WO2017098655A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2017098655A1
WO2017098655A1 PCT/JP2015/084789 JP2015084789W WO2017098655A1 WO 2017098655 A1 WO2017098655 A1 WO 2017098655A1 JP 2015084789 W JP2015084789 W JP 2015084789W WO 2017098655 A1 WO2017098655 A1 WO 2017098655A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
refrigerant
flow path
reference value
evaporator
Prior art date
Application number
PCT/JP2015/084789
Other languages
French (fr)
Japanese (ja)
Inventor
千歳 田中
拓也 松田
航祐 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/084789 priority Critical patent/WO2017098655A1/en
Priority to JP2017554754A priority patent/JP6522154B2/en
Publication of WO2017098655A1 publication Critical patent/WO2017098655A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • Patent Document 1 discloses a configuration for controlling the capacity of a refrigeration cycle apparatus by controlling the amount of liquid refrigerant accumulated in a condenser.
  • the indoor heat during operation is the same as when only one of the indoor heat exchangers is operated.
  • the total capacity of the exchanger is much smaller than the capacity of the outdoor heat exchanger, the amount of heat exchanged by the outdoor heat exchanger and the amount of heat exchanged by the indoor heat exchanger become imbalanced.
  • the amount of heat released to the outside air by the outdoor heat exchanger functioning as a condenser is larger than the amount of heat recovered by the indoor heat exchanger functioning as an evaporator.
  • the evaporation pressure in the indoor heat exchanger decreases. As a result, the risk of the evaporation temperature being lowered and the indoor heat exchanger freezing increases.
  • the condensation pressure of the outdoor heat exchanger decreases.
  • the evaporation pressure of the indoor heat exchanger decreases in response to the decrease in the condensation pressure. As a result, the evaporation temperature is lowered, and the possibility that the indoor heat exchanger will freeze increases.
  • the refrigeration cycle apparatus When the possibility of freezing of the evaporator is increased, the refrigeration cycle apparatus is stopped to suppress a decrease in the evaporation temperature of the evaporator and to prevent the evaporator from freezing. However, if the refrigeration cycle apparatus stops every time the risk of freezing of the evaporator increases, the refrigeration cycle apparatus repeatedly stops and restarts, and the cooling operation is not stably performed. As a result, extra energy is required every time the refrigeration cycle apparatus is restarted, and user comfort may be impaired.
  • Patent Document 1 Japanese Patent Laid-Open No. 09-038661 does not disclose a configuration for controlling the refrigeration cycle apparatus so as to prevent the evaporator from freezing.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent the evaporator from freezing while suppressing the refrigeration cycle apparatus from repeatedly stopping and restarting.
  • a refrigeration cycle apparatus is provided.
  • the refrigerant circulates in the order of the compressor, the condenser, the first expansion valve, and the evaporator.
  • the refrigeration cycle apparatus includes a first bypass flow path.
  • the first bypass flow path branches off from the first flow path connecting the compressor and the condenser, the second flow path connecting the condenser and the first expansion valve via the second valve, and evaporation Connected to one of the third flow paths connecting the compressor and the compressor.
  • the opening degree of the second valve is larger when the evaporation temperature in the evaporator is lower than the first reference value and when the evaporation temperature is higher than the first reference value.
  • the present invention by suppressing the decrease in the evaporation temperature while operating the refrigeration cycle apparatus, it is possible to prevent the evaporator from freezing while suppressing the refrigeration cycle apparatus from repeatedly stopping and restarting. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a Ph diagram of a refrigeration cycle performed by the refrigeration cycle apparatus of FIG. 1. It is a flowchart for demonstrating the process performed at the time of air_conditionaing
  • cooling operation by the control apparatus of FIG. 3 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. FIG. 5 is a Ph diagram of a refrigeration cycle performed by the refrigeration cycle apparatus of FIG. 4. 5 is a flowchart for explaining processing performed by the control device of FIG. 4 during cooling operation.
  • 6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3.
  • FIG. 6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4.
  • FIG. FIG. 10 is a Ph diagram of a refrigeration cycle performed by the refrigeration cycle apparatus of FIG. 9. 10 is a flowchart for explaining processing performed by the control device of FIG. 9 during cooling operation.
  • FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to the first embodiment.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, A valve 7, a circulation channel 10, a first bypass channel 11, a second bypass channel 12, and a control device 20 are provided.
  • the circulation channel 10 connects the compressor 1, the condenser 2, the internal heat exchanger 3, the first expansion valve 4, and the evaporator 5 with piping to circulate the refrigerant.
  • the compressor 1 has a rotational speed controlled based on a driving frequency from the control device 20, and compresses and discharges the gas refrigerant.
  • the condenser 2 condenses the gas refrigerant discharged from the compressor 1 and discharges the liquid refrigerant.
  • the first expansion valve 4 expands and depressurizes the refrigerant from the internal heat exchanger 3. The opening degree of the first expansion valve 4 can be adjusted.
  • the first expansion valve 4 is, for example, an electronically controlled expansion valve (LEV).
  • the evaporator 5 evaporates the liquid refrigerant (liquid refrigerant) discharged from the first expansion valve 4 and discharges the gas refrigerant (gas refrigerant).
  • 1st bypass flow path 11 branches from branch point B1 located in the part of the circulation flow path 10 from the compressor 1 to the condenser 2.
  • the first bypass flow path 11 passes through the valve 7.
  • the first bypass channel 11 merges at a junction J1 located at a portion of the circulation channel 10 extending from the condenser 2 to the internal heat exchanger 3.
  • the valve 7 may have any form as long as the flow rate of the refrigerant can be adjusted by adjusting the opening.
  • the valve 7 may be an expansion valve such as LEV.
  • the internal heat exchanger 3 includes a flow path (high pressure side flow path 301) through which the refrigerant from the junction J1 passes and a flow path (low pressure side flow path 302) through which the refrigerant from the second expansion valve 6 passes.
  • the internal heat exchanger 3 serves to cool the refrigerant from the junction J1 by causing the refrigerant from the second expansion valve 6 to absorb the heat of the refrigerant from the junction J1.
  • the internal heat exchanger 3 is, for example, a double tube heat exchanger.
  • the second expansion valve 6 expands the refrigerant to reduce the pressure.
  • the second expansion valve 6 is, for example, a LEV.
  • the second bypass flow path 12 branches from a branch point B2 located at a part of the circulation flow path 10 extending from the internal heat exchanger 3 to the first expansion valve 4.
  • the second bypass flow path 12 passes through the internal heat exchanger 3 next to the second expansion valve 6.
  • the second bypass flow path 12 merges at a merge point J2 located at a portion of the circulation flow path 10 from the evaporator 5 to the compressor 1.
  • the control device 20 includes a microcomputer 201, drive circuits 202 and 203, a pressure detection unit 204, and a temperature detection unit 205.
  • the microcomputer 201 drives the compressor 1 by controlling the drive circuit 202.
  • the microcomputer 201 controls the opening degree of the second expansion valve 6 and the valve 7 by controlling the drive circuit 203.
  • the microcomputer 201 acquires the pressure at the inlet (low pressure side) of the compressor 1 and the pressure at the outlet (high pressure side) of the compressor 1 from the pressure detection unit 204.
  • the pressure detection unit 204 calculates the pressure on the low pressure side based on a signal from the pressure sensor 31 attached to the inlet of the compressor 1.
  • the pressure detection unit 204 calculates the pressure on the high pressure side based on a signal from the pressure sensor 32 attached to the outlet of the compressor 1.
  • the microcomputer 201 calculates the degree of supercooling at the outlet of the high-pressure side passage 301 of the internal heat exchanger 3 based on the pressure on the high-pressure side and the temperature of the outlet of the high-pressure side passage 301 of the internal heat exchanger 3.
  • the microcomputer 201 calculates the degree of superheat at the outlet of the low-pressure side passage 302 of the internal heat exchanger 3 based on the pressure on the low-pressure side and the temperature of the outlet of the low-pressure side passage 302 of the internal heat exchanger 3.
  • the microcomputer 201 acquires the temperature of the outlet of the high-pressure side channel 301 of the internal heat exchanger 3 and the temperature of the outlet of the low-pressure side channel 302 of the internal heat exchanger 3 from the temperature detection unit 205.
  • the temperature detection unit 205 calculates the temperature of the outlet of the high-pressure side channel 301 of the internal heat exchanger 3 based on a signal from the temperature sensor 33 attached to the outlet of the high-pressure side channel 301 of the internal heat exchanger 3. To do.
  • the temperature detection unit 205 calculates the temperature of the outlet of the low-pressure side passage 302 of the internal heat exchanger 3 based on a signal from the temperature sensor 34 attached to the outlet of the low-pressure side passage 302 of the internal heat exchanger 3. To do.
  • the control device 20 further includes a microcomputer 206, a drive circuit 207, and a temperature detection unit 208.
  • the microcomputer 206 controls the drive circuit 207 to adjust the opening degree of the first expansion valve 4.
  • the microcomputer 206 acquires the temperature of the pipe inlet of the evaporator 5 and the temperature of the pipe outlet of the evaporator 5 from the temperature detection unit 208.
  • the temperature detection unit 208 calculates the temperature of the pipe inlet of the evaporator 5 based on a signal from the temperature sensor 35 attached to the pipe inlet of the evaporator 5.
  • the temperature detection unit 208 calculates the temperature of the pipe outlet of the evaporator 5 based on a signal from the temperature sensor 36 attached to the pipe outlet of the evaporator 5.
  • the microcomputer 206 acquires a high-pressure side pressure and a low-pressure side pressure from the microcomputer 201.
  • the microcomputer 206 calculates the degree of superheat at the pipe outlet of the evaporator 5 based on the pressure on the low pressure side and the temperature of the pipe outlet of the evaporator 5.
  • the microcomputer 206 adjusts the opening degree of the first expansion valve 4 so that the superheat degree at the pipe outlet of the evaporator 5 approaches a target value (for example, the superheat degree of 1 ° C.) (superheat degree control).
  • Refrigerant repeatedly absorbs and releases heat while repeating state changes between liquid refrigerant and gas refrigerant in the refrigeration cycle.
  • each process of the refrigeration cycle will be described with reference to FIG.
  • FIG. 2 is a Ph diagram showing the relationship between the pressure of the refrigeration cycle performed by the refrigeration cycle apparatus 100 of FIG. 1 and the specific enthalpy.
  • point CP is the critical point of the refrigerant.
  • a curve SL is a saturated liquid line of the refrigerant.
  • a curve SV is a saturated vapor line of the refrigerant.
  • a cycle C0 that returns from the point S1 to the point S1 through the points S2, S3, and S4 represents a normal refrigeration cycle in the refrigeration cycle apparatus 100.
  • the state change from the point S1 to the point S2 represents the process of compressing the refrigerant by the compressor 1.
  • the state change from the point S2 to the point S3 represents the process of condensing the refrigerant by the condenser 2.
  • the state change from the point S3 to the point S4 represents the process of depressurizing the refrigerant by the first expansion valve 4.
  • the state change from the point S4 to the point S1 represents the process of evaporation of the refrigerant by the evaporator 5.
  • the refrigerant near the inlet of the compressor 1 is a low-temperature and low-pressure gas refrigerant.
  • This gas refrigerant is sucked into the compressor 1, compressed by the compressor 1, and discharged as a high-temperature and high-pressure gas refrigerant.
  • Energy is added to the refrigerant by the compression by the compressor 1.
  • the process of compressing the refrigerant by the compressor 1 is represented as a state change from the point S1 to the point S2 in FIG.
  • the specific enthalpy and pressure at point S2 are both higher than the specific enthalpy and pressure at point S1.
  • the gas refrigerant discharged from the compressor 1 is condensed at a high pressure in the condenser 2 to become a liquid refrigerant.
  • the heat of condensation is released to the outside air. That is, when the refrigerant passes through the condenser 2, the specific enthalpy of the refrigerant decreases.
  • the process of condensing the refrigerant by the condenser 2 is expressed as a state change from the point S2 to the point S3 in FIG.
  • the specific enthalpy at the point S3 is smaller than the specific enthalpy at the point S2.
  • the pressure at point S3 is almost the same as the pressure at point S2.
  • the liquid refrigerant discharged from the condenser 2 passes through the internal heat exchanger 3 and adiabatically expands at the first expansion valve 4.
  • the liquid refrigerant is decompressed by the first expansion valve 4.
  • part of the liquid refrigerant becomes a gas refrigerant and is in a state called wet steam.
  • the process of depressurizing the refrigerant by the first expansion valve 4 is represented as a state change from the point S3 to the point S4 in FIG.
  • the pressure at point S4 is less than the pressure at point S3.
  • the liquid refrigerant in the wet steam discharged from the first expansion valve 4 evaporates at a low pressure in the evaporator 5 and is discharged as a low-temperature and low-pressure gas refrigerant.
  • the heat of evaporation is absorbed from the indoor air. That is, when the refrigerant passes through the evaporator 5, the specific enthalpy of the refrigerant increases.
  • the process of evaporation of the refrigerant in the evaporator 5 is expressed as a state change from the point S4 to the point S1 in FIG.
  • the specific enthalpy at the point S1 is higher than the specific enthalpy at the point S4.
  • the pressure at point S1 is slightly less than the pressure at point S4 due to the pressure loss that occurs when the refrigerant passes through the evaporator 5.
  • the low-temperature and low-pressure gas refrigerant discharged from the evaporator 5 is again sucked into the compressor 1 and the above-described process is repeated.
  • the evaporator 5 may freeze depending on the situation. For example, when the cooling operation is performed in the refrigeration cycle apparatus 100 in a state where the temperature of the outside air is low, the condensation pressure of the outdoor condenser 2 decreases. The evaporation pressure of the evaporator 5 in the room decreases in response to the decrease in the condensation pressure. As a result, even if the compressor 1 is operated at the lower limit frequency, the evaporation temperature continues to decrease, and the possibility that the indoor evaporator 5 will freeze increases.
  • the air blowing port or the suction port is blocked, and heat exchange in the evaporator 5 becomes impossible, and subsequent cooling operation may be impossible.
  • the piping is compressed and destroyed by volume expansion due to the solidification of water, and the refrigerant leaks to the atmosphere. Therefore, it is necessary to prevent the evaporator from freezing.
  • the freezing of the evaporator 5 can be prevented by stopping the refrigeration cycle apparatus 100.
  • the refrigeration cycle apparatus 100 is stopped every time the risk of freezing of the evaporator 5 increases, the operation of the refrigeration cycle apparatus 100 is repeatedly stopped and restarted, and the cooling operation is not stably performed. As a result, extra energy is required every time the refrigeration cycle apparatus 100 is restarted, and the user's comfort may be impaired.
  • the first bypass flow path 11 is provided to reduce the amount of refrigerant sucked into the condenser 2, and the amount of heat released by the condenser 2 to the outside air (condensing capacity). ).
  • the first bypass flow path 11 is provided to reduce the amount of refrigerant sucked into the condenser 2, and the amount of heat released by the condenser 2 to the outside air (condensing capacity).
  • the case where the risk of freezing of the evaporator 5 is increased is, for example, the case where the pipe temperature Te of the evaporator 5 is less than 1 ° C.
  • a cycle C1 returning from the point S11 to the point S11 via the points S12, S13A, S13B, and S14 is performed by the refrigeration cycle apparatus 100 when the risk of freezing of the evaporator 5 increases.
  • the state change from the point S11 to the point S12 represents the process of compressing the refrigerant by the compressor 1.
  • the state change from the point S12 to the point S13A represents a process of condensing the refrigerant by the condenser 2.
  • the state change from the point S13A to the point S13B represents a process in which the specific enthalpy of the refrigerant increases due to the refrigerant from the first bypass passage 11 joining the refrigerant from the condenser 2.
  • the state change from the point S13B to the point S14 represents the process of decompressing the refrigerant by the first expansion valve 4.
  • the state change from the point S14 to the point S11 represents the process of evaporation of the refrigerant by the evaporator 5.
  • the control device 20 increases the amount of refrigerant passing through the second bypass flow path by increasing the opening of the valve 7.
  • the amount of refrigerant passing through the condenser 2 is reduced.
  • the condensation pressure in the condenser 2 is lower than normal.
  • the state change from the point S12 to the point S13A being performed on the lower pressure side than the state change from the point S2 to the point S3 represents a decrease in the condensation pressure of the condenser 2.
  • the refrigerant from the first bypass channel 11 hardly releases heat because it does not pass through the condenser 2. Therefore, when the refrigerant from the first bypass channel 11 merges with the refrigerant from the condenser 2, the specific enthalpy of the refrigerant from the junction J1 becomes higher than in the normal case. In FIG. 2, the fact that the specific enthalpy at the point S13B is higher than the specific enthalpy at the point S3 represents this.
  • the refrigerant from the first bypass channel 11 is a gas refrigerant.
  • the refrigerant from the condenser 2 is a liquid refrigerant. Accordingly, depending on the degree of supercooling of the refrigerant from the condenser 2 and the amount of refrigerant from the first bypass channel 11, the refrigerant from the junction J1 may become wet vapor in a gas-liquid two-phase state. Since the wet steam has a lower average density than the liquid refrigerant, the flow rate of the wet vapor passing through the first expansion valve 4 is smaller than the flow rate of the liquid refrigerant passing through the first expansion valve 4.
  • the pressure (evaporation pressure) of the refrigerant after passing through the first expansion valve 4 is lower than when the refrigerant is a liquid refrigerant.
  • a decrease in evaporation pressure means a decrease in evaporation temperature. That is, if the refrigerant from the first bypass passage 11 is excessively increased, there is a possibility that the freezing of the evaporator 5 is promoted.
  • the refrigerant sucked into the first expansion valve 4 is wet steam, noise is generated when the wet steam passes through the micro flow path in the first expansion valve 4, which is preferable in terms of the quality of the refrigeration cycle apparatus 100. Absent.
  • the refrigerant from the junction J1 is cooled by the internal heat exchanger 3, and the gas-liquid two-phase state in the refrigerant from the junction J1 is eliminated.
  • the point S13B exceeds the curve SL (saturated liquid line) and is located between the curve SL and the curve SV (saturated vapor line). become.
  • the refrigerant is converted into a liquid refrigerant by cooling by the internal heat exchanger 3, and the point S13B in FIG. 2 is returned to the side having a lower specific enthalpy than the curve SL.
  • the specific enthalpy of the refrigerant from the junction J1 is larger than the normal enthalpy at the normal time, and as a result, the refrigerant needs to be absorbed from the indoor air in the evaporator 5 in order to continue the refrigeration cycle.
  • the amount of heat is reduced.
  • the amount of heat absorbed by the refrigerant from the indoor air is proportional to the difference (temperature gradient) between the temperature of the evaporator 5 (evaporation temperature) and room temperature (Fourier's law). Therefore, in order to reduce the endothermic amount (evaporation capability) of the evaporator 5, it is necessary to increase the evaporation temperature of the evaporator 5 to reduce the temperature difference between the evaporator 5 and the room.
  • the control device 20 increases the evaporation temperature of the evaporator 5 by adjusting the opening of the first expansion valve 4 and increasing the evaporation pressure of the evaporator 5.
  • the fact that the state change from the point S14 to the point S11 is performed on the higher pressure side than the state change from the point S4 to the point S1 represents an increase in the evaporation pressure of the evaporator 5.
  • FIG. 3 is a flowchart for explaining a process performed by the control device 20 of FIG. 1 during the cooling operation.
  • the process shown in FIG. 3 is called at regular time intervals by the main routine (not shown) of the cooling operation.
  • the control device 20 determines whether or not the piping temperature Te of the evaporator 5 is equal to or higher than a reference value (1 ° C.) in step S ⁇ b> 101 (hereinafter, the step is simply referred to as S).
  • the minimum value is employ
  • the one having the lower temperature detected by the temperature sensors 35 and 36 is employed. If pipe temperature Te is equal to or higher than the reference value (YES in S101), control device 20 proceeds to S102 because the possibility that evaporator 5 is frozen is low.
  • control device 20 determines whether or not the supercooling degree SC at the outlet of the high-pressure side passage 301 of the internal heat exchanger 3 is equal to or higher than a reference value (5 ° C.). If supercooling degree SC is equal to or greater than the reference value (YES in S102), control device 20 determines that the gas-liquid two-phase state of the refrigerant from junction J1 has been eliminated by internal heat exchanger 3 and proceeds to S103. Proceed. If supercooling degree SC is less than the reference value (NO in S102), control device 20 proceeds to S111 because the gas-liquid two-phase state of the refrigerant from confluence J1 may not be eliminated. .
  • control device 20 determines whether or not the superheat degree SH1 at the outlet of the low pressure side flow path 302 of the internal heat exchanger 3 is equal to or higher than a reference value (1 ° C.). If superheat degree SH1 is equal to or greater than the reference value (YES in S103), control device 20 advances the process to S116, assuming that the flow rate of the refrigerant flowing through low-pressure channel 302 of internal heat exchanger 3 is appropriate. If superheat degree SH1 is less than the reference value (NO in S103), control device 20 advances the process to S115, assuming that excess refrigerant is flowing in low-pressure side flow path 302 of internal heat exchanger 3. The control device 20 decreases the opening of the second expansion valve 6 in S115, and advances the process to S116.
  • the control device 20 waits for a certain time (for example, 1 minute) in S116. Thereafter, the process is returned to the main routine of the cooling operation.
  • the control device 20 advances the process to S104 on the assumption that the evaporator 5 is likely to freeze.
  • the controller 20 increases the opening degree of the valve 7 in S104, and advances the process to S105.
  • control device 20 determines whether or not the degree of supercooling SC at the outlet of the high-pressure channel 301 of the internal heat exchanger 3 is equal to or higher than a reference value (5 ° C.). If supercooling degree SC is equal to or higher than the reference value (YES in S105), control device 20 determines that the gas-liquid two-phase state of the refrigerant from junction J1 has been eliminated by internal heat exchanger 3, and proceeds to S103. Proceed. If supercooling degree SC is less than the reference value (NO in S105), control device 20 advances the process to S106 on the assumption that the gas-liquid two-phase state of the refrigerant from confluence J1 may not be eliminated. .
  • a reference value 5 ° C.
  • the control device 20 determines whether or not the superheat degree SH1 at the outlet of the low pressure side flow path 302 of the internal heat exchanger 3 is equal to or higher than a reference value (1 ° C.). If superheat degree SH1 is equal to or greater than the reference value (YES in S106), control device 20 assumes that further cooling can be expected by increasing the flow rate of the refrigerant flowing through low-pressure side flow path 302 of internal heat exchanger 3, and processing is performed. To S107. In S107, the control device 20 increases the opening degree of the second expansion valve 6 and advances the process to S116.
  • control device 20 When superheat degree SH1 is less than the reference value (NO in S106), control device 20 cannot expect further cooling even if the flow rate of the refrigerant flowing through low pressure side flow path 302 of internal heat exchanger 3 is increased, and the gas-liquid Assuming that the two-phase state cannot be resolved, the process proceeds to step 108.
  • control device 20 stops the compressor 1 and advances the process to S109.
  • control device 20 may fully close the first expansion valve 4. Even in this case, the refrigerant can continue to circulate by passing through the second bypass flow path 12. Alternatively, the control device 20 may fully close the first expansion valve 4 and stop the compressor 1.
  • Control device 20 waits for a certain time (for example, 3 minutes) in step 109. Thereafter, the control device 20 advances the process to S110. The control device 20 restarts the compressor 1 in S110 and returns the process to S101.
  • a certain time for example, 3 minutes
  • Control device 20 has a low possibility that evaporator 5 is frozen (YES in S101), and there is a possibility that the gas-liquid two-phase state of the refrigerant from junction J1 may not be resolved (NO in S102).
  • the opening degree of the valve 7 is increased and the process proceeds to S112.
  • the control device 20 determines whether or not the superheat degree SH1 at the outlet of the low pressure side flow path 302 of the internal heat exchanger 3 is equal to or higher than a reference value (1 ° C.).
  • a reference value (1 ° C.
  • control device 20 assumes that further cooling can be expected by increasing the flow rate of the refrigerant flowing through low-pressure side flow path 302 of internal heat exchanger 3, and processing is performed.
  • the control device 20 increases the opening degree of the second expansion valve 6 and advances the process to S116.
  • control device 20 advances the process to step 114, assuming that the flow rate of the refrigerant flowing through low-pressure channel 302 of internal heat exchanger 3 is excessive. .
  • the controller 20 decreases the opening of the second expansion valve 6 and advances the process to S116.
  • the specific reference value and the fixed time shown in the description of FIG. 3 are examples.
  • the reference value and the fixed time may be other values.
  • the reference value and the fixed time can be appropriately determined by actual machine experiments or simulations.
  • the evaporator 5 can be prevented from freezing by suppressing the decrease in the evaporation temperature while continuing the cooling operation. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
  • the scroll (not shown) in the compressor 1 or a non-return valve (not shown) can be mentioned, for example.
  • the airtightness of the refrigeration cycle apparatus 100 is deteriorated, the possibility that the refrigerant leaks from a location where the airtightness is deteriorated increases.
  • the performance of the refrigeration cycle apparatus 100 decreases and the possibility of failure increases. Further, vibration and noise from the refrigeration cycle apparatus 100 are increased, and the possibility that the user's comfort is impaired is increased.
  • the compression ratio is prevented from becoming smaller than the reference value by controlling the amount of refrigerant circulating in the circulation flow path.
  • Embodiment 2 differs from Embodiment 1 in that a configuration for controlling the amount of refrigerant circulating in the circulation channel is provided. Since it is the same about the structure of those other than this, description is not repeated.
  • FIG. 4 is a configuration diagram of the refrigeration cycle apparatus 200 according to the second embodiment.
  • the refrigeration cycle apparatus 200 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6,
  • the valve 7, the valve 8, the liquid receiver 9, the circulation channel 10 ⁇ / b> B, the first bypass channel 11, the second bypass channel 12, and the control device 20 ⁇ / b> B are provided.
  • the circulation flow path 10B connects the compressor 1, the condenser 2, the internal heat exchanger 3, the valve 8, the liquid receiver 9, the first expansion valve 4, and the evaporator 5 with piping to circulate the refrigerant.
  • the control device 20B includes a microcomputer 201B and a drive circuit 203B.
  • the microcomputer 201B controls the opening degree of the second expansion valve 6, the valve 7, and the valve 8 by controlling the drive circuit 203B.
  • the valve 8 may have any form as long as the flow rate of the refrigerant can be adjusted by adjusting the opening.
  • the valve 8 may be an expansion valve such as LEV.
  • the liquid receiver 9 temporarily stores the liquid refrigerant from the valve 8.
  • the opening degree of the valve 8 is adjusted by the control device 20B, the amount of liquid refrigerant sucked into the liquid receiver 9 changes.
  • the amount of liquid refrigerant sucked into the liquid receiver 9 exceeds the amount of liquid refrigerant discharged from the liquid receiver 9, the amount of liquid refrigerant temporarily stored in the liquid receiver 9 increases.
  • the amount of liquid refrigerant sucked into the liquid receiver 9 is less than the amount of liquid refrigerant discharged from the liquid receiver 9, the amount of liquid refrigerant temporarily stored in the liquid receiver 9 decreases. .
  • the control device 20B when the compression ratio is less than the reference value, the control device 20B reduces the amount of refrigerant sucked into the liquid receiver 9 by reducing the opening degree of the valve 8. Assuming that the amount of refrigerant sucked into the compressor 1 is substantially constant, the amount of refrigerant discharged from the liquid receiver 9 is substantially constant. Therefore, when the opening degree of the valve 8 is decreased, the amount of liquid refrigerant temporarily stored in the liquid receiver 9 is decreased. On the other hand, the amount of liquid refrigerant discharged from the condenser 2 is reduced by reducing the opening of the valve 8. That is, the amount of liquid refrigerant in the condenser 2 increases.
  • the heat exchangeable surface area (effective heat transfer area) of the gas refrigerant decreases.
  • the condensation pressure of the gas refrigerant in the condenser 2 increases.
  • the heat radiation amount (condensation capacity) of the condenser 2 is proportional to the product of the effective heat transfer area and the difference between the temperature of the outside air and the condensation temperature. As the condensation temperature increases, the difference between the outside air temperature and the condensation temperature increases.
  • the condensation pressure can be increased without substantially changing the condensation capacity of the condenser 2.
  • the temperature of the liquid refrigerant near the outlet of the condenser 2 is close to the temperature of the outside air.
  • the degree of supercooling of the liquid refrigerant in the vicinity of the outlet of the condenser 2 can be increased by increasing the amount of the liquid refrigerant accumulated in the condenser 2. Therefore, in the second embodiment, more gas refrigerant can be merged with the liquid refrigerant from the condenser 2 by increasing the opening degree of the valve 7 than in the first embodiment. As a result, the evaporation pressure and evaporation temperature in the evaporator 5 can be further increased.
  • FIG. 5 is a Ph diagram of the refrigeration cycle performed by the refrigeration cycle apparatus 200 of FIG.
  • the cycle C2 from the point S21 to the point S21 via the points S22, S23A, S23B, and S24 is performed by the refrigeration cycle apparatus 200 when the risk of freezing of the evaporator 5 increases.
  • FIG. 5 is a diagram in which a cycle C2 is added to FIG.
  • Point S21, point S22, point S23A, point S23B, and point S24 in cycle C2 correspond to point S11, point S12, point S13A, point S13B, and point S14 in cycle C1, respectively.
  • the state change from the point S22 to the point S23A is performed on the higher pressure side than the state change from the point S12 to the point S13A (Embodiment 1).
  • This indicates that the condensation pressure in the second embodiment is higher in the condenser 2 than in the first embodiment in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased.
  • the portion of the state change from the point S22 to the point S23A (Embodiment 2) that has a lower specific enthalpy than the curve SL is more than the curve SL of the state change from the point S12 to the point S13A (Embodiment 1).
  • the specific enthalpy is longer than the lower part. This indicates that in the refrigeration cycle when the risk of freezing of the evaporator 5 increases, the degree of supercooling of the liquid refrigerant discharged from the condenser 2 is greater in the second embodiment than in the first embodiment. ing.
  • the specific enthalpy of point S23B (Embodiment 2) is larger than the specific enthalpy of point S13B (Embodiment 1). This is because, in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased, the second embodiment joins a larger amount of gas refrigerant to the liquid refrigerant from the condenser 2 than the first embodiment. Means.
  • the state change from the point S24 to the point S21 (Embodiment 2) is performed on the higher pressure side than the state change from the point S14 to the point S11 (Embodiment 1). This means that in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased, the evaporation pressure in the evaporator 5 is larger in the second embodiment than in the first embodiment.
  • the interval (second embodiment) between the state change from the point S22 to the point S23A and the state change from the point S24 to the point S21 is the state change from the point S12 to the point S13A and the state change from the point S14 to the point S11. Is larger than the interval (Embodiment 1). This means that in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased, the difference between the condensation pressure and the evaporation pressure is greater in the second embodiment than in the first embodiment.
  • FIG. 6 is a flowchart for explaining processing performed by the control device 20B of FIG. 4 during the cooling operation.
  • the process shown in FIG. 6 is called at regular time intervals by a main routine (not shown) of the cooling operation.
  • the control device 20B controls the outlet of the compressor 1 ( It is determined whether or not the ratio between the pressure Pd on the high pressure side and the pressure Ps at the inlet (low pressure side) of the compressor 1 is a reference value (for example, 1.4) or more. Since the pressure Pd is a condensation pressure and the pressure Ps is an evaporation pressure, the ratio between the pressure Pd and the pressure Ps can be said to be a ratio (compression ratio) between the condensation pressure and the evaporation pressure.
  • control device 20B advances the process to S202.
  • the controller 20B advances the process to S116 after reducing the opening of the valve 8 in S202. If the compression ratio is greater than or equal to the reference value (YES in S201), control device 20B advances the process to S203.
  • Control device 20B determines in S203 whether or not pressure Pd (condensation pressure) is a reference value (for example, 4.0 MPa) or less. If pressure Pd is equal to or lower than the reference value (YES in S203), control device 20B advances the process to S116, assuming that the condensation pressure is within an appropriate range. If pressure Pd is larger than the reference value (NO in S203), control device 20B advances the process to S204, assuming that the condensation pressure is excessive. In S204, the control device 20B increases the opening degree of the valve 8, and then advances the processing to S116. In S116, control device 20B waits for a fixed time (for example, 1 minute), and returns the process to the main routine of the cooling operation.
  • Pd condensation pressure
  • freezing of the evaporator 5 can be prevented by suppressing the decrease in the evaporation temperature while continuing the cooling operation as in the first embodiment.
  • the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
  • the refrigeration cycle apparatus 200 it is possible to perform a process for preventing the evaporator 5 from freezing while preventing the compression ratio from becoming smaller than the reference value. That is, during the process of preventing the evaporator 5 from freezing, the difference between the condensation pressure and the evaporation pressure can be maintained at an appropriate value, and the airtightness of the refrigeration cycle apparatus 200 can be maintained. As a result, for example, leakage of the refrigerant can be prevented, and a decrease in performance and failure of the refrigeration cycle apparatus 200 can be prevented. Further, vibration and noise due to refrigerant leakage can be prevented, and user comfort can be ensured.
  • the evaporation temperature can be further increased than in the first embodiment. As a result, freezing of the evaporator 5 can be prevented more reliably.
  • the arrangement of the valve 8 and the liquid receiver 9 is not limited to the arrangement shown in FIG. 4, but the refrigerant passing through the valve 8 is preferably in a supercooled state. Therefore, the arrangement of the valve 8 and the liquid receiver 9 is preferably the arrangement of FIG. 4 in which the liquid refrigerant cooled by the internal heat exchanger 3 passes through the valve 8.
  • Embodiment 2 the case where it is determined whether or not the compression ratio is equal to or higher than the reference value in S201 has been described.
  • S201 for example, it may be determined whether or not the pressure of the evaporator 5 (evaporation pressure) is equal to or higher than a reference value.
  • the configuration including the valve 8 and the liquid receiver 9 has been described as the configuration for controlling the amount of the refrigerant circulating in the circulation flow path 10.
  • the configuration for controlling the amount of refrigerant circulating in the circulation channel 10 is not limited to the configuration of the second embodiment.
  • another configuration for controlling the amount of refrigerant circulating in the circulation flow path 10 will be described.
  • Embodiment 3 differs from Embodiment 2 in the configuration for controlling the amount of refrigerant circulating in the circulation channel 10 and the control for the configuration by the control device 20C. Since the configuration other than these is the same, the description will not be repeated.
  • FIG. 7 is a configuration diagram of the refrigeration cycle apparatus 300 according to the third embodiment.
  • the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, The valve 7, the circulation channel 10, the first bypass channel 11, the second bypass channel 12, the refrigerant tank 40, the valves 41 and 42, the third bypass channel 13, and the control device 20C. Prepare.
  • the third bypass flow path 13 branches from a branch point B3 located between the branch point B2 and the first expansion valve 4 in a portion of the circulation flow path 10 from the internal heat exchanger 3 to the first expansion valve 4. To do.
  • the branch point B3 may be disposed anywhere as long as it is a part (a part on the high pressure side) from the compressor 1 to the evaporator 5 in the circulation flow path 10.
  • the third bypass passage 13 passes through the valve 41, the refrigerant tank 40, and the valve 42 in this order.
  • the third bypass flow path 13 joins the junction J3 located between the evaporator 5 and the junction J2 in the portion of the circulation path 10 from the evaporator 5 to the compressor 1.
  • the junction J3 may be disposed anywhere as long as it is a portion (a portion on the low pressure side) of the circulation flow path 10 from the evaporator 5 to the compressor 1.
  • the control device 20C includes a microcomputer 201C and a drive circuit 203C.
  • the microcomputer 201C controls the drive circuit 203C to adjust the opening degree of the second expansion valve 6 and the valve 7, and opens and closes the valve 41 and the valve 42.
  • the control device 20C adjusts the amount of refrigerant discharged from the refrigerant tank 40 to the circulation flow path 10 by controlling the opening and closing of the valve 41 and the valve 42.
  • FIG. 8 is a flowchart for explaining processing performed by the control device 20C of FIG. 7 during the cooling operation. The process shown in FIG. 8 is called at regular time intervals by a main routine (not shown) of the cooling operation.
  • the control device 20C controls the outlet ( It is determined whether or not the ratio (compression ratio) between the pressure Pd on the high pressure side and the pressure Ps at the inlet (low pressure side) of the compressor 1 is a reference value (for example, 1.4) or more. If the compression ratio is less than the reference value (NO in S201), control device 20C advances the process to S301. The control device 20C advances the process to S203 after opening the valve 42 in S301. If the compression ratio is greater than or equal to the reference value (YES in S201), control device 20C advances the process to S302. The control device 20C advances the process to S203 after closing the valve 42 in S302.
  • the controller 20C determines whether or not the pressure Pd (condensation pressure) is equal to or lower than a reference value (for example, 4.0 MPa) in S203. If pressure Pd is equal to or lower than the reference value (YES in S203), control device 20C advances the process to S303, assuming that the condensation pressure is within an appropriate range. After closing valve 41 in S303, control device 20C advances the process to S116. If pressure Pd is greater than the reference value (NO in S203), control device 20C advances the process to S304, assuming that the condensation pressure is excessive. The control device 20C advances the process to S116 after opening the valve 41 in S304. In S116, control device 20C waits for a fixed time (for example, 1 minute), and returns the process to the main routine of the cooling operation.
  • a reference value for example, 4.0 MPa
  • the evaporator 5 can be prevented from freezing by suppressing the decrease in the evaporation temperature while continuing the cooling operation. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
  • the refrigeration cycle apparatus 300 similarly to the second embodiment, it is possible to perform the process of preventing the evaporator 5 from being frozen while preventing the compression ratio from becoming smaller than the reference value. As a result, the airtightness of the refrigeration cycle apparatus 200 can be maintained. Since the airtightness of the refrigeration cycle apparatus 200 can be maintained, for example, leakage of refrigerant can be prevented, and a decrease in performance and failure of the refrigeration cycle apparatus 200 can be prevented. Further, vibration and noise due to refrigerant leakage can be prevented, and user comfort can be ensured.
  • valves 41 and 42 may be valves capable of adjusting the opening degree. Since the opening degree of the valves 41 and 42 can be adjusted, the amount of the refrigerant discharged from the refrigerant tank 40 to the circulation channel 10 can be controlled more finely.
  • the fourth embodiment differs from the first embodiment in that the confluence J1D of the first bypass flow path 11D is located in a portion from the evaporator 5 to the compressor 1 and the control performed during the cooling operation. This is control by the device 20D. Since it is the same about other points, description is not repeated.
  • FIG. 9 is a configuration diagram of the refrigeration cycle apparatus 400 according to the fourth embodiment.
  • the refrigeration cycle apparatus 400 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, The valve 7, the circulation channel 10, the first bypass channel 11 ⁇ / b> D, the second bypass channel 12, and the control device 20 ⁇ / b> D are provided.
  • 1st bypass flow path 11D branches from the branch point B1 located in the part from the compressor 1 to the condenser 2 of the circulation flow path 10.
  • FIG. The first bypass channel 11D passes through the valve 7.
  • the first bypass flow path 11D joins the junction J1D located in the part of the circulation flow path 10 from the evaporator 5 to the compressor 1.
  • Control device 20D includes a microcomputer 201D and a temperature detection unit 205D.
  • the microcomputer 201D acquires the temperature of the inlet of the compressor 1 from the temperature detection unit 205D.
  • the temperature detection unit 205D calculates the temperature near the inlet of the compressor 1 based on a signal from the temperature sensor 37 attached near the inlet of the compressor 1.
  • the microcomputer 201D calculates the superheat degree SH2 at the inlet of the compressor 1 based on the pressure on the low pressure side and the temperature at the inlet of the compressor 1.
  • the control device 20D increases the opening of the valve 7 to increase the amount of refrigerant passing through the first bypass passage 11D. Along with this, the amount of refrigerant passing through the condenser 2 decreases. As a result, the condensation pressure in the condenser 2 is lower than normal.
  • the gas refrigerant from the first bypass passage 11D is a high temperature because it is a gas refrigerant discharged from the compressor 1. Therefore, when the refrigerant from the first bypass passage 11D merges with the low-temperature gas refrigerant from the evaporator 5, the temperature of the gas refrigerant after merging rises more than usual. If the temperature of the gas refrigerant sucked into the compressor 1 rises excessively, the compressor 1 stops due to protection control. Therefore, in the fourth embodiment, in order to cool the gas refrigerant sucked into the compressor 1, the low-temperature gas refrigerant is merged with the gas refrigerant from the evaporator 5 by the second bypass passage 12. The amount of the low-temperature gas refrigerant to be merged with the gas refrigerant from the evaporator 5 is adjusted by adjusting the opening degree of the second expansion valve 6.
  • FIG. 10 is a Ph diagram of the refrigeration cycle performed by the refrigeration cycle apparatus 400 of FIG.
  • a cycle C4 that returns from the point S41 to the point S41 via the points S42, S43, and S44 is performed by the refrigeration cycle apparatus 400 when the risk of freezing of the evaporator 5 increases. Represents.
  • the state change from the point S42 to the point S43 is performed on the lower pressure side than the state change from the point S2 to the point S3. This indicates that the amount of refrigerant passing through the condenser 2 is decreased by increasing the amount of refrigerant passing through the first bypass flow path 11D, and as a result, the condensation pressure of the condenser 2 is reduced. . Further, the state change from the point S44 to the point S41 is performed on the higher pressure side than the state change from the point S4 to the point S1. This indicates that the amount of refrigerant passing through the evaporator 5 is decreased by increasing the amount of refrigerant passing through the second bypass flow path 12, and as a result, the evaporation pressure of the evaporator 5 is increased. .
  • FIG. 11 is a flowchart for explaining processing performed by the control device 20D of FIG. 9 during the cooling operation.
  • the process shown in FIG. 11 is called at regular time intervals by the main routine (not shown) of the cooling operation.
  • control device 20D determines whether or not the cooling capacity is excessive in S401 (for example, the room temperature is lower than the reference value or higher than the target temperature). If the cooling capacity is not excessive (NO in S401), control device 20D advances the process to S101, assuming that there is room for further increasing the cooling capacity.
  • the control device 20D determines whether or not the piping temperature Te of the evaporator 5 is equal to or higher than a reference value (1 ° C.) in S101.
  • a reference value (1 ° C.) in S101 the lower one of the temperatures detected by the temperature sensors 35 and 36 is adopted as the pipe temperature Te. If pipe temperature Te is less than the reference value (NO in S101), S108 to S110 are performed as in the first embodiment, and then the process returns to S401. If pipe temperature Te is equal to or higher than the reference value (YES in S101), control device 20D advances the process to S405 after decreasing the opening degree of valve 7 in S403 in order to increase the cooling capacity.
  • control device 20D advances the process to S405 after increasing the opening of valve 7 in S404 in order to decrease the cooling capacity.
  • control device 20D determines whether or not the superheat degree SH2 at the inlet of the compressor 1 is equal to or higher than a reference value (eg, 1 ° C.).
  • a reference value eg, 1 ° C.
  • control device 20D determines that the gas refrigerant from evaporator 5 is excessively cooled by the gas refrigerant from second bypass flow path 12.
  • control device 20D advances the process to S116 after decreasing the opening degree of second expansion valve 6 in S406. If superheat degree SH2 is greater than or equal to the reference value (YES in S405), control device 20D advances the process to S407.
  • Control device 20D determines in S407 whether superheat degree SH2 is a reference value (for example, 3 ° C.) or less. If superheat degree SH2 is greater than the reference value (NO in S407), control device 20D advances the process to S408, assuming that the temperature of the gas refrigerant sucked into compressor 1 has risen excessively. After increasing the opening degree of the second expansion valve 6 in S408, the control device 20D advances the process to S116. If superheat degree SH2 is equal to or greater than the reference value (YES in S407), control device 20D advances the process to S116, assuming that the temperature of the gas refrigerant sucked into compressor 1 is appropriate. In S116, control device 20D waits for a fixed time (for example, 1 minute), and returns the process to the main routine of the cooling operation.
  • a reference value for example, 3 ° C.
  • the evaporator 5 can be prevented from freezing by suppressing the decrease in the evaporation temperature while continuing the cooling operation as in the first embodiment. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
  • the refrigeration cycle apparatus 400 most of the refrigerant discharged from the compressor 1 may pass through the first bypass channel 11D and the second bypass channel 12. In such a case, almost no refrigerant passes through the evaporator 5. That is, according to the refrigeration cycle apparatus 400, the endothermic amount of the evaporator 5 can be made almost zero without stopping the compressor 1. As a result, the temperature of the evaporator 5 becomes substantially the same as the room temperature, and the freezing of the evaporator 5 is effectively prevented.
  • valve 8 and the liquid receiver 9 in the second embodiment may be applied to the fourth embodiment to control the compression ratio as in the second embodiment.
  • the valve 41, the valve 42, and the refrigerant tank 40 in the third embodiment are applied to the fourth embodiment, and the condensation pressure is increased and the compression ratio is appropriately maintained as in the second embodiment. It doesn't matter.

Abstract

In this refrigeration cycle device (100), a refrigerant circulates in the order of: a compressor (1); a condenser (2); a first expansion valve (4); and an evaporator (5). The refrigeration cycle device (100) is equipped with a first bypass flow path (11). The first bypass flow path (11) branches off from a first flow path connecting the compressor (1) and the condenser (2), and is connected, with a second valve (7) interposed therebetween, to a second flow path connecting the condenser (2) and the first expansion valve (4) or a third flow path connecting the evaporator (5) and the compressor (1). The opening degree of the second valve (7) in the cases when the evaporation temperature in the evaporator (5) is less than a first reference value is larger than that in the cases when the evaporation temperature is more than the first reference value.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関する。 The present invention relates to a refrigeration cycle apparatus.
 従来、能力を制御することができる冷凍サイクル装置が知られている。特開平09-053861号公報(特許文献1)には、凝縮器に溜まる液冷媒量を制御することにより冷凍サイクル装置の能力を制御する構成が開示されている。 Conventionally, a refrigeration cycle apparatus capable of controlling the capacity is known. Japanese Patent Laid-Open No. 09-053861 (Patent Document 1) discloses a configuration for controlling the capacity of a refrigeration cycle apparatus by controlling the amount of liquid refrigerant accumulated in a condenser.
特開平09-053861号公報JP 09-038661 A
 大容量の室外熱交換器に対して複数の室内熱交換器を接続するようなマルチ型空気調和機において、室内熱交換器のうち1台のみを運転する場合のように、運転中の室内熱交換器の容量の合計が室外熱交換器の容量よりも非常に小さい場合、室外熱交換器によって交換される熱量と、室内熱交換器によって交換される熱量とが不均衡となる。冷房運転をする場合、凝縮器として機能する室外熱交換器が外気に放出した熱量が、蒸発器として機能する室内熱交換器が回収する熱量よりも多くなる。このような状態で冷凍サイクルが継続されると、室内熱交換器における蒸発圧力が低下する。その結果、蒸発温度が低下して室内熱交換器が凍結するおそれが高まる。 In a multi-type air conditioner in which a plurality of indoor heat exchangers are connected to a large-capacity outdoor heat exchanger, the indoor heat during operation is the same as when only one of the indoor heat exchangers is operated. When the total capacity of the exchanger is much smaller than the capacity of the outdoor heat exchanger, the amount of heat exchanged by the outdoor heat exchanger and the amount of heat exchanged by the indoor heat exchanger become imbalanced. When performing a cooling operation, the amount of heat released to the outside air by the outdoor heat exchanger functioning as a condenser is larger than the amount of heat recovered by the indoor heat exchanger functioning as an evaporator. When the refrigeration cycle is continued in such a state, the evaporation pressure in the indoor heat exchanger decreases. As a result, the risk of the evaporation temperature being lowered and the indoor heat exchanger freezing increases.
 また、外気の温度が低い状態で冷房運転を行なうと、室外熱交換器の凝縮圧力が低下する。凝縮圧力が低下したことに応じて室内熱交換器の蒸発圧力が低下する。その結果、蒸発温度が低下し、室内熱交換器が凍結するおそれが高まる。 In addition, when the cooling operation is performed in a state where the temperature of the outside air is low, the condensation pressure of the outdoor heat exchanger decreases. The evaporation pressure of the indoor heat exchanger decreases in response to the decrease in the condensation pressure. As a result, the evaporation temperature is lowered, and the possibility that the indoor heat exchanger will freeze increases.
 一般に、蒸発器が凍結すると、風路が閉塞してしまい、熱交換が不可能になって、その後の冷凍サイクルによる空調が不可能になり得る。また、水の凝固による体積膨張により配管が圧縮されて破壊した場合には、冷媒が大気に漏洩する。したがって、蒸発器の凍結を防止する必要がある。 Generally, when the evaporator is frozen, the air passage is blocked, heat exchange becomes impossible, and air conditioning by a subsequent refrigeration cycle may become impossible. In addition, when the piping is compressed and destroyed by volume expansion due to water solidification, the refrigerant leaks to the atmosphere. Therefore, it is necessary to prevent the evaporator from freezing.
 蒸発器の凍結の可能性が高まった場合に、冷凍サイクル装置を停止することによって蒸発器の蒸発温度の低下を抑制し、蒸発器の凍結を防止することができる。しかし、蒸発器の凍結のおそれが高まる度に冷凍サイクル装置が停止すると、冷凍サイクル装置が停止と再起動とを繰り返し、冷房運転が安定的に行なわれなくなってしまう。その結果、冷凍サイクル装置を再起動する度に余分のエネルギーが必要になるとともに、ユーザの快適性が損なわれるおそれがある。 When the possibility of freezing of the evaporator is increased, the refrigeration cycle apparatus is stopped to suppress a decrease in the evaporation temperature of the evaporator and to prevent the evaporator from freezing. However, if the refrigeration cycle apparatus stops every time the risk of freezing of the evaporator increases, the refrigeration cycle apparatus repeatedly stops and restarts, and the cooling operation is not stably performed. As a result, extra energy is required every time the refrigeration cycle apparatus is restarted, and user comfort may be impaired.
 特開平09-053861号公報(特許文献1)には、蒸発器の凍結を防止するように冷凍サイクル装置を制御する構成については開示されていない。 Japanese Patent Laid-Open No. 09-038661 (Patent Document 1) does not disclose a configuration for controlling the refrigeration cycle apparatus so as to prevent the evaporator from freezing.
 本発明は、上述のような課題を解決するためになされたものであり、その目的は、冷凍サイクル装置が停止および再起動を繰り返すことを抑制しながら、蒸発器の凍結を防止することができる冷凍サイクル装置を提供することである。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to prevent the evaporator from freezing while suppressing the refrigeration cycle apparatus from repeatedly stopping and restarting. A refrigeration cycle apparatus is provided.
 本発明に係る冷凍サイクル装置においては、冷媒が、圧縮機、凝縮器、第1膨張弁、および蒸発器の順に循環する。冷凍サイクル装置は、第1バイパス流路を備える。第1バイパス流路は、圧縮機と凝縮器とを接続する第1流路から分岐して、第2弁を介して、凝縮器と第1膨張弁とを接続する第2流路、および蒸発器と圧縮機とを接続する第3流路のいずれかに接続される。第2弁の開度は、蒸発器における蒸発温度が第1基準値未満の場合の方が、蒸発温度が第1基準値より大きい場合より大きい。 In the refrigeration cycle apparatus according to the present invention, the refrigerant circulates in the order of the compressor, the condenser, the first expansion valve, and the evaporator. The refrigeration cycle apparatus includes a first bypass flow path. The first bypass flow path branches off from the first flow path connecting the compressor and the condenser, the second flow path connecting the condenser and the first expansion valve via the second valve, and evaporation Connected to one of the third flow paths connecting the compressor and the compressor. The opening degree of the second valve is larger when the evaporation temperature in the evaporator is lower than the first reference value and when the evaporation temperature is higher than the first reference value.
 本発明によれば、冷凍サイクル装置を運転しながら蒸発温度の低下を抑制することにより、冷凍サイクル装置が停止および再起動を繰り返すことを抑制しながら蒸発器の凍結を防止することができる。その結果、冷房運転を安定的に継続することができ、省エネルギー性能およびユーザの快適性を確保することができる。 According to the present invention, by suppressing the decrease in the evaporation temperature while operating the refrigeration cycle apparatus, it is possible to prevent the evaporator from freezing while suppressing the refrigeration cycle apparatus from repeatedly stopping and restarting. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
実施の形態1に係る冷凍サイクル装置の構成図である。1 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 1. FIG. 図1の冷凍サイクル装置によって行なわれる冷凍サイクルのP-h線図である。FIG. 2 is a Ph diagram of a refrigeration cycle performed by the refrigeration cycle apparatus of FIG. 1. 図1の制御装置によって冷房運転時に行なわれる処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process performed at the time of air_conditionaing | cooling operation by the control apparatus of FIG. 実施の形態2に係る冷凍サイクル装置の構成図である。3 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 2. FIG. 図4の冷凍サイクル装置によって行なわれる冷凍サイクルのP-h線図である。FIG. 5 is a Ph diagram of a refrigeration cycle performed by the refrigeration cycle apparatus of FIG. 4. 冷房運転時に図4の制御装置によって行なわれる処理を説明するためのフローチャートである。5 is a flowchart for explaining processing performed by the control device of FIG. 4 during cooling operation. 実施の形態3に係る冷凍サイクル装置の構成図である。6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 3. FIG. 冷房運転時に図7の制御装置によって行なわれる処理を説明するためのフローチャートである。It is a flowchart for demonstrating the process performed by the control apparatus of FIG. 7 at the time of air_conditionaing | cooling operation. 実施の形態4に係る冷凍サイクル装置の構成図である。6 is a configuration diagram of a refrigeration cycle apparatus according to Embodiment 4. FIG. 図9の冷凍サイクル装置によって行なわれる冷凍サイクルのP-h線図である。FIG. 10 is a Ph diagram of a refrigeration cycle performed by the refrigeration cycle apparatus of FIG. 9. 冷房運転時に図9の制御装置によって行なわれる処理を説明するためのフローチャートである。10 is a flowchart for explaining processing performed by the control device of FIG. 9 during cooling operation.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [実施の形態1]
 図1は、実施の形態1に係る冷凍サイクル装置100の構成図である。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2と、内部熱交換器3と、第1膨張弁4と、蒸発器5と、第2膨張弁6と、弁7と、循環流路10と、第1バイパス流路11と、第2バイパス流路12と、制御装置20とを備える。
[Embodiment 1]
FIG. 1 is a configuration diagram of a refrigeration cycle apparatus 100 according to the first embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, A valve 7, a circulation channel 10, a first bypass channel 11, a second bypass channel 12, and a control device 20 are provided.
 循環流路10は、圧縮機1、凝縮器2、内部熱交換器3、第1膨張弁4、および蒸発器5を配管でつなぎ、冷媒を循環させる。 The circulation channel 10 connects the compressor 1, the condenser 2, the internal heat exchanger 3, the first expansion valve 4, and the evaporator 5 with piping to circulate the refrigerant.
 圧縮機1は、制御装置20からの駆動周波数に基づいて回転速度が制御され、ガス冷媒を圧縮して吐出する。 The compressor 1 has a rotational speed controlled based on a driving frequency from the control device 20, and compresses and discharges the gas refrigerant.
 凝縮器2は、圧縮機1から吐出されたガス冷媒を凝縮して液冷媒を吐出する。
 第1膨張弁4は、内部熱交換器3からの冷媒を膨張させて減圧する。第1膨張弁4は、開度が調節可能である。第1膨張弁4は、たとえば電子制御式膨張弁(LEV:Linear Expansion Valve)である。
The condenser 2 condenses the gas refrigerant discharged from the compressor 1 and discharges the liquid refrigerant.
The first expansion valve 4 expands and depressurizes the refrigerant from the internal heat exchanger 3. The opening degree of the first expansion valve 4 can be adjusted. The first expansion valve 4 is, for example, an electronically controlled expansion valve (LEV).
 蒸発器5は、第1膨張弁4から吐出された液体の冷媒(液冷媒)を蒸発させて気体の冷媒(ガス冷媒)を吐出する。 The evaporator 5 evaporates the liquid refrigerant (liquid refrigerant) discharged from the first expansion valve 4 and discharges the gas refrigerant (gas refrigerant).
 第1バイパス流路11は、圧縮機1から凝縮器2に至る循環流路10の部分に位置する分岐点B1から分岐する。第1バイパス流路11は、弁7を経由する。第1バイパス流路11は、凝縮器2から内部熱交換器3に至る循環流路10の部分に位置する合流点J1に合流する。 1st bypass flow path 11 branches from branch point B1 located in the part of the circulation flow path 10 from the compressor 1 to the condenser 2. The first bypass flow path 11 passes through the valve 7. The first bypass channel 11 merges at a junction J1 located at a portion of the circulation channel 10 extending from the condenser 2 to the internal heat exchanger 3.
 弁7は、開度を調節することにより冷媒の流量を調節可能なものであればどのような態様のものであってもよい。弁7は、たとえばLEVのような膨張弁であってもよい。 The valve 7 may have any form as long as the flow rate of the refrigerant can be adjusted by adjusting the opening. The valve 7 may be an expansion valve such as LEV.
 内部熱交換器3は、合流点J1からの冷媒が通過する流路(高圧側流路301)と第2膨張弁6からの冷媒が通過する流路(低圧側流路302)とを含む。内部熱交換器3は、合流点J1からの冷媒の熱を第2膨張弁6からの冷媒に吸収させて、合流点J1からの冷媒を冷却する役割をもつ。内部熱交換器3は、たとえば二重管式熱交換器である。 The internal heat exchanger 3 includes a flow path (high pressure side flow path 301) through which the refrigerant from the junction J1 passes and a flow path (low pressure side flow path 302) through which the refrigerant from the second expansion valve 6 passes. The internal heat exchanger 3 serves to cool the refrigerant from the junction J1 by causing the refrigerant from the second expansion valve 6 to absorb the heat of the refrigerant from the junction J1. The internal heat exchanger 3 is, for example, a double tube heat exchanger.
 第2膨張弁6は、冷媒を膨張させて減圧する。第2膨張弁6は、たとえばLEVである。 The second expansion valve 6 expands the refrigerant to reduce the pressure. The second expansion valve 6 is, for example, a LEV.
 第2バイパス流路12は、内部熱交換器3から第1膨張弁4に至る循環流路10の部分に位置する分岐点B2から分岐する。第2バイパス流路12は、第2膨張弁6の次に内部熱交換器3を経由する。第2バイパス流路12は、蒸発器5から圧縮機1に至る循環流路10の部分に位置する合流点J2に合流する。 The second bypass flow path 12 branches from a branch point B2 located at a part of the circulation flow path 10 extending from the internal heat exchanger 3 to the first expansion valve 4. The second bypass flow path 12 passes through the internal heat exchanger 3 next to the second expansion valve 6. The second bypass flow path 12 merges at a merge point J2 located at a portion of the circulation flow path 10 from the evaporator 5 to the compressor 1.
 制御装置20は、マイクロコンピュータ201と、駆動回路202,203と、圧力検出部204と、温度検出部205とを含む。マイクロコンピュータ201は、駆動回路202を制御することにより圧縮機1を駆動する。マイクロコンピュータ201は、駆動回路203を制御することにより、第2膨張弁6および弁7の開度を調節する。マイクロコンピュータ201は、圧力検出部204から圧縮機1の入口(低圧側)の圧力および圧縮機1の出口(高圧側)の圧力を取得する。圧力検出部204は、圧縮機1の入口に取り付けられた圧力センサ31からの信号に基づいて低圧側の圧力を算出する。圧力検出部204は、圧縮機1の出口に取り付けられた圧力センサ32からの信号に基づいて高圧側の圧力を算出する。 The control device 20 includes a microcomputer 201, drive circuits 202 and 203, a pressure detection unit 204, and a temperature detection unit 205. The microcomputer 201 drives the compressor 1 by controlling the drive circuit 202. The microcomputer 201 controls the opening degree of the second expansion valve 6 and the valve 7 by controlling the drive circuit 203. The microcomputer 201 acquires the pressure at the inlet (low pressure side) of the compressor 1 and the pressure at the outlet (high pressure side) of the compressor 1 from the pressure detection unit 204. The pressure detection unit 204 calculates the pressure on the low pressure side based on a signal from the pressure sensor 31 attached to the inlet of the compressor 1. The pressure detection unit 204 calculates the pressure on the high pressure side based on a signal from the pressure sensor 32 attached to the outlet of the compressor 1.
 マイクロコンピュータ201は、高圧側の圧力および内部熱交換器3の高圧側流路301の出口の温度に基づいて、内部熱交換器3の高圧側流路301の出口の過冷却度を算出する。マイクロコンピュータ201は、低圧側の圧力および内部熱交換器3の低圧側流路302の出口の温度に基づいて、内部熱交換器3の低圧側流路302の出口の過熱度を算出する。 The microcomputer 201 calculates the degree of supercooling at the outlet of the high-pressure side passage 301 of the internal heat exchanger 3 based on the pressure on the high-pressure side and the temperature of the outlet of the high-pressure side passage 301 of the internal heat exchanger 3. The microcomputer 201 calculates the degree of superheat at the outlet of the low-pressure side passage 302 of the internal heat exchanger 3 based on the pressure on the low-pressure side and the temperature of the outlet of the low-pressure side passage 302 of the internal heat exchanger 3.
 マイクロコンピュータ201は、温度検出部205から、内部熱交換器3の高圧側流路301の出口の温度、および内部熱交換器3の低圧側流路302の出口の温度を取得する。温度検出部205は、内部熱交換器3の高圧側流路301の出口に取り付けられた温度センサ33からの信号に基づいて、内部熱交換器3の高圧側流路301の出口の温度を算出する。温度検出部205は、内部熱交換器3の低圧側流路302の出口に取り付けられた温度センサ34からの信号に基づいて、内部熱交換器3の低圧側流路302の出口の温度を算出する。 The microcomputer 201 acquires the temperature of the outlet of the high-pressure side channel 301 of the internal heat exchanger 3 and the temperature of the outlet of the low-pressure side channel 302 of the internal heat exchanger 3 from the temperature detection unit 205. The temperature detection unit 205 calculates the temperature of the outlet of the high-pressure side channel 301 of the internal heat exchanger 3 based on a signal from the temperature sensor 33 attached to the outlet of the high-pressure side channel 301 of the internal heat exchanger 3. To do. The temperature detection unit 205 calculates the temperature of the outlet of the low-pressure side passage 302 of the internal heat exchanger 3 based on a signal from the temperature sensor 34 attached to the outlet of the low-pressure side passage 302 of the internal heat exchanger 3. To do.
 制御装置20は、さらにマイクロコンピュータ206と、駆動回路207と、温度検出部208とを含む。マイクロコンピュータ206は、駆動回路207を制御することにより第1膨張弁4の開度を調節する。マイクロコンピュータ206は、温度検出部208から蒸発器5の配管入口の温度および蒸発器5の配管出口の温度を取得する。温度検出部208は、蒸発器5の配管入口に取り付けられた温度センサ35からの信号に基づいて蒸発器5の配管入口の温度を算出する。温度検出部208は、蒸発器5の配管出口に取り付けられた温度センサ36からの信号に基づいて蒸発器5の配管出口の温度を算出する。 The control device 20 further includes a microcomputer 206, a drive circuit 207, and a temperature detection unit 208. The microcomputer 206 controls the drive circuit 207 to adjust the opening degree of the first expansion valve 4. The microcomputer 206 acquires the temperature of the pipe inlet of the evaporator 5 and the temperature of the pipe outlet of the evaporator 5 from the temperature detection unit 208. The temperature detection unit 208 calculates the temperature of the pipe inlet of the evaporator 5 based on a signal from the temperature sensor 35 attached to the pipe inlet of the evaporator 5. The temperature detection unit 208 calculates the temperature of the pipe outlet of the evaporator 5 based on a signal from the temperature sensor 36 attached to the pipe outlet of the evaporator 5.
 マイクロコンピュータ206は、マイクロコンピュータ201から高圧側の圧力と低圧側の圧力とを取得する。マイクロコンピュータ206は、低圧側の圧力および蒸発器5の配管出口の温度に基づいて、蒸発器5の配管出口の過熱度を算出する。マイクロコンピュータ206は、蒸発器5の配管出口の過熱度が目標値(たとえば過熱度1℃)に近づくように第1膨張弁4の開度を調節する(過熱度制御)。 The microcomputer 206 acquires a high-pressure side pressure and a low-pressure side pressure from the microcomputer 201. The microcomputer 206 calculates the degree of superheat at the pipe outlet of the evaporator 5 based on the pressure on the low pressure side and the temperature of the pipe outlet of the evaporator 5. The microcomputer 206 adjusts the opening degree of the first expansion valve 4 so that the superheat degree at the pipe outlet of the evaporator 5 approaches a target value (for example, the superheat degree of 1 ° C.) (superheat degree control).
 冷媒は、冷凍サイクルにおいて液冷媒とガス冷媒との間で状態変化を繰り返しながら、熱の吸収と放出とを繰り返す。以下では図2を参照しながら、冷凍サイクルの各過程について説明する。 Refrigerant repeatedly absorbs and releases heat while repeating state changes between liquid refrigerant and gas refrigerant in the refrigeration cycle. Hereinafter, each process of the refrigeration cycle will be described with reference to FIG.
 図2は、図1の冷凍サイクル装置100によって行なわれる冷凍サイクルの圧力と比エンタルピーとの関係を示すP-h線図である。図2において、点CPは、冷媒の臨界点である。曲線SLは、冷媒の飽和液線である。曲線SVは、冷媒の飽和蒸気線である。点S1から、点S2、点S3、および点S4を経て点S1へ戻ってくるサイクルC0は、冷凍サイクル装置100における通常時の冷凍サイクルを表す。点S1から点S2への状態変化は、圧縮機1による冷媒の圧縮の過程を表す。点S2から点S3への状態変化は、凝縮器2による冷媒の凝縮の過程を表す。点S3から点S4への状態変化は、第1膨張弁4による冷媒の減圧の過程を表す。点S4から点S1への状態変化は、蒸発器5による冷媒の蒸発の過程を表す。 FIG. 2 is a Ph diagram showing the relationship between the pressure of the refrigeration cycle performed by the refrigeration cycle apparatus 100 of FIG. 1 and the specific enthalpy. In FIG. 2, point CP is the critical point of the refrigerant. A curve SL is a saturated liquid line of the refrigerant. A curve SV is a saturated vapor line of the refrigerant. A cycle C0 that returns from the point S1 to the point S1 through the points S2, S3, and S4 represents a normal refrigeration cycle in the refrigeration cycle apparatus 100. The state change from the point S1 to the point S2 represents the process of compressing the refrigerant by the compressor 1. The state change from the point S2 to the point S3 represents the process of condensing the refrigerant by the condenser 2. The state change from the point S3 to the point S4 represents the process of depressurizing the refrigerant by the first expansion valve 4. The state change from the point S4 to the point S1 represents the process of evaporation of the refrigerant by the evaporator 5.
 圧縮機1の入口付近の冷媒は、低温かつ低圧のガス冷媒である。このガス冷媒が圧縮機1に吸入され、圧縮機1に圧縮されて高温かつ高圧のガス冷媒となって吐出される。圧縮機1による圧縮により、冷媒にエネルギーが加わる。その結果、冷媒の比エンタルピーが増加する。圧縮機1による冷媒の圧縮の過程は、図2において点S1から点S2への状態変化として表されている。点S2における比エンタルピーおよび圧力は、いずれも点S1における比エンタルピーおよび圧力よりも増加している。 The refrigerant near the inlet of the compressor 1 is a low-temperature and low-pressure gas refrigerant. This gas refrigerant is sucked into the compressor 1, compressed by the compressor 1, and discharged as a high-temperature and high-pressure gas refrigerant. Energy is added to the refrigerant by the compression by the compressor 1. As a result, the specific enthalpy of the refrigerant increases. The process of compressing the refrigerant by the compressor 1 is represented as a state change from the point S1 to the point S2 in FIG. The specific enthalpy and pressure at point S2 are both higher than the specific enthalpy and pressure at point S1.
 圧縮機1から吐出されたガス冷媒は、凝縮器2において高圧のまま凝縮されて液冷媒となる。ガス冷媒が凝縮して液冷媒となるときに、凝縮熱が外気に放出される。すなわち、冷媒が凝縮器2を通過すると冷媒の比エンタルピーが減少する。凝縮器2による冷媒の凝縮の過程は、図2おいて点S2から点S3への状態変化として表現されている。点S3における比エンタルピーは、点S2における比エンタルピーよりも減少している。点S3における圧力は、点S2における圧力はほとんど同じである。正確には、冷媒が凝縮器2を通過するときに圧力損失が生じる。この場合、凝縮器2の内部を冷媒が進んでいくにつれて、冷媒の圧力が少しずつ減少していく。したがって、点S3における圧力は、点S2における圧力よりも若干だけ減少している。 The gas refrigerant discharged from the compressor 1 is condensed at a high pressure in the condenser 2 to become a liquid refrigerant. When the gas refrigerant condenses into a liquid refrigerant, the heat of condensation is released to the outside air. That is, when the refrigerant passes through the condenser 2, the specific enthalpy of the refrigerant decreases. The process of condensing the refrigerant by the condenser 2 is expressed as a state change from the point S2 to the point S3 in FIG. The specific enthalpy at the point S3 is smaller than the specific enthalpy at the point S2. The pressure at point S3 is almost the same as the pressure at point S2. To be exact, a pressure loss occurs when the refrigerant passes through the condenser 2. In this case, the refrigerant pressure gradually decreases as the refrigerant advances through the condenser 2. Therefore, the pressure at point S3 is slightly smaller than the pressure at point S2.
 凝縮器2から吐出された液冷媒は、内部熱交換器3を通過し、第1膨張弁4において断熱膨張する。液冷媒は、第1膨張弁4によって減圧される。その結果、液冷媒は、一部がガス冷媒となり、湿り蒸気と呼ばれる状態になる。第1膨張弁4による冷媒の減圧の過程は、図2において点S3から点S4への状態変化として表されている。点S4における圧力は、点S3における圧力よりも減少している。第1膨張弁4による冷媒の減圧の過程は断熱膨張であるため、点S4における比エンタルピーと点S3における比エンタルピーはほとんど同じである。なお、通常時、第2膨張弁6は閉まっているため、内部熱交換器3による冷却は行なわれない。 The liquid refrigerant discharged from the condenser 2 passes through the internal heat exchanger 3 and adiabatically expands at the first expansion valve 4. The liquid refrigerant is decompressed by the first expansion valve 4. As a result, part of the liquid refrigerant becomes a gas refrigerant and is in a state called wet steam. The process of depressurizing the refrigerant by the first expansion valve 4 is represented as a state change from the point S3 to the point S4 in FIG. The pressure at point S4 is less than the pressure at point S3. Since the process of decompressing the refrigerant by the first expansion valve 4 is adiabatic expansion, the specific enthalpy at the point S4 and the specific enthalpy at the point S3 are almost the same. Since the second expansion valve 6 is normally closed, cooling by the internal heat exchanger 3 is not performed.
 第1膨張弁4から吐出された湿り蒸気のうちの液冷媒は、蒸発器5において低圧のまま蒸発して、低温および低圧のガス冷媒となって吐出される。液冷媒が蒸発してガス冷媒となるときに、蒸発熱が室内の空気から吸収される。すなわち、冷媒が蒸発器5を通過すると冷媒の比エンタルピーが増加する。蒸発器5における冷媒の蒸発の過程は、図2における点S4から点S1への状態変化として表されている。点S1における比エンタルピーは、点S4における比エンタルピーよりも増加している。点S1における圧力は、冷媒が蒸発器5を通過するときに生じる圧力損失により、点S4における圧力よりも若干だけ減少している。 The liquid refrigerant in the wet steam discharged from the first expansion valve 4 evaporates at a low pressure in the evaporator 5 and is discharged as a low-temperature and low-pressure gas refrigerant. When the liquid refrigerant evaporates into a gas refrigerant, the heat of evaporation is absorbed from the indoor air. That is, when the refrigerant passes through the evaporator 5, the specific enthalpy of the refrigerant increases. The process of evaporation of the refrigerant in the evaporator 5 is expressed as a state change from the point S4 to the point S1 in FIG. The specific enthalpy at the point S1 is higher than the specific enthalpy at the point S4. The pressure at point S1 is slightly less than the pressure at point S4 due to the pressure loss that occurs when the refrigerant passes through the evaporator 5.
 蒸発器5から吐出された低温かつ低圧のガス冷媒は、再び圧縮機1に吸入され、上述した過程が繰り返される。 The low-temperature and low-pressure gas refrigerant discharged from the evaporator 5 is again sucked into the compressor 1 and the above-described process is repeated.
 冷凍サイクル装置100において冷房運転が行なわれている場合、状況によっては蒸発器5が凍結する場合がある。たとえば外気の温度が低い状態で、冷凍サイクル装置100において冷房運転を行なうと、室外の凝縮器2の凝縮圧力が低下する。凝縮圧力が低下したことに応じて室内の蒸発器5の蒸発圧力が低下する。その結果、圧縮機1を下限周波数で運転させたとしても、蒸発温度が低下し続けてしまい、室内の蒸発器5が凍結する可能性が高まる。 When cooling operation is performed in the refrigeration cycle apparatus 100, the evaporator 5 may freeze depending on the situation. For example, when the cooling operation is performed in the refrigeration cycle apparatus 100 in a state where the temperature of the outside air is low, the condensation pressure of the outdoor condenser 2 decreases. The evaporation pressure of the evaporator 5 in the room decreases in response to the decrease in the condensation pressure. As a result, even if the compressor 1 is operated at the lower limit frequency, the evaporation temperature continues to decrease, and the possibility that the indoor evaporator 5 will freeze increases.
 一般に、蒸発器5が凍結すると、送風口または吸入口が閉塞してしまい、蒸発器5における熱交換が不可能になって、その後の冷房運転が不可能になり得る。また、水の凝固による体積膨張によって配管が圧縮されて破壊され、冷媒が大気に漏洩する。したがって、蒸発器の凍結を防止する必要がある。 Generally, when the evaporator 5 is frozen, the air blowing port or the suction port is blocked, and heat exchange in the evaporator 5 becomes impossible, and subsequent cooling operation may be impossible. Also, the piping is compressed and destroyed by volume expansion due to the solidification of water, and the refrigerant leaks to the atmosphere. Therefore, it is necessary to prevent the evaporator from freezing.
 圧縮機1を下限周波数で運転させたとしても蒸発器5の凍結の回避が困難である場合は、冷凍サイクル装置100を停止することにより、蒸発器5の凍結を防止することができる。しかし、蒸発器5の凍結のおそれが高まる度に冷凍サイクル装置100を停止すると、冷凍サイクル装置100の運転が停止および再起動を繰り返し、冷房運転が安定的に行なわれなくなってしまう。その結果、冷凍サイクル装置100を再起動する度に余分のエネルギーが必要になるとともに、ユーザの快適性が損なわれるおそれが生じる。 If it is difficult to avoid freezing of the evaporator 5 even when the compressor 1 is operated at the lower limit frequency, the freezing of the evaporator 5 can be prevented by stopping the refrigeration cycle apparatus 100. However, if the refrigeration cycle apparatus 100 is stopped every time the risk of freezing of the evaporator 5 increases, the operation of the refrigeration cycle apparatus 100 is repeatedly stopped and restarted, and the cooling operation is not stably performed. As a result, extra energy is required every time the refrigeration cycle apparatus 100 is restarted, and the user's comfort may be impaired.
 このような問題に鑑み、実施の形態1においては、第1バイパス流路11を設けて凝縮器2に吸入される冷媒の量を減少させて、凝縮器2が外気へ放出する熱量(凝縮能力)を低下させる。このような構成により、冷凍サイクル装置100の運転を継続しながら蒸発器5の蒸発温度の低下を抑制することができるため、冷凍サイクル装置100を停止させることなく蒸発器5の凍結を防止することができる。その結果、冷房運転を安定的に継続することができ、省エネルギー性能およびユーザの快適性を確保することができる。 In view of such a problem, in the first embodiment, the first bypass flow path 11 is provided to reduce the amount of refrigerant sucked into the condenser 2, and the amount of heat released by the condenser 2 to the outside air (condensing capacity). ). With such a configuration, it is possible to suppress a decrease in the evaporation temperature of the evaporator 5 while continuing the operation of the refrigeration cycle apparatus 100. Therefore, it is possible to prevent the evaporator 5 from freezing without stopping the refrigeration cycle apparatus 100. Can do. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
 以下では、図2を参照しながら、蒸発器5の凍結のおそれが高まった場合に冷凍サイクル装置100によって行なわれる冷凍サイクルについて説明する。蒸発器5の凍結のおそれが高まった場合としては、たとえば蒸発器5の配管温度Teが1℃未満になった場合である。図2において、点S11から、点S12、点S13A、点S13B、および点S14を経て点S11へ戻ってくるサイクルC1は、蒸発器5の凍結のおそれが高まった場合に冷凍サイクル装置100によって行なわれる冷凍サイクルを表す。点S11から点S12への状態変化は、圧縮機1による冷媒の圧縮の過程を表す。点S12から点S13Aへの状態変化は、凝縮器2による冷媒の凝縮の過程を表す。点S13Aから点S13Bへの状態変化は、第1バイパス流路11からの冷媒が凝縮器2からの冷媒に合流したことによって冷媒の比エンタルピーが増加する過程を表す。点S13Bから点S14への状態変化は、第1膨張弁4による冷媒の減圧の過程を表す。点S14から点S11への状態変化は、蒸発器5による冷媒の蒸発の過程を表す。 Hereinafter, the refrigeration cycle performed by the refrigeration cycle apparatus 100 when the risk of freezing of the evaporator 5 is increased will be described with reference to FIG. The case where the risk of freezing of the evaporator 5 is increased is, for example, the case where the pipe temperature Te of the evaporator 5 is less than 1 ° C. In FIG. 2, a cycle C1 returning from the point S11 to the point S11 via the points S12, S13A, S13B, and S14 is performed by the refrigeration cycle apparatus 100 when the risk of freezing of the evaporator 5 increases. Represents a refrigeration cycle. The state change from the point S11 to the point S12 represents the process of compressing the refrigerant by the compressor 1. The state change from the point S12 to the point S13A represents a process of condensing the refrigerant by the condenser 2. The state change from the point S13A to the point S13B represents a process in which the specific enthalpy of the refrigerant increases due to the refrigerant from the first bypass passage 11 joining the refrigerant from the condenser 2. The state change from the point S13B to the point S14 represents the process of decompressing the refrigerant by the first expansion valve 4. The state change from the point S14 to the point S11 represents the process of evaporation of the refrigerant by the evaporator 5.
 蒸発器5の凍結のおそれが高まった場合、制御装置20は弁7の開度を増加させて第2バイパス流路を通過する冷媒の量を増加させる。凝縮器2を通過する冷媒の量が減少する。その結果、凝縮器2における凝縮圧力は通常時よりも低下する。図2において、点S12から点S13Aへの状態変化が点S2から点S3への状態変化よりも低圧側で行なわれることは、凝縮器2の凝縮圧力の低下を表している。 When the risk of freezing of the evaporator 5 increases, the control device 20 increases the amount of refrigerant passing through the second bypass flow path by increasing the opening of the valve 7. The amount of refrigerant passing through the condenser 2 is reduced. As a result, the condensation pressure in the condenser 2 is lower than normal. In FIG. 2, the state change from the point S12 to the point S13A being performed on the lower pressure side than the state change from the point S2 to the point S3 represents a decrease in the condensation pressure of the condenser 2.
 第1バイパス流路11からの冷媒は、凝縮器2を通過していないため熱がほとんど放出されてない。そのため、第1バイパス流路11からの冷媒が凝縮器2からの冷媒に合流することにより、合流点J1からの冷媒の比エンタルピーは通常時の場合よりも高くなる。図2において点S13Bの比エンタルピーが点S3の比エンタルピーよりも高いことはこのことを表している。 The refrigerant from the first bypass channel 11 hardly releases heat because it does not pass through the condenser 2. Therefore, when the refrigerant from the first bypass channel 11 merges with the refrigerant from the condenser 2, the specific enthalpy of the refrigerant from the junction J1 becomes higher than in the normal case. In FIG. 2, the fact that the specific enthalpy at the point S13B is higher than the specific enthalpy at the point S3 represents this.
 第1バイパス流路11からの冷媒は、ガス冷媒である。一方、凝縮器2からの冷媒は、液冷媒である。したがって、凝縮器2からの冷媒の過冷却度および第1バイパス流路11からの冷媒量によっては合流点J1からの冷媒が気液二相状態の湿り蒸気となる可能性がある。湿り蒸気は液冷媒よりも平均密度が小さいため、湿り蒸気が第1膨張弁4を通過する流量は、液冷媒が第1膨張弁4を通過する流量よりも小さい。そのため、冷媒が湿り蒸気のままであると、冷媒が液冷媒である場合と比較して、第1膨張弁4を通過した後の冷媒の圧力(蒸発圧力)が低下してしまう。蒸発圧力の低下は、蒸発温度の低下を意味する。すなわち、第1バイパス流路11からの冷媒を増やし過ぎてしまうと、かえって蒸発器5の凍結を促進してしまう可能性がある。 The refrigerant from the first bypass channel 11 is a gas refrigerant. On the other hand, the refrigerant from the condenser 2 is a liquid refrigerant. Accordingly, depending on the degree of supercooling of the refrigerant from the condenser 2 and the amount of refrigerant from the first bypass channel 11, the refrigerant from the junction J1 may become wet vapor in a gas-liquid two-phase state. Since the wet steam has a lower average density than the liquid refrigerant, the flow rate of the wet vapor passing through the first expansion valve 4 is smaller than the flow rate of the liquid refrigerant passing through the first expansion valve 4. Therefore, if the refrigerant remains wet steam, the pressure (evaporation pressure) of the refrigerant after passing through the first expansion valve 4 is lower than when the refrigerant is a liquid refrigerant. A decrease in evaporation pressure means a decrease in evaporation temperature. That is, if the refrigerant from the first bypass passage 11 is excessively increased, there is a possibility that the freezing of the evaporator 5 is promoted.
 また、第1膨張弁4に吸入される冷媒が湿り蒸気であると、第1膨張弁4内の微小流路を湿り蒸気が通過するときに騒音が発生し、冷凍サイクル装置100の品質上好ましくない。 Further, if the refrigerant sucked into the first expansion valve 4 is wet steam, noise is generated when the wet steam passes through the micro flow path in the first expansion valve 4, which is preferable in terms of the quality of the refrigeration cycle apparatus 100. Absent.
 そこで、実施の形態1においては、内部熱交換器3によって合流点J1からの冷媒を冷却し、合流点J1からの冷媒における気液二相状態を解消する。 Therefore, in the first embodiment, the refrigerant from the junction J1 is cooled by the internal heat exchanger 3, and the gas-liquid two-phase state in the refrigerant from the junction J1 is eliminated.
 合流点J1からの冷媒が気液二相状態である場合、図2において点S13Bは曲線SL(飽和液線)を超えて、曲線SLと曲線SV(飽和蒸気線)との間に位置することになる。そのような場合、内部熱交換器3による冷却により冷媒は液冷媒とされ、図2において点S13Bは曲線SLよりも比エンタルピーが低い側に戻される。 When the refrigerant from the junction J1 is in a gas-liquid two-phase state, in FIG. 2, the point S13B exceeds the curve SL (saturated liquid line) and is located between the curve SL and the curve SV (saturated vapor line). become. In such a case, the refrigerant is converted into a liquid refrigerant by cooling by the internal heat exchanger 3, and the point S13B in FIG. 2 is returned to the side having a lower specific enthalpy than the curve SL.
 合流点J1からの冷媒の比エンタルピーは、上述したように、通常時の比エンタルピーよりも大きく、その結果、冷凍サイクルを継続するために蒸発器5において冷媒が室内の空気から吸収する必要のある熱量は小さくなる。冷媒が室内の空気から吸収する熱量は、蒸発器5の温度(蒸発温度)と室温との差(温度勾配)に比例する(フーリエの法則)。したがって、蒸発器5の吸熱量(蒸発能力)を小さくするためには、蒸発器5の蒸発温度を上げて、蒸発器5と室内との温度差を小さくする必要がある。制御装置20は、第1膨張弁4の開度を調節して蒸発器5の蒸発圧力を上げることにより、蒸発器5の蒸発温度を上げる。図2において、点S14から点S11への状態変化が点S4から点S1への状態変化よりも高圧側で行なわれることは、蒸発器5の蒸発圧力の上昇を表している。 As described above, the specific enthalpy of the refrigerant from the junction J1 is larger than the normal enthalpy at the normal time, and as a result, the refrigerant needs to be absorbed from the indoor air in the evaporator 5 in order to continue the refrigeration cycle. The amount of heat is reduced. The amount of heat absorbed by the refrigerant from the indoor air is proportional to the difference (temperature gradient) between the temperature of the evaporator 5 (evaporation temperature) and room temperature (Fourier's law). Therefore, in order to reduce the endothermic amount (evaporation capability) of the evaporator 5, it is necessary to increase the evaporation temperature of the evaporator 5 to reduce the temperature difference between the evaporator 5 and the room. The control device 20 increases the evaporation temperature of the evaporator 5 by adjusting the opening of the first expansion valve 4 and increasing the evaporation pressure of the evaporator 5. In FIG. 2, the fact that the state change from the point S14 to the point S11 is performed on the higher pressure side than the state change from the point S4 to the point S1 represents an increase in the evaporation pressure of the evaporator 5.
 図3は、図1の制御装置20によって冷房運転時に行なわれる処理を説明するためのフローチャートである。図3に示される処理は、冷房運転のメインルーチン(不図示)によって一定時間間隔で呼び出される。 FIG. 3 is a flowchart for explaining a process performed by the control device 20 of FIG. 1 during the cooling operation. The process shown in FIG. 3 is called at regular time intervals by the main routine (not shown) of the cooling operation.
 図3に示されるように、制御装置20は、ステップS101(以下ではステップを単にSと表す。)において、蒸発器5の配管温度Teが基準値(1℃)以上か否かを判定する。蒸発器5の複数個所を測定している場合、最低値を配管温度Teとして採用する。実施の形態1においては温度センサ35,36において検知された温度の低い方を採用する。配管温度Teが基準値以上である場合(S101にてYES)、制御装置20は、蒸発器5が凍結する可能性は低いとして処理をS102に進める。 As shown in FIG. 3, the control device 20 determines whether or not the piping temperature Te of the evaporator 5 is equal to or higher than a reference value (1 ° C.) in step S <b> 101 (hereinafter, the step is simply referred to as S). When measuring several places of the evaporator 5, the minimum value is employ | adopted as piping temperature Te. In the first embodiment, the one having the lower temperature detected by the temperature sensors 35 and 36 is employed. If pipe temperature Te is equal to or higher than the reference value (YES in S101), control device 20 proceeds to S102 because the possibility that evaporator 5 is frozen is low.
 制御装置20は、S102において、内部熱交換器3の高圧側流路301の出口の過冷却度SCが基準値(5℃)以上であるか否かを判定する。過冷却度SCが基準値以上である場合(S102にてYES)、制御装置20は、内部熱交換器3によって合流点J1からの冷媒の気液二相状態が解消されたとして処理をS103に進める。過冷却度SCが基準値未満である場合(S102にてNO)、制御装置20は、合流点J1からの冷媒の気液二相状態が解消されていない可能性があるとして処理をS111に進める。 In S102, the control device 20 determines whether or not the supercooling degree SC at the outlet of the high-pressure side passage 301 of the internal heat exchanger 3 is equal to or higher than a reference value (5 ° C.). If supercooling degree SC is equal to or greater than the reference value (YES in S102), control device 20 determines that the gas-liquid two-phase state of the refrigerant from junction J1 has been eliminated by internal heat exchanger 3 and proceeds to S103. Proceed. If supercooling degree SC is less than the reference value (NO in S102), control device 20 proceeds to S111 because the gas-liquid two-phase state of the refrigerant from confluence J1 may not be eliminated. .
 制御装置20は、S103において、内部熱交換器3の低圧側流路302の出口の過熱度SH1が基準値(1℃)以上であるか否かを判定する。過熱度SH1が基準値以上である場合(S103にてYES)、制御装置20は、内部熱交換器3の低圧側流路302を流れる冷媒の流量が適切であるとして、処理をS116に進める。過熱度SH1が基準値未満である場合(S103にてNO)、制御装置20は、内部熱交換器3の低圧側流路302に余分な冷媒が流れているとして、処理をS115に進める。制御装置20は、S115において第2膨張弁6の開度を減少させて、処理をS116に進める。 In S103, the control device 20 determines whether or not the superheat degree SH1 at the outlet of the low pressure side flow path 302 of the internal heat exchanger 3 is equal to or higher than a reference value (1 ° C.). If superheat degree SH1 is equal to or greater than the reference value (YES in S103), control device 20 advances the process to S116, assuming that the flow rate of the refrigerant flowing through low-pressure channel 302 of internal heat exchanger 3 is appropriate. If superheat degree SH1 is less than the reference value (NO in S103), control device 20 advances the process to S115, assuming that excess refrigerant is flowing in low-pressure side flow path 302 of internal heat exchanger 3. The control device 20 decreases the opening of the second expansion valve 6 in S115, and advances the process to S116.
 制御装置20は、S116において、処理を一定時間(たとえば1分)の間待つ。その後、処理を冷房運転のメインルーチンに返す。 The control device 20 waits for a certain time (for example, 1 minute) in S116. Thereafter, the process is returned to the main routine of the cooling operation.
 配管温度Teが基準値未満である場合(S101にてNO)、制御装置20は、蒸発器5が凍結する可能性が高いとして処理をS104に進める。制御装置20は、S104において弁7の開度を増加させて、処理をS105に進める。 When the pipe temperature Te is less than the reference value (NO in S101), the control device 20 advances the process to S104 on the assumption that the evaporator 5 is likely to freeze. The controller 20 increases the opening degree of the valve 7 in S104, and advances the process to S105.
 制御装置20は、S105において、内部熱交換器3の高圧側流路301の出口の過冷却度SCが基準値(5℃)以上であるか否かを判定する。過冷却度SCが基準値以上である場合(S105にてYES)、制御装置20は、内部熱交換器3によって合流点J1からの冷媒の気液二相状態が解消されたとして処理をS103に進める。過冷却度SCが基準値未満である場合(S105にてNO)、制御装置20は、合流点J1からの冷媒の気液二相状態が解消されていない可能性があるとして処理をS106に進める。 In S105, the control device 20 determines whether or not the degree of supercooling SC at the outlet of the high-pressure channel 301 of the internal heat exchanger 3 is equal to or higher than a reference value (5 ° C.). If supercooling degree SC is equal to or higher than the reference value (YES in S105), control device 20 determines that the gas-liquid two-phase state of the refrigerant from junction J1 has been eliminated by internal heat exchanger 3, and proceeds to S103. Proceed. If supercooling degree SC is less than the reference value (NO in S105), control device 20 advances the process to S106 on the assumption that the gas-liquid two-phase state of the refrigerant from confluence J1 may not be eliminated. .
 制御装置20は、S106において、内部熱交換器3の低圧側流路302の出口の過熱度SH1が基準値(1℃)以上であるか否かを判定する。過熱度SH1が基準値以上である場合(S106にてYES)、制御装置20は、内部熱交換器3の低圧側流路302を流れる冷媒の流量を増加させることによりさらなる冷却が望めるとして、処理をS107に進める。制御装置20は、S107において、第2膨張弁6の開度を増加させて処理をS116に進める。過熱度SH1が基準値未満である場合(S106にてNO)、制御装置20は、内部熱交換器3の低圧側流路302を流れる冷媒の流量を増加させてもさらなる冷却は望めず気液二相状態を解消できないとして、処理をステップ108に進める。 In S106, the control device 20 determines whether or not the superheat degree SH1 at the outlet of the low pressure side flow path 302 of the internal heat exchanger 3 is equal to or higher than a reference value (1 ° C.). If superheat degree SH1 is equal to or greater than the reference value (YES in S106), control device 20 assumes that further cooling can be expected by increasing the flow rate of the refrigerant flowing through low-pressure side flow path 302 of internal heat exchanger 3, and processing is performed. To S107. In S107, the control device 20 increases the opening degree of the second expansion valve 6 and advances the process to S116. When superheat degree SH1 is less than the reference value (NO in S106), control device 20 cannot expect further cooling even if the flow rate of the refrigerant flowing through low pressure side flow path 302 of internal heat exchanger 3 is increased, and the gas-liquid Assuming that the two-phase state cannot be resolved, the process proceeds to step 108.
 制御装置20は、S108において、圧縮機1を停止させて、処理をS109に進める。S108において、制御装置20は、第1膨張弁4を全閉としてもよい。この場合であっても、第2バイパス流路12を通過することにより、冷媒は循環を継続することができる。あるいは、制御装置20は、第1膨張弁4を全閉にするとともに、圧縮機1を停止させてもよい。 In S108, the control device 20 stops the compressor 1 and advances the process to S109. In S108, the control device 20 may fully close the first expansion valve 4. Even in this case, the refrigerant can continue to circulate by passing through the second bypass flow path 12. Alternatively, the control device 20 may fully close the first expansion valve 4 and stop the compressor 1.
 制御装置20は、ステップ109において処理を一定時間(たとえば3分)の間待つ。その後、制御装置20は、処理をS110に進める。制御装置20は、S110において圧縮機1を再起動させて、処理をS101に戻す。 Control device 20 waits for a certain time (for example, 3 minutes) in step 109. Thereafter, the control device 20 advances the process to S110. The control device 20 restarts the compressor 1 in S110 and returns the process to S101.
 制御装置20は、蒸発器5が凍結する可能性が低く(S101にてYES)かつ合流点J1からの冷媒の気液二相状態が解消されていない可能性がある場合(S102にてNO)、S111において弁7の開度を増加させて処理をS112に進める。 Control device 20 has a low possibility that evaporator 5 is frozen (YES in S101), and there is a possibility that the gas-liquid two-phase state of the refrigerant from junction J1 may not be resolved (NO in S102). In S111, the opening degree of the valve 7 is increased and the process proceeds to S112.
 制御装置20は、S112において、内部熱交換器3の低圧側流路302の出口の過熱度SH1が基準値(1℃)以上であるか否かを判定する。過熱度SH1が基準値以上である場合(S112にてYES)、制御装置20は、内部熱交換器3の低圧側流路302を流れる冷媒の流量を増加させることによりさらなる冷却が望めるとして、処理をS113に進める。制御装置20は、S113において、第2膨張弁6の開度を増加させて処理をS116に進める。過熱度SH1が基準値未満である場合(S112にてNO)、制御装置20は、内部熱交換器3の低圧側流路302を流れる冷媒の流量が過剰であるとして、処理をステップ114に進める。制御装置20は、S114において、第2膨張弁6の開度を減少させて処理をS116に進める。 In S112, the control device 20 determines whether or not the superheat degree SH1 at the outlet of the low pressure side flow path 302 of the internal heat exchanger 3 is equal to or higher than a reference value (1 ° C.). When superheat degree SH1 is equal to or higher than the reference value (YES in S112), control device 20 assumes that further cooling can be expected by increasing the flow rate of the refrigerant flowing through low-pressure side flow path 302 of internal heat exchanger 3, and processing is performed. To S113. In S113, the control device 20 increases the opening degree of the second expansion valve 6 and advances the process to S116. When superheat degree SH1 is less than the reference value (NO in S112), control device 20 advances the process to step 114, assuming that the flow rate of the refrigerant flowing through low-pressure channel 302 of internal heat exchanger 3 is excessive. . In S114, the controller 20 decreases the opening of the second expansion valve 6 and advances the process to S116.
 図3の説明において示された具体的な基準値および一定時間は一例である。基準値および一定時間は他の値であっても構わない。基準値および一定時間は、実機実験あるいはシミュレーションによって適宜決定することができる。 The specific reference value and the fixed time shown in the description of FIG. 3 are examples. The reference value and the fixed time may be other values. The reference value and the fixed time can be appropriately determined by actual machine experiments or simulations.
 以上、冷凍サイクル装置100によれば、冷房運転を継続しながら蒸発温度の低下を抑制することにより、蒸発器5の凍結を防止することができる。その結果、冷房運転を安定的に継続することができ、省エネルギー性能およびユーザの快適性を確保することができる。 As described above, according to the refrigeration cycle apparatus 100, the evaporator 5 can be prevented from freezing by suppressing the decrease in the evaporation temperature while continuing the cooling operation. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
 [実施の形態2]
 実施の形態1においては、蒸発器5の凍結を防止するために、圧縮機1から吐出された冷媒の一部を第1バイパス流路11を通過させることによって凝縮器2の凝縮圧力を減少させて、蒸発器5の蒸発圧力を増加させる場合について説明した。すなわち、図3で示される処理を行なうと、凝縮圧力と蒸発圧力との比(圧縮比)が小さくなる。圧縮比が基準値よりも小さくなると、冷凍サイクル装置100の気密性が悪化する。凝縮圧力と蒸発圧力との差によって気密性を維持しているものとしては、たとえば、圧縮機1内のスクロール(不図示)、あるいは逆止弁(不図示)を挙げることができる。冷凍サイクル装置100の気密性が悪化すると、気密性が悪化した箇所から冷媒が漏れる可能性が高まる。冷媒が漏れると、冷凍サイクル装置100の性能が落ち、故障の可能性が高まる。また、冷凍サイクル装置100からの振動および騒音が大きくなって、ユーザの快適性が損なわれる可能性が高まる。
[Embodiment 2]
In the first embodiment, in order to prevent the evaporator 5 from freezing, a part of the refrigerant discharged from the compressor 1 is allowed to pass through the first bypass passage 11 to reduce the condensation pressure of the condenser 2. The case where the evaporation pressure of the evaporator 5 is increased has been described. That is, when the process shown in FIG. 3 is performed, the ratio (compression ratio) between the condensation pressure and the evaporation pressure becomes small. When the compression ratio is smaller than the reference value, the airtightness of the refrigeration cycle apparatus 100 is deteriorated. As what maintains airtightness by the difference of a condensation pressure and evaporation pressure, the scroll (not shown) in the compressor 1 or a non-return valve (not shown) can be mentioned, for example. When the airtightness of the refrigeration cycle apparatus 100 is deteriorated, the possibility that the refrigerant leaks from a location where the airtightness is deteriorated increases. When the refrigerant leaks, the performance of the refrigeration cycle apparatus 100 decreases and the possibility of failure increases. Further, vibration and noise from the refrigeration cycle apparatus 100 are increased, and the possibility that the user's comfort is impaired is increased.
 そこで、実施の形態2においては、循環流路を循環する冷媒の量を制御することにより、圧縮比が基準値より小さくなることを防止する構成について説明する。実施の形態2においては、圧縮比が基準値より小さくなることを防止しながら、蒸発器5の凍結を防止する処理を行なうことができる。 Therefore, in the second embodiment, a configuration will be described in which the compression ratio is prevented from becoming smaller than the reference value by controlling the amount of refrigerant circulating in the circulation flow path. In the second embodiment, it is possible to perform a process for preventing the evaporator 5 from freezing while preventing the compression ratio from becoming smaller than the reference value.
 実施の形態2が実施の形態1と異なる点は、循環流路を循環する冷媒の量を制御する構成を備える点である。これ以外の構成については同様であるため、説明を繰り返さない。 Embodiment 2 differs from Embodiment 1 in that a configuration for controlling the amount of refrigerant circulating in the circulation channel is provided. Since it is the same about the structure of those other than this, description is not repeated.
 図4は、実施の形態2に係る冷凍サイクル装置200の構成図である。図4に示されるように、冷凍サイクル装置200は、圧縮機1と、凝縮器2と、内部熱交換器3と、第1膨張弁4と、蒸発器5と、第2膨張弁6と、弁7と、弁8と、受液器9と、循環流路10Bと、第1バイパス流路11と、第2バイパス流路12と、制御装置20Bとを備える。 FIG. 4 is a configuration diagram of the refrigeration cycle apparatus 200 according to the second embodiment. As shown in FIG. 4, the refrigeration cycle apparatus 200 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, The valve 7, the valve 8, the liquid receiver 9, the circulation channel 10 </ b> B, the first bypass channel 11, the second bypass channel 12, and the control device 20 </ b> B are provided.
 循環流路10Bは、圧縮機1、凝縮器2、内部熱交換器3、弁8、受液器9、第1膨張弁4、および蒸発器5を配管でつなぎ、冷媒を循環させる。 The circulation flow path 10B connects the compressor 1, the condenser 2, the internal heat exchanger 3, the valve 8, the liquid receiver 9, the first expansion valve 4, and the evaporator 5 with piping to circulate the refrigerant.
 制御装置20Bは、マイクロコンピュータ201Bと、駆動回路203Bとを含む。マイクロコンピュータ201Bは、駆動回路203Bを制御することにより、第2膨張弁6、弁7および弁8の開度を調節する。 The control device 20B includes a microcomputer 201B and a drive circuit 203B. The microcomputer 201B controls the opening degree of the second expansion valve 6, the valve 7, and the valve 8 by controlling the drive circuit 203B.
 弁8は、開度を調節することにより冷媒の流量を調節可能なものであればどのような態様のものであってもよい。弁8は、たとえばLEVのような膨張弁であってもよい。 The valve 8 may have any form as long as the flow rate of the refrigerant can be adjusted by adjusting the opening. The valve 8 may be an expansion valve such as LEV.
 受液器9は、弁8からの液冷媒を一時的に溜める。制御装置20Bによって弁8の開度が調節されると、受液器9に吸入される液冷媒の量が変化する。受液器9に吸入される液冷媒の量が、受液器9から吐出される液冷媒の量を上回ると、受液器9に一時的に溜められる液冷媒の量が増加する。逆に、受液器9に吸入される液冷媒の量が、受液器9から吐出される液冷媒の量を下回ると、受液器9に一時的に溜められる液冷媒の量が減少する。 The liquid receiver 9 temporarily stores the liquid refrigerant from the valve 8. When the opening degree of the valve 8 is adjusted by the control device 20B, the amount of liquid refrigerant sucked into the liquid receiver 9 changes. When the amount of liquid refrigerant sucked into the liquid receiver 9 exceeds the amount of liquid refrigerant discharged from the liquid receiver 9, the amount of liquid refrigerant temporarily stored in the liquid receiver 9 increases. Conversely, when the amount of liquid refrigerant sucked into the liquid receiver 9 is less than the amount of liquid refrigerant discharged from the liquid receiver 9, the amount of liquid refrigerant temporarily stored in the liquid receiver 9 decreases. .
 実施の形態2においては、圧縮比が基準値未満である場合、制御装置20Bは、弁8の開度を減少させて受液器9に吸入される冷媒の量を減少させる。圧縮機1に吸入される冷媒の量はほぼ一定であるとすると、受液器9から吐出される冷媒の量はほぼ一定である。したがって、弁8の開度を減少させると、受液器9に一時的に溜められる液冷媒の量が減少する。一方、弁8の開度を減少させたことによって凝縮器2から吐出される液冷媒の量が減少する。すなわち、凝縮器2内の液冷媒の量が増加する。 In Embodiment 2, when the compression ratio is less than the reference value, the control device 20B reduces the amount of refrigerant sucked into the liquid receiver 9 by reducing the opening degree of the valve 8. Assuming that the amount of refrigerant sucked into the compressor 1 is substantially constant, the amount of refrigerant discharged from the liquid receiver 9 is substantially constant. Therefore, when the opening degree of the valve 8 is decreased, the amount of liquid refrigerant temporarily stored in the liquid receiver 9 is decreased. On the other hand, the amount of liquid refrigerant discharged from the condenser 2 is reduced by reducing the opening of the valve 8. That is, the amount of liquid refrigerant in the condenser 2 increases.
 凝縮器2内の液冷媒の量が増加すると、ガス冷媒の熱交換可能な表面積(有効伝熱面積)が減少する。また、凝縮器2内の液冷媒の量が増加することにより、凝縮器2内のガス冷媒が圧縮されるため、凝縮器2におけるガス冷媒の凝縮圧力は増加する。凝縮圧力の上昇に伴い、凝縮温度も上昇する。凝縮器2の放熱量(凝縮能力)は、有効伝熱面積、および外気の温度と凝縮温度との差の積に比例する。凝縮温度が上昇すれば、外気の温度と凝縮温度との差は増加する。したがって、凝縮器2に溜まる液冷媒の量が増加しても、有効伝熱面積は減少するものの、外気の温度と凝縮温度との差が増加するので、凝縮器2の放熱量はほとんど変わらない。すなわち、凝縮器2に溜まる液冷媒の量を増加させることにより、凝縮器2の凝縮能力をほとんどかえずに、凝縮圧力を上昇させることができる。 When the amount of liquid refrigerant in the condenser 2 increases, the heat exchangeable surface area (effective heat transfer area) of the gas refrigerant decreases. Moreover, since the gas refrigerant in the condenser 2 is compressed when the amount of the liquid refrigerant in the condenser 2 increases, the condensation pressure of the gas refrigerant in the condenser 2 increases. As the condensation pressure increases, the condensation temperature also increases. The heat radiation amount (condensation capacity) of the condenser 2 is proportional to the product of the effective heat transfer area and the difference between the temperature of the outside air and the condensation temperature. As the condensation temperature increases, the difference between the outside air temperature and the condensation temperature increases. Therefore, even if the amount of liquid refrigerant accumulated in the condenser 2 is increased, the effective heat transfer area is reduced, but the difference between the temperature of the outside air and the condensation temperature is increased, so that the heat radiation amount of the condenser 2 is hardly changed. . That is, by increasing the amount of liquid refrigerant that accumulates in the condenser 2, the condensation pressure can be increased without substantially changing the condensation capacity of the condenser 2.
 また、凝縮器2の出口付近の液冷媒の温度は、外気の温度に近い温度となる。上記したように、凝縮器2に溜まる液冷媒の量が増加すると、外気の温度と凝縮温度との差は増加する。したがって、凝縮器2に溜まる液冷媒の量を増加させることにより、凝縮器2の出口付近の液冷媒の過冷却度を上昇させることができる。そのため、実施の形態2においては、実施の形態1よりも弁7の開度を増加させることにより、より多くのガス冷媒を凝縮器2からの液冷媒に合流させることができる。その結果、蒸発器5における蒸発圧力および蒸発温度をさらに上昇させることができる。 Also, the temperature of the liquid refrigerant near the outlet of the condenser 2 is close to the temperature of the outside air. As described above, when the amount of liquid refrigerant accumulated in the condenser 2 increases, the difference between the temperature of the outside air and the condensation temperature increases. Therefore, the degree of supercooling of the liquid refrigerant in the vicinity of the outlet of the condenser 2 can be increased by increasing the amount of the liquid refrigerant accumulated in the condenser 2. Therefore, in the second embodiment, more gas refrigerant can be merged with the liquid refrigerant from the condenser 2 by increasing the opening degree of the valve 7 than in the first embodiment. As a result, the evaporation pressure and evaporation temperature in the evaporator 5 can be further increased.
 図5は、図4の冷凍サイクル装置200によって行なわれる冷凍サイクルのP-h線図である。図5において、点S21から、点S22、点S23A、点S23B、および点S24を経て点S21へ戻ってくるサイクルC2は、蒸発器5の凍結のおそれが高まった場合に冷凍サイクル装置200によって行なわれる冷凍サイクルを表す。図5は、図1にサイクルC2を追加した図である。サイクルC2における点S21、点S22、点S23A、点S23B、および点S24は、それぞれサイクルC1における点S11、点S12、点S13A、点S13B、および点S14に対応する。 FIG. 5 is a Ph diagram of the refrigeration cycle performed by the refrigeration cycle apparatus 200 of FIG. In FIG. 5, the cycle C2 from the point S21 to the point S21 via the points S22, S23A, S23B, and S24 is performed by the refrigeration cycle apparatus 200 when the risk of freezing of the evaporator 5 increases. Represents a refrigeration cycle. FIG. 5 is a diagram in which a cycle C2 is added to FIG. Point S21, point S22, point S23A, point S23B, and point S24 in cycle C2 correspond to point S11, point S12, point S13A, point S13B, and point S14 in cycle C1, respectively.
 図5に示されるように、点S22から点S23Aへの状態変化(実施の形態2)は、点S12から点S13Aへの状態変化(実施の形態1)より高圧側で行なわれる。これは、蒸発器5の凍結のおそれが高まった場合の冷凍サイクルにおいて、実施の形態1よりも実施の形態2の方が凝縮器2における凝縮圧力が高いことを表している。 As shown in FIG. 5, the state change from the point S22 to the point S23A (Embodiment 2) is performed on the higher pressure side than the state change from the point S12 to the point S13A (Embodiment 1). This indicates that the condensation pressure in the second embodiment is higher in the condenser 2 than in the first embodiment in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased.
 点S22から点S23Aへの状態変化(実施の形態2)の、曲線SLよりも比エンタルピーが低い側の部分は、点S12から点S13Aへの状態変化(実施の形態1)の曲線SLよりも比エンタルピーが低い側の部分よりも長い。これは、蒸発器5の凍結のおそれが高まった場合の冷凍サイクルにおいて、凝縮器2から吐出された液冷媒の過冷却度が実施の形態2の方が実施の形態1よりも大きいことを表している。 The portion of the state change from the point S22 to the point S23A (Embodiment 2) that has a lower specific enthalpy than the curve SL is more than the curve SL of the state change from the point S12 to the point S13A (Embodiment 1). The specific enthalpy is longer than the lower part. This indicates that in the refrigeration cycle when the risk of freezing of the evaporator 5 increases, the degree of supercooling of the liquid refrigerant discharged from the condenser 2 is greater in the second embodiment than in the first embodiment. ing.
 点S23B(実施の形態2)の比エンタルピーは、点S13B(実施の形態1)の比エンタルピーよりも大きい。これは、蒸発器5の凍結のおそれが高まった場合の冷凍サイクルにおいて、実施の形態1よりも実施の形態2の方が多量のガス冷媒を凝縮器2からの液冷媒に合流させていることを意味している。 The specific enthalpy of point S23B (Embodiment 2) is larger than the specific enthalpy of point S13B (Embodiment 1). This is because, in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased, the second embodiment joins a larger amount of gas refrigerant to the liquid refrigerant from the condenser 2 than the first embodiment. Means.
 点S24から点S21への状態変化(実施の形態2)は、点S14から点S11への状態変化(実施の形態1)よりも高圧側で行なわれる。これは、蒸発器5の凍結のおそれが高まった場合の冷凍サイクルにおいて、実施の形態1よりも実施の形態2の方が蒸発器5における蒸発圧力が大きいことを意味している。 The state change from the point S24 to the point S21 (Embodiment 2) is performed on the higher pressure side than the state change from the point S14 to the point S11 (Embodiment 1). This means that in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased, the evaporation pressure in the evaporator 5 is larger in the second embodiment than in the first embodiment.
 点S22から点S23Aへの状態変化と点S24から点S21への状態変化との間隔(実施の形態2)は、点S12から点S13Aへの状態変化と点S14から点S11への状態変化との間隔(実施の形態1)よりも大きい。これは、蒸発器5の凍結のおそれが高まった場合の冷凍サイクルにおいて、実施の形態1よりも実施の形態2の方が凝縮圧力と蒸発圧力との差が大きいことを意味している。 The interval (second embodiment) between the state change from the point S22 to the point S23A and the state change from the point S24 to the point S21 is the state change from the point S12 to the point S13A and the state change from the point S14 to the point S11. Is larger than the interval (Embodiment 1). This means that in the refrigeration cycle when the risk of freezing of the evaporator 5 is increased, the difference between the condensation pressure and the evaporation pressure is greater in the second embodiment than in the first embodiment.
 図6は、冷房運転時に図4の制御装置20Bによって行なわれる処理を説明するためのフローチャートである。図6に示される処理は、冷房運転のメインルーチン(不図示)によって一定時間間隔で呼び出される。 FIG. 6 is a flowchart for explaining processing performed by the control device 20B of FIG. 4 during the cooling operation. The process shown in FIG. 6 is called at regular time intervals by a main routine (not shown) of the cooling operation.
 図6に示されるように、実施の形態1と同様に第2膨張弁6および弁7の開度を調節した後(S101~S115)、制御装置20Bは、S201において、圧縮機1の出口(高圧側)の圧力Pdと圧縮機1の入口(低圧側)の圧力Psとの比が基準値(たとえば1.4)以上であるか否かを判定する。圧力Pdは凝縮圧力であり、圧力Psは蒸発圧力であるから、圧力Pdと圧力Psと比は、凝縮圧力と蒸発圧力との比(圧縮比)といえる。圧縮比が基準値未満である場合(S201にてNO)、制御装置20Bは、処理をS202に進める。制御装置20Bは、S202において、弁8の開度を減少させた後、処理をS116に進める。圧縮比が基準値以上である場合(S201にてYES)、制御装置20Bは、処理をS203に進める。 As shown in FIG. 6, after adjusting the opening degrees of the second expansion valve 6 and the valve 7 in the same manner as in the first embodiment (S101 to S115), the control device 20B, in S201, controls the outlet of the compressor 1 ( It is determined whether or not the ratio between the pressure Pd on the high pressure side and the pressure Ps at the inlet (low pressure side) of the compressor 1 is a reference value (for example, 1.4) or more. Since the pressure Pd is a condensation pressure and the pressure Ps is an evaporation pressure, the ratio between the pressure Pd and the pressure Ps can be said to be a ratio (compression ratio) between the condensation pressure and the evaporation pressure. If the compression ratio is less than the reference value (NO in S201), control device 20B advances the process to S202. The controller 20B advances the process to S116 after reducing the opening of the valve 8 in S202. If the compression ratio is greater than or equal to the reference value (YES in S201), control device 20B advances the process to S203.
 制御装置20Bは、S203において、圧力Pd(凝縮圧力)が基準値(たとえば4.0MPa)以下か否かを判定する。圧力Pdが基準値以下である場合(S203にてYES)、制御装置20Bは、凝縮圧力が適正な範囲内にあるとして、処理をS116に進める。圧力Pdが基準値より大きい場合(S203にてNO)、制御装置20Bは、凝縮圧力が過剰であるとして、処理をS204に進める。制御装置20Bは、S204において、弁8の開度を増加させて後、処理をS116に進める。制御装置20Bは、S116において、一定時間(たとえば1分)待ち、処理を冷房運転のメインルーチンに返す。 Control device 20B determines in S203 whether or not pressure Pd (condensation pressure) is a reference value (for example, 4.0 MPa) or less. If pressure Pd is equal to or lower than the reference value (YES in S203), control device 20B advances the process to S116, assuming that the condensation pressure is within an appropriate range. If pressure Pd is larger than the reference value (NO in S203), control device 20B advances the process to S204, assuming that the condensation pressure is excessive. In S204, the control device 20B increases the opening degree of the valve 8, and then advances the processing to S116. In S116, control device 20B waits for a fixed time (for example, 1 minute), and returns the process to the main routine of the cooling operation.
 以上、冷凍サイクル装置200によれば、実施の形態1と同様に、冷房運転を継続しながら蒸発温度の低下を抑制することにより、蒸発器5の凍結を防止することができる。その結果、冷房運転を安定的に継続することができ、省エネルギー性能およびユーザの快適性を確保することができる。 As described above, according to the refrigeration cycle apparatus 200, freezing of the evaporator 5 can be prevented by suppressing the decrease in the evaporation temperature while continuing the cooling operation as in the first embodiment. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
 また、冷凍サイクル装置200によれば、圧縮比が基準値より小さくなることを防止しながら、蒸発器5の凍結を防止する処理を行なうことができる。すなわち、蒸発器5の凍結を防止する処理を行なっている間、凝縮圧力と蒸発圧力との差を適切な値に保ち、冷凍サイクル装置200の気密性を維持することができる。その結果、たとえば冷媒の漏洩を防止し、冷凍サイクル装置200の性能の低下および故障を防止することができる。また、冷媒の漏洩による振動および騒音の発生を防止することができ、ユーザの快適性を確保することができる。 Further, according to the refrigeration cycle apparatus 200, it is possible to perform a process for preventing the evaporator 5 from freezing while preventing the compression ratio from becoming smaller than the reference value. That is, during the process of preventing the evaporator 5 from freezing, the difference between the condensation pressure and the evaporation pressure can be maintained at an appropriate value, and the airtightness of the refrigeration cycle apparatus 200 can be maintained. As a result, for example, leakage of the refrigerant can be prevented, and a decrease in performance and failure of the refrigeration cycle apparatus 200 can be prevented. Further, vibration and noise due to refrigerant leakage can be prevented, and user comfort can be ensured.
 さらに、冷凍サイクル装置200によれば、実施の形態1よりもさらに蒸発温度を上昇させることができる。その結果、蒸発器5の凍結をより確実に防止することができる。 Furthermore, according to the refrigeration cycle apparatus 200, the evaporation temperature can be further increased than in the first embodiment. As a result, freezing of the evaporator 5 can be prevented more reliably.
 実施の形態2において、弁8および受液器9の配置は、図4に示された配置に限られないが、弁8を通過する冷媒は過冷却状態であることが望ましい。そのため、弁8および受液器9の配置は、内部熱交換器3によって冷却された液冷媒が弁8を通過することになる図4の配置が好ましい。 In Embodiment 2, the arrangement of the valve 8 and the liquid receiver 9 is not limited to the arrangement shown in FIG. 4, but the refrigerant passing through the valve 8 is preferably in a supercooled state. Therefore, the arrangement of the valve 8 and the liquid receiver 9 is preferably the arrangement of FIG. 4 in which the liquid refrigerant cooled by the internal heat exchanger 3 passes through the valve 8.
 実施の形態2においては、S201において圧縮比が基準値以上か否かを判定する場合について説明した。S201において、たとえば蒸発器5の圧力(蒸発圧力)が基準値以上か否かを判定してもかまわない。 In Embodiment 2, the case where it is determined whether or not the compression ratio is equal to or higher than the reference value in S201 has been described. In S201, for example, it may be determined whether or not the pressure of the evaporator 5 (evaporation pressure) is equal to or higher than a reference value.
 [実施の形態3]
 実施の形態2においては、循環流路10を循環する冷媒の量を制御する構成として、弁8と受液器9からなる構成について説明した。循環流路10を循環する冷媒の量を制御する構成は、実施の形態2の構成に限られない。実施の形態3において、循環流路10を循環する冷媒の量を制御する他の構成について説明する。
[Embodiment 3]
In the second embodiment, the configuration including the valve 8 and the liquid receiver 9 has been described as the configuration for controlling the amount of the refrigerant circulating in the circulation flow path 10. The configuration for controlling the amount of refrigerant circulating in the circulation channel 10 is not limited to the configuration of the second embodiment. In the third embodiment, another configuration for controlling the amount of refrigerant circulating in the circulation flow path 10 will be described.
 実施の形態3が実施の形態2と異なるのは、循環流路10を循環する冷媒の量を制御する構成、および制御装置20Cによる当該構成に対する制御である。これら以外の構成については同様であるため、説明を繰り返さない。 Embodiment 3 differs from Embodiment 2 in the configuration for controlling the amount of refrigerant circulating in the circulation channel 10 and the control for the configuration by the control device 20C. Since the configuration other than these is the same, the description will not be repeated.
 図7は、実施の形態3に係る冷凍サイクル装置300の構成図である。図1に示されるように、冷凍サイクル装置100は、圧縮機1と、凝縮器2と、内部熱交換器3と、第1膨張弁4と、蒸発器5と、第2膨張弁6と、弁7と、循環流路10と、第1バイパス流路11と、第2バイパス流路12と、冷媒タンク40と、弁41,42と、第3バイパス流路13と、制御装置20Cとを備える。 FIG. 7 is a configuration diagram of the refrigeration cycle apparatus 300 according to the third embodiment. As shown in FIG. 1, the refrigeration cycle apparatus 100 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, The valve 7, the circulation channel 10, the first bypass channel 11, the second bypass channel 12, the refrigerant tank 40, the valves 41 and 42, the third bypass channel 13, and the control device 20C. Prepare.
 第3バイパス流路13は、循環流路10の、内部熱交換器3から第1膨張弁4に至る部分において、分岐点B2と第1膨張弁4との間に位置する分岐点B3から分岐する。分岐点B3は、循環流路10の、圧縮機1から蒸発器5に至る部分(高圧側の部分)であれば、どこに配置されても構わない。第3バイパス流路13は、弁41、冷媒タンク40、および弁42の順に経由する。第3バイパス流路13は、蒸発器5から圧縮機1に至る循環流路10の部分において、蒸発器5と合流点J2との間に位置する合流点J3に合流する。合流点J3は、循環流路10の、蒸発器5から圧縮機1に至る部分(低圧側の部分)であれば、どこに配置されても構わない。 The third bypass flow path 13 branches from a branch point B3 located between the branch point B2 and the first expansion valve 4 in a portion of the circulation flow path 10 from the internal heat exchanger 3 to the first expansion valve 4. To do. The branch point B3 may be disposed anywhere as long as it is a part (a part on the high pressure side) from the compressor 1 to the evaporator 5 in the circulation flow path 10. The third bypass passage 13 passes through the valve 41, the refrigerant tank 40, and the valve 42 in this order. The third bypass flow path 13 joins the junction J3 located between the evaporator 5 and the junction J2 in the portion of the circulation path 10 from the evaporator 5 to the compressor 1. The junction J3 may be disposed anywhere as long as it is a portion (a portion on the low pressure side) of the circulation flow path 10 from the evaporator 5 to the compressor 1.
 制御装置20Cは、マイクロコンピュータ201Cと、駆動回路203Cとを含む。マイクロコンピュータ201Cは、駆動回路203Cを制御することにより、第2膨張弁6、弁7の開度を調節するとともに、弁41および弁42を開閉させる。 The control device 20C includes a microcomputer 201C and a drive circuit 203C. The microcomputer 201C controls the drive circuit 203C to adjust the opening degree of the second expansion valve 6 and the valve 7, and opens and closes the valve 41 and the valve 42.
 制御装置20Cは、弁41および弁42の開閉を制御することにより、冷媒タンク40から循環流路10へ放出する冷媒の量を調節する。図8は、冷房運転時に図7の制御装置20Cによって行なわれる処理を説明するためのフローチャートである。図8に示される処理は、冷房運転のメインルーチン(不図示)によって一定時間間隔で呼び出される。 The control device 20C adjusts the amount of refrigerant discharged from the refrigerant tank 40 to the circulation flow path 10 by controlling the opening and closing of the valve 41 and the valve 42. FIG. 8 is a flowchart for explaining processing performed by the control device 20C of FIG. 7 during the cooling operation. The process shown in FIG. 8 is called at regular time intervals by a main routine (not shown) of the cooling operation.
 図8に示されるように、実施の形態1と同様に第2膨張弁6および弁7の開度を調節した後(S101~115)、制御装置20Cは、S201において、圧縮機1の出口(高圧側)の圧力Pdと圧縮機1の入口(低圧側)の圧力Psとの比(圧縮比)が基準値(たとえば1.4)以上であるか否かを判定する。圧縮比が基準値未満である場合(S201にてNO)、制御装置20Cは、処理をS301に進める。制御装置20Cは、S301において、弁42を開いた後、処理をS203に進める。圧縮比が基準値以上である場合(S201にてYES)、制御装置20Cは、処理をS302に進める。制御装置20Cは、S302において弁42を閉めた後、処理をS203に進める。 As shown in FIG. 8, after adjusting the opening degree of the second expansion valve 6 and the valve 7 in the same manner as in the first embodiment (S101 to 115), the control device 20C, in S201, controls the outlet ( It is determined whether or not the ratio (compression ratio) between the pressure Pd on the high pressure side and the pressure Ps at the inlet (low pressure side) of the compressor 1 is a reference value (for example, 1.4) or more. If the compression ratio is less than the reference value (NO in S201), control device 20C advances the process to S301. The control device 20C advances the process to S203 after opening the valve 42 in S301. If the compression ratio is greater than or equal to the reference value (YES in S201), control device 20C advances the process to S302. The control device 20C advances the process to S203 after closing the valve 42 in S302.
 制御装置20Cは、S203において、圧力Pd(凝縮圧力)が基準値(たとえば4.0MPa)以下か否かを判定する。圧力Pdが基準値以下である場合(S203にてYES)、制御装置20Cは、凝縮圧力が適正な範囲内にあるとして、処理をS303に進める。制御装置20Cは、S303において弁41を閉めた後、処理をS116に進める。圧力Pdが基準値より大きい場合(S203にてNO)、制御装置20Cは、凝縮圧力が過剰であるとして、処理をS304に進める。制御装置20Cは、S304において、弁41を開いた後、処理をS116に進める。制御装置20Cは、S116において、一定時間(たとえば1分)待ち、処理を冷房運転のメインルーチンに返す。 The controller 20C determines whether or not the pressure Pd (condensation pressure) is equal to or lower than a reference value (for example, 4.0 MPa) in S203. If pressure Pd is equal to or lower than the reference value (YES in S203), control device 20C advances the process to S303, assuming that the condensation pressure is within an appropriate range. After closing valve 41 in S303, control device 20C advances the process to S116. If pressure Pd is greater than the reference value (NO in S203), control device 20C advances the process to S304, assuming that the condensation pressure is excessive. The control device 20C advances the process to S116 after opening the valve 41 in S304. In S116, control device 20C waits for a fixed time (for example, 1 minute), and returns the process to the main routine of the cooling operation.
 以上、冷凍サイクル装置300によれば、実施の形態1と同様に、冷房運転を継続しながら蒸発温度の低下を抑制することにより、蒸発器5の凍結を防止することができる。その結果、冷房運転を安定的に継続することができ、省エネルギー性能およびユーザの快適性を確保することができる。 As described above, according to the refrigeration cycle apparatus 300, as in the first embodiment, the evaporator 5 can be prevented from freezing by suppressing the decrease in the evaporation temperature while continuing the cooling operation. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
 さらに、冷凍サイクル装置300によれば、実施の形態2と同様に、圧縮比が基準値より小さくなることを防止しながら、蒸発器5の凍結を防止する処理を行なうことができる。その結果、冷凍サイクル装置200の気密性を維持することができる。冷凍サイクル装置200の気密性を維持することができることにより、たとえば冷媒の漏洩を防止し、冷凍サイクル装置200の性能の低下および故障を防止することができる。また、冷媒の漏洩による振動および騒音の発生を防止することができ、ユーザの快適性を確保することができる。 Furthermore, according to the refrigeration cycle apparatus 300, similarly to the second embodiment, it is possible to perform the process of preventing the evaporator 5 from being frozen while preventing the compression ratio from becoming smaller than the reference value. As a result, the airtightness of the refrigeration cycle apparatus 200 can be maintained. Since the airtightness of the refrigeration cycle apparatus 200 can be maintained, for example, leakage of refrigerant can be prevented, and a decrease in performance and failure of the refrigeration cycle apparatus 200 can be prevented. Further, vibration and noise due to refrigerant leakage can be prevented, and user comfort can be ensured.
 図8においては、弁41,42を開閉することにより、冷媒タンク40から循環流路10へ放出する冷媒の量を制御する構成について説明した。弁41,42は、開度の調整が可能な弁であっても構わない。弁41,42の開度が調節可能であることにより、冷媒タンク40から循環流路10へ放出する冷媒の量を、よりきめ細かく制御することが可能となる。 In FIG. 8, the configuration in which the amount of refrigerant discharged from the refrigerant tank 40 to the circulation flow path 10 is controlled by opening and closing the valves 41 and 42 has been described. The valves 41 and 42 may be valves capable of adjusting the opening degree. Since the opening degree of the valves 41 and 42 can be adjusted, the amount of the refrigerant discharged from the refrigerant tank 40 to the circulation channel 10 can be controlled more finely.
 [実施の形態4]
 実施の形態1~3においては、第1バイパス流路11の合流点J1が、凝縮器2から内部熱交換器3に至る部分に位置する場合について説明した。第2バイパス流路の合流点は、蒸発器5から圧縮機1に至る部分に位置していても構わない。実施の形態4においては、第2バイパス流路の合流点が、蒸発器5から圧縮機1に至る部分に位置している場合について説明する。
[Embodiment 4]
In the first to third embodiments, the case where the junction J1 of the first bypass flow path 11 is located in the portion from the condenser 2 to the internal heat exchanger 3 has been described. The junction point of the second bypass flow path may be located in a portion from the evaporator 5 to the compressor 1. In the fourth embodiment, a case where the confluence of the second bypass channel is located in a portion from the evaporator 5 to the compressor 1 will be described.
 実施の形態4が実施の形態1と異なるのは、第1バイパス流路11Dの合流点J1Dが蒸発器5から圧縮機1に至る部分に位置している点、および冷房運転中に行なわれる制御装置20Dによる制御である。これら以外の点については同様であるため説明を繰り返さない。 The fourth embodiment differs from the first embodiment in that the confluence J1D of the first bypass flow path 11D is located in a portion from the evaporator 5 to the compressor 1 and the control performed during the cooling operation. This is control by the device 20D. Since it is the same about other points, description is not repeated.
 図9は、実施の形態4に係る冷凍サイクル装置400の構成図である。図9に示されるように、冷凍サイクル装置400は、圧縮機1と、凝縮器2と、内部熱交換器3と、第1膨張弁4と、蒸発器5と、第2膨張弁6と、弁7と、循環流路10と、第1バイパス流路11Dと、第2バイパス流路12と、制御装置20Dとを備える。 FIG. 9 is a configuration diagram of the refrigeration cycle apparatus 400 according to the fourth embodiment. As shown in FIG. 9, the refrigeration cycle apparatus 400 includes a compressor 1, a condenser 2, an internal heat exchanger 3, a first expansion valve 4, an evaporator 5, a second expansion valve 6, The valve 7, the circulation channel 10, the first bypass channel 11 </ b> D, the second bypass channel 12, and the control device 20 </ b> D are provided.
 第1バイパス流路11Dは、循環流路10の、圧縮機1から凝縮器2に至る部分に位置する分岐点B1から分岐する。第1バイパス流路11Dは、弁7を経由する。第1バイパス流路11Dは、循環流路10の、蒸発器5から圧縮機1に至る部分に位置する合流点J1Dに合流する。 1st bypass flow path 11D branches from the branch point B1 located in the part from the compressor 1 to the condenser 2 of the circulation flow path 10. FIG. The first bypass channel 11D passes through the valve 7. The first bypass flow path 11D joins the junction J1D located in the part of the circulation flow path 10 from the evaporator 5 to the compressor 1.
 制御装置20Dは、マイクロコンピュータ201Dと、温度検出部205Dとを含む。マイクロコンピュータ201Dは、温度検出部205Dから、圧縮機1の入口の温度を取得する。温度検出部205Dは、圧縮機1の入口付近に取り付けられた温度センサ37からの信号に基づいて、圧縮機1の入口付近の温度を算出する。マイクロコンピュータ201Dは、低圧側の圧力および圧縮機1の入口の温度に基づいて、圧縮機1の入口の過熱度SH2を算出する。 Control device 20D includes a microcomputer 201D and a temperature detection unit 205D. The microcomputer 201D acquires the temperature of the inlet of the compressor 1 from the temperature detection unit 205D. The temperature detection unit 205D calculates the temperature near the inlet of the compressor 1 based on a signal from the temperature sensor 37 attached near the inlet of the compressor 1. The microcomputer 201D calculates the superheat degree SH2 at the inlet of the compressor 1 based on the pressure on the low pressure side and the temperature at the inlet of the compressor 1.
 蒸発器5の凍結のおそれが高まった場合、制御装置20Dは弁7の開度を増加させて第1バイパス流路11Dを通過する冷媒の量を増加させる。これに伴い、凝縮器2を通過する冷媒の量が減少する。その結果、凝縮器2における凝縮圧力は通常時よりも低下する。 When the risk of freezing of the evaporator 5 increases, the control device 20D increases the opening of the valve 7 to increase the amount of refrigerant passing through the first bypass passage 11D. Along with this, the amount of refrigerant passing through the condenser 2 decreases. As a result, the condensation pressure in the condenser 2 is lower than normal.
 第1バイパス流路11Dからのガス冷媒は、圧縮機1から吐出されたガス冷媒であるため高温である。そのため、第1バイパス流路11Dからの冷媒が蒸発器5からの低温のガス冷媒と合流すると、合流後のガス冷媒の温度が通常よりも上昇する。圧縮機1に吸入されるガス冷媒の温度が過剰に上昇してしまうと、保護制御により圧縮機1が停止してしまう。そこで、実施の形態4においては、圧縮機1に吸入されるガス冷媒を冷却するため、第2バイパス流路12により、低温のガス冷媒を蒸発器5からのガス冷媒に合流させる。蒸発器5からのガス冷媒に合流させる低温のガス冷媒の量の調節は、第2膨張弁6の開度を調節することにより行なう。 The gas refrigerant from the first bypass passage 11D is a high temperature because it is a gas refrigerant discharged from the compressor 1. Therefore, when the refrigerant from the first bypass passage 11D merges with the low-temperature gas refrigerant from the evaporator 5, the temperature of the gas refrigerant after merging rises more than usual. If the temperature of the gas refrigerant sucked into the compressor 1 rises excessively, the compressor 1 stops due to protection control. Therefore, in the fourth embodiment, in order to cool the gas refrigerant sucked into the compressor 1, the low-temperature gas refrigerant is merged with the gas refrigerant from the evaporator 5 by the second bypass passage 12. The amount of the low-temperature gas refrigerant to be merged with the gas refrigerant from the evaporator 5 is adjusted by adjusting the opening degree of the second expansion valve 6.
 第2バイパス流路12を通過する冷媒の量が増加すると、蒸発器5を通過する低温の冷媒の量が減少する。そのため、蒸発器5の凍結のおそれが高まった場合、蒸発器5の蒸発温度が上がる。その結果、蒸発器5の蒸発圧力が上昇する。 When the amount of refrigerant passing through the second bypass passage 12 increases, the amount of low-temperature refrigerant passing through the evaporator 5 decreases. Therefore, when the risk of freezing of the evaporator 5 increases, the evaporation temperature of the evaporator 5 increases. As a result, the evaporation pressure of the evaporator 5 increases.
 図10は、図9の冷凍サイクル装置400によって行なわれる冷凍サイクルのP-h線図である。図10において、点S41から、点S42、点S43、および点S44を経て点S41へ戻ってくるサイクルC4は、蒸発器5の凍結のおそれが高まった場合に冷凍サイクル装置400によって行なわれる冷凍サイクルを表す。 FIG. 10 is a Ph diagram of the refrigeration cycle performed by the refrigeration cycle apparatus 400 of FIG. In FIG. 10, a cycle C4 that returns from the point S41 to the point S41 via the points S42, S43, and S44 is performed by the refrigeration cycle apparatus 400 when the risk of freezing of the evaporator 5 increases. Represents.
 図10に示されるように、点S42から点S43への状態変化は、点S2から点S3への状態変化よりも低圧側で行なわれる。これは、第1バイパス流路11Dを通過する冷媒の量を増加させることにより凝縮器2を通過する冷媒の量が減少し、その結果、凝縮器2の凝縮圧力が低下することを表している。また、点S44から点S41への状態変化は、点S4から点S1への状態変化よりも高圧側で行なわれる。これは、第2バイパス流路12を通過する冷媒の量を増加させることにより蒸発器5を通過する冷媒の量が減少し、その結果、蒸発器5の蒸発圧力が上昇することを表している。 As shown in FIG. 10, the state change from the point S42 to the point S43 is performed on the lower pressure side than the state change from the point S2 to the point S3. This indicates that the amount of refrigerant passing through the condenser 2 is decreased by increasing the amount of refrigerant passing through the first bypass flow path 11D, and as a result, the condensation pressure of the condenser 2 is reduced. . Further, the state change from the point S44 to the point S41 is performed on the higher pressure side than the state change from the point S4 to the point S1. This indicates that the amount of refrigerant passing through the evaporator 5 is decreased by increasing the amount of refrigerant passing through the second bypass flow path 12, and as a result, the evaporation pressure of the evaporator 5 is increased. .
 図11は、冷房運転時に図9の制御装置20Dによって行なわれる処理を説明するためのフローチャートである。図11に示される処理は、冷房運転のメインルーチン(不図示)によって一定時間間隔で呼び出される。 FIG. 11 is a flowchart for explaining processing performed by the control device 20D of FIG. 9 during the cooling operation. The process shown in FIG. 11 is called at regular time intervals by the main routine (not shown) of the cooling operation.
 図11に示されるように、制御装置20Dは、S401において冷房能力が過大(たとえば目標温度よりも基準値以上に室温が低い)か否かを判定する。冷房能力が過大ではない場合(S401にてNO)、制御装置20Dは、冷房能力をさらに増加させる余地があるとして、処理をS101に進める。 As shown in FIG. 11, the control device 20D determines whether or not the cooling capacity is excessive in S401 (for example, the room temperature is lower than the reference value or higher than the target temperature). If the cooling capacity is not excessive (NO in S401), control device 20D advances the process to S101, assuming that there is room for further increasing the cooling capacity.
 制御装置20Dは、S101において、蒸発器5の配管温度Teが基準値(1℃)以上か否かを判定する。実施の形態4においても実施の形態1と同様に、温度センサ35,36において検知された温度の低い方を配管温度Teとして採用する。配管温度Teが基準値未満である場合(S101にてNO)、実施の形態1と同様にS108~S110までを行なった後、処理をS401に戻す。配管温度Teが基準値以上である場合(S101にてYES)、制御装置20Dは、冷房能力を増加させるためにS403において弁7の開度を減少させた後、処理をS405に進める。 The control device 20D determines whether or not the piping temperature Te of the evaporator 5 is equal to or higher than a reference value (1 ° C.) in S101. In the fourth embodiment, as in the first embodiment, the lower one of the temperatures detected by the temperature sensors 35 and 36 is adopted as the pipe temperature Te. If pipe temperature Te is less than the reference value (NO in S101), S108 to S110 are performed as in the first embodiment, and then the process returns to S401. If pipe temperature Te is equal to or higher than the reference value (YES in S101), control device 20D advances the process to S405 after decreasing the opening degree of valve 7 in S403 in order to increase the cooling capacity.
 冷房能力が過大である場合(S401にてYES)、制御装置20Dは、冷房能力を低下させるためにS404において弁7の開度を増加させた後、処理をS405に進める。 If the cooling capacity is excessive (YES in S401), control device 20D advances the process to S405 after increasing the opening of valve 7 in S404 in order to decrease the cooling capacity.
 制御装置20Dは、S405において、圧縮機1の入口の過熱度SH2が基準値(たとえば1℃)以上であるか否かを判定する。過熱度SH2が基準値未満である場合(S405にてNO)、制御装置20Dは、蒸発器5からのガス冷媒が第2バイパス流路12からのガス冷媒によって過剰に冷却されているとして、処理をS406に進める。制御装置20Dは、S406において、第2膨張弁6の開度を減少させた後、処理をS116に進める。過熱度SH2が基準値以上である場合(S405にてYES)、制御装置20Dは、処理をS407に進める。 In S405, the control device 20D determines whether or not the superheat degree SH2 at the inlet of the compressor 1 is equal to or higher than a reference value (eg, 1 ° C.). When superheat degree SH2 is less than the reference value (NO in S405), control device 20D determines that the gas refrigerant from evaporator 5 is excessively cooled by the gas refrigerant from second bypass flow path 12. To S406. Control device 20D advances the process to S116 after decreasing the opening degree of second expansion valve 6 in S406. If superheat degree SH2 is greater than or equal to the reference value (YES in S405), control device 20D advances the process to S407.
 制御装置20Dは、S407において、過熱度SH2が基準値(たとえば3℃)以下であるか否かを判定する。過熱度SH2が基準値より大きい場合(S407にてNO)、制御装置20Dは、圧縮機1へ吸入されるガス冷媒の温度が過剰に上昇しているとして、処理をS408に進める。制御装置20Dは、S408において、第2膨張弁6の開度を増加させた後、処理をS116に進める。過熱度SH2が基準値以上である場合(S407にてYES)、制御装置20Dは、圧縮機1へ吸入されるガス冷媒の温度が適正であるとして、処理をS116に進める。制御装置20Dは、S116において、一定時間(たとえば1分)待ち、処理を冷房運転のメインルーチンに返す。 Control device 20D determines in S407 whether superheat degree SH2 is a reference value (for example, 3 ° C.) or less. If superheat degree SH2 is greater than the reference value (NO in S407), control device 20D advances the process to S408, assuming that the temperature of the gas refrigerant sucked into compressor 1 has risen excessively. After increasing the opening degree of the second expansion valve 6 in S408, the control device 20D advances the process to S116. If superheat degree SH2 is equal to or greater than the reference value (YES in S407), control device 20D advances the process to S116, assuming that the temperature of the gas refrigerant sucked into compressor 1 is appropriate. In S116, control device 20D waits for a fixed time (for example, 1 minute), and returns the process to the main routine of the cooling operation.
 以上、冷凍サイクル装置400によれば、実施の形態1と同様に、冷房運転を継続しながら蒸発温度の低下を抑制することにより、蒸発器5の凍結を防止することができる。その結果、冷房運転を安定的に継続することができ、省エネルギー性能およびユーザの快適性を確保することができる。 As described above, according to the refrigeration cycle apparatus 400, the evaporator 5 can be prevented from freezing by suppressing the decrease in the evaporation temperature while continuing the cooling operation as in the first embodiment. As a result, the cooling operation can be continued stably, and energy saving performance and user comfort can be ensured.
 さらに、冷凍サイクル装置400によれば、圧縮機1から吐出された冷媒のほとんどが、第1バイパス流路11Dおよび第2バイパス流路12を通過する場合があり得る。このような場合、蒸発器5を通過する冷媒がほとんどなくなる。すなわち、冷凍サイクル装置400によれば、圧縮機1を停止させることなく、蒸発器5の吸熱量をほとんど0にすることができる。その結果、蒸発器5の温度は室温とほぼ同じになり、蒸発器5の凍結が効果的に防止される。 Furthermore, according to the refrigeration cycle apparatus 400, most of the refrigerant discharged from the compressor 1 may pass through the first bypass channel 11D and the second bypass channel 12. In such a case, almost no refrigerant passes through the evaporator 5. That is, according to the refrigeration cycle apparatus 400, the endothermic amount of the evaporator 5 can be made almost zero without stopping the compressor 1. As a result, the temperature of the evaporator 5 becomes substantially the same as the room temperature, and the freezing of the evaporator 5 is effectively prevented.
 実施の形態4に、実施の形態2における弁8および受液器9を適用して、実施の形態2と同様に圧縮比を制御する構成としても構わない。また、実施の形態4に、実施の形態3における弁41、弁42、および冷媒タンク40を適用して、実施の形態2と同様に凝縮圧力を増加させて圧縮比を適正に維持する構成としても構わない。 The valve 8 and the liquid receiver 9 in the second embodiment may be applied to the fourth embodiment to control the compression ratio as in the second embodiment. In addition, the valve 41, the valve 42, and the refrigerant tank 40 in the third embodiment are applied to the fourth embodiment, and the condensation pressure is increased and the compression ratio is appropriately maintained as in the second embodiment. It doesn't matter.
 今回開示された各実施の形態は、適宜組み合わせて実施することも予定されている。今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time are also scheduled to be implemented in appropriate combinations. The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 圧縮機、2 凝縮器、3 内部熱交換器、4 第1膨張弁、5 蒸発器、6 第2膨張弁、7,8,41,42 弁、9 受液器、10,10B 循環流路、11,11D 第1バイパス流路、12 第2バイパス流路、13 第3バイパス流路、20,20B,20C,20D 制御装置、31,32 圧力センサ、33,34,35,36,37 温度センサ、40 冷媒タンク、100,200,300,400 冷凍サイクル装置、201,201B,201C,201D,206 マイクロコンピュータ、202,203,203B,203C,207 駆動回路、204 圧力検出部、205,205D,208 温度検出部、301 高圧側流路、302 低圧側流路、B1,B2,B3 分岐点、J1,J1D,J2,J3 合流点。 1 compressor, 2 condenser, 3 internal heat exchanger, 4 first expansion valve, 5 evaporator, 6 second expansion valve, 7, 8, 41, 42 valve, 9 receiver, 10, 10B circulation flow path 11, 11D first bypass flow path, 12 second bypass flow path, 13 third bypass flow path, 20, 20B, 20C, 20D control device, 31, 32 pressure sensor, 33, 34, 35, 36, 37 temperature Sensor, 40 refrigerant tank, 100, 200, 300, 400 refrigeration cycle apparatus, 201, 201B, 201C, 201D, 206 microcomputer, 202, 203, 203B, 203C, 207 drive circuit, 204 pressure detector, 205, 205D, 208, temperature detector, 301, high pressure side flow path, 302, low pressure side flow path, B1, B2, B3 branch point, J1, J1D, J2 J3 confluence.

Claims (8)

  1.  冷媒が、圧縮機、凝縮器、第1膨張弁、および蒸発器の順に循環する冷凍サイクル装置であって、
     前記圧縮機と前記凝縮器とを接続する第1流路から分岐して、第2弁を介して、前記凝縮器と前記第1膨張弁とを接続する第2流路、および前記蒸発器と前記圧縮機とを接続する第3流路のいずれかに接続される第1バイパス流路を備え、
     前記第2弁の開度は、前記蒸発器における蒸発温度が第1基準値未満の場合の方が、前記蒸発温度が前記第1基準値より大きい場合より大きい、冷凍サイクル装置。
    The refrigerant is a refrigeration cycle device in which a compressor, a condenser, a first expansion valve, and an evaporator are circulated in order,
    A second flow path branching from a first flow path connecting the compressor and the condenser and connecting the condenser and the first expansion valve via a second valve; and the evaporator A first bypass flow path connected to one of the third flow paths connecting the compressor;
    The opening degree of the second valve is a refrigeration cycle apparatus in which the evaporation temperature in the evaporator is less than the first reference value than when the evaporation temperature is greater than the first reference value.
  2.  前記凝縮器に接続される前記第2流路の第1部分と前記第1膨張弁に接続される前記第2流路の第2部分との間に設けられ、入口が前記第1部分に接続されるとともに出口が前記第2部分に接続される第1内部流路と、第2内部流路とを含み、前記第1内部流路を通過する前記冷媒と前記第2内部流路を通過する前記冷媒との間で熱を交換するように構成される内部熱交換器と、
     前記第2部分から分岐して、第2膨張弁と前記第2内部流路とを介して、前記第3流路に接続される第2バイパス流路とをさらに備える、請求項1に記載の冷凍サイクル装置。
    Provided between the first part of the second flow path connected to the condenser and the second part of the second flow path connected to the first expansion valve, the inlet connected to the first part And a first internal flow path whose outlet is connected to the second portion and a second internal flow path, and passes through the refrigerant passing through the first internal flow path and the second internal flow path. An internal heat exchanger configured to exchange heat with the refrigerant;
    The second bypass channel according to claim 1, further comprising a second bypass channel branched from the second portion and connected to the third channel via a second expansion valve and the second internal channel. Refrigeration cycle equipment.
  3.  前記第1バイパス流路は、前記第1部分に接続され、
     前記第2膨張弁の開度は、前記第1膨張弁の入口における前記冷媒の過冷却度が第2基準値未満である場合の方が、前記過冷却度が前記第2基準値より大きい場合より大きい、請求項2に記載の冷凍サイクル装置。
    The first bypass channel is connected to the first portion;
    When the degree of supercooling of the refrigerant at the inlet of the first expansion valve is less than the second reference value, the degree of opening of the second expansion valve is greater than the second reference value. The refrigeration cycle apparatus according to claim 2, which is larger.
  4.  第1弁が、前記第2バイパス流路および前記第2部分の接続点と前記第1膨張弁との間に設けられ、
     受液器が前記第1弁と前記第1膨張弁との間に設けられ、
     前記第1弁の開度は、前記凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との比が第3基準値未満である場合の方が、前記比が前記第3基準値より大きい場合より小さい、請求項3に記載の冷凍サイクル装置。
    A first valve is provided between a connection point of the second bypass flow path and the second portion and the first expansion valve;
    A liquid receiver is provided between the first valve and the first expansion valve;
    The opening degree of the first valve is greater when the ratio of the condensation pressure of the condenser and the evaporation pressure of the evaporator is less than a third reference value than when the ratio is greater than the third reference value. The refrigeration cycle apparatus according to claim 3, which is small.
  5.  第1弁が前記第2バイパス流路および前記第2部分の接続点と前記第1膨張弁との間に設けられ、
     受液器が前記第1弁と前記第1膨張弁との間に設けられ、
     前記第1弁の開度は、前記凝縮器の凝縮圧力が第4基準値未満である場合の方が、前記凝縮圧力が前記第4基準値より大きい場合より小さい、請求項3に記載の冷凍サイクル装置。
    A first valve is provided between a connection point of the second bypass flow path and the second portion and the first expansion valve;
    A liquid receiver is provided between the first valve and the first expansion valve;
    The refrigeration according to claim 3, wherein the opening degree of the first valve is smaller when the condensation pressure of the condenser is less than a fourth reference value than when the condensation pressure is greater than the fourth reference value. Cycle equipment.
  6.  前記第1流路および前記第2流路のいずれかから分岐して、第3弁、冷媒タンク、および第4弁を介して、前記第3流路、および前記第1膨張弁と前記蒸発器とを接続する第4流路のいずれかに接続される第3バイパス流路とをさらに備え、
     前記第3弁の開度は、前記凝縮器の凝縮圧力と前記蒸発器の蒸発圧力との比が第5基準値未満である場合の方が、前記比が前記第5基準値より大きい場合より小さく、
     前記第4弁の開度は、前記比が前記第5基準値未満である場合の方が、前記比が前記第5基準値より大きい場合より大きい、請求項3に記載の冷凍サイクル装置。
    The third flow path, the first expansion valve, and the evaporator branch from either the first flow path or the second flow path, and pass through the third valve, the refrigerant tank, and the fourth valve. And a third bypass flow path connected to any of the fourth flow paths connecting the
    The opening degree of the third valve is greater when the ratio of the condensation pressure of the condenser and the evaporation pressure of the evaporator is less than a fifth reference value than when the ratio is greater than the fifth reference value. small,
    The refrigeration cycle apparatus according to claim 3, wherein the opening degree of the fourth valve is greater when the ratio is less than the fifth reference value and when the ratio is greater than the fifth reference value.
  7.  前記第1流路および前記第2流路のいずれかから分岐して、第3弁、冷媒タンク、および第4弁を介して、前記第3流路、および前記第1膨張弁と前記蒸発器とを接続する第4流路のいずれかに接続される第3バイパス流路とをさらに備え、
     前記第3弁の開度は、前記凝縮器の凝縮圧力が第6基準値未満である場合の方が、前記凝縮圧力が前記第6基準値より大きい場合より小さく、
     前記第4弁の開度は、前記凝縮圧力が前記第6基準値未満である場合の方が、前記凝縮圧力が前記第6基準値より大きい場合より大きい、請求項3に記載の冷凍サイクル装置。
    The third flow path, the first expansion valve, and the evaporator branch from either the first flow path or the second flow path, and pass through the third valve, the refrigerant tank, and the fourth valve. And a third bypass flow path connected to any of the fourth flow paths connecting the
    The opening of the third valve is smaller when the condensation pressure of the condenser is less than a sixth reference value than when the condensation pressure is greater than the sixth reference value,
    4. The refrigeration cycle apparatus according to claim 3, wherein the opening degree of the fourth valve is greater when the condensation pressure is less than the sixth reference value than when the condensation pressure is greater than the sixth reference value. .
  8.  前記第1バイパス流路は、前記第3流路に接続され、
     前記第2膨張弁の開度は、前記圧縮機の入口の過熱度が第7基準値より大きい場合の方が、前記過熱度が前記第7基準値未満の場合より大きい、請求項2に記載の冷凍サイクル装置。
    The first bypass channel is connected to the third channel;
    The opening degree of the second expansion valve is larger when the degree of superheat at the inlet of the compressor is larger than a seventh reference value than when the degree of superheat is less than the seventh reference value. Refrigeration cycle equipment.
PCT/JP2015/084789 2015-12-11 2015-12-11 Refrigeration cycle device WO2017098655A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/084789 WO2017098655A1 (en) 2015-12-11 2015-12-11 Refrigeration cycle device
JP2017554754A JP6522154B2 (en) 2015-12-11 2015-12-11 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/084789 WO2017098655A1 (en) 2015-12-11 2015-12-11 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2017098655A1 true WO2017098655A1 (en) 2017-06-15

Family

ID=59012860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084789 WO2017098655A1 (en) 2015-12-11 2015-12-11 Refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP6522154B2 (en)
WO (1) WO2017098655A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005445A (en) * 2017-07-06 2019-01-16 엘지전자 주식회사 Method for controlling multi-type air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111520868A (en) * 2020-05-25 2020-08-11 广东志高暖通设备股份有限公司 Indoor unit refrigerant distribution control method of multi-split system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518644A (en) * 1991-07-12 1993-01-26 Toshiba Corp Air conditioner
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60182658U (en) * 1984-05-15 1985-12-04 シャープ株式会社 air conditioner
JPH0440130Y2 (en) * 1985-07-29 1992-09-21

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518644A (en) * 1991-07-12 1993-01-26 Toshiba Corp Air conditioner
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
JP2009300041A (en) * 2008-06-16 2009-12-24 Mitsubishi Electric Corp Refrigerating cycle device and pressure loss suppressing method for refrigerating cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190005445A (en) * 2017-07-06 2019-01-16 엘지전자 주식회사 Method for controlling multi-type air conditioner
KR102330339B1 (en) * 2017-07-06 2021-11-22 엘지전자 주식회사 Multi-type air conditioner and control method for the same

Also Published As

Publication number Publication date
JP6522154B2 (en) 2019-05-29
JPWO2017098655A1 (en) 2018-04-26

Similar Documents

Publication Publication Date Title
US7360372B2 (en) Refrigeration system
JP5125116B2 (en) Refrigeration equipment
JP3925545B2 (en) Refrigeration equipment
EP3279580B1 (en) Air-conditioning device
EP3252402B1 (en) Heat pump
US20100180612A1 (en) Refrigeration device
WO2010013392A1 (en) Refrigerating device
WO2018185841A1 (en) Refrigeration cycle device
EP3273188B1 (en) Control device, air conditioner, and controlling method
JP2017142038A (en) Refrigeration cycle device
US11149999B2 (en) Refrigeration cycle apparatus having foreign substance release control
US11725855B2 (en) Air conditioning apparatus
JP5173857B2 (en) Air conditioner
KR20130006495A (en) Hot water supply system
CN114110739B (en) One-driving-multiple refrigerating and heating air conditioner
JP5872052B2 (en) Air conditioner
US20200103151A1 (en) A vapour compression system with a suction line liquid separator
WO2017098655A1 (en) Refrigeration cycle device
JP3993540B2 (en) Refrigeration equipment
JP2009293887A (en) Refrigerating device
JP7455214B2 (en) air conditioner
WO2021065118A1 (en) Refrigeration device
JP6003616B2 (en) Refrigeration equipment
KR102313304B1 (en) Air conditioner for carbon dioxide
JP6704513B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017554754

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910271

Country of ref document: EP

Kind code of ref document: A1