WO2023199511A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023199511A1
WO2023199511A1 PCT/JP2022/017918 JP2022017918W WO2023199511A1 WO 2023199511 A1 WO2023199511 A1 WO 2023199511A1 JP 2022017918 W JP2022017918 W JP 2022017918W WO 2023199511 A1 WO2023199511 A1 WO 2023199511A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
receiver
solenoid valve
piping
refrigeration cycle
Prior art date
Application number
PCT/JP2022/017918
Other languages
French (fr)
Japanese (ja)
Inventor
洋貴 佐藤
裕士 佐多
智隆 石川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/017918 priority Critical patent/WO2023199511A1/en
Publication of WO2023199511A1 publication Critical patent/WO2023199511A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves

Definitions

  • the present disclosure relates to a refrigeration cycle device having a receiver.
  • Patent Document 1 discloses such a refrigeration cycle device that detects the amount of refrigerant leaking from a refrigerant circuit by storing refrigerant in a receiver.
  • the present disclosure has been made to solve the above problems, and aims to reduce the amount of refrigerant sealed in a refrigeration cycle device having a receiver.
  • a refrigeration cycle device is provided with a refrigerant circuit in which a compressor, a condenser, and an evaporator are connected by refrigerant piping, through which the refrigerant flows, and a refrigerant circuit that is provided between the condenser and the evaporator in the refrigerant piping.
  • a first solenoid valve having a function of switching between an open state that allows flowing refrigerant to pass through and a closed state that blocks refrigerant flowing through the refrigerant circuit, and one end of which is connected to a portion of the refrigerant piping between the condenser and the first solenoid valve.
  • a first bypass pipe whose other end connects to a portion of the refrigerant pipe between the evaporator and the compressor; a receiver provided in the first bypass pipe to store refrigerant;
  • a second electromagnetic valve is provided between one end of the pipe and the receiver and has a function of switching between an open state that allows refrigerant flowing to the receiver to pass and a closed state that blocks refrigerant flowing to the receiver, and the first bypass pipe, a third solenoid valve that is provided between the receiver and the other end of the first bypass pipe and has a function of switching between an open state that allows refrigerant flowing from the receiver to pass through and a closed state that blocks refrigerant that flows from the receiver; , a control device that controls the first solenoid valve, the second solenoid valve, and the third solenoid valve, the control device maintains the first solenoid valve in an open state and maintains the second solenoid valve in a closed state.
  • the refrigeration cycle device of the present disclosure maintains the first solenoid valve in an open state, maintains the second solenoid valve in a closed state, and drives the compressor. Further, in the pump down operation, the second solenoid valve is maintained in an open state, the first solenoid valve and the third solenoid valve are maintained in a closed state, and the compressor is driven.
  • a receiver that stores refrigerant is provided in the first bypass pipe. Therefore, the amount of refrigerant that stays in the receiver during normal operation is smaller than the amount of refrigerant that stays in the receiver when the receiver is provided in series in the refrigerant circuit. Therefore, in a refrigeration cycle device having a receiver, the amount of refrigerant sealed can be reduced.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle device according to Embodiment 1.
  • FIG. 1 is a functional block diagram showing a refrigeration cycle device according to Embodiment 1.
  • FIG. 3 is a diagram for explaining control details of the control device according to the first embodiment.
  • 1 is a hardware configuration diagram showing one configuration of a control device according to Embodiment 1.
  • FIG. 1 is a hardware configuration diagram showing one configuration of a control device according to Embodiment 1.
  • FIG. 3 is a flowchart showing the operation of the control device according to the first embodiment.
  • FIG. 7 is a diagram for explaining the piping length and horsepower that allow use of a flammable refrigerant in a refrigeration cycle device according to a comparative example.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle device according to Embodiment 1.
  • FIG. 1 is a functional block diagram showing a refrigeration cycle device according to Embodiment 1.
  • FIG. 3 is a diagram for explaining control details of the control device according to the first
  • FIG. 2 is a diagram for explaining the piping length and horsepower that allow use of a flammable refrigerant in the refrigeration cycle device according to the first embodiment.
  • FIG. 2 is a circuit diagram showing a refrigeration cycle device according to a second embodiment.
  • FIG. 3 is a circuit diagram showing a refrigeration cycle device according to a third embodiment.
  • FIG. 7 is a diagram for explaining control details of a control device according to a third embodiment. 7 is a flowchart showing the operation of the control device according to Embodiment 3. It is a circuit diagram showing a refrigeration cycle device concerning Embodiment 4. It is a circuit diagram showing a refrigeration cycle device concerning Embodiment 5.
  • FIG. 3 is a circuit diagram showing a refrigeration cycle device according to a modification of the first embodiment.
  • FIG. 1 is a circuit diagram showing a refrigeration cycle device 1 according to the first embodiment.
  • the refrigeration cycle device 1 is, for example, a refrigeration device that cools air in a target space.
  • the refrigeration cycle device 1 includes a heat source device 2, a load device 3, and a control device 90.
  • the heat source device 2 is a device that supplies cold heat to the load device 3.
  • the load device 3 is a device that cools the air in the target space through heat exchange between the air in the target space and a refrigerant.
  • a flammable refrigerant is used as the refrigerant.
  • flammable refrigerant includes mildly flammable refrigerants.
  • the heat source device 2 and the load device 3 are connected by a connecting pipe 23 and a connecting pipe 24.
  • the control device 90 controls each device of the refrigeration cycle device 1. The detailed configuration of the control device 90 will be described later.
  • the heat source device 2 includes a compressor 11, a condenser 12, an accumulator 15, and a heat source side piping 21.
  • the heat source side piping 21 is a piping provided inside the heat source device 2. Both ends of the heat source side pipe 21 are connected to a connecting pipe 23 and a connecting pipe 24.
  • the heat source side piping 21 connects the accumulator 15, the compressor 11, and the condenser 12 in this order from the end on the connection piping 24 side.
  • the compressor 11 takes in refrigerant at low temperature and low pressure, compresses the sucked refrigerant, converts it into refrigerant at high temperature and high pressure, and discharges the refrigerant.
  • the condenser 12 performs heat exchange between the refrigerant and air, and condenses the refrigerant.
  • the accumulator 15 is a container that separates the refrigerant into gas and liquid and stores the liquid refrigerant.
  • the load device 3 includes a first electromagnetic valve 51, an expansion valve 13, an evaporator 14, and a load-side pipe 22. Both ends of the load-side pipe 22 are connected to a connecting pipe 23 and a connecting pipe 24.
  • the load-side pipe 22 connects the first electromagnetic valve 51, the expansion valve 13, and the evaporator 14 in this order from the end on the connection pipe 23 side.
  • the first electromagnetic valve 51 is located between the condenser 12 and the evaporator 14 and has a function of switching between an open state that allows refrigerant flowing through the refrigerant circuit to pass, and a closed state that blocks refrigerant flowing through the refrigerant circuit.
  • the expansion valve 13 is provided upstream of the evaporator 14, and the first electromagnetic valve 51 is provided between the condenser 12 and the expansion valve 13.
  • the expansion valve 13 reduces the pressure of the refrigerant and expands it, and is, for example, an electronic expansion valve.
  • the evaporator 14 performs heat exchange between the refrigerant and air to evaporate the refrigerant.
  • Compressor 11, condenser 12, first electromagnetic valve 51, expansion valve 13, condenser 12, and accumulator 15 are connected by heat source side piping 21, load side piping 22, and connecting piping 23 and connecting piping 24.
  • a refrigerant circuit is constructed.
  • the heat source side piping 21, the load side piping 22, the connection piping 23, and the connection piping 24 may be collectively referred to as refrigerant piping. That is, the first electromagnetic valve is provided between the condenser 12 and the expansion valve 13 in the refrigerant pipe.
  • the heat source device 2 also includes a first bypass pipe 31, a second bypass pipe 32, a receiver 41, a capillary tube 42, a second solenoid valve 52, a third solenoid valve 53, and a fourth solenoid valve 54.
  • the first bypass pipe 31 connects a portion of the heat source side pipe 21 on the downstream side of the condenser 12 and a portion on the upstream side of the accumulator 15.
  • the first bypass pipe 31 has one end connected to the refrigerant pipe between the condenser 12 and the first electromagnetic valve 51, and the other end connected to the refrigerant pipe between the evaporator 14 and the compressor 11. Connect to parts.
  • the accumulator 15 is provided on the refrigerant suction side of the compressor 11, and the other end of the first bypass pipe 31 is connected between the evaporator 14 and the accumulator 15.
  • the second bypass pipe 32 connects the receiver 41 and a portion of the first bypass pipe 31 between the second electromagnetic valve 52 and the other end of the first bypass pipe 31 .
  • the second bypass pipe 32 functions as a gas vent pipe that releases excess gaseous refrigerant within the receiver 41 to the outside of the receiver 41 .
  • the receiver 41 is provided in the first bypass pipe 31 and stores refrigerant.
  • the receiver 41 is a container in which refrigerant is stored during pump-down operation.
  • the capillary tube 42 is a tube that expands the refrigerant passing through it.
  • the second solenoid valve 52 is provided in the first bypass pipe 31 between one end of the first bypass pipe 31 and the receiver 41, and is in an open state to allow the refrigerant flowing to the receiver 41 to pass, and to be in an open state to allow the refrigerant flowing to the receiver 41 to pass. It has a function to switch between the closed state and the shutoff state.
  • the third solenoid valve 53 is provided in the first bypass pipe 31 between the receiver 41 and the other end of the first bypass pipe 31 .
  • the third electromagnetic valve 53 has a function of switching between an open state that allows the refrigerant flowing from the receiver 41 to pass through, and a closed state that blocks the refrigerant that flows from the receiver 41.
  • the fourth electromagnetic valve 54 is provided in a portion of the second bypass piping 32 between the capillary tube 42 and the connection portion with the first bypass piping 31 .
  • the fourth electromagnetic valve 54 has a function of switching between an open state that allows the refrigerant flowing through the second bypass pipe 32 to pass, and a closed state that blocks the refrigerant that flows through the second bypass pipe 32.
  • FIG. 2 is a functional block diagram showing the refrigeration cycle device 1 according to the first embodiment.
  • the control device 90 controls the drive frequency of the compressor 11 of the refrigeration cycle device 1, the opening degree of the expansion valve 13, the first solenoid valve 51, the second solenoid valve 52, the third solenoid valve 53, and controls the opening/closing state of the fourth solenoid valve 54.
  • FIG. 3 is a diagram for explaining the control content of the control device 90 according to the first embodiment.
  • the control device 90 executes normal operation and pump down operation. Normal operation is an operating method in which the refrigerant circulates through the refrigerant circuit and cools the air in the target space. As shown in FIG. 3, during normal operation, the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state, and the second solenoid valve 52 is maintained in the closed state to compress the The machine 11 is driven.
  • Pump-down operation is an operating method in which the refrigerant does not circulate through the refrigerant circuit, and the refrigerant on the so-called low-pressure side of the refrigeration cycle device 1, from the expansion valve 13 to the compressor 11, is recovered to the receiver 41.
  • Pump-down operation is switched from normal operation and executed when pump-down start conditions are met. Further, the pump-down operation ends when the pump-down end condition is satisfied. When the pump-down operation ends, normal operation resumes.
  • the pump-down start condition is, for example, that the user provides the control device 90 with a signal through an operation panel (not shown) instructing execution of the pump-down operation.
  • the operation panel is an example of a device for receiving input of operation details of the refrigeration cycle device 1 by a user.
  • the pump-down end condition is, for example, that a predetermined period of time has elapsed since the start of the pump-down operation.
  • the condition for ending the pump down may be that a liquid level sensor (not shown) provided in the receiver 41 detects that a predetermined amount of refrigerant has accumulated in the receiver 41.
  • the condition for ending pump-down may be that the pressure detected by a pressure sensor (not shown) provided on the low-pressure side of the refrigeration cycle device 1 becomes a predetermined value or less.
  • the second solenoid valve 52 and the fourth solenoid valve 54 are kept open, the first solenoid valve 51 and the third solenoid valve 53 are kept closed, and the compressor 11 is driven.
  • control device 90 maintains the second solenoid valve 52 in an open state and closes the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54. The drive of the compressor 11 is stopped.
  • FIG. 4 is a hardware configuration diagram showing one configuration of the control device 90 according to the first embodiment.
  • the control device 90 is configured with a processing circuit 91, as shown in FIG.
  • Each function of the control device 90 is realized by a processing circuit 91.
  • the processing circuit 91 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array) or a combination of these.
  • FIG. 5 is a hardware configuration diagram showing one configuration of the control device 90 according to the first embodiment.
  • the control device 90 is configured with a processor 92 such as a CPU and a memory 93, as shown in FIG.
  • a processor 92 such as a CPU
  • a memory 93 as shown in FIG.
  • Each function of the control device 90 is realized by a processor 92 and a memory 93.
  • FIG. 5 shows that processor 92 and memory 93 are communicatively connected to each other via bus 94.
  • control device 90 When each function is executed by software, the functions of the control device 90 are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory 93.
  • the processor 92 realizes the functions of each means by reading and executing programs stored in the memory 93.
  • Examples of the memory 93 include ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), and EEPROM (Electrically Erasable and Programmable ROM).
  • a nonvolatile semiconductor memory such as a programmable ROM (ROM) is used.
  • ROM programmable ROM
  • RAM Random Access Memory
  • a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used.
  • the operation of the refrigeration cycle device 1 will be explained. First, normal operation will be explained.
  • the refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high temperature and high pressure gas state.
  • the high temperature and high pressure gaseous refrigerant discharged from the compressor 11 flows into the condenser 12 .
  • the refrigerant flowing into the condenser 12 exchanges heat with air, condenses, and liquefies.
  • the liquid refrigerant passes through the first electromagnetic valve 51 and flows into the expansion valve 13, where it is depressurized and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flows into the evaporator 14 .
  • the refrigerant flowing into the evaporator 14 exchanges heat with the air, evaporates, and gasifies. At that time, the air in the target space is cooled. Thereafter, the evaporated low-temperature, low-pressure gaseous refrigerant passes through the accumulator 15 and is sucked into the compressor 11.
  • the refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high temperature and high pressure gas state.
  • the high temperature and high pressure gaseous refrigerant discharged from the compressor 11 passes through the condenser 12 and the second electromagnetic valve 52 and is stored in the receiver 41 .
  • the gaseous refrigerant stored in the receiver 41 is condensed by the supercooled liquid refrigerant stored in the receiver 41 .
  • a portion of the gaseous refrigerant stored in the receiver 41 flows into the second bypass pipe 32, passes through the capillary tube 42, and expands.
  • the refrigerant expanded after passing through the capillary tube 42 passes through the fourth electromagnetic valve 54 and flows into the first bypass pipe 31 .
  • the refrigerant flowing through the first bypass pipe 31 passes through the accumulator 15 and is sucked into the compressor 11. As the refrigerant circulates through the flow path, the amount of refrigerant stored in the receiver 41 in a liquid state increases.
  • the second bypass pipe 32 causes excess gas refrigerant in the receiver 41 to escape to the outside of the receiver 41, thereby promoting cooling and condensation of the gas refrigerant in the receiver 41.
  • FIG. 6 is a flowchart showing the operation of the control device 90 according to the first embodiment.
  • the control device 90 starts pump-down operation (step S1).
  • the compressor 11 is driven by maintaining the second solenoid valve 52 and the fourth solenoid valve 54 in the open state, and maintaining the first solenoid valve 51 and the third solenoid valve 53 in the closed state.
  • step S2 determines whether the pump-down end condition is satisfied during the pump-down operation. If the pump-down end condition is not satisfied (step S2: NO), the process of step S2 is periodically repeated until the pump-down end condition is satisfied.
  • step S3 the control device 90 ends the pump-down operation and starts normal operation (step S3).
  • the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in an open state
  • the second solenoid valve 52 is maintained in a closed state
  • the compressor 11 is driven.
  • the refrigeration cycle device 1 of the first embodiment maintains the first solenoid valve 51 and the third solenoid valve 53 in the open state, and maintains the second solenoid valve 52 in the closed state. , drives the compressor 11. Further, in the pump down operation, the second solenoid valve 52 is maintained in the open state, the first solenoid valve 51 and the third solenoid valve 53 are maintained in the closed state, and the compressor 11 is driven.
  • the receiver 41 for storing refrigerant is provided in the first bypass pipe 31.
  • the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1 having the receiver 41, the amount of refrigerant sealed can be reduced.
  • the refrigerant density can be reduced, and the required amount of refrigerant to be filled can be further reduced.
  • HFC-based refrigerants such as R410A or R404A are mainstream as refrigerants used when operating the refrigeration cycle device 1.
  • R410A or R404A has a large global warming potential (GWP) value, it has relatively high stability and nonflammability.
  • GWP global warming potential
  • many refrigerants with small GWP values are flammable. If a flammable refrigerant leaks from the piping of the refrigeration cycle device 1 and stagnates in a space outside the refrigerant circuit, it may lead to ignition due to sparks, static electricity, or the like.
  • FIG. 7 is a diagram for explaining the pipe length and horsepower (HP) in which a flammable refrigerant can be used in a refrigeration cycle device according to a comparative example.
  • the comparative example includes a refrigerant circuit including a compressor 11, a condenser 12, a first electromagnetic valve 51, an expansion valve 13, an evaporator 14, and an accumulator 15.
  • the comparative example does not have the first bypass piping 31, the second bypass piping 32, the capillary tube 42, the second solenoid valve 52, the third solenoid valve 53, and the fourth solenoid valve 54 of the first embodiment. .
  • the receiver is provided as an element of the refrigerant circuit.
  • restrictions are imposed so that flammable refrigerants cannot be used when a large amount of refrigerant is used, such as in a refrigeration cycle device with long pipe length or large horsepower.
  • a flammable refrigerant is used. I can't.
  • FIG. 8 is a diagram for explaining the pipe length and horsepower (HP) in which a flammable refrigerant can be used in the refrigeration cycle device 1 according to the first embodiment.
  • a receiver 41 for storing refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is small compared to the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit, and the amount of refrigerant in the refrigeration cycle device 1 is small. Enclosing amount can be reduced. Therefore, even if the comparative example has a long pipe length or a large horsepower that requires a large amount of refrigerant, the refrigeration cycle device 1 of the first embodiment can use a flammable refrigerant.
  • FIG. 9 is a circuit diagram showing a refrigeration cycle device 1A according to the second embodiment. As shown in FIG. 9, the second embodiment differs from the first embodiment in that the refrigeration cycle device 1A includes a sub-receiver 16.
  • the same parts as Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the sub-receiver 16 is a container that stores refrigerant.
  • the sub-receiver 16 is provided in a portion of the heat source side piping 21 closer to the connection piping 23 than the condenser 12, and constitutes a refrigerant circuit.
  • the capacity of the sub-receiver 16 is smaller than the capacity of the receiver 41. Further, the total capacity of sub-receiver 16 and receiver 41 is approximately equal to the capacity of the receiver of the comparative example described in the first embodiment.
  • a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1A having the receiver 41, the amount of refrigerant sealed can be reduced.
  • the refrigerant density changes depending on the operating state of the refrigeration cycle device, and a large amount of refrigerant will remain in the condenser 12.
  • the high pressure in the condenser increases and the performance of the condenser deteriorates.
  • Such high pressure cuts are particularly likely to occur when the capacity of the condenser is small.
  • a typical example of a condenser with a small capacity is a PFC heat exchanger (parallel flow condenser). If the performance of the condenser deteriorates significantly, an abnormal stop will occur.
  • a sub-receiver 16 is added to the refrigerant circuit.
  • FIG. 10 is a circuit diagram showing a refrigeration cycle device 1B according to the third embodiment. As shown in FIG. 10, the third embodiment differs from the first embodiment in that the refrigeration cycle device 1B includes a third bypass pipe 33 and a fifth solenoid valve 55.
  • the same parts as Embodiment 1 are given the same reference numerals, explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the third bypass pipe 33 connects the receiver 41 and the downstream side of the portion of the heat source side pipe 21 to which one end of the first bypass pipe 31 connects.
  • the third bypass pipe 33 connects the receiver 41 and a part of the refrigerant pipe between the part of the refrigerant pipe to which one end of the first bypass pipe 31 connects and the first electromagnetic valve 51 .
  • the distal end of the third bypass piping 33 is provided at a lower position than the other end of the first bypass piping 31, that is, the position of the distal end of the first bypass piping 31 in the receiver.
  • the tip of the third bypass piping 33 is provided at a lower position than the tip of the second bypass piping 32 in the receiver.
  • the fifth solenoid valve 55 is provided in the third bypass piping 33.
  • the fifth electromagnetic valve 55 has a function of switching between an open state that allows the refrigerant flowing through the third bypass pipe 33 to pass, and a closed state that blocks the refrigerant that flows through the third bypass pipe 33.
  • the refrigeration cycle device 1B has a first temperature sensor 61 and a pressure sensor 62.
  • the first temperature sensor 61 and the pressure sensor 62 are both provided between the accumulator 15 and the compressor 11 in the heat source side piping 21.
  • the first temperature sensor 61 measures the temperature of the refrigerant flowing through the heat source side piping 21 .
  • the pressure sensor 62 measures the pressure of the refrigerant flowing through the heat source side piping 21 .
  • the first temperature sensor 61 and the pressure sensor 62 transmit measurement results to the control device 90.
  • FIG. 11 is a diagram for explaining the control content of the control device 90 according to the third embodiment.
  • the control device 90 performs liquid back prevention operation in addition to normal operation and pump-down operation.
  • the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state
  • the second solenoid valve 52 and the fifth solenoid valve 55 are maintained in the closed state
  • the compressor 11 is driven.
  • the second solenoid valve 52 and the fourth solenoid valve 54 are maintained in the open state
  • the first solenoid valve 51, the third solenoid valve 53, and the fifth solenoid valve 55 are maintained in the closed state
  • the compressor is 11 is driven.
  • control device 90 maintains the second solenoid valve 52 in an open state, and maintains the first solenoid valve 51, the third solenoid valve 53, the fourth solenoid valve 54, and the fifth solenoid valve.
  • Valve 55 is maintained in a closed state, and driving of compressor 11 is stopped.
  • the liquid back prevention operation is performed immediately after the end of the pump-down operation or during normal operation, and is an operating method to prevent the compressor 11 from sucking liquid refrigerant, so-called liquid back.
  • the liquid back prevention operation is executed when liquid back prevention start conditions are met.
  • the liquid back prevention start condition is determined immediately after the end of the pump-down operation, that is, immediately after the pump-down end condition is satisfied, and at predetermined intervals during normal operation.
  • the liquid back prevention starting condition is that the superheat value of the refrigerant estimated by the control device 90 based on the measurement results of the first temperature sensor 61 and the pressure sensor 62 is equal to or less than a predetermined threshold value. Further, the liquid back prevention operation ends when the liquid back prevention termination condition is satisfied.
  • the liquid back prevention termination condition is, for example, that a predetermined period of time has elapsed since the start of the liquid back prevention operation.
  • the predetermined time is, for example, 5 minutes.
  • the liquid refrigerant stored in the receiver 41 passes through the fifth solenoid valve 55 and flows into the heat source side piping 21. This prevents the liquid refrigerant stored in the receiver 41 from flowing into the compressor 11 through the third electromagnetic valve 53 during the normal operation after the liquid back prevention operation ends.
  • FIG. 12 is a flowchart showing the operation of the control device 90 according to the third embodiment.
  • the liquid back prevention start condition is determined immediately after the end of the pump-down operation, that is, immediately after the pump-down end condition is satisfied, and at predetermined intervals during normal operation.
  • the description will focus on the liquid back prevention operation immediately after the end of the pump down operation and during normal operation.
  • the control device 90 determines whether or not liquid back prevention start conditions are satisfied immediately after the end of the pump-down operation and during normal operation (step S11).
  • step S11: NO the control device 90 starts normal operation (step S14). Further, in the determination during normal operation, if the liquid back prevention start condition is not satisfied (step S11: NO), the control device 90 continues normal operation (step S14).
  • step S11: YES the control device 90 ends the pump down operation or normal operation and starts the liquid back prevention operation (step S12).
  • the first solenoid valve 51, the third solenoid valve 53, the fourth solenoid valve 54, and the fifth solenoid valve 55 are maintained in the open state
  • the second solenoid valve 52 is maintained in the closed state
  • the compressor 11 drive the first solenoid valve 51, the third solenoid valve 53, the fourth solenoid valve 54, and the fifth solenoid valve 55 are maintained in the open state
  • the second solenoid valve 52 is maintained in the closed state
  • step S13 determines whether the liquid back prevention termination condition is satisfied during the liquid back prevention operation. If the liquid back prevention termination condition is not satisfied (step S13: NO), the process of step S13 is periodically repeated until the liquid back prevention termination condition is satisfied. If the liquid back prevention termination condition is satisfied (step S13: YES), the control device 90 ends the liquid back prevention operation and starts normal operation (step S14).
  • the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state
  • the second solenoid valve 52 and the fifth solenoid valve 55 are maintained in the closed state
  • the compressor 11 drive is the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state
  • the second solenoid valve 52 and the fifth solenoid valve 55 are maintained in the closed state
  • the compressor 11 drive the compressor 11 drive.
  • a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1B having the receiver 41, the amount of refrigerant sealed can be reduced.
  • liquid back prevention operation is performed. Therefore, it is possible to suppress liquid backflow in which liquid refrigerant flows into the compressor 11 before the pump-down operation ends and normal operation resumes.
  • FIG. 13 is a circuit diagram showing a refrigeration cycle device 1C according to the fourth embodiment. As shown in FIG. 13, the fourth embodiment differs from the first embodiment in that the refrigeration cycle device 1C includes a heater 43.
  • the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the heater 43 is provided, for example, inside the receiver 41 or at a position in contact with the outer shell of the receiver 41.
  • the heater 43 heats and evaporates the liquid refrigerant stored in the receiver 41.
  • the refrigeration cycle device 1C includes a first temperature sensor 61 and a pressure sensor 62 similar to those in the third embodiment.
  • the heater 43 is activated when heater activation start conditions are met.
  • the heater activation start condition is determined immediately after the end of the pump-down operation, that is, immediately after the pump-down end condition is satisfied, and at predetermined intervals during normal operation. Similar to the pump-down start condition described in the third embodiment, the heater activation start condition is a predetermined superheat value estimated by the control device 90 based on the measurement results of the first temperature sensor 61 and the pressure sensor 62. be below the specified threshold. Further, the heater 43 stops when the heater termination condition is satisfied.
  • the heater termination condition is, for example, that a predetermined time has elapsed since the heater 43 was activated. The heater 43 does not operate during pump-down operation.
  • a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1C having the receiver 41, the amount of refrigerant sealed can be reduced.
  • the refrigeration cycle device 1C of the fourth embodiment includes a heater 43. Therefore, the refrigerant stored in the receiver 41 evaporates, and liquid refrigerant can be prevented from flowing into the compressor 11 during normal operation.
  • FIG. 14 is a circuit diagram showing a refrigeration cycle device 1D according to the fifth embodiment. As shown in FIG. 14, the fifth embodiment differs from the first embodiment in that the refrigeration cycle device 1D includes a bypass expansion valve 44.
  • the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
  • the bypass expansion valve 44 is provided in the first bypass pipe 31 between the third electromagnetic valve 53 and the other end of the first bypass pipe 31, and expands the refrigerant flowing out from the receiver 41.
  • the opening degree of the bypass expansion valve 44 is controlled by the control device 90.
  • the control device 90 increases the opening degree of the bypass expansion valve 44 when the discharge temperature of the refrigerant detected by the second temperature sensor 71 provided on the discharge side of the compressor 11 becomes high. Further, the control device 90 reduces the opening degree of the bypass expansion valve 44 when the discharge temperature of the refrigerant detected by the second temperature sensor 71 becomes low.
  • a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1D having the receiver 41, the amount of refrigerant sealed can be reduced.
  • the refrigeration cycle device 1D includes a bypass expansion valve 44, and adjusts the opening degree of the bypass expansion valve 44 according to the discharge temperature.
  • the opening degree of the bypass expansion valve 44 is reduced. Therefore, the amount of liquid refrigerant flowing into the compressor 11 can be reduced.
  • the present disclosure is not limited to the configuration of the embodiment described above, and various modifications or combinations are possible within the scope of the technical idea.
  • the third bypass piping 33 and the fifth solenoid valve 55 described in the third embodiment the heater 43 described in the fourth embodiment, or One or more of the bypass expansion valves 44 described in the fifth embodiment may be provided.
  • the second bypass piping 32, capillary tube 42, and fourth electromagnetic valve 54 described in Embodiments 1 to 5 may be omitted.
  • the refrigerant can be stored in the receiver 41, although the required time is longer than in the first to fifth embodiments.
  • the accumulator 15 described in the first to fifth embodiments may be omitted.
  • the capillary tube 42 described in Embodiments 1 to 5 may be replaced with an expansion valve.
  • the expansion valve is provided in the second bypass pipe 32 and expands the refrigerant flowing through the second bypass pipe 32 by reducing the pressure thereof, and is, for example, an electronic expansion valve. Both the capillary tube 42 and the expansion valve correspond to the "throttling device" in the present disclosure.
  • the control device 90 was described as maintaining the first electromagnetic valve 51 in the open state during normal operation.
  • the first solenoid valve 51 may be in a closed state during normal operation unless the first bypass piping 31 is in a liquid-sealed state.
  • the liquid-sealed state means a state in which the piping is filled with liquid refrigerant and when the liquid refrigerant expands, the piping may be damaged.
  • FIG. 15 is a circuit diagram showing a refrigeration cycle device 1E according to a modification of the first embodiment. As shown in FIG. 15, in the refrigerant piping, only the first electromagnetic valve 51 is provided between the condenser 12 and the evaporator 14, and the expansion valve 13 of the first embodiment is not provided. In this case, the first electromagnetic valve 51 has the function of the expansion valve 13.
  • the first electromagnetic valve 51 controls the expansion of the refrigerant by controlling the length of time between the open state and the closed state by the control device 90, in the same way as when adjusting the opening degree in the expansion valve 13. The degree of this can be adjusted.
  • the first solenoid valve 51 can be kept open and fully opened to allow all the refrigerant passing through the load-side piping 22 to flow, or it can be kept in the closed state and shut off all the refrigerant passing through the load-side piping 22. It can also be fully closed. Note that in the second to fifth embodiments as well, the expansion valve 13 may be omitted.
  • the liquid back prevention start condition was described as being determined immediately after the end of the pump-down operation and at predetermined intervals during normal operation. However, the determination of the liquid back prevention start condition may be made either immediately after the end of the pump down operation or during normal operation. Further, for example, if the accumulator 15 is not provided, the liquid back prevention start condition may be omitted so that the liquid back prevention operation is always executed when the pump down end condition is satisfied. .
  • the omission of the liquid back prevention start condition and the determination of the liquid back prevention start condition in Embodiment 3 also apply. This is similar to changing the timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

This refrigeration cycle device comprises: a refrigerant circuit in which a compressor, a condenser, and an evaporator are connected by a refrigerant piping and through which a refrigerant flows; a first electromagnetic valve which is disposed between the condenser and the evaporator in the refrigerant piping and which has a function of switching between an open state where the refrigerant flowing through the refrigerant circuit is allowed to pass therethrough and a close state where the refrigerant flowing through the refrigerant circuit is blocked; a first bypass piping which has one end connected to a portion between the condenser and the first electromagnetic valve in the refrigerant piping and has the other end connected to a portion between the evaporator and the compressor in the refrigerant piping; a receiver which is provided to the first bypass piping and which stores therein the refrigerant; a second electromagnetic valve which is disposed between the one end of the first bypass piping and the receiver in the first bypass piping and which has a function of switching between an open state where the refrigerant flowing to the receiver is allowed to pass therethrough and a close state where the refrigerant flowing to the receiver is blocked; a third electromagnetic valve that is disposed between the receiver and the other end of the first bypass piping in the first bypass piping and has a function of switching between an open state where the refrigerant flowing from the receiver is allowed to pass therethough and a close state where the refrigerant flowing from the receiver is blocked; and a control device that controls the compressor, the first electromagnetic valve, the second electromagnetic valve, and the third electromagnetic valve. The control device executes: a normal operation in which the compressor is driven while the first electromagnetic valve is kept in the open state whereas the second electromagnetic valve is kept in the close state; and a pump down operation in which the compressor is driven while the second electromagnetic valve is kept in the open state whereas the first electromagnetic valve and the third electromagnetic valve are kept in the close state.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本開示は、レシーバを有する冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device having a receiver.
 従来、冷媒を貯留するためのレシーバを有する冷凍サイクル装置が知られている。冷凍サイクル装置のレシーバには、例えば、保守作業時などに行われるポンプダウン運転において冷媒が貯留される。特許文献1には、このような冷凍サイクル装置として、レシーバに冷媒を貯留することで、冷媒回路からの冷媒の漏洩量を検出するものが開示されている。 Conventionally, refrigeration cycle devices having a receiver for storing refrigerant are known. Refrigerant is stored in a receiver of a refrigeration cycle device during pump-down operation performed during maintenance work, for example. Patent Document 1 discloses such a refrigeration cycle device that detects the amount of refrigerant leaking from a refrigerant circuit by storing refrigerant in a receiver.
特開2014-095514号公報Japanese Patent Application Publication No. 2014-095514
 冷凍サイクル装置に封入される冷媒は、その種類によって封入できる量に制限が設けられている。しかしながら、特許文献1で開示されているようなレシーバを有する冷凍サイクル装置においては、運転中に一部の冷媒がレシーバ内に滞留する。レシーバ内に滞留する冷媒のほとんどがガス冷媒ではあるが、馬力が大きい冷凍サイクル装置の機種に関しては、レシーバ容積も大きくなり、レシーバ内に滞留するガス冷媒量も多くなる。したがって、レシーバを有する冷凍サイクル装置においては、冷媒の封入量を削減し、制限を満たすことが困難な場合があった。 There are limits to the amount of refrigerant that can be sealed in a refrigeration cycle device depending on the type of refrigerant. However, in a refrigeration cycle device having a receiver as disclosed in Patent Document 1, some refrigerant remains in the receiver during operation. Most of the refrigerant that stays in the receiver is gas refrigerant, but for models of refrigeration cycle devices with high horsepower, the volume of the receiver becomes large, and the amount of gas refrigerant that stays in the receiver also increases. Therefore, in a refrigeration cycle device having a receiver, it is sometimes difficult to reduce the amount of refrigerant enclosed and satisfy the restrictions.
 本開示は、上記のような課題を解決するためになされたもので、レシーバを有する冷凍サイクル装置において、冷媒の封入量を削減することを目的とするものである。 The present disclosure has been made to solve the above problems, and aims to reduce the amount of refrigerant sealed in a refrigeration cycle device having a receiver.
 本開示に係る冷凍サイクル装置は、圧縮機、凝縮器、および蒸発器が冷媒配管により接続され、冷媒が流れる冷媒回路と、冷媒配管における凝縮器と蒸発器との間に設けられ、冷媒回路を流れる冷媒を通過させる開状態、および冷媒回路を流れる冷媒を遮断する閉状態を切り替える機能を有する第1電磁弁と、一端が冷媒配管における凝縮器と第1電磁弁との間の部分に接続し、他端が冷媒配管における蒸発器と圧縮機との間の部分に接続する第1バイパス配管と、第1バイパス配管に設けられ、冷媒を貯留するレシーバと、第1バイパス配管において、第1バイパス配管の一端と、レシーバとの間に設けられ、レシーバに流れる冷媒を通過させる開状態、およびレシーバに流れる冷媒を遮断する閉状態を切り替える機能を有する第2電磁弁と、第1バイパス配管において、レシーバと、第1バイパス配管の他端との間に設けられ、レシーバから流れる冷媒を通過させる開状態、およびレシーバから流れる冷媒を遮断する閉状態を切り替える機能を有する第3電磁弁と、圧縮機、第1電磁弁、第2電磁弁、および第3電磁弁を制御する制御装置と、を備え、制御装置は、第1電磁弁を開状態に維持し、第2電磁弁を閉状態に維持して、圧縮機を駆動させる通常運転と、第2電磁弁を開状態に維持し、第1電磁弁および第3電磁弁を閉状態に維持して、圧縮機を駆動させるポンプダウン運転と、を実行する冷凍サイクル装置。 A refrigeration cycle device according to the present disclosure is provided with a refrigerant circuit in which a compressor, a condenser, and an evaporator are connected by refrigerant piping, through which the refrigerant flows, and a refrigerant circuit that is provided between the condenser and the evaporator in the refrigerant piping. A first solenoid valve having a function of switching between an open state that allows flowing refrigerant to pass through and a closed state that blocks refrigerant flowing through the refrigerant circuit, and one end of which is connected to a portion of the refrigerant piping between the condenser and the first solenoid valve. , a first bypass pipe whose other end connects to a portion of the refrigerant pipe between the evaporator and the compressor; a receiver provided in the first bypass pipe to store refrigerant; A second electromagnetic valve is provided between one end of the pipe and the receiver and has a function of switching between an open state that allows refrigerant flowing to the receiver to pass and a closed state that blocks refrigerant flowing to the receiver, and the first bypass pipe, a third solenoid valve that is provided between the receiver and the other end of the first bypass pipe and has a function of switching between an open state that allows refrigerant flowing from the receiver to pass through and a closed state that blocks refrigerant that flows from the receiver; , a control device that controls the first solenoid valve, the second solenoid valve, and the third solenoid valve, the control device maintains the first solenoid valve in an open state and maintains the second solenoid valve in a closed state. a normal operation in which the compressor is driven; and a pump-down operation in which the compressor is driven by maintaining the second solenoid valve in an open state and maintaining the first and third solenoid valves in a closed state. A refrigeration cycle device that runs
 本開示の冷凍サイクル装置は、通常運転において、第1電磁弁を開状態に維持し、第2電磁弁を閉状態に維持して、圧縮機を駆動させる。また、ポンプダウン運転において、第2電磁弁を開状態に維持し、第1電磁弁および第3電磁弁を閉状態に維持して、圧縮機を駆動させる。ここで、本開示の冷凍サイクル装置では、冷媒を貯留するレシーバが第1バイパス配管に設けられている。このため、通常運転時においてレシーバに滞留する冷媒の量は、レシーバを冷媒回路に直列に設けた場合にレシーバに滞留する冷媒の量と比較して少ない。したがって、レシーバを有する冷凍サイクル装置において、冷媒の封入量を削減することができる。 In normal operation, the refrigeration cycle device of the present disclosure maintains the first solenoid valve in an open state, maintains the second solenoid valve in a closed state, and drives the compressor. Further, in the pump down operation, the second solenoid valve is maintained in an open state, the first solenoid valve and the third solenoid valve are maintained in a closed state, and the compressor is driven. Here, in the refrigeration cycle device of the present disclosure, a receiver that stores refrigerant is provided in the first bypass pipe. Therefore, the amount of refrigerant that stays in the receiver during normal operation is smaller than the amount of refrigerant that stays in the receiver when the receiver is provided in series in the refrigerant circuit. Therefore, in a refrigeration cycle device having a receiver, the amount of refrigerant sealed can be reduced.
実施の形態1に係る冷凍サイクル装置を示す回路図である。1 is a circuit diagram showing a refrigeration cycle device according to Embodiment 1. FIG. 実施の形態1に係る冷凍サイクル装置を示す機能ブロック図である。1 is a functional block diagram showing a refrigeration cycle device according to Embodiment 1. FIG. 実施の形態1に係る制御装置の制御内容を説明するための図である。FIG. 3 is a diagram for explaining control details of the control device according to the first embodiment. 実施の形態1に係る制御装置の一構成を示すハードウェア構成図である。1 is a hardware configuration diagram showing one configuration of a control device according to Embodiment 1. FIG. 実施の形態1に係る制御装置の一構成を示すハードウェア構成図である。1 is a hardware configuration diagram showing one configuration of a control device according to Embodiment 1. FIG. 実施の形態1に係る制御装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the control device according to the first embodiment. 比較例に係る冷凍サイクル装置において可燃性冷媒の使用が可能な配管長および馬力を説明するための図である。FIG. 7 is a diagram for explaining the piping length and horsepower that allow use of a flammable refrigerant in a refrigeration cycle device according to a comparative example. 実施の形態1に係る冷凍サイクル装置において可燃性冷媒の使用が可能な配管長および馬力を説明するための図である。FIG. 2 is a diagram for explaining the piping length and horsepower that allow use of a flammable refrigerant in the refrigeration cycle device according to the first embodiment. 実施の形態2に係る冷凍サイクル装置を示す回路図である。FIG. 2 is a circuit diagram showing a refrigeration cycle device according to a second embodiment. 実施の形態3に係る冷凍サイクル装置を示す回路図である。FIG. 3 is a circuit diagram showing a refrigeration cycle device according to a third embodiment. 実施の形態3に係る制御装置の制御内容を説明するための図である。FIG. 7 is a diagram for explaining control details of a control device according to a third embodiment. 実施の形態3に係る制御装置の動作を示すフローチャートである。7 is a flowchart showing the operation of the control device according to Embodiment 3. 実施の形態4に係る冷凍サイクル装置を示す回路図である。It is a circuit diagram showing a refrigeration cycle device concerning Embodiment 4. 実施の形態5に係る冷凍サイクル装置を示す回路図である。It is a circuit diagram showing a refrigeration cycle device concerning Embodiment 5. 実施の形態1の変形例に係る冷凍サイクル装置を示す回路図である。FIG. 3 is a circuit diagram showing a refrigeration cycle device according to a modification of the first embodiment.
 実施の形態1.
 以下、実施の形態1に係る冷凍サイクル装置1について、図面を参照しながら説明する。図1は、実施の形態1に係る冷凍サイクル装置1を示す回路図である。冷凍サイクル装置1は、例えば対象の空間の空気を冷却する冷凍装置である。図1に示すように、冷凍サイクル装置1は、熱源機器2、負荷機器3、および制御装置90を有する。熱源機器2は、負荷機器3に冷熱を供給する機器である。負荷機器3は、対象の空間の空気と冷媒との熱交換によって、対象の空間の空気を冷却する機器である。実施の形態1では、冷媒に例えば可燃性冷媒を用いている。なお、ここでの可燃性冷媒とは、微燃性冷媒を含めた表現である。熱源機器2と負荷機器3とは、接続配管23および接続配管24によって接続されている。制御装置90は、冷凍サイクル装置1の各機器を制御する。制御装置90の詳細な構成については後述する。
Embodiment 1.
Hereinafter, a refrigeration cycle device 1 according to Embodiment 1 will be described with reference to the drawings. FIG. 1 is a circuit diagram showing a refrigeration cycle device 1 according to the first embodiment. The refrigeration cycle device 1 is, for example, a refrigeration device that cools air in a target space. As shown in FIG. 1, the refrigeration cycle device 1 includes a heat source device 2, a load device 3, and a control device 90. The heat source device 2 is a device that supplies cold heat to the load device 3. The load device 3 is a device that cools the air in the target space through heat exchange between the air in the target space and a refrigerant. In the first embodiment, for example, a flammable refrigerant is used as the refrigerant. Note that the term "flammable refrigerant" as used herein includes mildly flammable refrigerants. The heat source device 2 and the load device 3 are connected by a connecting pipe 23 and a connecting pipe 24. The control device 90 controls each device of the refrigeration cycle device 1. The detailed configuration of the control device 90 will be described later.
 熱源機器2は、圧縮機11、凝縮器12、アキュムレータ15、ならびに熱源側配管21を有している。熱源側配管21は、熱源機器2の内部に設けられる配管である。熱源側配管21の両端は、接続配管23および接続配管24に接続している。熱源側配管21は、接続配管24側の端部から、アキュムレータ15、圧縮機11および凝縮器12をこの順に接続している。圧縮機11は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。凝縮器12は、冷媒と空気との間で熱交換を行わせ、冷媒を凝縮させるものである。アキュムレータ15は、冷媒を気体と液体に分離し、液状の冷媒を貯留する容器である。 The heat source device 2 includes a compressor 11, a condenser 12, an accumulator 15, and a heat source side piping 21. The heat source side piping 21 is a piping provided inside the heat source device 2. Both ends of the heat source side pipe 21 are connected to a connecting pipe 23 and a connecting pipe 24. The heat source side piping 21 connects the accumulator 15, the compressor 11, and the condenser 12 in this order from the end on the connection piping 24 side. The compressor 11 takes in refrigerant at low temperature and low pressure, compresses the sucked refrigerant, converts it into refrigerant at high temperature and high pressure, and discharges the refrigerant. The condenser 12 performs heat exchange between the refrigerant and air, and condenses the refrigerant. The accumulator 15 is a container that separates the refrigerant into gas and liquid and stores the liquid refrigerant.
 負荷機器3は、第1電磁弁51、膨張弁13、蒸発器14、および負荷側配管22を有している。負荷側配管22の両端は、接続配管23および接続配管24に接続している。負荷側配管22は、接続配管23側の端部から、第1電磁弁51、膨張弁13および蒸発器14をこの順に接続している。第1電磁弁51は、凝縮器12と蒸発器14との間にあって、冷媒回路を流れる冷媒を通過させる開状態、および冷媒回路を流れる冷媒を遮断する閉状態を切り替える機能を有する。なお、実施の形態1では、蒸発器14の上流側に膨張弁13が設けられており、第1電磁弁51は凝縮器12と膨張弁13との間に設けられている。膨張弁13は、冷媒を減圧して膨張させるものであり、例えば、電子膨張弁である。蒸発器14は、冷媒と空気との間で熱交換を行わせ、冷媒を蒸発させるものである。 The load device 3 includes a first electromagnetic valve 51, an expansion valve 13, an evaporator 14, and a load-side pipe 22. Both ends of the load-side pipe 22 are connected to a connecting pipe 23 and a connecting pipe 24. The load-side pipe 22 connects the first electromagnetic valve 51, the expansion valve 13, and the evaporator 14 in this order from the end on the connection pipe 23 side. The first electromagnetic valve 51 is located between the condenser 12 and the evaporator 14 and has a function of switching between an open state that allows refrigerant flowing through the refrigerant circuit to pass, and a closed state that blocks refrigerant flowing through the refrigerant circuit. In the first embodiment, the expansion valve 13 is provided upstream of the evaporator 14, and the first electromagnetic valve 51 is provided between the condenser 12 and the expansion valve 13. The expansion valve 13 reduces the pressure of the refrigerant and expands it, and is, for example, an electronic expansion valve. The evaporator 14 performs heat exchange between the refrigerant and air to evaporate the refrigerant.
 圧縮機11、凝縮器12、第1電磁弁51、膨張弁13、凝縮器12、およびアキュムレータ15が、熱源側配管21、負荷側配管22、ならびに接続配管23および接続配管24によって接続されることで、冷媒回路が構成される。以下では、熱源側配管21、負荷側配管22、ならびに接続配管23および接続配管24を、冷媒配管と総称する場合がある。つまり、第1電磁弁は、冷媒配管における凝縮器12と膨張弁13との間に設けられている。 Compressor 11, condenser 12, first electromagnetic valve 51, expansion valve 13, condenser 12, and accumulator 15 are connected by heat source side piping 21, load side piping 22, and connecting piping 23 and connecting piping 24. A refrigerant circuit is constructed. Hereinafter, the heat source side piping 21, the load side piping 22, the connection piping 23, and the connection piping 24 may be collectively referred to as refrigerant piping. That is, the first electromagnetic valve is provided between the condenser 12 and the expansion valve 13 in the refrigerant pipe.
 また、熱源機器2は、第1バイパス配管31、第2バイパス配管32、レシーバ41、キャピラリチューブ42、第2電磁弁52、第3電磁弁53、および第4電磁弁54を有している。第1バイパス配管31は、熱源側配管21の凝縮器12の下流側の部分と、アキュムレータ15の上流側の部分とを接続している。換言すると、第1バイパス配管31は、一端が冷媒配管における凝縮器12と第1電磁弁51との間の部分に接続し、他端が冷媒配管における蒸発器14と圧縮機11との間の部分に接続する。なお、実施の形態1では、圧縮機11の冷媒吸入側にアキュムレータ15が設けられており、第1バイパス配管31の他端は蒸発器14とアキュムレータ15との間に接続されている。第2バイパス配管32は、レシーバ41と、第1バイパス配管31における第2電磁弁52と第1バイパス配管31の他端との間の部分とを接続する。第2バイパス配管32は、レシーバ41内の余剰なガス状態の冷媒をレシーバ41外に逃がすガス抜き配管として機能する。 The heat source device 2 also includes a first bypass pipe 31, a second bypass pipe 32, a receiver 41, a capillary tube 42, a second solenoid valve 52, a third solenoid valve 53, and a fourth solenoid valve 54. The first bypass pipe 31 connects a portion of the heat source side pipe 21 on the downstream side of the condenser 12 and a portion on the upstream side of the accumulator 15. In other words, the first bypass pipe 31 has one end connected to the refrigerant pipe between the condenser 12 and the first electromagnetic valve 51, and the other end connected to the refrigerant pipe between the evaporator 14 and the compressor 11. Connect to parts. In the first embodiment, the accumulator 15 is provided on the refrigerant suction side of the compressor 11, and the other end of the first bypass pipe 31 is connected between the evaporator 14 and the accumulator 15. The second bypass pipe 32 connects the receiver 41 and a portion of the first bypass pipe 31 between the second electromagnetic valve 52 and the other end of the first bypass pipe 31 . The second bypass pipe 32 functions as a gas vent pipe that releases excess gaseous refrigerant within the receiver 41 to the outside of the receiver 41 .
 レシーバ41は、第1バイパス配管31に設けられ、冷媒を貯留する。レシーバ41は、ポンプダウン運転において、冷媒が貯留される容器である。キャピラリチューブ42は、通過する冷媒を膨張させる管である。第2電磁弁52は、第1バイパス配管31において、第1バイパス配管31の一端と、レシーバ41との間に設けられ、レシーバ41に流れる冷媒を通過させる開状態、およびレシーバ41に流れる冷媒を遮断する閉状態を切り替える機能を有する。第3電磁弁53は、第1バイパス配管31において、レシーバ41と、第1バイパス配管31の他端との間に設けられている。第3電磁弁53は、レシーバ41から流れる冷媒を通過させる開状態、およびレシーバ41から流れる冷媒を遮断する閉状態を切り替える機能を有する。第4電磁弁54は、第2バイパス配管32において、キャピラリチューブ42と、第1バイパス配管31との接続部分との間の部分に設けられている。第4電磁弁54は、第2バイパス配管32を流れる冷媒を通過させる開状態、および第2バイパス配管32を流れる冷媒を遮断する閉状態を切り替える機能を有する。 The receiver 41 is provided in the first bypass pipe 31 and stores refrigerant. The receiver 41 is a container in which refrigerant is stored during pump-down operation. The capillary tube 42 is a tube that expands the refrigerant passing through it. The second solenoid valve 52 is provided in the first bypass pipe 31 between one end of the first bypass pipe 31 and the receiver 41, and is in an open state to allow the refrigerant flowing to the receiver 41 to pass, and to be in an open state to allow the refrigerant flowing to the receiver 41 to pass. It has a function to switch between the closed state and the shutoff state. The third solenoid valve 53 is provided in the first bypass pipe 31 between the receiver 41 and the other end of the first bypass pipe 31 . The third electromagnetic valve 53 has a function of switching between an open state that allows the refrigerant flowing from the receiver 41 to pass through, and a closed state that blocks the refrigerant that flows from the receiver 41. The fourth electromagnetic valve 54 is provided in a portion of the second bypass piping 32 between the capillary tube 42 and the connection portion with the first bypass piping 31 . The fourth electromagnetic valve 54 has a function of switching between an open state that allows the refrigerant flowing through the second bypass pipe 32 to pass, and a closed state that blocks the refrigerant that flows through the second bypass pipe 32.
 図2は、実施の形態1に係る冷凍サイクル装置1を示す機能ブロック図である。図2に示すように、制御装置90は、冷凍サイクル装置1の圧縮機11の駆動周波数、膨張弁13の開度、ならびに第1電磁弁51、第2電磁弁52、第3電磁弁53、および第4電磁弁54の開閉状態を制御する。 FIG. 2 is a functional block diagram showing the refrigeration cycle device 1 according to the first embodiment. As shown in FIG. 2, the control device 90 controls the drive frequency of the compressor 11 of the refrigeration cycle device 1, the opening degree of the expansion valve 13, the first solenoid valve 51, the second solenoid valve 52, the third solenoid valve 53, and controls the opening/closing state of the fourth solenoid valve 54.
 図3は、実施の形態1に係る制御装置90の制御内容を説明するための図である。制御装置90は、通常運転およびポンプダウン運転を実行する。通常運転は、冷媒が冷媒回路を循環して流れ、対象の空間の空気の冷却が行われる運転方法である。図3に示すように、通常運転では、第1電磁弁51、第3電磁弁53、および第4電磁弁54を開状態に維持し、第2電磁弁52を閉状態に維持して、圧縮機11を駆動させる。 FIG. 3 is a diagram for explaining the control content of the control device 90 according to the first embodiment. The control device 90 executes normal operation and pump down operation. Normal operation is an operating method in which the refrigerant circulates through the refrigerant circuit and cools the air in the target space. As shown in FIG. 3, during normal operation, the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state, and the second solenoid valve 52 is maintained in the closed state to compress the The machine 11 is driven.
 ポンプダウン運転は、冷媒が冷媒回路を循環せず、膨張弁13から圧縮機11までの、所謂冷凍サイクル装置1の低圧側の冷媒をレシーバ41に回収する運転方法である。ポンプダウン運転は、ポンプダウン開始条件を満たしたときに通常運転から切り替えられて実行される。また、ポンプダウン運転は、ポンプダウン終了条件を満たしたときに終了する。ポンプダウン運転が終了すると、通常運転に復帰する。ポンプダウン開始条件は、例えば、利用者から操作パネル(図示せず)を介してポンプダウン運転の実行を指示する信号が制御装置90に与えられることである。操作パネルは、利用者による冷凍サイクル装置1の運転内容の入力を受け付けるための機器の例である。ポンプダウン終了条件は、例えば、ポンプダウン運転を開始してから所定の時間が経過することである。また、レシーバ41に設けられた液面センサ(図示せず)によってレシーバ41内に所定の量の冷媒が溜まったことを検知することをポンプダウン終了条件としてもよい。更に、冷凍サイクル装置1の低圧側に設けられた圧力センサ(図示せず)が検知する圧力が所定の値以下になることをポンプダウン終了条件としてもよい。ポンプダウン運転では、第2電磁弁52および第4電磁弁54を開状態に維持し、第1電磁弁51および第3電磁弁53を閉状態に維持して、圧縮機11を駆動させる。 Pump-down operation is an operating method in which the refrigerant does not circulate through the refrigerant circuit, and the refrigerant on the so-called low-pressure side of the refrigeration cycle device 1, from the expansion valve 13 to the compressor 11, is recovered to the receiver 41. Pump-down operation is switched from normal operation and executed when pump-down start conditions are met. Further, the pump-down operation ends when the pump-down end condition is satisfied. When the pump-down operation ends, normal operation resumes. The pump-down start condition is, for example, that the user provides the control device 90 with a signal through an operation panel (not shown) instructing execution of the pump-down operation. The operation panel is an example of a device for receiving input of operation details of the refrigeration cycle device 1 by a user. The pump-down end condition is, for example, that a predetermined period of time has elapsed since the start of the pump-down operation. Alternatively, the condition for ending the pump down may be that a liquid level sensor (not shown) provided in the receiver 41 detects that a predetermined amount of refrigerant has accumulated in the receiver 41. Furthermore, the condition for ending pump-down may be that the pressure detected by a pressure sensor (not shown) provided on the low-pressure side of the refrigeration cycle device 1 becomes a predetermined value or less. In the pump-down operation, the second solenoid valve 52 and the fourth solenoid valve 54 are kept open, the first solenoid valve 51 and the third solenoid valve 53 are kept closed, and the compressor 11 is driven.
 また、制御装置90は、冷凍サイクル装置1の運転の停止時には、第2電磁弁52を開状態に維持し、第1電磁弁51、第3電磁弁53、および第4電磁弁54を閉状態に維持して、圧縮機11の駆動を停止させる。 Further, when the operation of the refrigeration cycle device 1 is stopped, the control device 90 maintains the second solenoid valve 52 in an open state and closes the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54. The drive of the compressor 11 is stopped.
 ここで、制御装置90のハードウェアの一例を説明する。図4は、実施の形態1に係る制御装置90の一構成を示すハードウェア構成図である。制御装置90の各種機能がハードウェアで実行される場合、制御装置90は、図4に示すように、処理回路91で構成される。制御装置90の各機能は、処理回路91により実現される。 Here, an example of the hardware of the control device 90 will be explained. FIG. 4 is a hardware configuration diagram showing one configuration of the control device 90 according to the first embodiment. When the various functions of the control device 90 are executed by hardware, the control device 90 is configured with a processing circuit 91, as shown in FIG. Each function of the control device 90 is realized by a processing circuit 91.
 各機能がハードウェアで実行される場合、処理回路91は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものに該当する。 When each function is executed by hardware, the processing circuit 91 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Gate). Array) or a combination of these.
 また、制御装置90の別のハードウェアの一例を説明する。図5は、実施の形態1に係る制御装置90の一構成を示すハードウェア構成図である。制御装置90の各種機能がソフトウェアで実行される場合、制御装置90は、図5に示すように、CPU等のプロセッサ92およびメモリ93で構成される。制御装置90の各機能は、プロセッサ92およびメモリ93により実現される。図5は、プロセッサ92およびメモリ93が互いにバス94を介して通信可能に接続されることを示している。 Also, another example of hardware of the control device 90 will be explained. FIG. 5 is a hardware configuration diagram showing one configuration of the control device 90 according to the first embodiment. When various functions of the control device 90 are executed by software, the control device 90 is configured with a processor 92 such as a CPU and a memory 93, as shown in FIG. Each function of the control device 90 is realized by a processor 92 and a memory 93. FIG. 5 shows that processor 92 and memory 93 are communicatively connected to each other via bus 94.
 各機能がソフトウェアで実行される場合、制御装置90の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ93に格納される。プロセッサ92は、メモリ93に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。 When each function is executed by software, the functions of the control device 90 are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory 93. The processor 92 realizes the functions of each means by reading and executing programs stored in the memory 93.
 メモリ93として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ93として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ93として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 Examples of the memory 93 include ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM), and EEPROM (Electrically Erasable and Programmable ROM). A nonvolatile semiconductor memory such as a programmable ROM (ROM) is used. Further, as the memory 93, a volatile semiconductor memory such as RAM (Random Access Memory) may be used. Further, as the memory 93, a removable recording medium such as a magnetic disk, a flexible disk, an optical disk, a CD (Compact Disc), an MD (Mini Disc), and a DVD (Digital Versatile Disc) may be used.
 冷凍サイクル装置1の動作について説明する。先ず、通常運転について説明する。圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、凝縮器12に流入する。凝縮器12に流入した冷媒は、空気と熱交換されて凝縮し、液化する。液状態の冷媒は、第1電磁弁51を通過して膨張弁13に流入し、減圧および膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器14に流入する。蒸発器14に流入した冷媒は、空気と熱交換されて蒸発し、ガス化する。その際、対象の空間の空気が冷却される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、アキュムレータ15を通過して、圧縮機11に吸入される。 The operation of the refrigeration cycle device 1 will be explained. First, normal operation will be explained. The refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high temperature and high pressure gas state. The high temperature and high pressure gaseous refrigerant discharged from the compressor 11 flows into the condenser 12 . The refrigerant flowing into the condenser 12 exchanges heat with air, condenses, and liquefies. The liquid refrigerant passes through the first electromagnetic valve 51 and flows into the expansion valve 13, where it is depressurized and expanded to become a low-temperature, low-pressure gas-liquid two-phase refrigerant. The gas-liquid two-phase refrigerant flows into the evaporator 14 . The refrigerant flowing into the evaporator 14 exchanges heat with the air, evaporates, and gasifies. At that time, the air in the target space is cooled. Thereafter, the evaporated low-temperature, low-pressure gaseous refrigerant passes through the accumulator 15 and is sucked into the compressor 11.
 次に、ポンプダウン運転について説明する。圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、凝縮器12および第2電磁弁52を通過して、レシーバ41に貯留される。レシーバ41に貯留されているガス状態の冷媒は、レシーバ41に貯留されている過冷却のついた液状態の冷媒によって凝縮する。レシーバ41に貯留されているガス状態の冷媒の一部は、第2バイパス配管32に流れ、キャピラリチューブ42を通過して膨張する。キャピラリチューブ42を通過して膨張した冷媒は、第4電磁弁54を通過して、第1バイパス配管31に流れる。第1バイパス配管31を流れる冷媒は、アキュムレータ15を通過して、圧縮機11に吸入される。冷媒が上記の流路を循環するにつれて、レシーバ41に液状態で貯留される冷媒の量が増加する。特に、第2バイパス配管32によって、レシーバ41内の余剰なガス冷媒がレシーバ41外に逃がされることで、レシーバ41内のガス冷媒の冷却および凝縮が促進される。 Next, pump down operation will be explained. The refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high temperature and high pressure gas state. The high temperature and high pressure gaseous refrigerant discharged from the compressor 11 passes through the condenser 12 and the second electromagnetic valve 52 and is stored in the receiver 41 . The gaseous refrigerant stored in the receiver 41 is condensed by the supercooled liquid refrigerant stored in the receiver 41 . A portion of the gaseous refrigerant stored in the receiver 41 flows into the second bypass pipe 32, passes through the capillary tube 42, and expands. The refrigerant expanded after passing through the capillary tube 42 passes through the fourth electromagnetic valve 54 and flows into the first bypass pipe 31 . The refrigerant flowing through the first bypass pipe 31 passes through the accumulator 15 and is sucked into the compressor 11. As the refrigerant circulates through the flow path, the amount of refrigerant stored in the receiver 41 in a liquid state increases. In particular, the second bypass pipe 32 causes excess gas refrigerant in the receiver 41 to escape to the outside of the receiver 41, thereby promoting cooling and condensation of the gas refrigerant in the receiver 41.
 制御装置90の動作についてフローチャートを用いて説明する。図6は、実施の形態1に係る制御装置90の動作を示すフローチャートである。先ず、制御装置90は、通常運転中において、ポンプダウン開始条件が満たされると、制御装置90は、ポンプダウン運転を開始する(ステップS1)。ここでは、第2電磁弁52および第4電磁弁54を開状態に維持し、第1電磁弁51および第3電磁弁53を閉状態に維持して、圧縮機11を駆動させる。 The operation of the control device 90 will be explained using a flowchart. FIG. 6 is a flowchart showing the operation of the control device 90 according to the first embodiment. First, during normal operation, when a pump-down start condition is satisfied, the control device 90 starts pump-down operation (step S1). Here, the compressor 11 is driven by maintaining the second solenoid valve 52 and the fourth solenoid valve 54 in the open state, and maintaining the first solenoid valve 51 and the third solenoid valve 53 in the closed state.
 そして、制御装置90は、ポンプダウン運転中において、ポンプダウン終了条件を満たすか否かを判定する(ステップS2)。ポンプダウン終了条件が満たされない場合(ステップS2:NO)、ポンプダウン終了条件が満たされるまでステップS2の処理を周期的に繰り返す。ポンプダウン終了条件が満たされた場合(ステップS2:YES)、制御装置90は、ポンプダウン運転を終了し、通常運転を開始する(ステップS3)。ここでは、第1電磁弁51、第3電磁弁53、および第4電磁弁54を開状態に維持し、第2電磁弁52を閉状態に維持して、圧縮機11を駆動させる。 Then, the control device 90 determines whether the pump-down end condition is satisfied during the pump-down operation (step S2). If the pump-down end condition is not satisfied (step S2: NO), the process of step S2 is periodically repeated until the pump-down end condition is satisfied. When the pump-down end condition is satisfied (step S2: YES), the control device 90 ends the pump-down operation and starts normal operation (step S3). Here, the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in an open state, the second solenoid valve 52 is maintained in a closed state, and the compressor 11 is driven.
 以上のように、実施の形態1の冷凍サイクル装置1は、通常運転において、第1電磁弁51および第3電磁弁53を開状態に維持し、第2電磁弁52を閉状態に維持して、圧縮機11を駆動させる。また、ポンプダウン運転において、第2電磁弁52を開状態に維持し、第1電磁弁51および第3電磁弁53を閉状態に維持して、圧縮機11を駆動させる。ここで、実施の形態1の冷凍サイクル装置1では、冷媒を貯留するレシーバ41が第1バイパス配管31に設けられている。このため、通常運転時においてレシーバ41に滞留する冷媒の量は、レシーバ41を冷媒回路に直列に設けた場合にレシーバ41に滞留する冷媒の量と比較して少ない。したがって、レシーバ41を有する冷凍サイクル装置1において、冷媒の封入量を削減することができる。 As described above, during normal operation, the refrigeration cycle device 1 of the first embodiment maintains the first solenoid valve 51 and the third solenoid valve 53 in the open state, and maintains the second solenoid valve 52 in the closed state. , drives the compressor 11. Further, in the pump down operation, the second solenoid valve 52 is maintained in the open state, the first solenoid valve 51 and the third solenoid valve 53 are maintained in the closed state, and the compressor 11 is driven. Here, in the refrigeration cycle device 1 of the first embodiment, the receiver 41 for storing refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1 having the receiver 41, the amount of refrigerant sealed can be reduced.
 また、実施の形態1によれば、通常運転中はレシーバ41内が低圧空間になるため、冷媒密度を減らすことができ、必要な冷媒の封入量を更に削減できる。 Furthermore, according to the first embodiment, since the inside of the receiver 41 becomes a low-pressure space during normal operation, the refrigerant density can be reduced, and the required amount of refrigerant to be filled can be further reduced.
 また、現状では、冷凍サイクル装置1を運転する際に用いられる冷媒として、R410AまたはR404AなどのHFC系冷媒が主流である。R410AまたはR404Aなどは、地球温暖化係数(GWP:Global Warming Potential)の値が大きい反面、比較的安定性が高く、不燃性の性質を有する。しかしながら、環境への意識の高まりなどから、冷凍サイクル装置1においては、GWPの値が小さい冷媒への移行が求められている。ただし、GWPの値が小さな冷媒には、可燃性を有するものが多い。可燃性を有する冷媒は、冷凍サイクル装置1の配管から漏れた場合などに、冷媒回路外の空間に滞留すると、火花または静電気などによって発火につながる可能性がある。 Furthermore, at present, HFC-based refrigerants such as R410A or R404A are mainstream as refrigerants used when operating the refrigeration cycle device 1. Although R410A or R404A has a large global warming potential (GWP) value, it has relatively high stability and nonflammability. However, due to increasing environmental awareness, there is a demand for the refrigeration cycle device 1 to shift to a refrigerant with a smaller GWP value. However, many refrigerants with small GWP values are flammable. If a flammable refrigerant leaks from the piping of the refrigeration cycle device 1 and stagnates in a space outside the refrigerant circuit, it may lead to ignition due to sparks, static electricity, or the like.
 上記の可燃性冷媒の観点から、比較例を用いて本願の更なる効果について説明する。図7は、比較例に係る冷凍サイクル装置において可燃性冷媒の使用が可能な配管長および馬力(HP)を説明するための図である。比較例は、圧縮機11、凝縮器12、第1電磁弁51、膨張弁13、蒸発器14、およびアキュムレータ15を有した冷媒回路を備えている。しかし、比較例は、実施の形態1の第1バイパス配管31、第2バイパス配管32、キャピラリチューブ42、第2電磁弁52、第3電磁弁53、および第4電磁弁54を有していない。また、比較例では、レシーバが冷媒回路の一要素として設けられている。冷媒漏洩時の発火を抑制するため、長い配管長または大きな馬力を有する冷凍サイクル装置のように多量の冷媒を使用する場合には、可燃性冷媒の使用ができないように制限が課されている。比較例では、図7の「×」印で示すように、冷凍サイクル装置1の配管長または馬力が所定の値以上であって、多量の冷媒を使用する場合には、可燃性冷媒を使用することができない。 From the viewpoint of the above-mentioned flammable refrigerant, further effects of the present application will be explained using a comparative example. FIG. 7 is a diagram for explaining the pipe length and horsepower (HP) in which a flammable refrigerant can be used in a refrigeration cycle device according to a comparative example. The comparative example includes a refrigerant circuit including a compressor 11, a condenser 12, a first electromagnetic valve 51, an expansion valve 13, an evaporator 14, and an accumulator 15. However, the comparative example does not have the first bypass piping 31, the second bypass piping 32, the capillary tube 42, the second solenoid valve 52, the third solenoid valve 53, and the fourth solenoid valve 54 of the first embodiment. . Further, in the comparative example, the receiver is provided as an element of the refrigerant circuit. In order to suppress ignition when a refrigerant leaks, restrictions are imposed so that flammable refrigerants cannot be used when a large amount of refrigerant is used, such as in a refrigeration cycle device with long pipe length or large horsepower. In the comparative example, as shown by the "x" mark in FIG. 7, if the piping length or horsepower of the refrigeration cycle device 1 is greater than a predetermined value and a large amount of refrigerant is used, a flammable refrigerant is used. I can't.
 図8は、実施の形態1に係る冷凍サイクル装置1において可燃性冷媒の使用が可能な配管長および馬力(HP)を説明するための図である。比較例に対して、実施の形態1の冷凍サイクル装置1では、冷媒を貯留するレシーバ41が第1バイパス配管31に設けられている。このため、通常運転時においてレシーバ41に滞留する冷媒の量は、レシーバ41を冷媒回路に直列に設けた場合にレシーバ41に滞留する冷媒の量と比較して少なく、冷凍サイクル装置1における冷媒の封入量を削減することができる。したがって、比較例では多量の冷媒が求められるような長い配管長または大きな馬力を有する場合であっても、実施の形態1の冷凍サイクル装置1は、可燃性冷媒を使用することができる。 FIG. 8 is a diagram for explaining the pipe length and horsepower (HP) in which a flammable refrigerant can be used in the refrigeration cycle device 1 according to the first embodiment. In contrast to the comparative example, in the refrigeration cycle device 1 of the first embodiment, a receiver 41 for storing refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is small compared to the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit, and the amount of refrigerant in the refrigeration cycle device 1 is small. Enclosing amount can be reduced. Therefore, even if the comparative example has a long pipe length or a large horsepower that requires a large amount of refrigerant, the refrigeration cycle device 1 of the first embodiment can use a flammable refrigerant.
 実施の形態2.
 図9は、実施の形態2に係る冷凍サイクル装置1Aを示す回路図である。図9に示すように、実施の形態2は、冷凍サイクル装置1Aがサブレシーバ16を有する点で実施の形態1と相違する。実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 2.
FIG. 9 is a circuit diagram showing a refrigeration cycle device 1A according to the second embodiment. As shown in FIG. 9, the second embodiment differs from the first embodiment in that the refrigeration cycle device 1A includes a sub-receiver 16. In Embodiment 2, the same parts as Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 サブレシーバ16は、冷媒を貯留する容器である。サブレシーバ16は、熱源側配管21における凝縮器12よりも接続配管23側の部分に設けられ、冷媒回路を構成する。サブレシーバ16の容量は、レシーバ41の容量より小さい。また、サブレシーバ16とレシーバ41との合計の容量は、実施の形態1で説明した比較例のレシーバの容量と略等しい。 The sub-receiver 16 is a container that stores refrigerant. The sub-receiver 16 is provided in a portion of the heat source side piping 21 closer to the connection piping 23 than the condenser 12, and constitutes a refrigerant circuit. The capacity of the sub-receiver 16 is smaller than the capacity of the receiver 41. Further, the total capacity of sub-receiver 16 and receiver 41 is approximately equal to the capacity of the receiver of the comparative example described in the first embodiment.
 実施の形態1と同様に、実施の形態2の冷凍サイクル装置1Aでは、冷媒を貯留するレシーバ41が第1バイパス配管31に設けられている。このため、通常運転時においてレシーバ41に滞留する冷媒の量は、レシーバ41を冷媒回路に直列に設けた場合にレシーバ41に滞留する冷媒の量と比較して少ない。したがって、レシーバ41を有する冷凍サイクル装置1Aにおいて、冷媒の封入量を削減することができる。 Similarly to the first embodiment, in the refrigeration cycle device 1A of the second embodiment, a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1A having the receiver 41, the amount of refrigerant sealed can be reduced.
 また、一般に、冷凍サイクル装置の運転状態によっては、冷媒密度が変化し、凝縮器12に冷媒が多く滞留してしまうことが想定される。この場合、凝縮器の高圧が上昇し、凝縮器の性能が悪化する。このような高圧カットは、凝縮器の容量が小さい場合に、特に発生しやすい。凝縮器の容量が小さい凝縮器の代表的なものとしては、例えばPFC熱交換器(パラレルフローコンデンサー)が挙げられる。そして、凝縮器の性能の悪化が著しい場合は異常停止が発生する。実施の形態2では、サブレシーバ16を冷媒回路に追加する。これにより、冷凍サイクル装置1Aにおいて封入される冷媒量を削減しつつ、冷媒回路内の冷媒量の分布が変化した際にも、凝縮器12に冷媒が液状態で長期間滞留してしまう液寝こみを防止することができる。 Furthermore, it is generally assumed that the refrigerant density changes depending on the operating state of the refrigeration cycle device, and a large amount of refrigerant will remain in the condenser 12. In this case, the high pressure in the condenser increases and the performance of the condenser deteriorates. Such high pressure cuts are particularly likely to occur when the capacity of the condenser is small. A typical example of a condenser with a small capacity is a PFC heat exchanger (parallel flow condenser). If the performance of the condenser deteriorates significantly, an abnormal stop will occur. In the second embodiment, a sub-receiver 16 is added to the refrigerant circuit. As a result, while reducing the amount of refrigerant sealed in the refrigeration cycle device 1A, even when the distribution of the amount of refrigerant in the refrigerant circuit changes, the refrigerant remains in the condenser 12 in a liquid state for a long period of time. It is possible to prevent crowding.
 実施の形態3.
 図10は、実施の形態3に係る冷凍サイクル装置1Bを示す回路図である。図10に示すように、実施の形態3は、冷凍サイクル装置1Bが第3バイパス配管33および第5電磁弁55を有する点で実施の形態1と相違する。実施の形態3では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 3.
FIG. 10 is a circuit diagram showing a refrigeration cycle device 1B according to the third embodiment. As shown in FIG. 10, the third embodiment differs from the first embodiment in that the refrigeration cycle device 1B includes a third bypass pipe 33 and a fifth solenoid valve 55. In Embodiment 3, the same parts as Embodiment 1 are given the same reference numerals, explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 第3バイパス配管33は、レシーバ41と、熱源側配管21における第1バイパス配管31の一端が接続する部分の下流側とを接続する。換言すると、第3バイパス配管33は、レシーバ41と、冷媒配管における第1バイパス配管31の一端が接続する部分と第1電磁弁51との間の部分とを接続する。第3バイパス配管33の先端は、第1バイパス配管31の他端、即ち第1バイパス配管31のレシーバ内における先端の位置よりも低い位置に設けられる。また、第3バイパス配管33の先端は、第2バイパス配管32のレシーバ内における先端の位置よりも低い位置に設けられる。第5電磁弁55は、第3バイパス配管33に設けられている。第5電磁弁55は、第3バイパス配管33を流れる冷媒を通過させる開状態、および第3バイパス配管33を流れる冷媒を遮断する閉状態を切り替える機能を有する。 The third bypass pipe 33 connects the receiver 41 and the downstream side of the portion of the heat source side pipe 21 to which one end of the first bypass pipe 31 connects. In other words, the third bypass pipe 33 connects the receiver 41 and a part of the refrigerant pipe between the part of the refrigerant pipe to which one end of the first bypass pipe 31 connects and the first electromagnetic valve 51 . The distal end of the third bypass piping 33 is provided at a lower position than the other end of the first bypass piping 31, that is, the position of the distal end of the first bypass piping 31 in the receiver. Further, the tip of the third bypass piping 33 is provided at a lower position than the tip of the second bypass piping 32 in the receiver. The fifth solenoid valve 55 is provided in the third bypass piping 33. The fifth electromagnetic valve 55 has a function of switching between an open state that allows the refrigerant flowing through the third bypass pipe 33 to pass, and a closed state that blocks the refrigerant that flows through the third bypass pipe 33.
 冷凍サイクル装置1Bは、第1温度センサ61および圧力センサ62を有している。第1温度センサ61および圧力センサ62は、何れも熱源側配管21におけるアキュムレータ15と圧縮機11との間に設けられている。第1温度センサ61は、熱源側配管21を流れる冷媒の温度を測定する。圧力センサ62は、熱源側配管21を流れる冷媒の圧力を測定する。第1温度センサ61および圧力センサ62は、測定結果を制御装置90に送信する。 The refrigeration cycle device 1B has a first temperature sensor 61 and a pressure sensor 62. The first temperature sensor 61 and the pressure sensor 62 are both provided between the accumulator 15 and the compressor 11 in the heat source side piping 21. The first temperature sensor 61 measures the temperature of the refrigerant flowing through the heat source side piping 21 . The pressure sensor 62 measures the pressure of the refrigerant flowing through the heat source side piping 21 . The first temperature sensor 61 and the pressure sensor 62 transmit measurement results to the control device 90.
 図11は、実施の形態3に係る制御装置90の制御内容を説明するための図である。図11に示すように、制御装置90は、通常運転およびポンプダウン運転に加えて、液バック防止運転を行う。通常運転では、第1電磁弁51、第3電磁弁53、および第4電磁弁54を開状態に維持し、第2電磁弁52および第5電磁弁55を閉状態に維持して、圧縮機11を駆動させる。ポンプダウン運転では、第2電磁弁52および第4電磁弁54を開状態に維持し、第1電磁弁51、第3電磁弁53および第5電磁弁55を閉状態に維持して、圧縮機11を駆動させる。また、制御装置90は、冷凍サイクル装置1Bの運転の停止時には、第2電磁弁52を開状態に維持し、第1電磁弁51、第3電磁弁53、第4電磁弁54および第5電磁弁55を閉状態に維持して、圧縮機11の駆動を停止させる。 FIG. 11 is a diagram for explaining the control content of the control device 90 according to the third embodiment. As shown in FIG. 11, the control device 90 performs liquid back prevention operation in addition to normal operation and pump-down operation. In normal operation, the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state, the second solenoid valve 52 and the fifth solenoid valve 55 are maintained in the closed state, and the compressor 11 is driven. In the pump down operation, the second solenoid valve 52 and the fourth solenoid valve 54 are maintained in the open state, the first solenoid valve 51, the third solenoid valve 53, and the fifth solenoid valve 55 are maintained in the closed state, and the compressor is 11 is driven. Further, when the operation of the refrigeration cycle device 1B is stopped, the control device 90 maintains the second solenoid valve 52 in an open state, and maintains the first solenoid valve 51, the third solenoid valve 53, the fourth solenoid valve 54, and the fifth solenoid valve. Valve 55 is maintained in a closed state, and driving of compressor 11 is stopped.
 液バック防止運転は、ポンプダウン運転の終了直後、または通常運転中に行われ、圧縮機11が液冷媒を吸い込んでしまうこと、所謂液バックを抑制するための運転方法である。液バック防止運転は、液バック防止開始条件が満たされたときに実行される。液バック防止開始条件の判定は、ポンプダウン運転の終了直後、即ちポンプダウン終了条件が満たされた直後、および通常運転中の所定の時間ごとに行われる。液バック防止開始条件は、制御装置90が第1温度センサ61および圧力センサ62の測定結果に基づいて推定した冷媒のスーパーヒートの値が予め定められた閾値以下であることである。また、液バック防止運転は、液バック防止終了条件を満たしたときに終了する。液バック防止終了条件は、例えば、液バック防止運転の開始から所定の時間が経過することである。所定の時間は、例えば5分である。液バック防止運転が終了すると、通常運転を開始する。液バック防止運転では、第1電磁弁51、第3電磁弁53、第4電磁弁54、および第5電磁弁55を開状態に維持し、第2電磁弁52を閉状態に維持して、圧縮機11を駆動させる。 The liquid back prevention operation is performed immediately after the end of the pump-down operation or during normal operation, and is an operating method to prevent the compressor 11 from sucking liquid refrigerant, so-called liquid back. The liquid back prevention operation is executed when liquid back prevention start conditions are met. The liquid back prevention start condition is determined immediately after the end of the pump-down operation, that is, immediately after the pump-down end condition is satisfied, and at predetermined intervals during normal operation. The liquid back prevention starting condition is that the superheat value of the refrigerant estimated by the control device 90 based on the measurement results of the first temperature sensor 61 and the pressure sensor 62 is equal to or less than a predetermined threshold value. Further, the liquid back prevention operation ends when the liquid back prevention termination condition is satisfied. The liquid back prevention termination condition is, for example, that a predetermined period of time has elapsed since the start of the liquid back prevention operation. The predetermined time is, for example, 5 minutes. When the liquid back prevention operation ends, normal operation starts. In the liquid back prevention operation, the first solenoid valve 51, the third solenoid valve 53, the fourth solenoid valve 54, and the fifth solenoid valve 55 are maintained in the open state, the second solenoid valve 52 is maintained in the closed state, The compressor 11 is driven.
 液バック防止運転では、レシーバ41に貯留された液冷媒が第5電磁弁55を通って、熱源側配管21に流れる。これにより、液バック防止運転の終了の通常運転において、レシーバ41に貯留された液冷媒が第3電磁弁53を通って圧縮機11に流入することが抑制される。 In the liquid back prevention operation, the liquid refrigerant stored in the receiver 41 passes through the fifth solenoid valve 55 and flows into the heat source side piping 21. This prevents the liquid refrigerant stored in the receiver 41 from flowing into the compressor 11 through the third electromagnetic valve 53 during the normal operation after the liquid back prevention operation ends.
 制御装置90の動作についてフローチャートを用いて説明する。図12は、実施の形態3に係る制御装置90の動作を示すフローチャートである。上述したように、液バック防止開始条件の判定は、ポンプダウン運転の終了直後、即ちポンプダウン終了条件が満たされた直後、および通常運転中の所定の時間ごとに行われる。ここでは、ポンプダウン運転の終了直後、および通常運転中における液バック防止運転を中心に説明する。先ず、制御装置90は、ポンプダウン運転の終了直後、および通常運転中において、液バック防止開始条件を満たすか否かを判定する(ステップS11)。ポンプダウン運転の終了直後における判定において、液バック防止開始条件が満たされない場合(ステップS11:NO)、制御装置90は、通常運転を開始する(ステップS14)。また、通常運転中における判定において、液バック防止開始条件が満たされない場合(ステップS11:NO)、制御装置90は、通常運転を継続する(ステップS14)。液バック防止開始条件が満たされた場合(ステップS11:YES)、制御装置90は、ポンプダウン運転または通常運転を終了し、液バック防止運転を開始する(ステップS12)。ここでは、第1電磁弁51、第3電磁弁53、第4電磁弁54、および第5電磁弁55を開状態に維持し、第2電磁弁52を閉状態に維持して、圧縮機11を駆動させる。 The operation of the control device 90 will be explained using a flowchart. FIG. 12 is a flowchart showing the operation of the control device 90 according to the third embodiment. As described above, the liquid back prevention start condition is determined immediately after the end of the pump-down operation, that is, immediately after the pump-down end condition is satisfied, and at predetermined intervals during normal operation. Here, the description will focus on the liquid back prevention operation immediately after the end of the pump down operation and during normal operation. First, the control device 90 determines whether or not liquid back prevention start conditions are satisfied immediately after the end of the pump-down operation and during normal operation (step S11). In the determination immediately after the end of the pump-down operation, if the liquid back prevention start condition is not satisfied (step S11: NO), the control device 90 starts normal operation (step S14). Further, in the determination during normal operation, if the liquid back prevention start condition is not satisfied (step S11: NO), the control device 90 continues normal operation (step S14). When the liquid back prevention start condition is satisfied (step S11: YES), the control device 90 ends the pump down operation or normal operation and starts the liquid back prevention operation (step S12). Here, the first solenoid valve 51, the third solenoid valve 53, the fourth solenoid valve 54, and the fifth solenoid valve 55 are maintained in the open state, the second solenoid valve 52 is maintained in the closed state, and the compressor 11 drive.
 そして、制御装置90は、液バック防止運転中において、液バック防止終了条件を満たすか否かを判定する(ステップS13)。液バック防止終了条件が満たされない場合(ステップS13:NO)、液バック防止終了条件が満たされるまでステップS13の処理を周期的に繰り返す。液バック防止終了条件が満たされた場合(ステップS13:YES)、制御装置90は、液バック防止運転を終了し、通常運転を開始する(ステップS14)。ここでは、第1電磁弁51、第3電磁弁53、および第4電磁弁54を開状態に維持し、第2電磁弁52および第5電磁弁55を閉状態に維持して、圧縮機11を駆動させる。 Then, the control device 90 determines whether the liquid back prevention termination condition is satisfied during the liquid back prevention operation (step S13). If the liquid back prevention termination condition is not satisfied (step S13: NO), the process of step S13 is periodically repeated until the liquid back prevention termination condition is satisfied. If the liquid back prevention termination condition is satisfied (step S13: YES), the control device 90 ends the liquid back prevention operation and starts normal operation (step S14). Here, the first solenoid valve 51, the third solenoid valve 53, and the fourth solenoid valve 54 are maintained in the open state, the second solenoid valve 52 and the fifth solenoid valve 55 are maintained in the closed state, and the compressor 11 drive.
 実施の形態1と同様に、実施の形態3の冷凍サイクル装置1Bでは、冷媒を貯留するレシーバ41が第1バイパス配管31に設けられている。このため、通常運転時においてレシーバ41に滞留する冷媒の量は、レシーバ41を冷媒回路に直列に設けた場合にレシーバ41に滞留する冷媒の量と比較して少ない。したがって、レシーバ41を有する冷凍サイクル装置1Bにおいて、冷媒の封入量を削減することができる。 Similar to the first embodiment, in the refrigeration cycle device 1B of the third embodiment, a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1B having the receiver 41, the amount of refrigerant sealed can be reduced.
 また、実施の形態3の冷凍サイクル装置1Bでは、液バック防止運転が実行される。このため、ポンプダウン運転が終了し、通常運転に復帰する前に液冷媒が圧縮機11に流入する液バックを抑制することができる。 Furthermore, in the refrigeration cycle device 1B of the third embodiment, liquid back prevention operation is performed. Therefore, it is possible to suppress liquid backflow in which liquid refrigerant flows into the compressor 11 before the pump-down operation ends and normal operation resumes.
 実施の形態4.
 図13は、実施の形態4に係る冷凍サイクル装置1Cを示す回路図である。図13に示すように、実施の形態4は、冷凍サイクル装置1Cがヒータ43を有する点で実施の形態1と相違する。実施の形態4では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 4.
FIG. 13 is a circuit diagram showing a refrigeration cycle device 1C according to the fourth embodiment. As shown in FIG. 13, the fourth embodiment differs from the first embodiment in that the refrigeration cycle device 1C includes a heater 43. In Embodiment 4, the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 ヒータ43は、例えば、レシーバ41の内部、またはレシーバ41の外郭に接触する位置に設けられる。ヒータ43は、レシーバ41に貯留されている液冷媒を加熱し、蒸発させる。また、冷凍サイクル装置1Cは、実施の形態3と同様の第1温度センサ61および圧力センサ62を有する。 The heater 43 is provided, for example, inside the receiver 41 or at a position in contact with the outer shell of the receiver 41. The heater 43 heats and evaporates the liquid refrigerant stored in the receiver 41. Furthermore, the refrigeration cycle device 1C includes a first temperature sensor 61 and a pressure sensor 62 similar to those in the third embodiment.
 ヒータ43は、ヒータ起動開始条件が満たされた場合に起動する。ヒータ起動開始条件の判定は、ポンプダウン運転の終了直後、即ちポンプダウン終了条件が満たされた直後、および通常運転中の所定の時間ごとに行われる。ヒータ起動開始条件は、実施の形態3で説明したポンプダウン開始条件と同様に、制御装置90が第1温度センサ61および圧力センサ62の測定結果に基づいて推定したスーパーヒートの値が予め定められた閾値以下であることである。また、ヒータ43は、ヒータ終了条件を満たしたときに停止する。ヒータ終了条件は、例えば、ヒータ43の起動から所定の時間が経過することである。ヒータ43は、ポンプダウン運転では動作しない。 The heater 43 is activated when heater activation start conditions are met. The heater activation start condition is determined immediately after the end of the pump-down operation, that is, immediately after the pump-down end condition is satisfied, and at predetermined intervals during normal operation. Similar to the pump-down start condition described in the third embodiment, the heater activation start condition is a predetermined superheat value estimated by the control device 90 based on the measurement results of the first temperature sensor 61 and the pressure sensor 62. be below the specified threshold. Further, the heater 43 stops when the heater termination condition is satisfied. The heater termination condition is, for example, that a predetermined time has elapsed since the heater 43 was activated. The heater 43 does not operate during pump-down operation.
 実施の形態1と同様に、実施の形態4の冷凍サイクル装置1Cでは、冷媒を貯留するレシーバ41が第1バイパス配管31に設けられている。このため、通常運転時においてレシーバ41に滞留する冷媒の量は、レシーバ41を冷媒回路に直列に設けた場合にレシーバ41に滞留する冷媒の量と比較して少ない。したがって、レシーバ41を有する冷凍サイクル装置1Cにおいて、冷媒の封入量を削減することができる。 Similarly to the first embodiment, in the refrigeration cycle device 1C of the fourth embodiment, a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1C having the receiver 41, the amount of refrigerant sealed can be reduced.
 また、実施の形態4の冷凍サイクル装置1Cは、ヒータ43を有している。このため、レシーバ41に貯留された冷媒が蒸発し、通常運転中に液冷媒が圧縮機11に流入することを抑制できる。 Furthermore, the refrigeration cycle device 1C of the fourth embodiment includes a heater 43. Therefore, the refrigerant stored in the receiver 41 evaporates, and liquid refrigerant can be prevented from flowing into the compressor 11 during normal operation.
 実施の形態5.
 図14は、実施の形態5に係る冷凍サイクル装置1Dを示す回路図である。図14に示すように、実施の形態5は、冷凍サイクル装置1Dがバイパス膨張弁44を有する点で実施の形態1と相違する。実施の形態5では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
Embodiment 5.
FIG. 14 is a circuit diagram showing a refrigeration cycle device 1D according to the fifth embodiment. As shown in FIG. 14, the fifth embodiment differs from the first embodiment in that the refrigeration cycle device 1D includes a bypass expansion valve 44. In Embodiment 5, the same parts as in Embodiment 1 are given the same reference numerals and explanations are omitted, and differences from Embodiment 1 will be mainly explained.
 バイパス膨張弁44は、第1バイパス配管31において、第3電磁弁53と、第1バイパス配管31の他端との間に設けられ、レシーバ41から流出する冷媒を膨張させる。バイパス膨張弁44は、制御装置90によって開度が制御される。制御装置90は、圧縮機11の吐出側に設けられた第2温度センサ71によって検知された冷媒の吐出温度が高くなると、バイパス膨張弁44の開度を大きくする。また、制御装置90は、第2温度センサ71によって検知された冷媒の吐出温度が低くなると、バイパス膨張弁44の開度を小さくする。 The bypass expansion valve 44 is provided in the first bypass pipe 31 between the third electromagnetic valve 53 and the other end of the first bypass pipe 31, and expands the refrigerant flowing out from the receiver 41. The opening degree of the bypass expansion valve 44 is controlled by the control device 90. The control device 90 increases the opening degree of the bypass expansion valve 44 when the discharge temperature of the refrigerant detected by the second temperature sensor 71 provided on the discharge side of the compressor 11 becomes high. Further, the control device 90 reduces the opening degree of the bypass expansion valve 44 when the discharge temperature of the refrigerant detected by the second temperature sensor 71 becomes low.
 実施の形態1と同様に、実施の形態5の冷凍サイクル装置1Dでは、冷媒を貯留するレシーバ41が第1バイパス配管31に設けられている。このため、通常運転時においてレシーバ41に滞留する冷媒の量は、レシーバ41を冷媒回路に直列に設けた場合にレシーバ41に滞留する冷媒の量と比較して少ない。したがって、レシーバ41を有する冷凍サイクル装置1Dにおいて、冷媒の封入量を削減することができる。 Similar to the first embodiment, in the refrigeration cycle device 1D of the fifth embodiment, a receiver 41 that stores refrigerant is provided in the first bypass pipe 31. Therefore, the amount of refrigerant that stays in the receiver 41 during normal operation is smaller than the amount of refrigerant that stays in the receiver 41 when the receiver 41 is provided in series in the refrigerant circuit. Therefore, in the refrigeration cycle device 1D having the receiver 41, the amount of refrigerant sealed can be reduced.
 また、一般に、圧縮機11が湿り蒸気を吸い込むと吐出温度が低下することが知られている。実施の形態5によれば、冷凍サイクル装置1Dは、バイパス膨張弁44を有し、吐出温度に応じてバイパス膨張弁44の開度を調整している。特に、実施の形態5の冷凍サイクル装置1Dは、吐出温度が低くなると、バイパス膨張弁44の開度を小さくしている。このため、圧縮機11に流入する液冷媒の量を削減することができる。 Furthermore, it is generally known that when the compressor 11 sucks in wet steam, the discharge temperature decreases. According to the fifth embodiment, the refrigeration cycle device 1D includes a bypass expansion valve 44, and adjusts the opening degree of the bypass expansion valve 44 according to the discharge temperature. In particular, in the refrigeration cycle device 1D of the fifth embodiment, when the discharge temperature becomes low, the opening degree of the bypass expansion valve 44 is reduced. Therefore, the amount of liquid refrigerant flowing into the compressor 11 can be reduced.
 以上が本開示の実施の形態の説明であるが、本開示は、上記の実施の形態の構成に限定されるものではなく、その技術的思想の範囲内で様々な変形または組み合わせが可能である。例えば、実施の形態2で説明したサブレシーバ16を有する冷凍サイクル装置1に、実施の形態3で説明した第3バイパス配管33および第5電磁弁55、実施の形態4で説明したヒータ43、または実施の形態5で説明したバイパス膨張弁44の何れかまたは複数を設けるようにしてもよい。実施の形態2と、実施の形態3~5との組み合わせ以外についても同様である。 The above is a description of the embodiment of the present disclosure, but the present disclosure is not limited to the configuration of the embodiment described above, and various modifications or combinations are possible within the scope of the technical idea. . For example, in the refrigeration cycle device 1 having the sub-receiver 16 described in the second embodiment, the third bypass piping 33 and the fifth solenoid valve 55 described in the third embodiment, the heater 43 described in the fourth embodiment, or One or more of the bypass expansion valves 44 described in the fifth embodiment may be provided. The same applies to combinations other than the second embodiment and the third to fifth embodiments.
 実施の形態1~5で説明した、第2バイパス配管32、キャピラリチューブ42、および第4電磁弁54を省略するようにしてもよい。この場合も、実施の形態1~5と比較して必要な時間が長くなるもの、レシーバ41に冷媒を貯留することができる。また、実施の形態1~5で説明した、アキュムレータ15を省略するようにしてもよい。 The second bypass piping 32, capillary tube 42, and fourth electromagnetic valve 54 described in Embodiments 1 to 5 may be omitted. In this case as well, the refrigerant can be stored in the receiver 41, although the required time is longer than in the first to fifth embodiments. Furthermore, the accumulator 15 described in the first to fifth embodiments may be omitted.
 また、実施の形態1~5で説明したキャピラリチューブ42を膨張弁に変更してもよい。膨張弁は、第2バイパス配管32に設けられ、第2バイパス配管32を流れる冷媒を減圧して膨張させるものであり、例えば、電子膨張弁である。キャピラリチューブ42および膨張弁は、何れも本開示における「絞り装置」に相当する。 Furthermore, the capillary tube 42 described in Embodiments 1 to 5 may be replaced with an expansion valve. The expansion valve is provided in the second bypass pipe 32 and expands the refrigerant flowing through the second bypass pipe 32 by reducing the pressure thereof, and is, for example, an electronic expansion valve. Both the capillary tube 42 and the expansion valve correspond to the "throttling device" in the present disclosure.
 また、実施の形態1~5では、制御装置90は、通常運転において、第1電磁弁51を開状態に維持するものとして説明した。しかしながら、第1バイパス配管31が液封状態にならなければ、第1電磁弁51は、通常運転において閉状態であってもよい。なお、液封状態とは、配管内に液冷媒が充満し、液冷媒が膨張した場合に配管の破損が起こり得る状態を意味している。 Furthermore, in the first to fifth embodiments, the control device 90 was described as maintaining the first electromagnetic valve 51 in the open state during normal operation. However, the first solenoid valve 51 may be in a closed state during normal operation unless the first bypass piping 31 is in a liquid-sealed state. Note that the liquid-sealed state means a state in which the piping is filled with liquid refrigerant and when the liquid refrigerant expands, the piping may be damaged.
 また、実施の形態1~5では、冷媒回路の構成要素として膨張弁13が設けられている場合について説明した。しかしながら、冷凍サイクル装置1から膨張弁13を省略するようにしてもよい。図15は、実施の形態1の変形例に係る冷凍サイクル装置1Eを示す回路図である。図15に示すように、冷媒配管において、凝縮器12と蒸発器14との間には、第1電磁弁51のみが設けられ、実施の形態1の膨張弁13は設けられていない。この場合、第1電磁弁51は、膨張弁13の機能を有する。具体的に、第1電磁弁51は、開状態および閉状態の時間的な長さが制御装置90によって制御されることで、膨張弁13において開度を調整する場合と同様に、冷媒の膨張の程度を調整することができる。もっとも、第1電磁弁51は、開状態を維持して負荷側配管22を通る冷媒を全て流通させる全開にすることもできるし、閉状態を維持して負荷側配管22を通る冷媒を全て遮断する全閉にすることもできる。なお、実施の形態2~5においても、膨張弁13を省略するようにしてもよい。 Furthermore, in the first to fifth embodiments, the case where the expansion valve 13 is provided as a component of the refrigerant circuit has been described. However, the expansion valve 13 may be omitted from the refrigeration cycle device 1. FIG. 15 is a circuit diagram showing a refrigeration cycle device 1E according to a modification of the first embodiment. As shown in FIG. 15, in the refrigerant piping, only the first electromagnetic valve 51 is provided between the condenser 12 and the evaporator 14, and the expansion valve 13 of the first embodiment is not provided. In this case, the first electromagnetic valve 51 has the function of the expansion valve 13. Specifically, the first electromagnetic valve 51 controls the expansion of the refrigerant by controlling the length of time between the open state and the closed state by the control device 90, in the same way as when adjusting the opening degree in the expansion valve 13. The degree of this can be adjusted. However, the first solenoid valve 51 can be kept open and fully opened to allow all the refrigerant passing through the load-side piping 22 to flow, or it can be kept in the closed state and shut off all the refrigerant passing through the load-side piping 22. It can also be fully closed. Note that in the second to fifth embodiments as well, the expansion valve 13 may be omitted.
 また、実施の形態3では、液バック防止開始条件の判定は、ポンプダウン運転の終了直後、および通常運転中の所定の時間ごとに行われるものとして説明した。しかしながら、液バック防止開始条件の判定は、ポンプダウン運転の終了直後、または通常運転中の何れかで行われるようにしてもよい。また、例えば、アキュムレータ15が設けられていない場合などには、液バック防止開始条件を省略して、ポンプダウン終了条件が満たされた際に必ず液バック防止運転が実行されるようにしてもよい。なお、実施の形態4のヒータ起動開始条件の省略、およびヒータ起動開始条件が判定されるタイミングの変更に関しても、実施の形態3の液バック防止開始条件の省略、および液バック防止開始条件が判定されるタイミングの変更と同様である。 Furthermore, in the third embodiment, the liquid back prevention start condition was described as being determined immediately after the end of the pump-down operation and at predetermined intervals during normal operation. However, the determination of the liquid back prevention start condition may be made either immediately after the end of the pump down operation or during normal operation. Further, for example, if the accumulator 15 is not provided, the liquid back prevention start condition may be omitted so that the liquid back prevention operation is always executed when the pump down end condition is satisfied. . Regarding the omission of the heater start-up start condition in Embodiment 4 and the change in the timing at which the heater start-up start condition is determined, the omission of the liquid back prevention start condition and the determination of the liquid back prevention start condition in Embodiment 3 also apply. This is similar to changing the timing.
 1、1A、1B、1C、1D、1E 冷凍サイクル装置、2 熱源機器、3 負荷機器、11 圧縮機、12 凝縮器、13 膨張弁、14 蒸発器、15 アキュムレータ、16 サブレシーバ、21 熱源側配管、22 負荷側配管、23 接続配管、24 接続配管、31 第1バイパス配管、32 第2バイパス配管、33 第3バイパス配管、41 レシーバ、42 キャピラリチューブ、43 ヒータ、44 バイパス膨張弁、51 第1電磁弁、52 第2電磁弁、53 第3電磁弁、54 第4電磁弁、55 第5電磁弁、61 第1温度センサ、62 圧力センサ、71 第2温度センサ、90 制御装置、91 処理回路、92 プロセッサ、93 メモリ、94 バス。 1, 1A, 1B, 1C, 1D, 1E Refrigeration cycle device, 2 Heat source equipment, 3 Load equipment, 11 Compressor, 12 Condenser, 13 Expansion valve, 14 Evaporator, 15 Accumulator, 16 Sub-receiver, 21 Heat source side piping , 22 Load side piping, 23 Connection piping, 24 Connection piping, 31 First bypass piping, 32 Second bypass piping, 33 Third bypass piping, 41 Receiver, 42 Capillary tube, 43 Heater, 44 Bypass expansion valve, 51 First Solenoid valve, 52 second solenoid valve, 53 third solenoid valve, 54 fourth solenoid valve, 55 fifth solenoid valve, 61 first temperature sensor, 62 pressure sensor, 71 second temperature sensor, 90 control device, 91 processing circuit , 92 processor, 93 memory, 94 bus.

Claims (10)

  1.  圧縮機、凝縮器、および蒸発器が冷媒配管により接続され、冷媒が流れる冷媒回路と、
     前記冷媒配管における前記凝縮器と前記蒸発器との間に設けられ、前記冷媒回路を流れる冷媒を通過させる開状態、および前記冷媒回路を流れる冷媒を遮断する閉状態を切り替える機能を有する第1電磁弁と、
     一端が前記冷媒配管における前記凝縮器と前記第1電磁弁との間の部分に接続し、他端が前記冷媒配管における前記蒸発器と前記圧縮機との間の部分に接続する第1バイパス配管と、
     前記第1バイパス配管に設けられ、冷媒を貯留するレシーバと、
     前記第1バイパス配管において、前記第1バイパス配管の前記一端と、前記レシーバとの間に設けられ、前記レシーバに流れる冷媒を通過させる開状態、および前記レシーバに流れる冷媒を遮断する閉状態を切り替える機能を有する第2電磁弁と、
     前記第1バイパス配管において、前記レシーバと、前記第1バイパス配管の前記他端との間に設けられ、前記レシーバから流れる冷媒を通過させる開状態、および前記レシーバから流れる冷媒を遮断する閉状態を切り替える機能を有する第3電磁弁と、
     前記圧縮機、前記第1電磁弁、前記第2電磁弁、および前記第3電磁弁を制御する制御装置と、を備え、
     前記制御装置は、
     前記第1電磁弁を前記開状態に維持し、前記第2電磁弁を前記閉状態に維持して、前記圧縮機を駆動させる通常運転と、
     前記第2電磁弁を前記開状態に維持し、前記第1電磁弁および前記第3電磁弁を前記閉状態に維持して、前記圧縮機を駆動させるポンプダウン運転と、を実行する
     冷凍サイクル装置。
    a refrigerant circuit in which a compressor, a condenser, and an evaporator are connected by refrigerant piping, and a refrigerant flows;
    a first electromagnetic device that is provided between the condenser and the evaporator in the refrigerant piping and has a function of switching between an open state that allows refrigerant flowing through the refrigerant circuit to pass through and a closed state that blocks refrigerant that flows through the refrigerant circuit; valve and
    A first bypass pipe, one end of which connects to a portion of the refrigerant piping between the condenser and the first solenoid valve, and the other end of which connects to a portion of the refrigerant piping between the evaporator and the compressor. and,
    a receiver provided in the first bypass pipe and storing refrigerant;
    The first bypass piping is provided between the one end of the first bypass piping and the receiver, and switches between an open state that allows refrigerant flowing to the receiver to pass through and a closed state that blocks refrigerant that flows to the receiver. a second solenoid valve having a function;
    The first bypass piping is provided between the receiver and the other end of the first bypass piping, and has an open state that allows the refrigerant flowing from the receiver to pass through, and a closed state that blocks the refrigerant that flows from the receiver. a third solenoid valve having a switching function;
    a control device that controls the compressor, the first solenoid valve, the second solenoid valve, and the third solenoid valve,
    The control device includes:
    a normal operation in which the compressor is driven by maintaining the first solenoid valve in the open state and maintaining the second solenoid valve in the closed state;
    A pump-down operation is performed in which the second solenoid valve is maintained in the open state, the first solenoid valve and the third solenoid valve are maintained in the closed state, and the compressor is driven. .
  2.  前記制御装置は、
     前記通常運転において、前記第3電磁弁を前記開状態に維持する
     請求項1に記載の冷凍サイクル装置。
    The control device includes:
    The refrigeration cycle device according to claim 1, wherein the third solenoid valve is maintained in the open state during the normal operation.
  3.  前記レシーバと、前記第1バイパス配管における前記第2電磁弁と前記第1バイパス配管の前記他端との間の部分とを接続する第2バイパス配管と、
     前記第2バイパス配管に設けられ、前記第2バイパス配管を流れる冷媒を通過させる開状態、および前記第2バイパス配管を流れる冷媒を遮断する閉状態を切り替える機能を有する第4電磁弁と、を更に備え、
     前記制御装置は、
     前記通常運転および前記ポンプダウン運転において、前記第4電磁弁を前記開状態に維持する
     請求項1または2に記載の冷凍サイクル装置。
    a second bypass piping that connects the receiver and a portion of the first bypass piping between the second solenoid valve and the other end of the first bypass piping;
    Further, a fourth electromagnetic valve is provided in the second bypass pipe and has a function of switching between an open state that allows refrigerant flowing through the second bypass pipe to pass and a closed state that blocks refrigerant flowing through the second bypass pipe. Prepare,
    The control device includes:
    The refrigeration cycle device according to claim 1 or 2, wherein the fourth solenoid valve is maintained in the open state during the normal operation and the pump-down operation.
  4.  前記第2バイパス配管に設けられ、前記第2バイパス配管を流れる冷媒を膨張させる絞り装置を更に備える
     請求項3に記載の冷凍サイクル装置。
    The refrigeration cycle device according to claim 3, further comprising a throttle device that is provided in the second bypass pipe and expands the refrigerant flowing through the second bypass pipe.
  5.  前記冷媒配管に設けられ、冷媒を貯留するサブレシーバを更に備える
     請求項1~4の何れか1項に記載の冷凍サイクル装置。
    The refrigeration cycle device according to any one of claims 1 to 4, further comprising a sub-receiver that is provided in the refrigerant pipe and stores refrigerant.
  6.  前記サブレシーバの容量は、前記レシーバの容量より小さい
     請求項5に記載の冷凍サイクル装置。
    The refrigeration cycle device according to claim 5, wherein the capacity of the sub-receiver is smaller than the capacity of the receiver.
  7.  前記レシーバと、前記冷媒配管における前記第1バイパス配管の前記一端が接続する部分と前記第1電磁弁との間の部分とを接続する第3バイパス配管と、
     前記第3バイパス配管に設けられ、前記第3バイパス配管を流れる冷媒を通過させる開状態、および前記第3バイパス配管を流れる冷媒を遮断する閉状態を切り替える機能を有する第5電磁弁と、を更に備え、
     前記制御装置は、
     前記第2電磁弁を前記開状態に維持し、前記第1電磁弁、前記第3電磁弁、および前記第5電磁弁を前記閉状態に維持して、前記圧縮機を駆動させる液バック防止運転を実行する
     請求項1~6の何れか1項に記載の冷凍サイクル装置。
    a third bypass piping that connects the receiver and a portion of the refrigerant piping between a portion of the refrigerant piping that is connected to the one end of the first bypass piping and the first electromagnetic valve;
    Further, a fifth solenoid valve is provided in the third bypass pipe and has a function of switching between an open state that allows refrigerant flowing through the third bypass pipe to pass and a closed state that blocks refrigerant flowing through the third bypass pipe. Prepare,
    The control device includes:
    liquid back prevention operation in which the compressor is driven by maintaining the second solenoid valve in the open state and maintaining the first solenoid valve, the third solenoid valve, and the fifth solenoid valve in the closed state; The refrigeration cycle device according to any one of claims 1 to 6, wherein the refrigeration cycle device performs the following.
  8.  前記レシーバに設けられ、前記レシーバに貯留される冷媒を加熱するヒータを更に備える
     請求項1~7の何れか1項に記載の冷凍サイクル装置。
    The refrigeration cycle device according to any one of claims 1 to 7, further comprising a heater provided in the receiver and heating the refrigerant stored in the receiver.
  9.  前記第1バイパス配管において、前記第3電磁弁と、前記第1バイパス配管の前記他端との間に設けられ、前記レシーバから流出する冷媒を膨張させるバイパス膨張弁を更に備える
     請求項1~8の何れか1項に記載の冷凍サイクル装置。
    The first bypass pipe further includes a bypass expansion valve that is provided between the third electromagnetic valve and the other end of the first bypass pipe and expands the refrigerant flowing out from the receiver. The refrigeration cycle device according to any one of the above.
  10.  前記冷媒は、可燃性冷媒である
     請求項1~9の何れか1項に記載の冷凍サイクル装置。
    The refrigeration cycle device according to claim 1, wherein the refrigerant is a flammable refrigerant.
PCT/JP2022/017918 2022-04-15 2022-04-15 Refrigeration cycle device WO2023199511A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017918 WO2023199511A1 (en) 2022-04-15 2022-04-15 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/017918 WO2023199511A1 (en) 2022-04-15 2022-04-15 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023199511A1 true WO2023199511A1 (en) 2023-10-19

Family

ID=88329472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017918 WO2023199511A1 (en) 2022-04-15 2022-04-15 Refrigeration cycle device

Country Status (1)

Country Link
WO (1) WO2023199511A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120063U (en) * 1987-01-30 1988-08-03
JP2007101121A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008039233A (en) * 2006-08-03 2008-02-21 Daikin Ind Ltd Refrigerating device
WO2015132959A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Air conditioning device
WO2017061009A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
WO2018078729A1 (en) * 2016-10-25 2018-05-03 三菱電機株式会社 Refrigeration cycle device
WO2021048901A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021111605A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Refrigeration cycle device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120063U (en) * 1987-01-30 1988-08-03
JP2007101121A (en) * 2005-10-06 2007-04-19 Mitsubishi Electric Corp Refrigerating air conditioner
JP2008039233A (en) * 2006-08-03 2008-02-21 Daikin Ind Ltd Refrigerating device
WO2015132959A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Air conditioning device
WO2017061009A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
WO2018078729A1 (en) * 2016-10-25 2018-05-03 三菱電機株式会社 Refrigeration cycle device
WO2021048901A1 (en) * 2019-09-09 2021-03-18 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021111605A1 (en) * 2019-12-05 2021-06-10 三菱電機株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP6935720B2 (en) Refrigeration equipment
AU2005280900B2 (en) Refrigeration apparatus
JP4974714B2 (en) Water heater
JP4069947B2 (en) Refrigeration equipment
JP2008096033A (en) Refrigerating device
JP7233845B2 (en) air conditioner
WO2023175656A1 (en) Air-conditioning device
JP3341404B2 (en) Operation control device for air conditioner
JP5062039B2 (en) Refrigeration equipment
AU1173699A (en) Refrigerating apparatus and refrigerant charging method
JP3750520B2 (en) Refrigeration equipment
JP3199054B2 (en) Refrigeration equipment
JP2005214575A (en) Refrigerator
WO2023199511A1 (en) Refrigeration cycle device
CN111919073B (en) Refrigerating device
JPH07190515A (en) Freezer
WO2021201242A1 (en) Air conditioner, control method, and program
KR100748982B1 (en) Air conditioner and Control method of the same
JP2007051838A (en) Air conditioner
WO2017098655A1 (en) Refrigeration cycle device
WO2020008916A1 (en) Refrigeration cycle device and method for controlling same
JP7275329B2 (en) air conditioner
WO2023105731A1 (en) Refrigeration cycle device
JP2004012112A (en) Air conditioner and its control method
WO2021240615A1 (en) Refrigeration cycle device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937488

Country of ref document: EP

Kind code of ref document: A1