JP2564905B2 - Operation controller for heat recovery type air conditioner - Google Patents

Operation controller for heat recovery type air conditioner

Info

Publication number
JP2564905B2
JP2564905B2 JP63206689A JP20668988A JP2564905B2 JP 2564905 B2 JP2564905 B2 JP 2564905B2 JP 63206689 A JP63206689 A JP 63206689A JP 20668988 A JP20668988 A JP 20668988A JP 2564905 B2 JP2564905 B2 JP 2564905B2
Authority
JP
Japan
Prior art keywords
capacity
value
larger
heating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63206689A
Other languages
Japanese (ja)
Other versions
JPH0257874A (en
Inventor
真理 佐田
和生 米本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63206689A priority Critical patent/JP2564905B2/en
Publication of JPH0257874A publication Critical patent/JPH0257874A/en
Application granted granted Critical
Publication of JP2564905B2 publication Critical patent/JP2564905B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は室外ユニットに対して複数の室内ユニットを
個別に冷暖房運転可能に接続した熱回収形空気調和装置
の運転制御装置に係り、特に高圧値と低圧値に応じて室
外側の能力制御を行うようにしたものの改良に関する。
Description: TECHNICAL FIELD The present invention relates to an operation control device of a heat recovery type air conditioner in which a plurality of indoor units are individually connected to an outdoor unit so as to be capable of heating / cooling operation, and particularly to a high pressure The present invention relates to the improvement of the outdoor side capacity control according to the pressure value and the low pressure value.

(従来の技術) 従来より、例えば特開昭61−110859号公報に開示され
る如く、室外ユニットに対して複数の室内ユニットを並
列に接続し、かつ各室内ユニットの利用側熱交換器のガ
スラインへの接続を吐出ラインと吸入ラインとに個別に
切換えるように構成して、各室内ユニットを個別に冷暖
房運転可能にしたいわゆる熱回収形空気調和装置の運転
制御装置として、吐出ラインに高圧センサ、吸入ライン
に低圧センサをそれぞれ配置して、それぞれ運転中にお
ける高圧信号と低圧信号の目標値に対する過大、適正、
過小の3種類の組み合わせからなる合計9種類の信号に
応じて、高圧値及び低圧値が所定値になるように、室外
ユニット側の熱源側熱交換器を蒸発器又は凝縮器として
機能させるための切換えと、熱源側熱交換器の冷媒流量
を調節する流量制御機構の開度および圧縮機の運転容量
を制御することにより、各室内ユニットにおける空調負
荷に応じた適切な運転を確保しようとするものは知られ
ている。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Patent Laid-Open No. 61-110859, a plurality of indoor units are connected in parallel to an outdoor unit, and a gas of a usage-side heat exchanger of each indoor unit is connected. A high-pressure sensor in the discharge line as an operation control device of a so-called heat recovery type air conditioner in which the connection to the line is individually switched to the discharge line and the suction line, and each indoor unit can be individually cooled and heated. , The low-pressure sensor is arranged in the suction line, and the high-voltage signal and the low-voltage signal during operation are excessive or appropriate with respect to the target value.
In order to make the heat source side heat exchanger on the outdoor unit side function as an evaporator or a condenser so that the high pressure value and the low pressure value become predetermined values according to a total of 9 kinds of signals consisting of 3 kinds of combinations that are too small. By switching and controlling the opening of the flow rate control mechanism that adjusts the refrigerant flow rate of the heat source side heat exchanger and the operating capacity of the compressor, an attempt is made to ensure appropriate operation according to the air conditioning load in each indoor unit. Is known.

(発明が解決しようとする課題) 上記熱回収形空気調和装置の運転制御装置により、室
内ユニット側で空調負荷に応じて冷房運転、暖房運転を
任意に行いながら、室外ユニット側で総合的な冷暖房能
力のバランスを維持するように制御することができる。
(Problems to be Solved by the Invention) By the operation control device of the heat recovery type air conditioner, the indoor unit side arbitrarily performs cooling operation and heating operation according to the air conditioning load, while the outdoor unit side performs comprehensive cooling and heating operation. It can be controlled to maintain a balance of abilities.

しかしながら、上記従来のものでは、高圧値および低
圧値がそれぞれ所定値になるように、圧縮機の運転容量
と流量制御機構の開度とを同時に制御している。
However, in the conventional device described above, the operating capacity of the compressor and the opening degree of the flow rate control mechanism are simultaneously controlled so that the high pressure value and the low pressure value each become a predetermined value.

したがって、高圧値、低圧値の目標値に対する実際の
高圧値、低圧値の状態によって、室内ユニット全体の冷
房要求能力の合計値と暖房要求能力の合計値との大きい
方の要求能力に対して十分に迅速な応答性が得られない
場合があるという問題がある。
Therefore, depending on the actual high pressure value and low pressure value with respect to the target value of the high pressure value and the low pressure value, it is sufficient for the larger one of the total value of the required cooling capacity and the total value of the required heating capacity of the entire indoor unit. There is a problem that quick response may not be obtained.

つまり、例えば、高圧値を目標値より低く、低圧値を
目標値より高い条件で、高圧値を高く、かつ低圧値を低
く制御する必要があるときは、圧縮機の運転容量を大き
くすることで、高圧値と低圧値を目標値にすることがで
きるが、高圧値と低圧値がともに目標値より低い条件で
は、圧縮機の運転容量の変化に対する高圧値、低圧値の
変化の特性上、圧縮機の運転容量を制御して高圧値と低
圧値をともに高くなるように制御することはできないの
で、室外ユニットの流量制御機構の開度を制御すること
で、高圧値と低圧値がともに高くなるように制御するこ
とにになる。ここで、室外ユニットの流量制御機構の開
度を変化させたときの高圧値、低圧値の変化の応答性
は、圧縮機の運転容量を変化させたときのそれよりもは
るかに悪いため、後者の条件の場合、高圧値、低圧値が
目標値となるまでに長時間を要してしまう。また、高圧
値及び低圧値が目標値に達するまでに長時間を要するの
は、高圧値と低圧値がともに目標値より高い条件でも同
様である。
That is, for example, when it is necessary to control the high pressure value to be high and the low pressure value to be low under the condition that the high pressure value is lower than the target value and the low pressure value is higher than the target value, the operating capacity of the compressor can be increased. However, the high pressure value and the low pressure value can be set as the target value, but under the condition that both the high pressure value and the low pressure value are lower than the target value, the compression due to the characteristics of the change of the high pressure value and the low pressure value against the change of the operating capacity of the compressor Since it is not possible to control the operating capacity of the machine so that both the high pressure value and the low pressure value become high, by controlling the opening of the flow rate control mechanism of the outdoor unit, both the high pressure value and the low pressure value become high. Will be controlled. Here, the responsiveness of changes in the high pressure value and the low pressure value when the opening degree of the flow rate control mechanism of the outdoor unit is changed is much worse than that when the operating capacity of the compressor is changed. In the case of the above condition, it takes a long time for the high pressure value and the low pressure value to reach the target values. Further, it takes a long time for the high pressure value and the low pressure value to reach the target value even under the condition that both the high pressure value and the low pressure value are higher than the target value.

このように、従来のものでは、目標値に対する高圧値
及び低圧値の状態によって目標値に達するまでに長時間
を要する場合があり、室外ユニット全体の冷房要求能力
の合計値と暖房要求能力の合計値との大きい方の要求能
力に対しても十分に迅速な応答性が得られないのであ
る。
As described above, in the conventional system, it may take a long time to reach the target value depending on the state of the high pressure value and the low pressure value with respect to the target value, and the total value of the total cooling request capacity and the total heating request capacity of the entire outdoor unit. It is not possible to obtain a sufficiently quick response even for the required capacity with the larger value.

本発明は斯る点に鑑みてなされたものであり、その目
的は、室内ユニット全体の冷房要求能力の合計値と暖房
要求能力の合計値との大きい方の要求能力に対応する圧
縮機の運転容量の制御を熱源側熱交換器の流量制御機構
の開度の制御に優先させて行うことにより、室内ユニッ
ト全体の冷房要求能力の合計値と暖房要求能力の合計値
との大きい方の要求能力に対して迅速な制御応答性を得
ることにある。
The present invention has been made in view of the above problems, and an object thereof is to operate a compressor corresponding to the larger required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of the entire indoor unit. The capacity control is prioritized over the control of the opening of the flow rate control mechanism of the heat source side heat exchanger, so that the larger of the total value of the total required cooling capacity and the total required heating capacity of the indoor units Is to obtain a quick control response.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図
に示すように、容量可変形圧縮器(1)、熱源側熱交換
器(3)および該熱源側熱交換器(3)への冷媒流量を
調節する機能と減圧機能とを備えた流量制御機構(4)
を有する室外ユニット(X)に対し、利用側熱交換器
(7)および該利用側熱交換器(7)用の減圧機構
(6)を有する複数の室内ユニット(A)〜(C)を並
列に冷媒配管(11)で接続してなる冷媒回路(12)を備
えるとともに、上記各室内ユニット(A)〜(C)が個
別に冷暖房運転可能となるように上記熱源側熱交換器
(3)と共に上記利用側熱交換器(7)〜(7)の,上
記冷媒回路(12)のガスライン(11b)への接続を吐出
ライン(11c)側と吸入ライン(11d)側とに個別に切換
える接続切換機構(51)を備えた熱回収形空気調和装置
を前提とする。そして、吐出ライン(11c)に配置さ
れ、高圧を検出する高圧検出手段(Pc)と、吸入ライン
(11d)に配置され、低圧を検出する低圧検出手段(P
e)と、各室内ユニット(A)〜(C)に配置され、各
室内の温度を検出する室温検出手段(Th3)〜(Th3)
と、該各室温検出手段(Th3)〜(Th3)の出力を受け、
各室内における室温と予め設定された設定温度との大小
を比較し、その差に基づいて各室内における冷房又は暖
房の要求能力を算出する要求能力算出手段(56)〜(5
6)と、該各要求能力算出手段(56)〜(56)の出力を
受け、室内ユニット(A)〜(C)全体の冷房要求能力
の合計値と暖房要求能力の合計値との大小を比較する比
較手段(52)と、上記各要求能力算出手段(56)〜(5
6)および比較手段(52)の出力を受け、各室内ユニッ
ト(A)〜(C)の利用側熱交換器(7)〜(7)を個
別に、冷房能力要求時には蒸発器として、暖房能力要求
時には凝縮器として機能させるとともに、室内ユニット
(A)〜(C)全体の冷房要求能力の合計値と暖房要求
能力の合計値との大きい方の要求能力に対応して上記熱
源側熱交換器(3)を、冷房要求能力の合計値の方が大
きいときには凝縮器として、暖房要求能力の合計値の方
が大きいときには蒸発器として機能させるよう上記接続
切換機構(51)を切換制御する切換制御手段(53)と、
上記高圧検出手段(Pc)、低圧検出手段(Pe)および比
較手段(52)の出力を受け、暖房要求能力の合計値の方
が大きいときには高圧値が所定値になるように、冷房要
求能力の合計値の方が大きいときには低圧値を所定値に
なるように上記圧縮機(1)の運転容量を優先的に制御
する容量制御手段(54)と、該容量制御手段(54)によ
る圧縮機(1)の運転容量制御のもとで、上記高圧検出
手段(Pc)、低圧検出手段(Pe)および比較手段(52)
の出力を受け、暖房要求能力の合計値の方が大きいとき
には低圧値が所定値になるように、冷房要求能力の合計
値の方が大きいときには高圧値が所定値になるように上
記流量制御機構(4)の開度を制御する開度制御手段
(55)とを備えたものとする。
(Means for Solving the Problems) In order to achieve the above-mentioned object, the solution means of the present invention is, as shown in FIG. 1, a variable capacity compressor (1), a heat source side heat exchanger (3) and the heat source. A flow rate control mechanism (4) having a function of adjusting the flow rate of the refrigerant to the side heat exchanger (3) and a pressure reducing function.
A plurality of indoor units (A) to (C) having a use side heat exchanger (7) and a pressure reducing mechanism (6) for the use side heat exchanger (7) are arranged in parallel with an outdoor unit (X) having Is provided with a refrigerant circuit (12) connected to the heat source side heat exchanger (3) so that the indoor units (A) to (C) can be individually cooled and heated. At the same time, the connection of the use side heat exchangers (7) to (7) to the gas line (11b) of the refrigerant circuit (12) is individually switched to the discharge line (11c) side and the suction line (11d) side. A heat recovery type air conditioner equipped with a connection switching mechanism (51) is assumed. Then, a high pressure detecting means (Pc) arranged in the discharge line (11c) for detecting high pressure and a low pressure detecting means (Pc) arranged in the suction line (11d) for detecting low pressure.
e) and room temperature detecting means (Th3) to (Th3) arranged in each indoor unit (A) to (C) and detecting the temperature in each room.
And the outputs of the respective room temperature detecting means (Th3) to (Th3),
Required capacity calculation means (56) to (5) that compares the room temperature in each room with the preset temperature and calculates the required capacity for cooling or heating in each room based on the difference.
6) and the outputs of the required capacity calculating means (56) to (56), the magnitude of the total value of the required cooling capacity and the total value of the required heating capacity of all the indoor units (A) to (C) is determined. Comparing means (52) for comparing and each of the required capacity calculating means (56) to (5)
6) and the output of the comparison means (52), the use side heat exchangers (7) to (7) of the indoor units (A) to (C) are individually heated as an evaporator when the cooling capacity is required. The heat source side heat exchanger is made to function as a condenser at the time of request and responds to the larger required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of all the indoor units (A) to (C). Switching control for switching control of the connection switching mechanism (51) such that (3) functions as a condenser when the total required cooling capacity is larger and as an evaporator when the total required heating capacity is larger. Means (53),
Receiving the outputs of the high pressure detecting means (Pc), the low pressure detecting means (Pe) and the comparing means (52), when the total value of the heating required capacity is larger, the high pressure value becomes a predetermined value so that the cooling required capacity is When the total value is greater, the capacity control means (54) for preferentially controlling the operating capacity of the compressor (1) so that the low pressure value becomes a predetermined value, and the compressor (54) by the capacity control means (54) Under the operating capacity control of 1), the high pressure detecting means (Pc), the low pressure detecting means (Pe) and the comparing means (52).
The flow rate control mechanism so that the low pressure value becomes a predetermined value when the total heating demand capacity is larger, and the high pressure value becomes a predetermined value when the total cooling demand capacity is larger. An opening control means (55) for controlling the opening of (4) is provided.

(作用) 以上の構成により、本発明では、各室内ユニット
(A)〜(C)において、各要求能力算出手段(56)〜
(56)で算出される冷房又は暖房の要求能力に応じて各
利用側熱交換器(7)〜(7)が個別に冷房能力要求時
には蒸発器に、暖房能力要求時には凝縮器になるように
切換えられ、それぞれ所定の冷房運転又は暖房運転が行
われる。
(Operation) With the above configuration, in the present invention, in each indoor unit (A) to (C), each required capacity calculating means (56) to.
According to the required cooling or heating capacity calculated in (56), each of the use side heat exchangers (7) to (7) individually becomes an evaporator when a cooling capacity is required and a condenser when a heating capacity is required. The operation is switched and a predetermined cooling operation or heating operation is performed.

そのとき、室外ユニット(X)側では、上記要求能力
手段(56)〜(56)の出力を受け、比較手段(52)によ
り、室内ユニット(A)〜(C)全体の冷房要求能力の
合計値と暖房要求能力の合計値との大小関係が比較さ
れ、その上で、切換制御手段(53)により、熱源側熱交
換器(3)が冷房要求能力の合計値と暖房要求能力の合
計値との大きい方の要求能力に応じて凝縮器又は蒸発器
になるように切換えられる。つまり、室内ユニット
(A)〜(C)との能力バランスを図るべく、冷房要求
能力の合計値の方が大きいときには凝縮器に、暖房要求
能力の合計値の方が大きいときには蒸発器になるように
切換えられる。そして、上記比較手段(52)、高圧検出
手段(Pc)および低圧検出手段(Pe)の出力を受け、容
量制御手段(54)により、冷房要求能力の合計値の方が
大きいときには低圧値が、暖房要求能力の合計値の方が
大きいときには高圧値がそれぞれ所定値になるように圧
縮機(1)の運転容量が優先的に制御されるので、室内
ユニット(A)〜(C)全体の冷房要求能力の合計値と
暖房要求能力の合計値との大きい方の要求能力に対して
必要な能力がまず確保される。
At that time, on the side of the outdoor unit (X), the outputs of the required capacity means (56) to (56) are received, and the comparison means (52) causes the total of the required cooling capacity of all the indoor units (A) to (C). The magnitude relationship between the value and the total value of the required heating capacity is compared, and then the switching control means (53) causes the heat source side heat exchanger (3) to calculate the total value of the required cooling capacity and the total value of the required heating capacity. It can be switched to either a condenser or an evaporator, depending on the larger required capacity of. That is, in order to balance the capacity with the indoor units (A) to (C), the condenser is used when the total value of the required cooling capacity is larger, and the evaporator is used when the total value of the required heating capacity is larger. Is switched to. The capacity control means (54) receives the outputs of the comparison means (52), the high pressure detection means (Pc) and the low pressure detection means (Pe), and when the total value of the required cooling capacity is greater, the low pressure value becomes When the total value of the required heating capacity is larger, the operating capacity of the compressor (1) is preferentially controlled so that the high pressure value becomes a predetermined value, so that the cooling of the entire indoor units (A) to (C) is performed. First, the required capacity is secured for the larger required capacity of the total required capacity and the total required heating capacity.

その上で、上記容量制御手段(54)による圧縮機
(1)の運転容量制御のもとで、開度制御手段(55)に
より、冷房要求能力の合計値の方が大きいときには高圧
値が、暖房要求能力の合計値の方が大きいときには低圧
値がそれぞれ所定値になるように流量制御機構(4)の
開度が制御されるので、室内ユニット(A)〜(C)全
体の冷房要求能力の合計値と暖房要求能力の合計値との
小さい方の要求能力に対して必要な能力も確保されるこ
とになる。
Then, under the operating capacity control of the compressor (1) by the capacity control means (54), the high pressure value is calculated by the opening control means (55) when the total value of the required cooling capacity is larger. Since the opening degree of the flow rate control mechanism (4) is controlled so that the low pressure value becomes a predetermined value when the total value of the required heating capacity is larger, the required cooling capacity of the indoor units (A) to (C) as a whole. The required capacity is secured for the smaller required capacity of the total value of the above and the total value of the heating required capacity.

このように、室内ユニット(A)〜(C)全体の冷房
要求能力の合計値と暖房要求能力の合計値との大きい方
の要求能力に対する圧縮機(1)の運転容量の制御が流
量制御機構(4)の開度の制御に優先して行われるの
で、室内ユニット(A)〜(C)全体の冷房要求能力の
合計値と暖房要求能力の合計値との大きい方の要求能力
に対する迅速な制御応答性が得られることになる。
In this manner, the flow rate control mechanism controls the operating capacity of the compressor (1) with respect to the larger required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of the entire indoor units (A) to (C). Since the priority is given to the control of the opening degree in (4), the quicker response to the larger required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of the entire indoor units (A) to (C). Control responsiveness will be obtained.

(実施例) 以下、本発明の実施例について、第2図以下の図面に
基づき説明する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図は本発明の実施例に係る空気調和装置の全体構
成を示し、一台の室外ユニット(X)に対し、三台の室
内ユニット(A)〜(C)が並列に配置されている。上
記室外ユニット(X)には、インバータ(図示せず)に
より運転周波数が可変に駆動される容量可変形の圧縮機
(1)と、冷媒の流れ方向に応じて凝縮器又は蒸発器と
して機能する熱源側熱交換器としての室外熱交換器
(3)と、該室外熱交換器(3)が凝縮器として機能す
る冷房主体運転時には図中実線のごとく、蒸発器として
機能する暖房主体運転時には図中破線のごとく、室外熱
交換器(3)への冷媒の流れを切換える第1四路切換弁
(2)と、上記室外熱交換器(3)への冷媒流量を調節
するとともに、室外熱交換器(3)が蒸発器として機能
するときには冷媒の減圧作用をも行う流量制御機構とし
ての第1電動膨張弁(4)と、液冷媒を貯溜するための
レシーバ(5)と、吸入ガス中の液冷媒を分離するため
のアキュムレータ(8)とが設けられている。
FIG. 2 shows the overall configuration of the air conditioner according to the embodiment of the present invention, in which three indoor units (A) to (C) are arranged in parallel with respect to one outdoor unit (X). . The outdoor unit (X) functions as a variable capacity compressor (1) whose operating frequency is variably driven by an inverter (not shown), and as a condenser or an evaporator depending on the flow direction of the refrigerant. An outdoor heat exchanger (3) as a heat source side heat exchanger, and a solid line in the figure during cooling-main operation in which the outdoor heat exchanger (3) functions as a condenser, and a diagram during heating-main operation in which it functions as an evaporator. As indicated by the middle broken line, the first four-way switching valve (2) that switches the flow of the refrigerant to the outdoor heat exchanger (3) and the refrigerant flow rate to the outdoor heat exchanger (3) are adjusted, and the outdoor heat exchange is performed. When the device (3) functions as an evaporator, the first electric expansion valve (4) as a flow rate control mechanism that also performs the pressure reducing action of the refrigerant, the receiver (5) for storing the liquid refrigerant, and the intake gas Accumulator for separating liquid refrigerant ( ) Are provided.

また、上記各室内ユニット(A)〜(C)はいずれも
同一構成であって、冷媒の流れに応じて蒸発器又は凝縮
器として機能する利用側熱交換器としての室内熱交換器
(7)と、該室内熱交換器(7)への冷媒を減圧する減
圧機構としての第2電動膨張弁(6)とを備えている。
In addition, the indoor units (A) to (C) have the same configuration, and the indoor heat exchanger (7) as a use-side heat exchanger functions as an evaporator or a condenser according to the flow of the refrigerant. And a second electric expansion valve (6) as a pressure reducing mechanism for reducing the pressure of the refrigerant to the indoor heat exchanger (7).

そして、上記各ユニット(X),(A)〜(C)内の
各機器(1)〜(8)は、それぞれ冷媒配管(11)によ
り順次冷媒の流通可能に接続されていて、各ユニット
(X),(A)〜(C)の熱交換器(3),(7)〜
(7)で付与された熱を冷媒を介して相互に熱交換する
冷媒回路(12)が構成されている。
The devices (1) to (8) in the units (X) and (A) to (C) are sequentially connected to each other by a refrigerant pipe (11) so that the refrigerant can flow. X), (A)-(C) heat exchangers (3), (7)-
A refrigerant circuit (12) is configured to exchange heat between the heat given in (7) via the refrigerant.

ここで、上記冷媒回路(12)のガスライン(11b)に
は、各室内ユニット(A),(B)および(C)毎に、
各室内熱交換器(7)〜(7)が蒸発器として機能する
冷房主体運転時には図中実線のごとく、凝縮器として機
能する暖房主体運転時には図中破線のごとく切換わり、
各室内熱交換器(7)〜(7)の上記ガスライン(11
b)への接続を圧縮機(1)の吐出ライン(11c)側と吸
入ライン(11d)側とにそれぞれ個別に切換える第2〜
第4四路切換弁(14)〜(16)が配置されている。そし
て、上記第1四路切換弁(2)および第2〜第4四路切
換弁(14)〜(16)により、各室内ユニット(A)〜
(C)が個別に冷暖房運転可能となるように室外熱交換
器(3)と共に室内熱交換器(7)〜(7)の,上記ガ
スライン(11b)への接続を吐出ライン(11c)側と吸入
ライン(11d)側とに個別に切換える接続切換機構(5
1)を構成している。
Here, in the gas line (11b) of the refrigerant circuit (12), for each indoor unit (A), (B) and (C),
Each of the indoor heat exchangers (7) to (7) is switched as indicated by a solid line in the figure during cooling-main operation in which it functions as an evaporator, and as indicated by a broken line in heating-main operation in which it functions as a condenser.
The gas line (11) of each indoor heat exchanger (7) to (7)
The second to individually switch the connection to b) to the discharge line (11c) side and the suction line (11d) side of the compressor (1).
Fourth four-way switching valves (14) to (16) are arranged. Then, the indoor units (A) to (4) to (16) are formed by the first four-way switching valve (2) and the second to fourth four-way switching valves (14) to (16).
Connection of the indoor heat exchangers (7) to (7) to the gas line (11b) together with the outdoor heat exchanger (3) so that (C) can individually perform heating and cooling operation is connected to the discharge line (11c) side. And connection line switching mechanism (5)
1) is composed.

一方、室外ユニット(X)および室内ユニット(A)
〜(C)には運転制御用のセンサ類が設置されている。
そのうち、(Pc)は吐出ライン(11c)に配置され、高
圧つまり冷媒の物理状態量たる凝縮温度Tc(又は圧力)
を検出する高圧検出手段としての高圧センサ、(Pe)は
吸入ライン(11d)に配置され、低圧つまり冷媒の物理
状態量たる蒸発温度Te(又は圧力)を検出する低圧検出
手段としての低圧センサ、(Th1)は室外熱交換器
(3)の液管側に取付けられ、液管温度Tを検出するた
めの液管センサ、(Th2)は室外熱交換器(3)のガス
管側に取付けられ、ガス管温度Tを検出するためのガス
管センサである。また、上記高圧センサ(Pc)、低圧セ
ンサ(Pe)、液管センサ(Th1)およびガス管センサ(T
h2)により、室外熱交換器(3)が蒸発器として機能し
ている暖房主体運転時には冷媒の過熱度Sh(=T2−Te)
を、凝縮器として機能している冷房主体運転時には過冷
却度Sc(=Tc−T1)をそれぞれ検出するようにしてい
る。さらに、(Th3)は各室内ユニット(A)の空気吸
込口に配置され、吸込空気温度(室温)を検出する室温
検出手段としての室温センサである。上記各センサ(Th
1),(Th2),(Th3)〜(Th3),(Pc),(Pe)の信
号はそれぞれ空気調和装置全体の運転を制御するための
コントローラ(10)に入力されていて、該コントローラ
(10)により、各センサ(Th1),(Th2),(Th3)〜
(Th3),(Pc),(Pe)の信号に応じて、空気調和装
置を各室内の要求能力に対応した各運転モードで制御す
るようになされている。
On the other hand, the outdoor unit (X) and the indoor unit (A)
Sensors for operation control are installed in (C).
Of these, (Pc) is placed in the discharge line (11c) and is at high pressure, that is, the condensation temperature Tc (or pressure) which is the physical state quantity of the refrigerant.
A high-pressure sensor as a high-pressure detection means for detecting, (Pe) is arranged in the suction line (11d), and a low-pressure sensor as a low-pressure detection means for detecting a low pressure, that is, the evaporation temperature Te (or pressure) which is the physical state quantity of the refrigerant, (Th1) is attached to the liquid pipe side of the outdoor heat exchanger (3), a liquid pipe sensor for detecting the liquid pipe temperature T, and (Th2) is attached to the gas pipe side of the outdoor heat exchanger (3). , A gas pipe sensor for detecting the gas pipe temperature T. Also, the high pressure sensor (Pc), low pressure sensor (Pe), liquid pipe sensor (Th1), and gas pipe sensor (T
The h2), the outdoor heat exchanger (3) is functioning and heating main during operation of the refrigerant superheating degree Sh as an evaporator (= T 2 -Te)
Is detected as the subcooling degree Sc (= Tc−T 1 ) during the cooling main operation which functions as a condenser. Further, (Th3) is a room temperature sensor which is arranged at the air intake port of each indoor unit (A) and serves as a room temperature detecting means for detecting the intake air temperature (room temperature). Each sensor (Th
The signals 1), (Th2), (Th3) to (Th3), (Pc), and (Pe) are input to a controller (10) for controlling the operation of the entire air conditioner, and the controller (10) 10), each sensor (Th1), (Th2), (Th3) ~
According to the signals of (Th3), (Pc), and (Pe), the air conditioner is controlled in each operation mode corresponding to the required capacity in each room.

なお、第2図において、(17)〜(20)は各四路切換
弁(2),(14)〜(16)における各熱交換器(3),
(7)〜(7)との接続ポートに対向する接続ポートと
吸入ライン(11d)との間に介設されたキャピラリー、
(21a)〜(21c)はそれぞれ液ライン(11a),吸入ラ
イン(11d)および吐出ライン(11c)の室外ユニット
(X)出口個所に介設され手動開閉弁である。
In Fig. 2, (17) to (20) are heat exchangers (3) and (4) to (14) to (16) of the four-way switching valves (2) and (14) to (16).
(7) to (7), the capillary provided between the connection port facing the connection port and the suction line (11d),
(21a) to (21c) are manual on-off valves provided at the outlets of the outdoor unit (X) of the liquid line (11a), the suction line (11d) and the discharge line (11c), respectively.

次に、上記実施例の作用について述べるに、空気調和
装置の運転時、接続切換機構(51)の切換えにより、そ
れぞれ各室内ユニット(A)〜(C)の室内熱交換器
(7)〜(7)が蒸発器又は凝縮器として機能するよう
に切換えられ、例えば室内ユニット(A),(B)が冷
房運転、室内ユニット(C)が暖房運転を行うことによ
り、各室内の要求に応じた運転が行われる。すなわち、
各四路切換弁(2),(14),(15),(16)が図中実
線のごとく切換わり、第1電動膨張弁(4)および室内
ユニット(C)の第2電動膨張弁(6)が開き気味の状
態で、かつ室内ユニット(A),(B)の第2電動膨張
弁(6),(6)の開度を適度に調節しながら運転を行
い、吐出冷媒が室外熱交換器(3)および室内ユニット
(C)の室内熱交換器(7)で凝縮された後、室内ユニ
ット(A),(B)6の室内熱交換器(7),(7)で
蒸発するように循環することにより、各室内の条件の違
いに対応した冷暖房同時運転を行って、互いに室内側で
熱を回収しあう回収運転が行われる。
Next, the operation of the above-described embodiment will be described. During operation of the air conditioner, by switching the connection switching mechanism (51), the indoor heat exchangers (7) to () of the indoor units (A) to (C), respectively. 7) is switched to function as an evaporator or a condenser, and the indoor units (A) and (B) perform cooling operation and the indoor unit (C) performs heating operation, for example, to meet the demands of each room. Driving is performed. That is,
The four-way switching valves (2), (14), (15), (16) are switched as shown by the solid lines in the figure, and the first electric expansion valve (4) and the second electric expansion valve of the indoor unit (C) ( 6) is opened, and the operation is performed while appropriately adjusting the openings of the second electric expansion valves (6) and (6) of the indoor units (A) and (B), and the discharged refrigerant is the outdoor heat. After being condensed in the indoor heat exchanger (7) of the exchanger (3) and the indoor unit (C), it is evaporated in the indoor heat exchangers (7) and (7) of the indoor units (A) and (B) 6. By such circulation, the cooling and heating simultaneous operation corresponding to the difference in the conditions in each room is performed, and the recovery operation in which the heat is mutually recovered inside the room is performed.

そのとき、コントローラ(10)により、圧縮機(1)
の運転容量および第1電動膨張弁(4)の開度が制御さ
れる。その制御内容について、第3図のフローチャート
に基づき説明するに、ステップS1で室外熱交換器(3)
が蒸発器として機能しているか、それとも凝縮器として
機能しているかを判別し、凝縮器として機能している場
合には、ステップS2で、冷房要求能力の合計値Tet、及
び暖房要求能力の合計値Tctをそれぞれ下記式及び
式に基づいて算出して入力する。
At that time, by the controller (10), the compressor (1)
The operating capacity and the opening degree of the first electric expansion valve (4) are controlled. The details of the control will be described with reference to the flowchart of FIG. 3. In step S 1 , the outdoor heat exchanger (3)
Whether it is functioning as an evaporator or as a condenser, and if it is functioning as a condenser, in step S 2 , the total value Tet of the required cooling capacity and the required heating capacity. Calculate and enter the total value Tct based on the following formula and formula, respectively.

Tet=Σ{(Tai−Teri)・Hi} …… Tct=Σ{(Tcri−Tai)・Hi} …… ただし、上記式において、Taは上記室温センサ(Th
3)で検出される吸込空気温度(室温)、Terは設定温度
としての要求蒸発温度、Tcrは設定温度としての要求凝
縮温度、Hは室内熱交換器(7)の容量、添字iは各室
内ユニット(A)〜(C)に対応した番号、Σは添字i
の全番号についての和を意味する。
Tet = Σ {(Tai−Teri) · Hi} …… Tct = Σ {(Tcri−Tai) · Hi} …… However, in the above equation, Ta is the room temperature sensor (Th
Intake air temperature (room temperature) detected in 3), Ter is the required evaporation temperature as the set temperature, Tcr is the required condensation temperature as the set temperature, H is the capacity of the indoor heat exchanger (7), and the subscript i is each room Numbers corresponding to units (A) to (C), Σ is the subscript i
Means the sum of all numbers.

そして、ステップS3で、上記で入力した冷房要求能力
の合計値Tetが暖房要求能力の合計値Tctから所定のディ
ファレンシャルK1(例えば0.1Tct程度の値)を差し引い
た値(Tct−K1)よりも大きいか否かを判別し、冷房要
求能力の合計値Tet側が大きければステップS4以下の制
御を行う。すなわち、ステップS4で、室外熱交換器
(3)が凝縮器として機能するように接続切換機構(5
1)をそのまま維持し、ステップS5で、低圧(蒸発温度T
e)が所定値になるように圧縮機(1)の運転容量を優
先的に制御し、その後に、ステップS6で、高圧(凝縮温
度Tc)が所定値になるように第1電動膨張弁(4)の開
度を制御する。ここで、高圧(凝縮温度Tc)を直接制御
目標値とする代りに、上述の如く検出される冷媒の過冷
却度Sc(Tc−T1)を高圧(凝縮温度Tc)に対応する値と
して、この過冷却度Scが所定値(例えば5℃程度の値)
になるように第1電動膨張弁(4)の開度を制御しても
よい。
Then, in step S 3 , the total value Tet of the required cooling capacity input above is a value (Tct-K 1 ) obtained by subtracting a predetermined differential K 1 (for example, a value of about 0.1 Tct) from the total value Tct of the required heating capacity. It is determined whether or not the value is larger than the above, and if the total value Tet of the cooling required capacities is larger, the control in step S 4 and thereafter is performed. That is, in step S 4 , the outdoor heat exchanger (3) functions as a condenser so that the connection switching mechanism (5
1) as it is, and in step S 5 , low pressure (evaporation temperature T
The operating capacity of the compressor (1) is preferentially controlled so that e) becomes a predetermined value, and thereafter, in step S 6 , the first electric expansion valve is set so that the high pressure (condensation temperature Tc) becomes a predetermined value. The opening of (4) is controlled. Here, instead of directly setting the high pressure (condensing temperature Tc) as the control target value, the refrigerant supercooling degree Sc (Tc-T 1 ) detected as described above is set as a value corresponding to the high pressure (condensing temperature Tc). This supercooling degree Sc is a predetermined value (for example, a value of about 5 ° C)
The opening degree of the first electric expansion valve (4) may be controlled so that

一方、上記ステップS3における判別で、暖房要求能力
の合計値Tct(−K1)側が大きいときには、ステップS7
で室外熱交換器(3)を蒸発器として機能させるように
接続切換機構(51)を切換制御し、ステップS8で高圧
(凝縮温度Tc)が所定値になるように圧縮機(1)の運
転容量を優先的に制御し、その後に、ステップS9で低圧
(蒸発温度Te)が所定値になるように第1電動膨張弁
(4)の開度を制御する。ここで、低圧(蒸発温度Te)
が直接制御目標値とする代りに、上述の如く検出される
冷媒の過熱度Sh(=T2−Te)を低圧(蒸発温度Te)に対
応する値として、この過熱度Shが所定値(例えば5℃程
度の値)になるように第1電動膨張弁(4)の開度を制
御してもよい。
On the other hand, in the determination in Step S 3, when the total value Tct heating required capacity (-K 1) side is large, the step S 7
In the outdoor heat exchanger (3) a connection switching mechanism (51) so as to function to switching control as an evaporator, Step S 8 at high pressure (condensation temperature Tc) of the compressor to a predetermined value (1) preferentially controls the operating capacity, then, in step S 9 low pressure (evaporation temperature Te) controls the degree of opening of the first electric expansion valve to a predetermined value (4). Where low pressure (evaporation temperature Te)
Instead of directly setting the control target value as the control target value, the superheat degree Sh (= T 2 −Te) of the refrigerant detected as described above is set as a value corresponding to the low pressure (evaporation temperature Te), and the superheat degree Sh is set to a predetermined value (for example, The opening degree of the first electric expansion valve (4) may be controlled so as to be about 5 ° C.).

また、ステップS1の判別で、室外熱交換器(3)が蒸
発器として機能しているときも、上記ステップS2〜S9
基本的に同じであって、ステップS10で各要求能力の合
計値Tet,Tctを入力し、ステップS11で暖房要求能力の合
計値Tctが冷房要求能力の合計値Tetに所定のディファレ
ンシャルK2(例えば0.2Tet程度の値)を加えた値(Tet
+K2)よりも大きいか否かを判別して、暖房要求能力の
合計値Tct側が大きければ、ステップS12〜S14で上記ス
テップS7〜S9と同じ制御を行う一方、冷房要求能力の合
計値Tet(+K2)側が大きければステップS15〜S17で上
記ステップS4〜S6と同じ制御を行って、上記接続切換機
構(51)、圧縮機(1)4の運転容量、第1電動膨張弁
(4)の開度を各室内ユニット(A)〜(C)の運転状
態に応じて制御するようになされている。
Also, when the outdoor heat exchanger (3) functions as an evaporator in the determination in step S 1, the steps S 2 to S 9 are basically the same, and the required capacity in step S 10 is obtained. total value Tet, enter a Tct, step S 11 in total value Tct was added a predetermined differential K 2 (for example, a value of about 0.2Tet) to the total value Tet the required cooling capacity of the heating required capacity (Tet of
+ K 2) to determine the greater or not than, the larger the total value Tct side of the heating required capacity, while performing the same control as in step S 7 to S 9 in step S 12 to S 14, the required cooling capacity If the total value Tet (+ K 2 ) side is large, the same control as in steps S 4 to S 6 is performed in steps S 15 to S 17 , and the operating capacity of the connection switching mechanism (51) and the compressor (1) 4, The opening degree of the first electric expansion valve (4) is controlled according to the operating states of the indoor units (A) to (C).

上記フローにおいて、ステップS2およびステップS10
により、各室温センサ(Th3)〜(Th3)の出力を受け、
各室内における室温(吸込空気温度Ta)と予め設定され
た設定温度(要求蒸発温度Ter,要求凝縮温度Tcr)との
大小を比較し、その差に基づいて各室内における冷房又
は暖房の要求能力を算出する要求能力算出手段(56)〜
(56)が構成されている。また、ステップS3およびステ
ップS11により、上記各要求能力算出手段(56)〜(5
6)の出力を受け、室内ユニット(A)〜(C)全体の
冷房要求能力の合計値Tetと暖房要求能力の合計値Tctと
の大小を比較する比較手段(52)が構成されている。さ
らに、ステップS4,S7,S12およびS16により、該比較手段
(52)の出力を受け、室内ユニット(A)〜(C)全体
の冷房要求能力の合計値Tetと暖房要求能力の合計値Tct
との大きい方の要求能力に対応して室外熱交換器(3)
を、冷房要求能力の合計値Tetの方が大きいときには凝
縮器として、暖房要求能力の合計値Tctの方が大きいと
きには蒸発器として機能させるよう接続切換機能(51)
を切換制御し、併せて上記各要求能力算出手段(56)〜
(56)の出力を受け、各室内ユニット(A)〜(C)の
室内熱交換器(7)〜(7)を個別に、冷房能力要求時
には蒸発器として、暖房能力要求時には凝縮器として機
能させるよう上記接続切換機構(51)を切換制御する切
換制御手段(53)が構成されている。また、ステップ
S5,S8,S13およびS16により、上記高圧センサ(高圧検出
手段)(Pc)、低圧センサ(低圧検出手段)(Pe)およ
び比較手段(52)の出力を受け、暖房要求能力の合計値
Tctの方が大きいときには高圧値(凝縮温度Tc)が所定
値になるように、冷房要求能力の合計値Tetの方が大き
いときには低圧値(蒸発温度Te)が所定値になるように
上記圧縮機(1)の運転容量を優先的に制御する容量制
御手段(54)が構成されている。さらに、ステップS6,S
9,S14およびS17により、上記容量制御手段(54)により
圧縮機(1)の運転容量制御のもとで、上記高圧センサ
(Pc)、低圧センサ(Pe)および比較手段(52)の出力
を受け、暖房要求能力の合計値Tctの方が大きいときに
は低圧値(蒸発温度Te又は過熱度Sh)が所定値になるよ
うに、冷房要求能力の合計値Tetの方が大きいときには
高圧値(凝縮温度Tc又は過冷却度Sc)が所定値になるよ
うに上記第1電動膨張弁構(4)(流量制御機構)の開
度を制御する開度制御手段(55)が構成されている。
In the above flow, step S 2 and step S 10
Receives the output of each room temperature sensor (Th3) ~ (Th3),
The room temperature (suction air temperature Ta) in each room is compared with the preset temperature (required evaporation temperature Ter, required condensation temperature Tcr), and the required cooling or heating capacity in each room is calculated based on the difference. Required capacity calculation means (56) to calculate
(56) is configured. Further, in step S 3 and the step S 11, the respective required capacity calculating means (56) - (5
Comparing means (52) for receiving the output of 6) and comparing the total value Tet of the required cooling capacity and the total value Tct of the required heating capacity of all the indoor units (A) to (C) with each other. Further, in steps S 4 , S 7 , S 12 and S 16 , the output of the comparison means (52) is received, and the total value Tet of the cooling required capacities of all the indoor units (A) to (C) and the heating required capacity are Total value Tct
Outdoor heat exchanger (3) corresponding to the larger required capacity of
Is connected as a condenser when the total value Tet of the required cooling capacity is larger, and as an evaporator when the total value Tct of the required heating capacity is larger.
Switching control is also performed, and at the same time, the required capacity calculation means (56) to
Receiving the output of (56), the indoor heat exchangers (7) to (7) of the indoor units (A) to (C) individually function as evaporators when cooling capacity is required and as condensers when heating capacity is required. A switching control means (53) for switching the connection switching mechanism (51) is configured so that the connection switching mechanism (51) is controlled. Also step
S 5 , S 8 , S 13 and S 16 receive the outputs of the above high pressure sensor (high pressure detection means) (Pc), low pressure sensor (low pressure detection means) (Pe) and comparison means (52) to determine the required heating capacity. Total value
When the Tct is larger, the high pressure value (condensing temperature Tc) becomes a predetermined value, and when the total value Tet of the required cooling capacity is larger, the low pressure value (evaporation temperature Te) becomes a predetermined value. A capacity control means (54) for preferentially controlling the operating capacity of (1) is configured. Furthermore, steps S 6 , S
With 9 , 9 , S 14 and S 17 , the high pressure sensor (Pc), the low pressure sensor (Pe) and the comparison means (52) are controlled by the displacement control means (54) under the control of the operating capacity of the compressor (1). In response to the output, the low pressure value (evaporation temperature Te or superheat degree Sh) becomes a predetermined value when the total value Tct of the heating required capacities is larger, and when the total value Tet of the cooling required capacities is larger, the high pressure value ( An opening control means (55) is configured to control the opening of the first electric expansion valve mechanism (4) (flow rate control mechanism) so that the condensing temperature Tc or the subcooling degree Sc) becomes a predetermined value.

したがって、上記実施例では、各室内ユニット(A)
〜(C)において、切換制御手段(53)により、各要求
能力算出手段(56)〜(56)で算出される冷房要求能力
Teti又は暖房要求能力Tctiに応じて各室内熱交換器
(7)〜(7)が個別に冷房能力要求時には蒸発器とし
て、暖房能力要求時には凝縮器として機能するように切
換えられ、それぞれ所定の冷房運転又は暖房運転が行わ
れる。
Therefore, in the above embodiment, each indoor unit (A)
In (C), the switching control means (53) calculates the required cooling capacity calculated by the required capacity calculating means (56) to (56).
Depending on Teti or heating required capacity Tcti, each indoor heat exchanger (7) to (7) is individually switched so as to function as an evaporator when a cooling capacity is required and as a condenser when a heating capacity is required, and each has a predetermined cooling capacity. Operation or heating operation is performed.

そのとき、室外ユニット(X)側では、上記要求能力
算出手段(56)〜(56)の出力を受け、比較手段(52)
により、室内ユニット(A)〜(C)全体の冷房要求能
力の合計値Tetと暖房要求能力の合計値Tctとの大小関係
が比較され、その上で、上記比較手段(52)の出力を受
け、切換制御手段(53)により、室外熱交換器(3)が
冷房要求能力の合計値Tetと暖房要求能力の合計値Tctと
の大きい方の要求能力に応じて凝縮器又は蒸発器として
機能するよう切換えられる。つまり、室内ユニット
(A)〜(C)との能力バランスを図るべく、冷房要求
能力の合計値Tetの方が大きければ凝縮器に、暖房要求
能力の合計値Tctの方が大きければ蒸発器になるように
切換えられる。そして、上記比較手段(52)並びに高圧
検出手段(Pc)および低圧検出手段(Pe)の出力を受
け、容量制御手段(54)により、冷房要求能力の合計値
Tetの方が大きければ低圧値(蒸発温度Te)が、暖房要
求能力の合計値Tctの方が大きければ高圧値(凝縮温度T
c)がそれぞれ所定値になるように圧縮機(1)の運転
容量が優先的に制御される。この圧縮機(1)の運転容
量を制御した後に、開度制御手段(55)により、冷房要
求能力の合計値Tetの方が大きければ高圧値(凝縮温度T
c)が、暖房要求能力の合計値Tctの方が大きければ低圧
値(蒸発温度Te)が所定値になるように第1電動膨張弁
(4)の開度が制御される。したがって、容量制御手段
(54)と開度制御手段(55)とにより、高圧値(凝縮温
Tc)と低圧値(蒸発温度Te)とが所定値に維持されるの
で、各室内ユニット(A)〜(C)では冷房運転又は暖
房運転を要求能力に応じた能力で運転することができる
とともに、室外ユニット(X)では各室内ユニット
(A)〜(C)の要求能力とのバランスが維持され、快
適な空調が確保される。
At that time, on the side of the outdoor unit (X), the outputs of the required capacity calculating means (56) to (56) are received, and the comparing means (52) is received.
The magnitude relationship between the total value Tet of the required cooling capacity of the indoor units (A) to (C) and the total value Tct of the required heating capacity of the indoor units (A) to (C) is compared, and then the output of the comparison means (52) is received. The switching control means (53) causes the outdoor heat exchanger (3) to function as a condenser or an evaporator in accordance with the larger one of the total value Tet of cooling required capacities and the total value Tct of heating required capacities. Can be switched to. That is, in order to balance the capacity with the indoor units (A) to (C), if the total value Tet of the required cooling capacity is larger, the condenser is used, and if the total value Tct of the required heating capacity is larger, the evaporator is used. Can be switched to. The capacity control means (54) receives the outputs of the comparison means (52), the high pressure detection means (Pc) and the low pressure detection means (Pe), and outputs the total value of the required cooling capacity.
If Tet is larger, the low-pressure value (evaporation temperature Te) is higher, and if the total value Tct of heating required capacities is higher, the higher-pressure value (condensing temperature T).
The operating capacity of the compressor (1) is preferentially controlled so that c) becomes a predetermined value. After controlling the operating capacity of the compressor (1), if the total value Tet of the required cooling capacity is greater than the high pressure value (condensing temperature T by the opening control means (55)).
In c), if the total value Tct of heating required capacities is larger, the opening degree of the first electric expansion valve (4) is controlled so that the low pressure value (evaporation temperature Te) becomes a predetermined value. Therefore, a high pressure value (condensation temperature) is set by the capacity control means (54) and the opening degree control means (55).
Since Tc) and the low pressure value (evaporation temperature Te) are maintained at predetermined values, each of the indoor units (A) to (C) can operate in the cooling operation or the heating operation with the capacity according to the required capacity. In the outdoor unit (X), the balance with the required capacity of each indoor unit (A) to (C) is maintained, and comfortable air conditioning is secured.

ここで、圧縮機(1)の運転容量については、室内ユ
ニット(A)〜(C)全体の冷房要求能力の合計値と暖
房要求能力の合計値との大きい方の要求能力に応じて高
圧値又は低圧値を制御しているので、各室内ユニット
(A)〜(C)全体の冷房要求能力の合計値と暖房要求
能力の合計値との大きい方の要求能力に必要な能力が迅
速に確保される。そして、第1電動膨張弁(4)の開度
については、室内ユニット(A)〜(C)全体の冷房要
求能力の合計値と暖房要求能力の合計値との小さい方の
要求能力に応じて他方の低圧値又は高圧値を制御してい
るので、室内ユニット(A)〜(C)全体の冷房要求能
力の合計値と暖房要求能力の合計値との小さい方の要求
能力に対して必要な能力も確保される。その際、室内ユ
ニット(A)〜(C)全体の冷房要求能力の合計値と暖
房要求能力の合計値との大きい方の要求能力に対する圧
縮機(1)の運転容量の制御が流量制御機構(4)の開
度の制御に優先して行われるので、室内ユニット(A)
〜(C)全体の冷房要求能力の合計値と暖房要求能力の
合計値との大きい方の要求能力に対する迅速な制御応答
性が得られることになる。
Here, as for the operating capacity of the compressor (1), a high pressure value is determined according to the larger one of the total value of the required cooling capacity and the total value of the required heating capacity of all the indoor units (A) to (C). Or, since the low pressure value is controlled, the capacity required for the larger one of the total required cooling capacity and the total required heating capacity of all indoor units (A) to (C) is quickly secured. To be done. The opening degree of the first electric expansion valve (4) depends on the smaller required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of the entire indoor units (A) to (C). Since the other low pressure value or high pressure value is controlled, it is necessary for the smaller required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of all the indoor units (A) to (C). Ability is also secured. At that time, the control of the operating capacity of the compressor (1) with respect to the larger required capacity of the total value of the required cooling capacity and the total value of the required heating capacity of the entire indoor units (A) to (C) is performed by controlling the flow rate control mechanism ( Since it is performed prior to the control of the opening degree of 4), the indoor unit (A)
(C) A quick control responsiveness to the larger one of the total value of the required cooling capacity and the total value of the required heating capacity of the whole can be obtained.

(発明の効果) 以上説明したように、本発明によれば、室外ユニット
に対して複数の室内ユニットを個別に冷暖房運転可能に
接続した熱回収形空気調和装置において、暖房要求能力
の合計値の方が大きいときには高圧値が所定値になるよ
うに、冷房要求能力の合計値の方が大きいときには低圧
値が所定値になるように上記圧縮機の運転容量を優先的
に制御し、この圧縮機の運転容量制御のもとで、暖房要
求能力の合計値の方が大きいときには低圧値が所定値に
なるように、冷房要求能力の合計値の方が大きいときに
は高圧値が所定値になるように上記流量制御機構の開度
を制御するようにしたので、各室内ユニットにおいて所
要の能力で空調を行いながら室外ユニットの能力を調節
して能力バランスを図るに際し、室内ユニット全体の冷
房要求能力の合計値と暖房要求能力の合計値との大きい
方の要求能力に対する制御応答性の向上を図ることがで
きる。
(Effects of the Invention) As described above, according to the present invention, in the heat recovery type air conditioner in which a plurality of indoor units are individually connected to the outdoor unit so as to be capable of cooling and heating operation, The operating capacity of the compressor is preferentially controlled so that the high pressure value becomes a predetermined value when the one is larger, and the low pressure value becomes a predetermined value when the total value of the required cooling capacity is larger. Under the operating capacity control, the low pressure value becomes a predetermined value when the total heating demand capacity is larger, and the high pressure value becomes a predetermined value when the total cooling demand capacity is larger. Since the opening of the flow rate control mechanism is controlled, it is necessary to cool the entire indoor unit when adjusting the capacity of the outdoor unit while adjusting the capacity of the outdoor unit while performing air conditioning at the required capacity in each indoor unit. It is possible to improve the control responsiveness to the larger required capacity of the total value of the capacity requirements and the total value of the heating capacity requirements.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
以下は本発明の実施例を示し、第2図はその冷媒系統
図、第3図は制御内容を示すフローチャート図である。 (1)……圧縮機、(3)……室外熱交換器(熱源側熱
交換器)、(4)……第1電動膨張弁(流量制御機
構)、(6)……第2電動膨張弁(減圧機構)、(7)
……室内熱交換器(利用側熱交換器)、(11)……冷媒
配管、(11b)……ガスライン、(11c)……吐出ライ
ン、(11d)……吸入ライン、(12)……冷媒回路、(5
1)……接続切換機構、(52)……比較手段、(53)…
…切換制御手段、(54)……容量制御手段、(55)……
開度制御手段、(56)……要求能力算出手段、(X)…
…室外ユニット、(A)〜(C)……室内ユニット、
(Th3)……室温センサ(室温検出手段)。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 and the following shows an embodiment of the present invention, FIG. 2 is a refrigerant system diagram thereof, and FIG. 3 is a flow chart diagram showing control contents. (1) ... compressor, (3) ... outdoor heat exchanger (heat source side heat exchanger), (4) ... first electric expansion valve (flow rate control mechanism), (6) ... second electric expansion Valve (pressure reducing mechanism), (7)
…… Indoor heat exchanger (use side heat exchanger), (11) …… Refrigerant piping, (11b) …… Gas line, (11c) …… Discharge line, (11d) …… Suction line, (12)… … Refrigerant circuit, (5
1) …… Connection switching mechanism, (52) …… Comparison means, (53)…
… Switching control means, (54) …… Capacity control means, (55) ……
Opening control means, (56) ... required capacity calculation means, (X) ...
... outdoor unit, (A) to (C) ... indoor unit,
(Th3): Room temperature sensor (room temperature detection means).

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F25B 13/00 104 F25B 13/00 104 Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location F25B 13/00 104 F25B 13/00 104

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容量可変形圧縮機(1)、熱源側熱交換器
(3)および該熱源側熱交換器(3)への冷媒流量を調
節する機能と減圧機能とを備えた流量制御機構(4)を
有する室外ユニット(X)に対し、利用側熱交換器
(7)および該利用側熱交換器(7)用の減圧機構
(6)を有する複数の室内ユニット(A)〜(C)を並
列に冷媒配管(11)で接続してなる冷媒回路(12)を備
えるとともに、 上記各室内ユニット(A)〜(C)が個別に冷暖房運転
可能となるように上記熱源側熱交換器(3)と共に上記
利用側熱交換器(7)〜(7)の,上記冷媒回路(12)
のガスライン(11b)への接続を吐出ライン(11c)側と
吸入ライン(11d)側とに個別に切換える接続切換機構
(51)を備えた熱回収形空気調和装置において、 吐出ライン(11c)に配置され、高圧を検出する高圧検
出手段(Pc)と、 吸入ライン(11d)に配置され、低圧を検出する低圧検
出手段(Pe)と、 各室内ユニット(A)〜(C)に配置され、各室内の温
度を検出する室温検出手段(Th3)〜(Th3)と、 該各室温検出手段(Th3)〜(Th3)の出力を受け、各室
内における室温と予め設定された設定温度との大小を比
較し、その差に基づいて各室内における冷房又は暖房の
要求能力を算出する要求能力演算手段(56)〜(56)
と、 該各要求能力算出手段(56)〜(56)の出力を受け、室
内ユニット(A)〜(C)全体の冷房要求能力の合計値
と暖房要求能力の合計値との大小を比較する比較手段
(52)と、 上記各要求能力算出手段(56)〜(56)および比較手段
(52)の出力を受け、各室内ユニット(A)〜(C)の
利用側熱交換器(7)〜(7)を個別に、冷房能力要求
時には蒸発器として、暖房能力要求時には凝縮器として
機能させるとともに、室内ユニット(A)〜(C)全体
の冷房要求能力の合計値と暖房要求能力の合計値との大
きい方の要求能力に対応して上記熱源側熱交換器(3)
を、冷房要求能力の合計値の方が大きいときには凝縮器
として、暖房要求能力の合計値の方が大きいときには蒸
発器として機能させるよう上記接続切換機構(51)を切
換制御する切換制御手段(53)と、 上記高圧検出手段(Pc)、低圧検出手段(Pe)および比
較手段(52)の出力を受け、暖房要求能力の合計値の方
が大きいときには高圧値が所定値になるように、冷房要
求能力の合計値の方が大きいときには低圧値が所定値に
なるように上記圧縮機(1)の運転容量を優先的に制御
する容量制御手段(54)と、 該容量制御手段(54)による圧縮機(1)の運転容量制
御のもとで、上記高圧検出手段(Pc)、低圧検出手段
(Pe)および比較手段(52)の出力を受け、暖房要求能
力の合計値の方が大きいときには低圧値が所定値になる
ように、冷房要求能力の合計値の方が大きいときには高
圧値が所定値になるように上記流量制御機構(4)の開
度を制御する開度制御手段(55)と を備えたことを特徴とする熱回収形空気調和装置の運転
制御装置。
1. A variable capacity compressor (1), a heat source side heat exchanger (3), and a flow rate control mechanism having a function for adjusting the refrigerant flow rate to the heat source side heat exchanger (3) and a pressure reducing function. With respect to the outdoor unit (X) having (4), a plurality of indoor units (A) to (C) having a use side heat exchanger (7) and a pressure reducing mechanism (6) for the use side heat exchanger (7). ) Are connected in parallel by a refrigerant pipe (11), and the heat source side heat exchanger so that each of the indoor units (A) to (C) can be individually cooled and heated. The refrigerant circuit (12) of the utilization side heat exchangers (7) to (7) together with (3)
In the heat recovery type air conditioner provided with the connection switching mechanism (51) for individually switching the connection to the gas line (11b) to the discharge line (11c) side and the suction line (11d) side, the discharge line (11c) Is arranged in each of the indoor units (A) to (C) and a high pressure detecting means (Pc) for detecting a high pressure, a low pressure detecting means (Pe) for detecting a low pressure arranged in the suction line (11d). , The room temperature detecting means (Th3) to (Th3) for detecting the temperature in each room, and the outputs of the room temperature detecting means (Th3) to (Th3). Required capacity calculation means (56) to (56) for comparing the sizes and calculating the required capacity for cooling or heating in each room based on the difference.
And the outputs of the required capacity calculating means (56) to (56), and compares the total value of the required cooling capacity of the indoor units (A) to (C) with the total value of the required heating capacity. Receiving the outputs of the comparing means (52), the required capacity calculating means (56) to (56) and the comparing means (52), the use side heat exchanger (7) of each indoor unit (A) to (C). Each of (7) individually functions as an evaporator when a cooling capacity is requested, and as a condenser when a heating capacity is requested, and the total value of the required cooling capacity of the indoor units (A) to (C) and the total required heating capacity. The heat source side heat exchanger (3) corresponding to the required capacity with the larger value
A switching control means (53) for switching and controlling the connection switching mechanism (51) so as to function as a condenser when the total required cooling capacity is larger and as an evaporator when the total required heating capacity is larger. ) And the outputs of the high pressure detecting means (Pc), the low pressure detecting means (Pe) and the comparing means (52), and when the total value of the heating required capacities is larger, the high voltage value becomes a predetermined value. The capacity control means (54) for preferentially controlling the operating capacity of the compressor (1) so that the low pressure value becomes a predetermined value when the total value of the required capacity is larger, and the capacity control means (54). Under control of the operating capacity of the compressor (1), when the output of the high pressure detecting means (Pc), the low pressure detecting means (Pe) and the comparing means (52) is received and the total value of the heating required capacity is larger, A cooling request is made so that the low-pressure value reaches the specified value A heat recovery type, comprising: an opening degree control means (55) for controlling the opening degree of the flow rate control mechanism (4) so that the high pressure value becomes a predetermined value when the total value of the capacities is larger. Operation control device for air conditioner.
JP63206689A 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner Expired - Fee Related JP2564905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206689A JP2564905B2 (en) 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206689A JP2564905B2 (en) 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner

Publications (2)

Publication Number Publication Date
JPH0257874A JPH0257874A (en) 1990-02-27
JP2564905B2 true JP2564905B2 (en) 1996-12-18

Family

ID=16527485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206689A Expired - Fee Related JP2564905B2 (en) 1988-08-19 1988-08-19 Operation controller for heat recovery type air conditioner

Country Status (1)

Country Link
JP (1) JP2564905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0282066A (en) * 1988-09-19 1990-03-22 Sanyo Electric Co Ltd Air conditioner
JP2534926B2 (en) * 1990-03-19 1996-09-18 三菱電機株式会社 Multi-room air conditioner
DE102004062735B4 (en) * 2004-02-19 2023-08-17 Heidelberger Druckmaschinen Ag Device for aligning sheets that are placed on a stack of sheets
JP5205601B2 (en) * 2009-03-26 2013-06-05 オリオン機械株式会社 Temperature and humidity control device
CN112984721B (en) * 2021-02-01 2022-10-28 青岛海尔空调器有限总公司 Control method and device for air conditioner and air conditioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device

Also Published As

Publication number Publication date
JPH0257874A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
JPH0762569B2 (en) Operation control device for air conditioner
US6843066B2 (en) Air conditioning system and method for controlling the same
KR920007811B1 (en) Air conditioner
JP2564905B2 (en) Operation controller for heat recovery type air conditioner
JPH06257828A (en) Multi-chamber type air conditioning system
EP1972861A2 (en) Simultaneous Heating and Cooling Type Multi-Air Conditioner and Method for Controlling the Same
JP2522065B2 (en) Operation control device for air conditioner
KR20190081837A (en) air-conditioning system
JP3275669B2 (en) Multi-room air conditioning system
JP2730398B2 (en) Multi-room air conditioning system
JPH06257827A (en) Multi chamber type air conditioning system
JPH0833245B2 (en) Refrigeration system operation controller
JPH01269872A (en) Operating control device of refrigerator
JPH05272822A (en) Freezer
JPH06317360A (en) Multi-chamber type air conditioner
JP2630128B2 (en) Refrigeration equipment capacity control device
JP3097350B2 (en) Multi-room air conditioner
JP2904354B2 (en) Air conditioner
JPH0610569B2 (en) Operation controller for heat recovery type air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JP2508306B2 (en) Operation control device for air conditioner
JP2541173B2 (en) Air conditioner
EP4310416A1 (en) Hybrid multi-air conditioning system
JP7361913B2 (en) Refrigeration cycle equipment
JPH07117312B2 (en) Multi-room air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees