US20170010030A1 - Air-conditioning apparatus - Google Patents

Air-conditioning apparatus Download PDF

Info

Publication number
US20170010030A1
US20170010030A1 US15/120,790 US201415120790A US2017010030A1 US 20170010030 A1 US20170010030 A1 US 20170010030A1 US 201415120790 A US201415120790 A US 201415120790A US 2017010030 A1 US2017010030 A1 US 2017010030A1
Authority
US
United States
Prior art keywords
refrigerant
bypass
valve
heat exchanger
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/120,790
Inventor
Kosuke Tanaka
Hiroaki Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Assigned to MITSUBISHI ELECTRIC CORPORATION reassignment MITSUBISHI ELECTRIC CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAKINO, HIROAKI, TANAKA, KOSUKE
Publication of US20170010030A1 publication Critical patent/US20170010030A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • F25B41/04
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/37Resuming operation, e.g. after power outages; Emergency starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0415Refrigeration circuit bypassing means for the receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/15Control issues during shut down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators

Definitions

  • the present invention relates to an air-conditioning apparatus including a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by pipes, and refrigerant circulates.
  • a refrigeration apparatus described in Patent Literature 1 includes a heat source side unit, a use side unit, and a controller.
  • the heat source side unit includes a compressor, a heat source side heat exchanger, an expansion valve, a large-diameter tube, a liquid-refrigerant side shutoff valve, and a gas refrigerant side shutoff valve. These components are connected by refrigerant pipes.
  • the use side unit includes a use side heat exchanger. One end of the use side heat exchanger is connected to the liquid-refrigerant side shutoff valve via a liquid refrigerant communication pipe, and the other end of the use side heat exchanger is connected to the gas refrigerant side shutoff valve via a gas refrigerant communication pipe.
  • the controller executes a pump down operation for collecting refrigerant to the heat source side unit.
  • refrigerant is, in the pump down operation, stored in the large-diameter tube provided between the heat source side heat exchanger and the liquid-refrigerant side shutoff valve.
  • Patent Literature 1 Japanese Patent No. 5212537 (claim 1)
  • the present invention has been made in view of the above-described problems, and is intended to provide an air-conditioning apparatus configured so that a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which a refrigerant circuit is filled and that refrigerant can be suitably stored during a pump down operation.
  • An air-conditioning apparatus includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by pipes, and refrigerant circulates.
  • Such an air-conditioning apparatus includes a first on-off valve provided at a pipe between the expansion valve and the use side heat exchanger, a bypass branching from a pipe between the expansion valve and the first on-off valve or a pipe between the heat source side heat exchanger and the expansion valve and connected to a pipe on a suction side of the compressor, and a refrigerant storage unit configured to store the refrigerant having passed through the bypass.
  • the refrigerant storage unit stores the refrigerant flowing into the bypass from the heat source side heat exchanger.
  • a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which the refrigerant circuit is filled, and refrigerant can be suitably stored during the pump down operation.
  • FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 1.
  • FIG. 2 is a p-h graph during a pump down operation of the air-conditioning apparatus 100 according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 4 is a p-h graph during a pump down operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 5 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 6 is a p-h graph during a cooling operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 7 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 4.
  • FIG. 8 is a p-h graph during a heating operation of the air-conditioning apparatus 100 according to Embodiment 4.
  • FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 1.
  • the air-conditioning apparatus 100 includes an outdoor unit 1 and an indoor unit 2 , and the outdoor unit 1 and the indoor unit 2 are connected by a liquid pipe 8 and a gas pipe 5 .
  • the outdoor unit 1 includes a compressor 3 , a four-way valve 4 , a heat source side heat exchanger 9 , an expansion valve 7 , a heat source side fan 91 configured to send air to the heat source side heat exchanger 9 , and a controller 40 configured to control operation of each section forming the air-conditioning apparatus 100 .
  • the indoor unit 2 includes a use side heat exchanger 6 and a use side fan 61 configured to send air to the use side heat exchanger 6 .
  • the compressor 3 , the four-way valve 4 , the heat source side heat exchanger 9 , the expansion valve 7 , and the use side heat exchanger 6 are, in the air-conditioning apparatus 100 , successively connected by pipes to form a refrigerant circuit in which refrigerant circulates.
  • the outdoor unit 1 further includes a bypass 20 branching from the pipe between the expansion valve 7 and a first on-off valve 11 and connected to the pipe at a suction-side of the compressor 3 .
  • the bypass 20 is provided with a first bypass on-off valve 21 , a second bypass on-off valve 22 , and a container 30 configured to store refrigerant.
  • the compressor 3 is a type of compressor in which rotation speed is controlled by, for example, an inverter and the capacity is controlled,
  • the expansion valve 7 is, for example, an electronic expansion valve whose opening degree is variably controlled.
  • the heat source side heat exchanger 9 is configured to exchange heat with the external air sent by the heat source side fan 91 .
  • the use side heat exchanger 6 is configured to exchange heat with the indoor air sent by the use side fan 61 .
  • the first bypass on-off valve 21 is provided on a refrigerant inflow side (a side close to the pipe between the expansion valve 7 and the first on-off valve 11 ) of the bypass 20 .
  • the second bypass on-off valve 22 is provided on a refrigerant outflow side (a side close to the pipe at a suction-side of the compressor 3 ) of the bypass 20 .
  • the first bypass on-off valve 21 and the second bypass on-off valve 22 are on-off valves configured to open/close a refrigerant flow path of the bypass 20 .
  • the container 30 is a container configured to store refrigerant.
  • the container 30 corresponds to a “refrigerant storage unit” of the present invention.
  • the gas pipe 5 and the liquid pipe 8 are connection pipes connecting the outdoor unit 1 and the indoor unit 2 .
  • the first on-off valve 11 and a second on-off valve 12 are connected respectively to the liquid pipe 8 and the gas pipe 5 .
  • the liquid pipe 8 connects between the use side heat exchanger 6 of the indoor unit 2 and the first on-off valve 11 of the outdoor unit 1 .
  • the gas pipe 5 connects between the use side heat exchanger 6 of the indoor unit 2 and the second on-off valve 12 of the outdoor unit 1 .
  • first on-off valve 11 , the second on-off valve 12 , the first bypass on-off valve 21 , and the second bypass on-off valve 22 may be manual valves configured to be manually opened/closed, or solenoid valves whose opening/closing state is controlled by the controller 40 .
  • the outdoor unit 1 further includes a discharge temperature sensor 41 , a discharge pressure sensor 51 , and a suction pressure sensor 52 .
  • the discharge temperature sensor 41 is configured to detect the temperature of refrigerant discharged from the compressor 3 .
  • the discharge pressure sensor 51 is configured to detect the pressure of refrigerant discharged from the compressor 3 .
  • the suction pressure sensor 52 is configured to detect the pressure of refrigerant to be sucked into the compressor 3 .
  • the pressure of refrigerant circulating in the refrigerant circuit is the lowest on a suction side of the compressor 3 , and is the highest on a discharge side of the compressor 3 .
  • the pressure on the suction side of the compressor 3 is referred to as a “low pressure”
  • the pressure on the discharge side of the compressor 3 is referred to as a “high pressure.”
  • Slightly flammable refrigerant (R32, HFO1234yf, HFO1234ze, etc.) and flammable refrigerant (HC) are used as the refrigerant used for a refrigeration cycle (the refrigerant circuit) of the air-conditioning apparatus 100 .
  • tetrafluoropropene (HFO1234yf as 2,3,3,3-tetrafluoropropene, HFO1234ze as 1,3,3,3-tetrafluoro-1-propene, etc.) or difluoromethane (HFC32) are used as the material to be mixed for producing a refrigerant mixture.
  • HFO1234yf 2,3,3,3-tetrafluoropropene
  • HFO1234ze 1,3,3,3-tetrafluoro-1-propene, etc.
  • difluoromethane HFC32
  • the present invention is not limited to these materials.
  • HC290 propane
  • Any materials may be used as long as the material has such thermal performance as to be capable of being used as refrigerant for the refrigeration cycle (the refrigerant circuit), and any mixing ratio may be adopted.
  • refrigerant used in the present invention is not limited to the above-described refrigerant.
  • refrigerant such as R410A may be used.
  • the air-conditioning apparatus 100 configured as described above is able to perform a cooling or heating operation by switching the four-way valve 4 . Moreover, the air-conditioning apparatus 100 is able to perform a pump down operation for collecting refrigerant in the indoor unit 2 to the outdoor unit 1 .
  • the air-conditioning apparatus 100 may be configured to perform at least the cooling operation and the pump down operation.
  • the four-way valve 4 is not necessarily provided, and can be omitted.
  • FIG. 1 a solid line indicates a flow in the cooling operation, and a dashed line indicates a flow in the heating operation.
  • the four-way valve 4 is switched to a cooling operation mode (the state indicated by the solid line). Moreover, the first on-off valve 11 , the second on-off valve 12 , and the second bypass on-off valve 22 are in an open state. The first bypass on-off valve 21 is in a closed state.
  • the low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the indoor unit 2 through the liquid pipe 8 .
  • Such refrigerant is evaporated by heat exchange with indoor air in the use side heat exchanger 6 , and then, flows out as low-pressure gas refrigerant.
  • the low-pressure gas refrigerant having flowed out from the use side heat exchanger 6 flows into the outdoor unit 1 through the gas pipe 5 , and then, returns to the compressor 3 via the four-way valve 4 .
  • the first bypass on-off valve 21 is in the closed state, and therefore, no refrigerant flows into the bypass 20 .
  • the second bypass on-off valve 22 is in the open state, and therefore, liquid sealing of the container 30 can be prevented.
  • the four-way valve 4 is switched to a heating operation mode (the state indicated by the dashed line). Moreover, the first on-off valve 11 , the second on-off valve 12 , and the second bypass on-off valve 22 are in the open state. The first bypass on-off valve 21 is in the closed state.
  • the low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the heat source side heat exchanger 9 .
  • Such refrigerant is evaporated by heat exchange with outdoor air, and then, flows out as low-pressure gas refrigerant.
  • the low-pressure gas refrigerant having flowed out from the heat source side heat exchanger 9 returns to the compressor 3 via the four-way valve 4 .
  • the first bypass on-off valve 21 is in the closed state, and therefore, no refrigerant flows into the bypass 20 .
  • the second bypass on-off valve 22 is in the open state, and therefore, liquid sealing of the container 30 can be prevented.
  • FIG. 2 is a p-h graph during the pump down operation of the air-conditioning apparatus 100 according to Embodiment 1.
  • the horizontal axis represents a specific enthalpy of refrigerant
  • the vertical axis represents a pressure.
  • points a to c in FIG. 5 each indicate a refrigerant state at respective positions illustrated in FIG. 1 .
  • the four-way valve 4 is switched to the cooling operation mode (the state indicated by the solid line). Moreover, the second on-off valve 12 and the first bypass on-off valve 21 are in the open state. The first on-off valve 11 and the second bypass on-off valve 22 are in the closed state. Further, the controller 40 fully opens the expansion valve 7 . In addition, the controller 40 makes the heat source side fan 91 and the use side fan 61 operate.
  • the high-pressure liquid refrigerant (the state c) having flowed into the bypass 20 flows into the container 30 through the first bypass on-off valve 21 . Since the second bypass on-off valve 22 is in the closed state, the high-pressure liquid refrigerant (the state c) having flowed into the bypass 20 is stored in the container 30 .
  • Refrigerant in the use side heat exchanger 6 , the liquid pipe 8 , and the gas pipe 5 is sucked by operation of the compressor 3 . After having been discharged from the compressor 3 , the refrigerant is stored in the container 30 by the above-described operation.
  • Embodiment 1 in the pump down operation, the refrigerant having flowed out from the heat source side heat exchanger 9 flows into the bypass 20 , and then, is stored in the container 30 .
  • refrigerant in the pump down operation, refrigerant can be suitably collected to the outdoor unit 1 .
  • a storage container such as a large-diameter tube, on an outlet side of the heat source side heat exchanger 9 (a condenser), and a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which the refrigerant circuit is filled.
  • the amount of refrigerant with which the refrigerant circuit is filled can be reduced, an increase in a manufacturing cost can be suppressed, and an influence on environment due to refrigerant leakage can be reduced.
  • Embodiment 1 Differences from Embodiment 1 will be mainly described in Embodiment 2.
  • the same reference numerals as those of Embodiment 1 are used to represent identical elements, and description thereof will not be repeated.
  • FIG. 3 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 2.
  • the air-conditioning apparatus 100 of Embodiment 2 is configured such that an accumulator 10 configured to store extra refrigerant is provided on a suction side of a compressor 3 .
  • a bypass 20 is connected to a pipe at an inflow side of the accumulator 10 .
  • bypass 20 is provided with a third bypass on-off valve 23 .
  • a first bypass on-off valve 21 a second bypass on-off valve 22 , and a container 30 are not provided.
  • the third bypass on-off valve 23 has the function of opening/closing a flow path of the bypass 20 and expanding (depressurizing) passing refrigerant.
  • the pipe diameter of the bypass 20 on a downstream side (the side close to the accumulator 10 ) of the third bypass on-off valve 23 is smaller than that on an upstream side such that the refrigerant passing through the third bypass on-off valve 23 is expanded.
  • a configuration of the third bypass on-off valve 23 is not limited to such a configuration.
  • an electronic expansion valve whose opening degree is variably controlled may be used as the third bypass on-off valve 23 .
  • a two-way valve and a capillary tube may be connected in series. That is, any configurations can be used as long as a flow of refrigerant in the bypass 20 can be opened/closed such that passing refrigerant is expanded (depressurized).
  • the third bypass on-off valve 23 corresponds to a “second expansion valve” of the present invention.
  • Embodiment 1 differences from Embodiment 1 in operation of the air-conditioning apparatus 100 of Embodiment 2 will be mainly described.
  • the third bypass on-off valve 23 is in a closed state.
  • the accumulator 10 separates such refrigerant into gas refrigerant and liquid refrigerant, and then, the gas refrigerant is sucked into the compressor 3 .
  • FIG. 4 is a p-h graph during the pump down operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • the horizontal axis represents a specific enthalpy of refrigerant
  • the vertical axis represents a pressure.
  • points a to e in FIG. 4 each indicate a refrigerant state at respective positions illustrated in FIG. 3 .
  • a four-way valve 4 is switched to a cooling operation mode (the state indicated by a solid line). Moreover, a second on-off valve 12 and the third bypass on-off valve 23 are in an open state. A first on-off valve 11 is in the closed state. Further, a controller 40 fully opens an expansion valve 7 . In addition, the controller 40 makes a heat source side fan 91 and a use side fan 61 operate.
  • the heat source side fan 91 may be stopped, or the amount of air sent by the heat source side fan 91 may be decreased so that heat exchange amount by a heat source side heat exchanger 9 is decreased.
  • the high-pressure liquid refrigerant (the state c) having flowed into the bypass 20 is expanded (depressurized) when passing through the third bypass on-off valve 23 , and turns into low-pressure two-phase refrigerant (the state d).
  • the low-pressure two-phase refrigerant flows into the accumulator 10 from the bypass 20 , and then, is separated into gas refrigerant (the state a) and liquid refrigerant (the state e).
  • the gas refrigerant in the accumulator 10 is sucked into the compressor 3 .
  • the liquid refrigerant is stored in the accumulator 10 .
  • Refrigerant in a use side heat exchanger 6 , a liquid pipe 8 , and a gas pipe 5 is sucked by operation of the compressor 3 , and then, flows into the accumulator 10 .
  • Such refrigerant is separated into gas refrigerant and liquid refrigerant, and the liquid refrigerant is stored in the accumulator 10 .
  • the third bypass on-off valve 23 is provided at the bypass 20 such that the refrigerant having flowed into the bypass 20 is expanded (depressurized), and such refrigerant is stored in the accumulator 10 .
  • the refrigerant stored in the accumulator 10 is expanded (depressurized) low-pressure liquid refrigerant (see T ACC in FIG. 4 ).
  • T ACC low-pressure liquid refrigerant
  • a refrigerant temperature is lower, and a refrigerant density may be increased.
  • the capacity of a refrigerant storage unit (the accumulator 10 ) configured to store refrigerant in the pump down operation can be decreased.
  • Embodiment 2 Differences from Embodiment 2 will be mainly described in Embodiment 3.
  • the same reference numerals as those of Embodiment 2 are used to represent identical elements, and description thereof will not be repeated.
  • FIG. 5 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 3.
  • the air-conditioning apparatus 100 according to Embodiment 3 further includes a gas-liquid separator 32 as illustrated in FIG. 5 .
  • the gas-liquid separator 32 is provided at a pipe between an expansion valve 7 and a first on-off valve 11 .
  • the gas-liquid separator 32 is configured to separate refrigerant flowing therein into gas refrigerant and liquid refrigerant.
  • a bypass 20 connects a gas-side connection port of the gas-liquid separator 32 and a pipe at a suction-side of a compressor 3 .
  • Embodiment 2 differences from Embodiment 2 in operation of the air-conditioning apparatus 100 of Embodiment 3 will be mainly described.
  • FIG. 6 is a p-h graph during a cooling operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • the horizontal axis represents a specific enthalpy of refrigerant
  • the vertical axis represents a pressure.
  • points a to f in FIG. 6 each indicate a refrigerant state at respective positions illustrated in FIG. 5 .
  • a four-way valve 4 is switched to a cooling operation mode (the state indicated by a solid line). Moreover, the first on-off valve 11 , a second on-off valve 12 , and a third bypass on-off valve 23 are opened.
  • the low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the gas-liquid separator 32 , and then, is separated into gas refrigerant (the state f) and liquid refrigerant (the state e).
  • the gas refrigerant having flowed into the bypass 20 from the gas-liquid separator 32 flows into an accumulator 10 through the third bypass on-off valve 23 .
  • the liquid refrigerant (the state e) separated by the gas-liquid separator 32 flows into an indoor unit 2 through a liquid pipe 8 . Then, such refrigerant is evaporated by heat exchange with indoor air in a use side heat exchanger 6 , and then, flows out as low-pressure gas refrigerant.
  • the low-pressure gas refrigerant having flowed out from the use side heat exchanger 6 flows into an outdoor unit 1 through a gas pipe 5 , and then, returns to the compressor 3 via the four-way valve 4 and the accumulator 10 .
  • the third bypass on-off valve 23 is in a closed state.
  • the heating operation is performed by the operation similar to that of Embodiment 2. Since the third bypass on-off valve 23 is in the closed state, no refrigerant flows into the bypass 20 .
  • the third bypass on-off valve 23 is in an open state.
  • the pump down operation is performed by the operation similar to that of Embodiment 2 described above.
  • the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20 in the cooling operation.
  • Embodiments 1 and 2 there are the following advantageous effects. That is, in the cooling operation, the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20 . Thus, the quality of the refrigerant flowing into the use side heat exchanger 6 serving as an evaporator decreases, and a pressure loss of refrigerant can be reduced. Moreover, the gas refrigerant less contributing to heat exchange is bypassed, and therefore, a refrigeration capacity can be improved. Thus, energy saving can be improved in the cooling operation.
  • Embodiment 2 Differences from Embodiment 2 will be mainly described in Embodiment 4.
  • the same reference numerals as those of Embodiment 2 are used to represent identical elements, and description thereof will not be repeated.
  • FIG. 7 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 4.
  • the air-conditioning apparatus 100 according to Embodiment 4 further includes a gas-liquid separator 32 as illustrated in FIG. 7 .
  • the gas-liquid separator 32 is provided at a pipe between a heat source side heat exchanger 9 and an expansion valve 7 .
  • the gas-liquid separator 32 is configured to separate refrigerant flowing therein into gas refrigerant and liquid refrigerant.
  • a bypass 20 connects a connection port for gas of the gas-liquid separator 32 and a pipe at a suction-side of a compressor 3 .
  • Embodiment 2 differences from Embodiment 2 in operation of the air-conditioning apparatus 100 of Embodiment 3 will be mainly described.
  • a third bypass on-off valve 23 is in a closed state.
  • the cooling operation is performed by the operation similar to that of Embodiment 2. Since the third bypass on-off valve 23 is in the closed state, no refrigerant flows into the bypass 20 .
  • FIG. 8 is a p-h graph during a heating operation of the air-conditioning apparatus 100 according to Embodiment 4 .
  • the horizontal axis represents a specific enthalpy of refrigerant
  • the vertical axis represents a pressure.
  • points a to f in FIG. 8 each indicate a refrigerant state at respective positions illustrated in FIG. 7 .
  • a four-way valve 4 is switched to a heating operation mode (the state indicated by a dashed line). Moreover, a first on-off valve 11 , a second on-off valve 12 , and the third bypass on-off valve 23 are opened.
  • low-pressure gas refrigerant (the state a) is compressed in the compressor 3 , and then, is discharged as high-pressure high-temperature gas refrigerant (the state b).
  • the high-pressure high-temperature gas refrigerant having been discharged from the compressor 3 flows into a use side heat exchanger 6 of an indoor unit 2 via the four-way valve 4 and a gas pipe 5 .
  • Such refrigerant transfers heat by heat exchange with indoor air, and then, flows out as high-pressure liquid refrigerant (the state e).
  • the high-pressure liquid refrigerant having flowed out from the use side heat exchanger 6 flows into the expansion valve 7 through a liquid pipe 8 , and turns into low-pressure two-phase refrigerant (the state d).
  • the low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the gas-liquid separator 32 , and then, is separated into gas refrigerant (the state f) and liquid refrigerant (the state c).
  • the gas refrigerant having flowed into the bypass 20 from the gas-liquid separator 32 flows into an accumulator 10 through the third bypass on-off valve 23 .
  • the liquid refrigerant (the state c) separated by the gas-liquid separator 32 flows into the heat source side heat exchanger 9 . Then, such refrigerant is evaporated by heat exchange with outdoor air, and then, flows out as low-pressure gas refrigerant (the state f). The low-pressure gas refrigerant having flowed out from the heat source side heat exchanger 9 returns to the compressor 3 via the four-way valve 4 .
  • the third bypass on-off valve 23 is in an open state.
  • the pump down operation is performed by the operation similar to that of Embodiment 2 described above.
  • the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20 in the heating operation.
  • Embodiments 1 and 2 there are the following advantageous effects. That is, in the heating operation, the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20 . Thus, the quality of the refrigerant flowing into the heat source side heat exchanger 9 serving as an evaporator decreases, and a pressure loss of refrigerant can be reduced. Moreover, the gas refrigerant less contributing to heat exchange is bypassed, and therefore, a refrigeration capacity can be improved. Thus, energy saving can be improved in the heating operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air-conditioning apparatus configured so that a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which a refrigerant circuit is filled and that refrigerant can be suitably stored during a pump down operation. The air-conditioning apparatus includes a first on-off valve provided at a pipe between an expansion valve and a use side heat exchanger, a bypass branching from a pipe between the expansion valve and the first on-off valve and connected to a pipe at a suction-side of a compressor, and a refrigerant storage unit configured to store the refrigerant having passed through the bypass. In a pump down operation in which the compressor operates with the first on-off valve being in a closed state, the refrigerant having flowed out from the heat source side heat exchanger flows into the bypass, and then, is stored in the refrigerant storage unit.

Description

    TECHNICAL FIELD
  • The present invention relates to an air-conditioning apparatus including a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by pipes, and refrigerant circulates.
  • BACKGROUND ART
  • A refrigeration apparatus described in Patent Literature 1 includes a heat source side unit, a use side unit, and a controller. The heat source side unit includes a compressor, a heat source side heat exchanger, an expansion valve, a large-diameter tube, a liquid-refrigerant side shutoff valve, and a gas refrigerant side shutoff valve. These components are connected by refrigerant pipes. The use side unit includes a use side heat exchanger. One end of the use side heat exchanger is connected to the liquid-refrigerant side shutoff valve via a liquid refrigerant communication pipe, and the other end of the use side heat exchanger is connected to the gas refrigerant side shutoff valve via a gas refrigerant communication pipe. The controller executes a pump down operation for collecting refrigerant to the heat source side unit. In this refrigeration apparatus, refrigerant is, in the pump down operation, stored in the large-diameter tube provided between the heat source side heat exchanger and the liquid-refrigerant side shutoff valve.
  • CITATION LIST Patent Literature
  • Patent Literature 1: Japanese Patent No. 5212537 (claim 1)
  • SUMMARY OF INVENTION Technical Problem
  • As in the technique described in Patent Literature 1, considering refrigerant storage in the pump down operation, when the large-diameter tube is disposed at an outlet of the heat source side heat exchanger (a condenser), the following problems are caused.
  • That is, since the large-diameter tube is disposed at the outlet of the heat source side heat exchanger serving as the condenser in a cooling operation, refrigerant is stored in the large-diameter tube not only during the pump down operation but also during the cooling operation. For this reason, there is a problem that a refrigeration capacity decreases due to a decrease in the amount of refrigerant circulating in the refrigerant circuit.
  • On the other hand, when the amount of filling refrigerant is increased considering the amount of refrigerant stored in the large-diameter tube, there is a problem that a manufacturing cost increases due to such a refrigerant amount increase. In addition, when the amount of refrigerant with which the refrigerant circuit is filled is increased, there is a problem that an influence on environment due to refrigerant leakage increases. In particular, in the case of applying slightly flammable refrigerant (R32, HFO1234yf, HFO1234ze, etc.) or flammable refrigerant (HC), the permissible amount of refrigerant with which the refrigerant circuit is filled is limited by standards of the International Electrotechnical Commission (IEC), and the amount of filling refrigerant cannot be increased. For these reasons, the above-described problems become more notable.
  • The present invention has been made in view of the above-described problems, and is intended to provide an air-conditioning apparatus configured so that a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which a refrigerant circuit is filled and that refrigerant can be suitably stored during a pump down operation.
  • Solution to Problem
  • An air-conditioning apparatus according to one embodiment of the present invention includes a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by pipes, and refrigerant circulates. Such an air-conditioning apparatus includes a first on-off valve provided at a pipe between the expansion valve and the use side heat exchanger, a bypass branching from a pipe between the expansion valve and the first on-off valve or a pipe between the heat source side heat exchanger and the expansion valve and connected to a pipe on a suction side of the compressor, and a refrigerant storage unit configured to store the refrigerant having passed through the bypass. In a pump down operation in which the compressor operates with the first on-off valve being in a closed state, the refrigerant storage unit stores the refrigerant flowing into the bypass from the heat source side heat exchanger.
  • Advantageous Effects of Invention
  • According to one embodiment of the present invention, a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which the refrigerant circuit is filled, and refrigerant can be suitably stored during the pump down operation.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 1.
  • FIG. 2 is a p-h graph during a pump down operation of the air-conditioning apparatus 100 according to Embodiment 1.
  • FIG. 3 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 4 is a p-h graph during a pump down operation of the air-conditioning apparatus 100 according to Embodiment 2.
  • FIG. 5 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 6 is a p-h graph during a cooling operation of the air-conditioning apparatus 100 according to Embodiment 3.
  • FIG. 7 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 4.
  • FIG. 8 is a p-h graph during a heating operation of the air-conditioning apparatus 100 according to Embodiment 4.
  • DESCRIPTION OF EMBODIMENTS Embodiment 1
  • FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 1.
  • As illustrated in FIG. 1, the air-conditioning apparatus 100 includes an outdoor unit 1 and an indoor unit 2, and the outdoor unit 1 and the indoor unit 2 are connected by a liquid pipe 8 and a gas pipe 5.
  • The outdoor unit 1 includes a compressor 3, a four-way valve 4, a heat source side heat exchanger 9, an expansion valve 7, a heat source side fan 91 configured to send air to the heat source side heat exchanger 9, and a controller 40 configured to control operation of each section forming the air-conditioning apparatus 100.
  • The indoor unit 2 includes a use side heat exchanger 6 and a use side fan 61 configured to send air to the use side heat exchanger 6.
  • The compressor 3, the four-way valve 4, the heat source side heat exchanger 9, the expansion valve 7, and the use side heat exchanger 6 are, in the air-conditioning apparatus 100, successively connected by pipes to form a refrigerant circuit in which refrigerant circulates.
  • The outdoor unit 1 further includes a bypass 20 branching from the pipe between the expansion valve 7 and a first on-off valve 11 and connected to the pipe at a suction-side of the compressor 3. The bypass 20 is provided with a first bypass on-off valve 21, a second bypass on-off valve 22, and a container 30 configured to store refrigerant.
  • The compressor 3 is a type of compressor in which rotation speed is controlled by, for example, an inverter and the capacity is controlled,
  • The expansion valve 7 is, for example, an electronic expansion valve whose opening degree is variably controlled.
  • The heat source side heat exchanger 9 is configured to exchange heat with the external air sent by the heat source side fan 91.
  • The use side heat exchanger 6 is configured to exchange heat with the indoor air sent by the use side fan 61.
  • The first bypass on-off valve 21 is provided on a refrigerant inflow side (a side close to the pipe between the expansion valve 7 and the first on-off valve 11) of the bypass 20.
  • The second bypass on-off valve 22 is provided on a refrigerant outflow side (a side close to the pipe at a suction-side of the compressor 3) of the bypass 20.
  • The first bypass on-off valve 21 and the second bypass on-off valve 22 are on-off valves configured to open/close a refrigerant flow path of the bypass 20.
  • The container 30 is a container configured to store refrigerant.
  • Note that the container 30 corresponds to a “refrigerant storage unit” of the present invention.
  • The gas pipe 5 and the liquid pipe 8 are connection pipes connecting the outdoor unit 1 and the indoor unit 2. The first on-off valve 11 and a second on-off valve 12 are connected respectively to the liquid pipe 8 and the gas pipe 5. The liquid pipe 8 connects between the use side heat exchanger 6 of the indoor unit 2 and the first on-off valve 11 of the outdoor unit 1. The gas pipe 5 connects between the use side heat exchanger 6 of the indoor unit 2 and the second on-off valve 12 of the outdoor unit 1.
  • Note that the first on-off valve 11, the second on-off valve 12, the first bypass on-off valve 21, and the second bypass on-off valve 22 may be manual valves configured to be manually opened/closed, or solenoid valves whose opening/closing state is controlled by the controller 40.
  • The outdoor unit 1 further includes a discharge temperature sensor 41, a discharge pressure sensor 51, and a suction pressure sensor 52.
  • The discharge temperature sensor 41 is configured to detect the temperature of refrigerant discharged from the compressor 3.
  • The discharge pressure sensor 51 is configured to detect the pressure of refrigerant discharged from the compressor 3.
  • The suction pressure sensor 52 is configured to detect the pressure of refrigerant to be sucked into the compressor 3.
  • Note that the pressure of refrigerant circulating in the refrigerant circuit is the lowest on a suction side of the compressor 3, and is the highest on a discharge side of the compressor 3. Thus, in description below, the pressure on the suction side of the compressor 3 is referred to as a “low pressure,” and the pressure on the discharge side of the compressor 3 is referred to as a “high pressure.”
  • Slightly flammable refrigerant (R32, HFO1234yf, HFO1234ze, etc.) and flammable refrigerant (HC) are used as the refrigerant used for a refrigeration cycle (the refrigerant circuit) of the air-conditioning apparatus 100.
  • For example, tetrafluoropropene (HFO1234yf as 2,3,3,3-tetrafluoropropene, HFO1234ze as 1,3,3,3-tetrafluoro-1-propene, etc.) or difluoromethane (HFC32) are used as the material to be mixed for producing a refrigerant mixture. However, the present invention is not limited to these materials. For example, HC290 (propane) may be mixed. Any materials may be used as long as the material has such thermal performance as to be capable of being used as refrigerant for the refrigeration cycle (the refrigerant circuit), and any mixing ratio may be adopted.
  • Note that the refrigerant used in the present invention is not limited to the above-described refrigerant. For example, refrigerant such as R410A may be used.
  • The air-conditioning apparatus 100 configured as described above is able to perform a cooling or heating operation by switching the four-way valve 4. Moreover, the air-conditioning apparatus 100 is able to perform a pump down operation for collecting refrigerant in the indoor unit 2 to the outdoor unit 1.
  • Note that the air-conditioning apparatus 100 may be configured to perform at least the cooling operation and the pump down operation. Thus, the four-way valve 4 is not necessarily provided, and can be omitted.
  • Next, operation of the air-conditioning apparatus 100 in the refrigeration cycle will be described with reference to FIG. 1. In FIG. 1, a solid line indicates a flow in the cooling operation, and a dashed line indicates a flow in the heating operation.
  • (Cooling Operation)
  • First, the cooling operation in normal operation will be described.
  • In the cooling operation, the four-way valve 4 is switched to a cooling operation mode (the state indicated by the solid line). Moreover, the first on-off valve 11, the second on-off valve 12, and the second bypass on-off valve 22 are in an open state. The first bypass on-off valve 21 is in a closed state.
  • In such a state, when high-pressure high-temperature gas refrigerant is discharged from the compressor 3, the high-pressure high-temperature gas refrigerant flows into the heat source side heat exchanger 9 via the four-way valve 4. The gas refrigerant transfers heat by heat exchange with outdoor air, and then, flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant having flowed out from the heat source side heat exchanger 9 flows into the expansion valve 7, and then, turns into low-pressure two-phase refrigerant.
  • The low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the indoor unit 2 through the liquid pipe 8. Such refrigerant is evaporated by heat exchange with indoor air in the use side heat exchanger 6, and then, flows out as low-pressure gas refrigerant. The low-pressure gas refrigerant having flowed out from the use side heat exchanger 6 flows into the outdoor unit 1 through the gas pipe 5, and then, returns to the compressor 3 via the four-way valve 4.
  • Note that during the cooling operation, the first bypass on-off valve 21 is in the closed state, and therefore, no refrigerant flows into the bypass 20. Moreover, the second bypass on-off valve 22 is in the open state, and therefore, liquid sealing of the container 30 can be prevented.
  • (Heating Operation)
  • Next, the heating operation in the normal operation will be described.
  • In the heating operation, the four-way valve 4 is switched to a heating operation mode (the state indicated by the dashed line). Moreover, the first on-off valve 11, the second on-off valve 12, and the second bypass on-off valve 22 are in the open state. The first bypass on-off valve 21 is in the closed state.
  • In such a state, when high-pressure high-temperature gas refrigerant is discharged from the compressor 3, the high-pressure high-temperature gas refrigerant flows into the use side heat exchanger 6 of the indoor unit 2 via the four-way valve 4 and the gas pipe 5. Such refrigerant transfers heats by heat exchange with indoor air, and then, flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant having flowed out from the use side heat exchanger 6 flows into the expansion valve 7 through the liquid pipe 8, and then, turns into low-pressure two-phase refrigerant.
  • The low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the heat source side heat exchanger 9. Such refrigerant is evaporated by heat exchange with outdoor air, and then, flows out as low-pressure gas refrigerant. The low-pressure gas refrigerant having flowed out from the heat source side heat exchanger 9 returns to the compressor 3 via the four-way valve 4.
  • Note that during the heating operation, the first bypass on-off valve 21 is in the closed state, and therefore, no refrigerant flows into the bypass 20. Moreover, the second bypass on-off valve 22 is in the open state, and therefore, liquid sealing of the container 30 can be prevented.
  • (Pump Down Operation)
  • Next, the pump down operation will be described.
  • FIG. 2 is a p-h graph during the pump down operation of the air-conditioning apparatus 100 according to Embodiment 1. In FIG. 2, the horizontal axis represents a specific enthalpy of refrigerant, and the vertical axis represents a pressure. Moreover, points a to c in FIG. 5 each indicate a refrigerant state at respective positions illustrated in FIG. 1.
  • In the pump down operation, the four-way valve 4 is switched to the cooling operation mode (the state indicated by the solid line). Moreover, the second on-off valve 12 and the first bypass on-off valve 21 are in the open state. The first on-off valve 11 and the second bypass on-off valve 22 are in the closed state. Further, the controller 40 fully opens the expansion valve 7. In addition, the controller 40 makes the heat source side fan 91 and the use side fan 61 operate.
  • In such a state, when the compressor 3 is started, low-pressure gas refrigerant (the state a) is compressed in the compressor 3, and then, is discharged as high-pressure high-temperature gas refrigerant (the state b). The high-pressure high-temperature gas refrigerant having been discharged from the compressor 3 flows into the heat source side heat exchanger 9 via the four-way valve 4. Such refrigerant transfers heat by heat exchange with outdoor air, and then, flows out as high-pressure liquid refrigerant (the state c). The high-pressure liquid refrigerant having flowed out from the heat source side heat exchanger 9 flows into the bypass 20 through the expansion valve 7.
  • The high-pressure liquid refrigerant (the state c) having flowed into the bypass 20 flows into the container 30 through the first bypass on-off valve 21. Since the second bypass on-off valve 22 is in the closed state, the high-pressure liquid refrigerant (the state c) having flowed into the bypass 20 is stored in the container 30.
  • Refrigerant in the use side heat exchanger 6, the liquid pipe 8, and the gas pipe 5 is sucked by operation of the compressor 3. After having been discharged from the compressor 3, the refrigerant is stored in the container 30 by the above-described operation.
  • By such a pump down operation, refrigerant of the indoor unit 2 is collected to the outdoor unit 1. After the pump down operation, the second on-off valve 12 is closed, and the indoor unit 2 is removed, for example.
  • In Embodiment 1 as described above, in the pump down operation, the refrigerant having flowed out from the heat source side heat exchanger 9 flows into the bypass 20, and then, is stored in the container 30.
  • Thus, in the pump down operation, refrigerant can be suitably collected to the outdoor unit 1. Moreover, it is not necessary to provide a storage container, such as a large-diameter tube, on an outlet side of the heat source side heat exchanger 9 (a condenser), and a decrease in a refrigeration capacity can be suppressed without increasing the amount of refrigerant with which the refrigerant circuit is filled.
  • Further, since the amount of refrigerant with which the refrigerant circuit is filled can be reduced, an increase in a manufacturing cost can be suppressed, and an influence on environment due to refrigerant leakage can be reduced.
  • (Modification)
  • Note that the case in which the bypass 20 branches from the pipe between the expansion valve 7 and the first on-off valve 11 and is connected to the pipe at a suction-side of the compressor 3 has been described above. However, the pipe between the heat source side heat exchanger 9 and the expansion valve 7 may branch off. In such a configuration, similar advantageous effects can be obtained by the operation similar to that described above.
  • Embodiment 2
  • Differences from Embodiment 1 will be mainly described in Embodiment 2. The same reference numerals as those of Embodiment 1 are used to represent identical elements, and description thereof will not be repeated.
  • FIG. 3 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 2.
  • As illustrated in FIG. 3, the air-conditioning apparatus 100 of Embodiment 2 is configured such that an accumulator 10 configured to store extra refrigerant is provided on a suction side of a compressor 3. A bypass 20 is connected to a pipe at an inflow side of the accumulator 10.
  • Moreover, the bypass 20 is provided with a third bypass on-off valve 23. Note that in Embodiment 2, a first bypass on-off valve 21, a second bypass on-off valve 22, and a container 30 are not provided.
  • The third bypass on-off valve 23 has the function of opening/closing a flow path of the bypass 20 and expanding (depressurizing) passing refrigerant. For example, the pipe diameter of the bypass 20 on a downstream side (the side close to the accumulator 10) of the third bypass on-off valve 23 is smaller than that on an upstream side such that the refrigerant passing through the third bypass on-off valve 23 is expanded. Note that a configuration of the third bypass on-off valve 23 is not limited to such a configuration. For example, an electronic expansion valve whose opening degree is variably controlled may be used as the third bypass on-off valve 23. Alternatively, a two-way valve and a capillary tube may be connected in series. That is, any configurations can be used as long as a flow of refrigerant in the bypass 20 can be opened/closed such that passing refrigerant is expanded (depressurized).
  • Note that the third bypass on-off valve 23 corresponds to a “second expansion valve” of the present invention.
  • Next, differences from Embodiment 1 in operation of the air-conditioning apparatus 100 of Embodiment 2 will be mainly described.
  • (Cooling Operation, Heating Operation)
  • In the cooling operation and the heating operation, the third bypass on-off valve 23 is in a closed state.
  • In such a state, the cooling operation and the heating operation are performed by the operation similar to that of Embodiment 1. Since the third bypass on-off valve 23 is in the closed state, no refrigerant flows into the bypass 20.
  • Note that in the case in which wet gas refrigerant (two-phase refrigerant) flows out from an evaporator, the accumulator 10 separates such refrigerant into gas refrigerant and liquid refrigerant, and then, the gas refrigerant is sucked into the compressor 3.
  • (Pump Down Operation)
  • Next, a pump down operation will be described.
  • FIG. 4 is a p-h graph during the pump down operation of the air-conditioning apparatus 100 according to Embodiment 2. In FIG. 4, the horizontal axis represents a specific enthalpy of refrigerant, and the vertical axis represents a pressure. Moreover, points a to e in FIG. 4 each indicate a refrigerant state at respective positions illustrated in FIG. 3.
  • In the pump down operation, a four-way valve 4 is switched to a cooling operation mode (the state indicated by a solid line). Moreover, a second on-off valve 12 and the third bypass on-off valve 23 are in an open state. A first on-off valve 11 is in the closed state. Further, a controller 40 fully opens an expansion valve 7. In addition, the controller 40 makes a heat source side fan 91 and a use side fan 61 operate.
  • Note that in Embodiment 2, the heat source side fan 91 may be stopped, or the amount of air sent by the heat source side fan 91 may be decreased so that heat exchange amount by a heat source side heat exchanger 9 is decreased.
  • In such a state, when the compressor 3 is started, low-pressure gas refrigerant (the state a) is compressed in the compressor 3, and then, is discharged as high-pressure high-temperature gas refrigerant (the state b). The high-pressure high-temperature gas refrigerant having been discharged from the compressor 3 flows into the heat source side heat exchanger 9 via the four-way valve 4. Such refrigerant transfers heat by heat exchange with outdoor air, and then, flows out as high-pressure two-phase refrigerant (the state c). The high-pressure two-phase refrigerant having flowed out from the heat source side heat exchanger 9 flows into the bypass 20 through the expansion valve 7.
  • The high-pressure liquid refrigerant (the state c) having flowed into the bypass 20 is expanded (depressurized) when passing through the third bypass on-off valve 23, and turns into low-pressure two-phase refrigerant (the state d). The low-pressure two-phase refrigerant flows into the accumulator 10 from the bypass 20, and then, is separated into gas refrigerant (the state a) and liquid refrigerant (the state e). The gas refrigerant in the accumulator 10 is sucked into the compressor 3. On the other hand, the liquid refrigerant is stored in the accumulator 10.
  • Refrigerant in a use side heat exchanger 6, a liquid pipe 8, and a gas pipe 5 is sucked by operation of the compressor 3, and then, flows into the accumulator 10. Such refrigerant is separated into gas refrigerant and liquid refrigerant, and the liquid refrigerant is stored in the accumulator 10.
  • By such a pump down operation, refrigerant of an indoor unit 2 is collected to an outdoor unit 1. After the pump down operation, the second on-off valve 12 is closed, and the indoor unit 2 is removed, for example.
  • In Embodiment 2 as described above, the third bypass on-off valve 23 is provided at the bypass 20 such that the refrigerant having flowed into the bypass 20 is expanded (depressurized), and such refrigerant is stored in the accumulator 10.
  • Thus, in addition to the advantageous effects of Embodiment 1 described above, there are the following advantageous effects. That is, the refrigerant stored in the accumulator 10 is expanded (depressurized) low-pressure liquid refrigerant (see TACC in FIG. 4). As compared to the case in which high-pressure refrigerant (see TC in FIG. 4) is stored, a refrigerant temperature is lower, and a refrigerant density may be increased. Thus, the capacity of a refrigerant storage unit (the accumulator 10) configured to store refrigerant in the pump down operation can be decreased.
  • (Modification)
  • Note that the case in which the bypass 20 branches from the pipe between the expansion valve 7 and a first on-off valve 11 and is connected to the pipe at a suction-side of the compressor 3 has been described above. However, the pipe between the heat source side heat exchanger 9 and the expansion valve 7 may branch off. In such a configuration, similar advantageous effects can be obtained by the operation similar to that described above.
  • Embodiment 3
  • Differences from Embodiment 2 will be mainly described in Embodiment 3. The same reference numerals as those of Embodiment 2 are used to represent identical elements, and description thereof will not be repeated.
  • FIG. 5 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 3.
  • In addition to the configuration of Embodiment 2, the air-conditioning apparatus 100 according to Embodiment 3 further includes a gas-liquid separator 32 as illustrated in FIG. 5.
  • The gas-liquid separator 32 is provided at a pipe between an expansion valve 7 and a first on-off valve 11. The gas-liquid separator 32 is configured to separate refrigerant flowing therein into gas refrigerant and liquid refrigerant.
  • A bypass 20 connects a gas-side connection port of the gas-liquid separator 32 and a pipe at a suction-side of a compressor 3.
  • Next, differences from Embodiment 2 in operation of the air-conditioning apparatus 100 of Embodiment 3 will be mainly described.
  • (Cooling Operation)
  • FIG. 6 is a p-h graph during a cooling operation of the air-conditioning apparatus 100 according to Embodiment 3. In FIG. 6, the horizontal axis represents a specific enthalpy of refrigerant, and the vertical axis represents a pressure. Moreover, points a to f in FIG. 6 each indicate a refrigerant state at respective positions illustrated in FIG. 5.
  • For the sake of illustration, illustration is made such that there is a pressure difference between the state e and the state a in FIG. 6. In fact, such a pressure difference is merely a pressure decrease due to a pressure loss in a refrigerant flow path.
  • In the cooling operation, a four-way valve 4 is switched to a cooling operation mode (the state indicated by a solid line). Moreover, the first on-off valve 11, a second on-off valve 12, and a third bypass on-off valve 23 are opened.
  • In such a state, when the compressor 3 is started, low-pressure gas refrigerant (the state a) is compressed in the compressor 3, and then, is discharged as high-pressure high-temperature gas refrigerant (the state b). The high-pressure high-temperature gas refrigerant having been discharged from the compressor 3 flows into a heat source side heat exchanger 9 via the four-way valve 4. Such refrigerant transfers heat by heat exchange with outdoor air, and then, flows out as high-pressure liquid refrigerant (the state c). The high-pressure liquid refrigerant having flowed out from the heat source side heat exchanger 9 flows into the expansion valve 7, and turns into low-pressure two-phase refrigerant (the state d).
  • The low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the gas-liquid separator 32, and then, is separated into gas refrigerant (the state f) and liquid refrigerant (the state e). The gas refrigerant having flowed into the bypass 20 from the gas-liquid separator 32 flows into an accumulator 10 through the third bypass on-off valve 23.
  • Meanwhile, the liquid refrigerant (the state e) separated by the gas-liquid separator 32 flows into an indoor unit 2 through a liquid pipe 8. Then, such refrigerant is evaporated by heat exchange with indoor air in a use side heat exchanger 6, and then, flows out as low-pressure gas refrigerant. The low-pressure gas refrigerant having flowed out from the use side heat exchanger 6 flows into an outdoor unit 1 through a gas pipe 5, and then, returns to the compressor 3 via the four-way valve 4 and the accumulator 10.
  • (Heating Operation)
  • In a heating operation, the third bypass on-off valve 23 is in a closed state.
  • In such a state, the heating operation is performed by the operation similar to that of Embodiment 2. Since the third bypass on-off valve 23 is in the closed state, no refrigerant flows into the bypass 20.
  • (Pump Down Operation)
  • In a pump down operation, the third bypass on-off valve 23 is in an open state.
  • In this state, the pump down operation is performed by the operation similar to that of Embodiment 2 described above.
  • As described above, in Embodiment 3, the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20 in the cooling operation.
  • Thus, in addition to the advantageous effects of Embodiments 1 and 2, there are the following advantageous effects. That is, in the cooling operation, the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20. Thus, the quality of the refrigerant flowing into the use side heat exchanger 6 serving as an evaporator decreases, and a pressure loss of refrigerant can be reduced. Moreover, the gas refrigerant less contributing to heat exchange is bypassed, and therefore, a refrigeration capacity can be improved. Thus, energy saving can be improved in the cooling operation.
  • (Modification)
  • Note that the configuration including the gas-liquid separator 32 in addition to the configuration of Embodiment 2 has been described above. However, the configuration may be employed, in which the gas-liquid separator 32 is provided in addition to the configuration of Embodiment 1. Even in such a configuration, a first bypass on-off valve 21 and a second bypass on-off valve 22 are, in the cooling operation, opened such that the low-pressure gas refrigerant separated by the gas-liquid separator 32 may pass through a container 30 and join the suction side of the compressor 3. In this configuration, similar advantageous effects can be also obtained.
  • Embodiment 4
  • Differences from Embodiment 2 will be mainly described in Embodiment 4. The same reference numerals as those of Embodiment 2 are used to represent identical elements, and description thereof will not be repeated.
  • FIG. 7 is a refrigerant circuit diagram of an air-conditioning apparatus 100 according to Embodiment 4.
  • In addition to the configuration of Embodiment 2 described above, the air-conditioning apparatus 100 according to Embodiment 4 further includes a gas-liquid separator 32 as illustrated in FIG. 7.
  • The gas-liquid separator 32 is provided at a pipe between a heat source side heat exchanger 9 and an expansion valve 7. The gas-liquid separator 32 is configured to separate refrigerant flowing therein into gas refrigerant and liquid refrigerant.
  • A bypass 20 connects a connection port for gas of the gas-liquid separator 32 and a pipe at a suction-side of a compressor 3.
  • Next, differences from Embodiment 2 in operation of the air-conditioning apparatus 100 of Embodiment 3 will be mainly described.
  • (Cooling Operation)
  • In a cooling operation, a third bypass on-off valve 23 is in a closed state.
  • In such a state, the cooling operation is performed by the operation similar to that of Embodiment 2. Since the third bypass on-off valve 23 is in the closed state, no refrigerant flows into the bypass 20.
  • (Heating Operation)
  • FIG. 8 is a p-h graph during a heating operation of the air-conditioning apparatus 100 according to Embodiment 4. In FIG. 8, the horizontal axis represents a specific enthalpy of refrigerant, and the vertical axis represents a pressure. Moreover, points a to f in FIG. 8 each indicate a refrigerant state at respective positions illustrated in FIG. 7.
  • For the sake of illustration, illustration is made such that there is a pressure difference between the state c and the state a in FIG. 8. In fact, such a pressure difference is merely a pressure decrease due to a pressure loss in a refrigerant flow path.
  • In the heating operation, a four-way valve 4 is switched to a heating operation mode (the state indicated by a dashed line). Moreover, a first on-off valve 11, a second on-off valve 12, and the third bypass on-off valve 23 are opened.
  • In such a state, when the compressor 3 is started, low-pressure gas refrigerant (the state a) is compressed in the compressor 3, and then, is discharged as high-pressure high-temperature gas refrigerant (the state b). The high-pressure high-temperature gas refrigerant having been discharged from the compressor 3 flows into a use side heat exchanger 6 of an indoor unit 2 via the four-way valve 4 and a gas pipe 5. Such refrigerant transfers heat by heat exchange with indoor air, and then, flows out as high-pressure liquid refrigerant (the state e). The high-pressure liquid refrigerant having flowed out from the use side heat exchanger 6 flows into the expansion valve 7 through a liquid pipe 8, and turns into low-pressure two-phase refrigerant (the state d).
  • The low-pressure two-phase refrigerant having flowed out from the expansion valve 7 flows into the gas-liquid separator 32, and then, is separated into gas refrigerant (the state f) and liquid refrigerant (the state c). The gas refrigerant having flowed into the bypass 20 from the gas-liquid separator 32 flows into an accumulator 10 through the third bypass on-off valve 23.
  • Meanwhile, the liquid refrigerant (the state c) separated by the gas-liquid separator 32 flows into the heat source side heat exchanger 9. Then, such refrigerant is evaporated by heat exchange with outdoor air, and then, flows out as low-pressure gas refrigerant (the state f). The low-pressure gas refrigerant having flowed out from the heat source side heat exchanger 9 returns to the compressor 3 via the four-way valve 4.
  • (Pump Down Operation)
  • In a pump down operation, the third bypass on-off valve 23 is in an open state.
  • In this state, the pump down operation is performed by the operation similar to that of Embodiment 2 described above.
  • As described above, in Embodiment 4, the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20 in the heating operation.
  • Thus, in addition to the advantageous effects of Embodiments 1 and 2, there are the following advantageous effects. That is, in the heating operation, the gas refrigerant separated in the gas-liquid separator 32 flows into the bypass 20. Thus, the quality of the refrigerant flowing into the heat source side heat exchanger 9 serving as an evaporator decreases, and a pressure loss of refrigerant can be reduced. Moreover, the gas refrigerant less contributing to heat exchange is bypassed, and therefore, a refrigeration capacity can be improved. Thus, energy saving can be improved in the heating operation.
  • (Modification)
  • Note that the configuration including the gas-liquid separator 32 in addition to the configuration of Embodiment 2 has been described above. However, the configuration may be employed, in which the gas-liquid separator 32 is provided in addition to the configuration of Embodiment 1. Even in such a configuration, a first bypass on-off valve 21 and a second bypass on-off valve 22 are, in the heating operation, opened such that the low-pressure gas refrigerant separated by the gas-liquid separator 32 may pass through a container 30 and join the suction side of the compressor 3. In this configuration, similar advantageous effects can be also obtained.
  • REFERENCE SIGNS LIST
  • 1 outdoor unit, 2 indoor unit, 3 compressor, 4 four-way valve, 5 gas pipe, 6 use side heat exchanger, 7 expansion valve, 8 liquid pipe, 9 heat source side heat exchanger, 10 accumulator, 11 first on-off valve, 12 second on-off valve, 20 bypass, 21 first bypass on-off valve, 22 second bypass on-off valve, 23 third bypass on-off valve, 30 container, 32 gas-liquid separator, 40 controller, 41 discharge temperature sensor, 51 discharge pressure sensor, 52 suction pressure sensor, 61 use side fan, 91 heat source side fan, 100 air-conditioning apparatus

Claims (5)

1. An air-conditioning apparatus comprising:
a refrigerant circuit in which a compressor, a heat source side heat exchanger, an expansion valve, and a use side heat exchanger are connected by pipes, and refrigerant circulates;
a first on-off valve provided at a pipe between the expansion valve and the use side heat exchanger;
a bypass branching from a pipe between the expansion valve and the first on-off valve or a pipe between the heat source side heat exchanger and the expansion valve and connected to a pipe on a suction side of the compressor; and
a refrigerant storage unit configured to store the refrigerant passed through the bypass, the refrigerant storage unit storing the refrigerant flowing into the bypass from the heat source side heat exchanger in a pump down operation in which the compressor operates with the first on-off valve being in a closed state.
2. The air-conditioning apparatus of claim 1, further comprising:
a first bypass on-off valve provided on a refrigerant inflow side of the bypass; and
a second bypass on-off valve provided on a refrigerant outflow side of the bypass,
wherein the refrigerant storage unit comprises a container storing the refrigerant, and is provided at the bypass between the first bypass on-off valve and the second bypass on-off valve,
the pump down operation is performed with the first bypass on-off valve being in an open state and the second bypass on-off valve being in the closed state, and
the refrigerant flowing into the bypass is stored in the container.
3. The air-conditioning apparatus of claim 1, further comprising a second expansion valve provided at the bypass,
wherein the refrigerant storage unit comprises an accumulator provided on the suction side of the compressor,
the bypass is connected to a pipe between an inflow side of the accumulator and the use side heat exchanger, and
in the pump down operation,
the refrigerant flowing into the bypass is expanded by the second expansion valve, and then, flows into the accumulator, and
the refrigerant flowing into the accumulator is stored.
4. The air-conditioning apparatus of claim 1, further comprising a gas-liquid separator provided at the pipe between the expansion valve and the first on-off valve,
wherein the bypass connects a gas side of the gas-liquid separator and the pipe on the suction side of the compressor, and
in a cooling operation in which the heat source side heat exchanger serves as a condenser and the use side heat exchanger serves as an evaporator,
a gaseous refrigerant separated by the gas-liquid separator flows into the bypass.
5. The air-conditioning apparatus of claim 1, further comprising a gas-liquid separator provided at the pipe between the heat source side heat exchanger and the expansion valve,
wherein the bypass connects a gas side of the gas-liquid separator and the pipe on the suction side of the compressor, and
in a heating operation in which the heat source side heat exchanger serves as an evaporator and the use side heat exchanger serves as a condenser,
a gaseous refrigerant separated by the gas-liquid separator flows into the bypass.
US15/120,790 2014-03-07 2014-03-07 Air-conditioning apparatus Abandoned US20170010030A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055982 WO2015132959A1 (en) 2014-03-07 2014-03-07 Air conditioning device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055982 A-371-Of-International WO2015132959A1 (en) 2014-03-07 2014-03-07 Air conditioning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/354,664 Division US10655900B2 (en) 2014-03-07 2019-03-15 Air-conditioning apparatus

Publications (1)

Publication Number Publication Date
US20170010030A1 true US20170010030A1 (en) 2017-01-12

Family

ID=54054791

Family Applications (2)

Application Number Title Priority Date Filing Date
US15/120,790 Abandoned US20170010030A1 (en) 2014-03-07 2014-03-07 Air-conditioning apparatus
US16/354,664 Active US10655900B2 (en) 2014-03-07 2019-03-15 Air-conditioning apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/354,664 Active US10655900B2 (en) 2014-03-07 2019-03-15 Air-conditioning apparatus

Country Status (7)

Country Link
US (2) US20170010030A1 (en)
EP (1) EP3115714B1 (en)
JP (1) JP5797354B1 (en)
KR (1) KR101810809B1 (en)
CN (1) CN106062490A (en)
AU (1) AU2014385084B2 (en)
WO (1) WO2015132959A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003060A1 (en) * 2014-03-17 2017-01-05 Mitsubishi Electric Corporation Air-conditioning apparatus
US11280523B2 (en) * 2017-02-14 2022-03-22 Daikin Industries, Ltd. Refrigeration apparatus with leak detection on the usage side and a refrigerant release mechanism
US11415345B2 (en) * 2017-10-12 2022-08-16 Daikin Industries, Ltd. Refrigeration apparatus
US11512876B2 (en) * 2019-09-30 2022-11-29 Daikin Industries, Ltd. Refrigeration apparatus
US11609031B2 (en) * 2017-03-13 2023-03-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US12000631B1 (en) * 2022-12-13 2024-06-04 Lennox Industries Inc. Systems and methods for refrigerant leak mitigation

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3467406B1 (en) * 2016-05-24 2020-09-09 Mitsubishi Electric Corporation Air conditioner
JP6636151B2 (en) * 2016-06-30 2020-01-29 三菱電機株式会社 Air conditioner
JP6765438B2 (en) * 2016-11-21 2020-10-07 三菱電機株式会社 Air conditioner
DE102017128702A1 (en) 2017-12-04 2019-06-06 Vaillant Gmbh Safety container for working fluid
US11441827B2 (en) 2018-02-27 2022-09-13 Carrier Corporation Refrigerant leak detection system and method
DE102018127205A1 (en) 2018-10-31 2020-04-30 Vaillant Gmbh Safety zone in the condenser
DE102018127232A1 (en) 2018-10-31 2020-04-30 Vaillant Gmbh Fluid circulation segmentation
DE102018129131A1 (en) 2018-11-20 2020-06-04 Vaillant Gmbh Working fluid management
CN110411082B (en) * 2019-07-23 2020-10-23 珠海格力电器股份有限公司 Refrigerant recovery system, control method and device thereof, controller and air conditioning system
JP6849036B1 (en) * 2019-09-30 2021-03-24 ダイキン工業株式会社 Heat source unit and refrigeration equipment
EP3816542A1 (en) 2019-10-29 2021-05-05 Daikin Industries, Ltd. Refrigerant system
EP3913303B1 (en) 2020-05-20 2022-11-02 Daikin Industries, Ltd. Heat pump system and controller for controlling operation of the same
EP3913302B1 (en) 2020-05-20 2022-11-23 Daikin Industries, Ltd. Heat pump system and controller for controlling operation of the same
CN112197455B (en) * 2020-10-16 2024-04-09 珠海格力电器股份有限公司 Air conditioning unit capable of recycling refrigerant and control method thereof
JP2022115492A (en) * 2021-01-28 2022-08-09 パナソニックIpマネジメント株式会社 Air conditioning device
WO2023199511A1 (en) * 2022-04-15 2023-10-19 三菱電機株式会社 Refrigeration cycle device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157933A (en) * 1991-06-27 1992-10-27 Carrier Corporation Transport refrigeration system having means for achieving and maintaining increased heating capacity
US20130061614A1 (en) * 2011-09-09 2013-03-14 Hojong JEONG Air conditioner and method for controlling the same
US20150005292A1 (en) * 2009-09-18 2015-01-01 Chase Pharmaceuticals Corporation Method and composition for treating alzheimer-type dementia

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248717A (en) * 1992-03-05 1993-09-24 Daikin Ind Ltd Air conditioner and pump-down operating method
JP3287018B2 (en) * 1992-07-16 2002-05-27 ダイキン工業株式会社 Air conditioner and heater replacement method
KR0159238B1 (en) 1996-03-28 1999-01-15 구자홍 Two-step expanding apparatus using accumulator of an airconditioner
JP2002081767A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Air conditioner
JP2003028542A (en) * 2001-07-16 2003-01-29 Daikin Ind Ltd Refrigeration unit
JP3719246B2 (en) 2003-01-10 2005-11-24 ダイキン工業株式会社 Refrigeration apparatus and refrigerant amount detection method for refrigeration apparatus
JP3984257B2 (en) * 2004-10-28 2007-10-03 三星電子株式会社 Air conditioner
CA2510701C (en) * 2005-06-27 2008-12-16 Geofurnace Development Inc. Hybrid heating and cooling system
JP5582773B2 (en) 2009-12-10 2014-09-03 三菱重工業株式会社 Air conditioner and refrigerant amount detection method for air conditioner
KR101201567B1 (en) * 2010-09-27 2012-11-14 엘지전자 주식회사 An air conditioner
JP2012077983A (en) * 2010-09-30 2012-04-19 Daikin Industries Ltd Refrigerating circuit
JP5975714B2 (en) * 2011-11-07 2016-08-23 三菱電機株式会社 Refrigeration air conditioner and refrigeration air conditioning system
JP5956743B2 (en) * 2011-11-29 2016-07-27 日立アプライアンス株式会社 Air conditioner
JP5212537B1 (en) * 2011-12-13 2013-06-19 ダイキン工業株式会社 Refrigeration equipment
US9062903B2 (en) * 2012-01-09 2015-06-23 Thermo King Corporation Economizer combined with a heat of compression system
JP5617860B2 (en) * 2012-03-28 2014-11-05 ダイキン工業株式会社 Refrigeration equipment
US9651288B2 (en) 2012-03-30 2017-05-16 Mitsubishi Electric Corporation Refrigeration apparatus and refrigeration cycle apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5157933A (en) * 1991-06-27 1992-10-27 Carrier Corporation Transport refrigeration system having means for achieving and maintaining increased heating capacity
US20150005292A1 (en) * 2009-09-18 2015-01-01 Chase Pharmaceuticals Corporation Method and composition for treating alzheimer-type dementia
US20130061614A1 (en) * 2011-09-09 2013-03-14 Hojong JEONG Air conditioner and method for controlling the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170003060A1 (en) * 2014-03-17 2017-01-05 Mitsubishi Electric Corporation Air-conditioning apparatus
US10001309B2 (en) * 2014-03-17 2018-06-19 Mitsubishi Electric Corporation Air-conditioning apparatus
US11280523B2 (en) * 2017-02-14 2022-03-22 Daikin Industries, Ltd. Refrigeration apparatus with leak detection on the usage side and a refrigerant release mechanism
US11609031B2 (en) * 2017-03-13 2023-03-21 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11415345B2 (en) * 2017-10-12 2022-08-16 Daikin Industries, Ltd. Refrigeration apparatus
US11512876B2 (en) * 2019-09-30 2022-11-29 Daikin Industries, Ltd. Refrigeration apparatus
US12000631B1 (en) * 2022-12-13 2024-06-04 Lennox Industries Inc. Systems and methods for refrigerant leak mitigation

Also Published As

Publication number Publication date
AU2014385084A1 (en) 2016-09-29
KR101810809B1 (en) 2017-12-19
EP3115714A1 (en) 2017-01-11
US20190212044A1 (en) 2019-07-11
WO2015132959A1 (en) 2015-09-11
JP5797354B1 (en) 2015-10-21
JPWO2015132959A1 (en) 2017-03-30
CN106062490A (en) 2016-10-26
AU2014385084B2 (en) 2017-08-03
US10655900B2 (en) 2020-05-19
EP3115714A4 (en) 2017-11-08
KR20160121581A (en) 2016-10-19
EP3115714B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
US10655900B2 (en) Air-conditioning apparatus
JP5627713B2 (en) Air conditioner
US10451306B2 (en) Air-conditioning apparatus
JP5871959B2 (en) Air conditioner
WO2014128830A1 (en) Air conditioning device
EP2162686A1 (en) Refrigerant system with cascaded circuits and performance enhancement features
EP2902726B1 (en) Combined air-conditioning and hot-water supply system
EP3093586B1 (en) Air conditioning device
WO2015140951A1 (en) Air conditioner
KR101901540B1 (en) Air conditioning device
WO2013146415A1 (en) Heat pump-type heating device
EP3121539B1 (en) Refrigeration cycle device
EP3006865A1 (en) Refrigeration cycle device
JP2010078165A (en) Refrigeration and air conditioning device
JP6393181B2 (en) Refrigeration cycle equipment
JP2010112698A (en) Refrigeration device
JP2020003156A (en) Refrigeration cycle device and liquid heating device including the same
JP7117513B2 (en) heat pump system
CN214039017U (en) Air conditioner and outdoor unit
WO2020003590A1 (en) Refrigeration cycle device and liquid heating device comprising same
WO2015145712A1 (en) Refrigeration cycle device
JP2015169347A (en) Heat pump device

Legal Events

Date Code Title Description
AS Assignment

Owner name: MITSUBISHI ELECTRIC CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TANAKA, KOSUKE;MAKINO, HIROAKI;SIGNING DATES FROM 20160725 TO 20160726;REEL/FRAME:039505/0884

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION