conditioning apparatus 1 (step S9). The details of the pump-down operation will be described later.
The pump-down operation is performed until the recovery of the refrigerant is completed. When the recovery of the refrigerant is completed (Yes in step S10), the control device 10 stops the compressor 101 and closes all the cooling electromagnetic valves 203a and 203b. (Step S11), the process ends.
 なお、冷媒の回収判定については、例えばアキュムレータ104に液面判定手段を取り付けることで、一定量を超えた場合に回収完了と判断することができる。あるいは、液冷媒で回収すると、圧縮機101の吸入側はガス冷媒で吸入するため吸入圧力が低下する。これを吸入圧力検知部127によって検知し、所定の圧力、例えば1kg/cm未満となった場合に回収完了と判断することもできる。 As for the refrigerant recovery determination, for example, by attaching a liquid level determination means to the accumulator 104, it is possible to determine that the recovery is complete when a certain amount is exceeded. Or if it collects with a liquid refrigerant, since the suction side of compressor 101 will be sucked in with a gas refrigerant, suction pressure will fall. This can be detected by the suction pressure detection unit 127, and it can be determined that the recovery is completed when the pressure becomes a predetermined pressure, for example, less than 1 kg / cm 2 .
(ポンプダウン運転)
 図7は、本発明の実施の形態に係る空気調和装置1のポンプダウン運転時の状態を示す冷媒回路図である。
 次に、空気調和装置1のポンプダウン運転ついて、図7を参照して説明する。
 図7に示すように、圧縮機101から吐出された高温高圧のガス冷媒は、流路切替弁102を通り、熱源側熱交換器103において熱源側送風機112によって送風される室外空気と熱交換されて凝縮液化する。凝縮液化した冷媒は、第3の逆止弁105、高圧管402を通って、中継機200の気液分離器201に至る。
(Pump down operation)
FIG. 7 is a refrigerant circuit diagram illustrating a state during the pump-down operation of the air-conditioning apparatus 1 according to the embodiment of the present invention.
Next, the pump-down operation of the air conditioner 1 will be described with reference to FIG.
As shown in FIG. 7, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 passes through the flow path switching valve 102 and is heat-exchanged with outdoor air blown by the heat-source side blower 112 in the heat-source side heat exchanger 103. To condense. The condensed and liquefied refrigerant passes through the third check valve 105 and the high-pressure pipe 402 and reaches the gas-liquid separator 201 of the repeater 200.
 冷媒は、気液分離器201によってガス状態の冷媒と液状態の冷媒とに分離される。気液分離器201の液流出側から流出した液状の冷媒は、第1の熱交換部206、液流出側流量調整弁204、第2の熱交換部207の順に流れるが、第1の膨張弁210a,210b、第2の膨張弁211a,211bは閉止されているため、室内機300a,300bには冷媒は流入しない。 The refrigerant is separated into a gaseous refrigerant and a liquid refrigerant by the gas-liquid separator 201. The liquid refrigerant that flows out from the liquid outflow side of the gas-liquid separator 201 flows in the order of the first heat exchange unit 206, the liquid outflow side flow rate adjustment valve 204, and the second heat exchange unit 207, but the first expansion valve. Since 210a, 210b and the second expansion valves 211a, 211b are closed, the refrigerant does not flow into the indoor units 300a, 300b.
 また、暖房用電磁弁202a,202bは閉止されており、冷房用電磁弁203a,203bは解放されており、室内機300a,300bに存在していた冷媒は冷房用電磁弁203a,203bによって低圧回路に引かれるため、蒸発ガス化することで室内機300a,300bに存在する冷媒量は低下し、やがて全て回収される。 The heating solenoid valves 202a and 202b are closed, the cooling solenoid valves 203a and 203b are opened, and the refrigerant present in the indoor units 300a and 300b is cooled by the cooling solenoid valves 203a and 203b. Therefore, the amount of refrigerant existing in the indoor units 300a and 300b is reduced by evaporating and is eventually recovered.
 ここで、各室内機は冷房運転として運転することで室内ファンを動作させ、蒸発ガス化を促進し、かつファンによって室内空気を撹拌する効果が期待できるが、必ずしも室内ファンを動作することを必要とするものではない。そして、室内機300a,300bでガス状態となった冷媒は、それぞれ、ガス枝管403a,403b、第1の分岐部240の冷房用電磁弁203a,203bを通り、その後合流し、低圧管401を通る。 Here, each indoor unit can be operated as a cooling operation to operate the indoor fan, promote evaporative gasification and agitate the indoor air with the fan, but it is necessary to operate the indoor fan. It is not something to do. Then, the refrigerant that has become a gas state in the indoor units 300a and 300b passes through the gas branch pipes 403a and 403b and the cooling electromagnetic valves 203a and 203b of the first branch section 240, respectively, and then merges to pass through the low-pressure pipe 401. Pass through.
 また、第2の熱交換部207を通った冷媒の一部は、中継バイパス配管209に流入する。この時、液流出側流量調整弁204、中継バイパス流量調整弁205は、制御範囲で最大開度とすることが望ましく、それによって乾き度の低い、つまり液の多い状態で中継バイパス配管209へ流入させることができるため、冷媒の回収時間が短縮できる。 Also, a part of the refrigerant that has passed through the second heat exchange unit 207 flows into the relay bypass pipe 209. At this time, it is desirable that the liquid outflow side flow rate adjustment valve 204 and the relay bypass flow rate adjustment valve 205 have the maximum opening in the control range, and thereby flow into the relay bypass pipe 209 in a low dryness state, that is, in a state where there is a lot of liquid. Therefore, the refrigerant recovery time can be shortened.
 中継バイパス配管209に流入した液冷媒は、低圧管401に流入し、冷房用電磁弁203a,203bを通った冷媒と合流する。その後、合流した冷媒は、第4の逆止弁106、流路切替弁102を通って、アキュムレータ104に回収される。冷媒の回収が完了すると、自動的に圧縮機101を停止し、全ての冷房用電磁弁203a,203bを閉止する。 The liquid refrigerant that has flowed into the relay bypass pipe 209 flows into the low-pressure pipe 401 and merges with the refrigerant that has passed through the cooling electromagnetic valves 203a and 203b. Thereafter, the merged refrigerant passes through the fourth check valve 106 and the flow path switching valve 102 and is collected in the accumulator 104. When the recovery of the refrigerant is completed, the compressor 101 is automatically stopped and all the cooling solenoid valves 203a and 203b are closed.
 以上、本実施の形態に係る空気調和装置1によれば、本実施の形態に係る空気調和装置1によれば、冷媒の漏洩を検知する漏洩検知部400を備え、制御装置10は、漏洩検知部400により冷媒の漏洩を検知したら、室内機300a、300bへの冷媒流入ゲートとなっている全ての膨張弁を閉止してポンプダウン運転を行い、熱源機100のアキュムレータ104へ冷媒を回収するものである。 As mentioned above, according to the air conditioning apparatus 1 which concerns on this Embodiment, according to the air conditioning apparatus 1 which concerns on this Embodiment, it is provided with the leak detection part 400 which detects the leakage of a refrigerant | coolant, and the control apparatus 10 is leak detection. When the refrigerant leakage is detected by the section 400, all the expansion valves that are the refrigerant inflow gates to the indoor units 300a and 300b are closed, the pump down operation is performed, and the refrigerant is recovered to the accumulator 104 of the heat source unit 100 It is.
 つまり、冷媒の漏洩を検知したら、室内機を遮断して室内機外への冷媒の漏洩を防止し、かつ、室内機から熱源機100へ冷媒を回収することで、冷媒回収の時間を短縮することができる。また、膨張弁により室内機を遮断して室内機外への冷媒の漏洩を防止しており、室内機外への冷媒の漏洩防止のために新たな弁を設ける必要がないため、安価な構成にすることができる。 That is, when refrigerant leakage is detected, the indoor unit is shut off to prevent refrigerant leakage outside the indoor unit, and the refrigerant is recovered from the indoor unit to the heat source unit 100, thereby reducing the refrigerant recovery time. be able to. In addition, the indoor unit is blocked by an expansion valve to prevent refrigerant leakage outside the indoor unit, and it is not necessary to provide a new valve to prevent refrigerant leakage outside the indoor unit. Can be.
 なお、本実施の形態では、ポンプダウン運転を行った際、熱源機100のアキュムレータ104へ冷媒を回収しているが、それに限定されず、熱源機100の圧縮機101、配管などに回収してもよい。 In the present embodiment, when the pump-down operation is performed, the refrigerant is recovered to the accumulator 104 of the heat source apparatus 100, but is not limited thereto, and is recovered to the compressor 101, the piping, etc. of the heat source apparatus 100. Also good.
 1 空気調和装置、10 制御装置、11 記憶手段、12 設定手段、20 負荷容量検知部、26 熱交換部、100 熱源機、101 圧縮機、102 流路切替弁、103 熱源側熱交換器、104 アキュムレータ、105 第3の逆止弁、106 第4の逆止弁、107 第5の逆止弁、108 第6の逆止弁、112 熱源側送風機、114 主管、120 熱源側熱交換ユニット、126 吐出圧力検知部、127 吸入圧力検知部、140 熱源側流路調整ユニット、141 第1の制御装置、200 中継機、201 気液分離器、202a 暖房用電磁弁、202b 暖房用電磁弁、203a 冷房用電磁弁、203b 冷房用電磁弁、204 液流出側流量調整弁、205 中継バイパス流量調整弁、206 第1の熱交換部、207 第2の熱交換部、208 中継バイパス温度検知部、209 中継バイパス配管、210a 第1の膨張弁、210b 第1の膨張弁、211a 第2の膨張弁、211b 第2の膨張弁、220 第2の制御装置、231 第1液流出圧力検知部、232 第2液流出圧力検知部、240 第1の分岐部、250 第2の分岐部、300a 室内機、300b 室内機、301a 負荷側熱交換器、301b 負荷側熱交換器、303a 液管温度検知部、303b 液管温度検知部、304a ガス管温度検知部、304b ガス管温度検知部、400 漏洩検知部、401 低圧管、401A 戻り中圧管、402 高圧管、402A 高圧ガス管、402B 高圧液管、403a ガス枝管、403b ガス枝管、404a 液枝管、404b 液枝管。 DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus, 10 control apparatus, 11 memory | storage means, 12 setting means, 20 load capacity detection part, 26 heat exchange part, 100 heat source machine, 101 compressor, 102 flow path switching valve, 103 heat source side heat exchanger, 104 Accumulator, 105 third check valve, 106 fourth check valve, 107 fifth check valve, 108 sixth check valve, 112 heat source side blower, 114 main pipe, 120 heat source side heat exchange unit, 126 Discharge pressure detection unit, 127, suction pressure detection unit, 140 heat source side flow path adjustment unit, 141, first control device, 200 relay, 201, gas-liquid separator, 202a heating solenoid valve, 202b heating solenoid valve, 203a cooling Solenoid valve, 203b Cooling solenoid valve, 204 Liquid outflow side flow rate adjustment valve, 205 Relay bypass flow rate adjustment valve, 206th Heat exchange section, 207 second heat exchange section, 208 relay bypass temperature detection section, 209 relay bypass pipe, 210a first expansion valve, 210b first expansion valve, 211a second expansion valve, 211b second Expansion valve, 220, second control device, 231, first liquid outflow pressure detection unit, 232, second liquid outflow pressure detection unit, 240, first branching unit, 250, second branching unit, 300a indoor unit, 300b indoor unit, 301a Load side heat exchanger, 301b Load side heat exchanger, 303a Liquid pipe temperature detection part, 303b Liquid pipe temperature detection part, 304a Gas pipe temperature detection part, 304b Gas pipe temperature detection part, 400 Leak detection part, 401 Low pressure pipe , 401A return intermediate pressure tube, 402 high pressure tube, 402A high pressure gas tube, 402B high pressure liquid tube, 403a gas branch tube, 403b gas Tube, 404a liquid branch pipes, 404b liquid branch pipe.

Claims (5)

  1.  圧縮機、流路切替弁、及び、熱源側熱交換器を有する熱源機と、
     負荷側熱交換器を有し、冷房運転又は暖房運転を行う複数台の室内機と、
     前記熱源機と各前記室内機とを接続する低圧管及び高圧管と、
     各前記負荷側熱交換器の一方を前記低圧管に接続するように切り替える第1の開閉弁、及び、各前記負荷側熱交換器の前記一方を前記高圧管に接続するように切り替える第2の開閉弁を有する第1の分岐部と、各前記負荷側熱交換器の他方を、第1の膨張弁を介して高圧液管に、及び、第2の膨張弁を介して戻り中圧管に接続する第2の分岐部と、を有する中継機と、
     冷媒の漏洩を検知する漏洩検知部と、
     前記第1の膨張弁及び前記第2の膨張弁を制御する制御装置と、を備え、
     前記制御装置は、
     前記漏洩検知部により冷媒の漏洩を検知したら、全ての前記第1の膨張弁及び前記第2の膨張弁を閉止して冷媒を前記熱源機に回収するポンプダウン運転を行う
     空気調和装置。
    A heat source machine having a compressor, a flow path switching valve, and a heat source side heat exchanger;
    A plurality of indoor units having a load-side heat exchanger and performing a cooling operation or a heating operation;
    A low-pressure pipe and a high-pressure pipe connecting the heat source unit and each indoor unit;
    A first on-off valve that switches to connect one of the load-side heat exchangers to the low-pressure pipe; and a second switch that switches to connect the one of the load-side heat exchangers to the high-pressure pipe A first branch having an on-off valve and the other of the load-side heat exchangers are connected to a high-pressure liquid pipe via a first expansion valve and to a return intermediate pressure pipe via a second expansion valve. A relay having a second branching section,
    A leak detector for detecting refrigerant leakage;
    A control device for controlling the first expansion valve and the second expansion valve;
    The controller is
    An air conditioner that performs a pump-down operation of closing all the first expansion valves and the second expansion valves and recovering the refrigerant to the heat source unit when the leakage detection unit detects leakage of the refrigerant.
  2.  複数台の前記室内機が全て冷房運転を行う全冷房運転モードと、それ以外の運転モードとを有しており、
     前記制御装置は、
     前記ポンプダウン運転を開始する前において、
     全冷房運転モード以外の運転モードだったら、全冷房運転モードとなるように前記流路切替弁を切り替える
     請求項1に記載の空気調和装置。
    A plurality of indoor units have a cooling only operation mode in which all cooling operations are performed, and other operation modes,
    The controller is
    Before starting the pump down operation,
    The air conditioning apparatus according to claim 1, wherein if the operation mode is other than the cooling only operation mode, the flow path switching valve is switched so as to be in a cooling only operation mode.
  3.  前記制御装置は、
     前記漏洩検知部により冷媒の漏洩を検知したら、全ての前記第1の開閉弁を開放する
     請求項1又は2に記載の空気調和装置。
    The controller is
    The air conditioning apparatus according to claim 1 or 2, wherein when the leakage detection unit detects refrigerant leakage, all the first on-off valves are opened.
  4.  前記漏洩検知部を前記室内機毎に備え、
     前記制御装置は、
     前記漏洩検知部により冷媒の漏洩を検知したら、冷媒の漏洩が検知された前記室内機に対応する前記第1の開閉弁を開放する
     請求項1又は2に記載の空気調和装置。
    The leakage detector is provided for each indoor unit,
    The controller is
    The air conditioner according to claim 1 or 2, wherein when the leakage of the refrigerant is detected by the leakage detection unit, the first on-off valve corresponding to the indoor unit in which the leakage of the refrigerant is detected is opened.
  5.  前記熱源機は、アキュムレータを備える
     請求項1~4のいずれか一項に記載の空気調和装置。
    The air conditioner according to any one of claims 1 to 4, wherein the heat source unit includes an accumulator.
PCT/JP2016/069539 2016-06-30 2016-06-30 Air-conditioning device WO2018003096A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018524688A JP6636151B2 (en) 2016-06-30 2016-06-30 Air conditioner
GB1817754.3A GB2564995B (en) 2016-06-30 2016-06-30 Air-conditioning apparatus
PCT/JP2016/069539 WO2018003096A1 (en) 2016-06-30 2016-06-30 Air-conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069539 WO2018003096A1 (en) 2016-06-30 2016-06-30 Air-conditioning device

Publications (1)

Publication Number Publication Date
WO2018003096A1 true WO2018003096A1 (en) 2018-01-04

Family

ID=60786787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069539 WO2018003096A1 (en) 2016-06-30 2016-06-30 Air-conditioning device

Country Status (3)

Country Link
JP (1) JP6636151B2 (en)
GB (1) GB2564995B (en)
WO (1) WO2018003096A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344108A (en) * 2018-02-01 2018-07-31 青岛海尔空调器有限总公司 A kind of air-conditioning and hydrogen gas leakage detection method, device of Applied Electrochemistry compressor
WO2019198134A1 (en) * 2018-04-09 2019-10-17 三菱電機株式会社 Air conditioner
CN110887166A (en) * 2018-09-10 2020-03-17 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN110966796A (en) * 2019-12-05 2020-04-07 福建工程学院 Direct expansion type ground source pump refrigerant leakage prevention device and method thereof
CN111912079A (en) * 2019-05-09 2020-11-10 珠海格力电器股份有限公司 Fixed-frequency air conditioner, defrosting control method of fixed-frequency air conditioner, computer device and computer readable storage medium
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system
US20230085125A1 (en) * 2020-03-30 2023-03-16 Mitsubishi Electric Corporation Air-conditioning system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115843328A (en) * 2020-06-08 2023-03-24 三菱电机株式会社 Refrigeration cycle device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140574A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JPH046355A (en) * 1990-04-23 1992-01-10 Mitsubishi Electric Corp Multiple-room type air-conditioner
JPH05118720A (en) * 1991-10-30 1993-05-14 Hitachi Ltd Control of refrigerator
JPH11142004A (en) * 1997-11-05 1999-05-28 Daikin Ind Ltd Refrigerating device
JP2000097527A (en) * 1998-09-21 2000-04-04 Mitsubishi Heavy Ind Ltd Air conditioner and its control method
JP2003130482A (en) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp Air conditioner
WO2014091741A1 (en) * 2012-12-10 2014-06-19 パナソニック株式会社 Connection unit and air conditioner
US20150176848A1 (en) * 2013-12-24 2015-06-25 Lg Electronics Inc. Air conditioning system and method of controlling an air conditioning system
WO2016017643A1 (en) * 2014-07-28 2016-02-04 三菱電機株式会社 Air conditioner

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534538Y2 (en) * 1974-07-22 1980-08-15
JP2817816B2 (en) * 1991-09-12 1998-10-30 松下冷機株式会社 Multi-room air conditioner
JP2012007774A (en) * 2010-06-23 2012-01-12 Panasonic Corp Air conditioner
JP5975714B2 (en) * 2011-11-07 2016-08-23 三菱電機株式会社 Refrigeration air conditioner and refrigeration air conditioning system
US20170010030A1 (en) * 2014-03-07 2017-01-12 Mitsubishi Electric Corporation Air-conditioning apparatus
US10001309B2 (en) * 2014-03-17 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02140574A (en) * 1988-11-18 1990-05-30 Sanyo Electric Co Ltd Air conditioning apparatus
JPH046355A (en) * 1990-04-23 1992-01-10 Mitsubishi Electric Corp Multiple-room type air-conditioner
JPH05118720A (en) * 1991-10-30 1993-05-14 Hitachi Ltd Control of refrigerator
JPH11142004A (en) * 1997-11-05 1999-05-28 Daikin Ind Ltd Refrigerating device
JP2000097527A (en) * 1998-09-21 2000-04-04 Mitsubishi Heavy Ind Ltd Air conditioner and its control method
JP2003130482A (en) * 2001-10-26 2003-05-08 Mitsubishi Electric Corp Air conditioner
WO2014091741A1 (en) * 2012-12-10 2014-06-19 パナソニック株式会社 Connection unit and air conditioner
US20150176848A1 (en) * 2013-12-24 2015-06-25 Lg Electronics Inc. Air conditioning system and method of controlling an air conditioning system
WO2016017643A1 (en) * 2014-07-28 2016-02-04 三菱電機株式会社 Air conditioner

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108344108A (en) * 2018-02-01 2018-07-31 青岛海尔空调器有限总公司 A kind of air-conditioning and hydrogen gas leakage detection method, device of Applied Electrochemistry compressor
WO2019198134A1 (en) * 2018-04-09 2019-10-17 三菱電機株式会社 Air conditioner
JPWO2019198134A1 (en) * 2018-04-09 2020-10-22 三菱電機株式会社 Air conditioner
CN111902681A (en) * 2018-04-09 2020-11-06 三菱电机株式会社 Air conditioner
EP3779324A4 (en) * 2018-04-09 2021-04-21 Mitsubishi Electric Corporation Air conditioner
US11199337B2 (en) 2018-04-09 2021-12-14 Mitsubishi Electric Corporation Air conditioner
US11441820B2 (en) 2018-09-06 2022-09-13 Carrier Corporation Refrigerant leak detection system
CN110887166A (en) * 2018-09-10 2020-03-17 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN110887166B (en) * 2018-09-10 2021-05-18 奥克斯空调股份有限公司 Air conditioner refrigerant leakage detection method and air conditioner
CN111912079A (en) * 2019-05-09 2020-11-10 珠海格力电器股份有限公司 Fixed-frequency air conditioner, defrosting control method of fixed-frequency air conditioner, computer device and computer readable storage medium
CN110966796A (en) * 2019-12-05 2020-04-07 福建工程学院 Direct expansion type ground source pump refrigerant leakage prevention device and method thereof
US20230085125A1 (en) * 2020-03-30 2023-03-16 Mitsubishi Electric Corporation Air-conditioning system

Also Published As

Publication number Publication date
GB201817754D0 (en) 2018-12-19
GB2564995B (en) 2021-04-28
GB2564995A (en) 2019-01-30
JP6636151B2 (en) 2020-01-29
JPWO2018003096A1 (en) 2019-02-14

Similar Documents

Publication Publication Date Title
WO2018003096A1 (en) Air-conditioning device
CN109154463B (en) Air conditioning apparatus
JP6895901B2 (en) Air conditioner
JP6479162B2 (en) Air conditioner
JP2017142039A (en) Air conditioner
KR101479458B1 (en) Refrigeration device
US9494363B2 (en) Air-conditioning apparatus
US10161647B2 (en) Air-conditioning apparatus
EP3205954B1 (en) Refrigeration cycle device
CN104364591B (en) Conditioner
AU2004267299A1 (en) Refrigeration system
JP6223469B2 (en) Air conditioner
JP5908183B1 (en) Air conditioner
US20150285518A1 (en) Air-conditioning apparatus
US11892209B2 (en) Multi-air conditioner for heating and cooling including a shut-off valve between indoor and outdoor units and control method thereof
JP6508394B2 (en) Refrigeration system
WO2014103013A1 (en) Heat pump system
JP4981411B2 (en) Air conditioner
WO2017119105A1 (en) Air-conditioning device
JP6704520B2 (en) Repeaters and air conditioners
JP6257812B2 (en) Air conditioner
JP7397286B2 (en) Refrigeration cycle equipment
WO2023139703A1 (en) Air conditioning device
WO2020100210A1 (en) Refrigeration cycle apparatus
WO2017179117A1 (en) Air conditioner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018524688

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 201817754

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20160630

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16907329

Country of ref document: EP

Kind code of ref document: A1