JP3199746B2 - Multi-room air conditioner - Google Patents

Multi-room air conditioner

Info

Publication number
JP3199746B2
JP3199746B2 JP51256797A JP51256797A JP3199746B2 JP 3199746 B2 JP3199746 B2 JP 3199746B2 JP 51256797 A JP51256797 A JP 51256797A JP 51256797 A JP51256797 A JP 51256797A JP 3199746 B2 JP3199746 B2 JP 3199746B2
Authority
JP
Japan
Prior art keywords
indoor
capacity
temperature
air temperature
heating capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP51256797A
Other languages
Japanese (ja)
Inventor
進 中山
研作 小国
弘 安田
康孝 吉田
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Application granted granted Critical
Publication of JP3199746B2 publication Critical patent/JP3199746B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Description

【発明の詳細な説明】 技術分野 本発明は、多室空気調和機の制御装置に係り、特に室
内機の能力を確保したうえで、消費電力を少なくした多
室空気調和機に関するものである。
Description: TECHNICAL FIELD The present invention relates to a control device for a multi-room air conditioner, and more particularly to a multi-room air conditioner that has reduced power consumption while ensuring the performance of an indoor unit.

背景技術 従来、多室空気調和機に用いられる可変容量圧縮機は
特公平4−32298号公報記載のように、冷房時は低圧圧
力が設定圧力になるように、暖房時は高圧圧力が設定圧
力になるように容量制御されている。
BACKGROUND ART Conventionally, as described in Japanese Patent Publication No. 4-32298, a variable displacement compressor used in a multi-room air conditioner is set so that a low pressure becomes a set pressure during cooling, and a high pressure becomes a set pressure during heating. The capacity is controlled so that

上記従来技術は、各室内熱交換器の熱源温度をほぼ一
定に保つことができ、各室内機への冷媒流量のアンパラ
ンスが生じないようにすれば各室内機の吹き出し温度は
熱源温度に近い温度になり、能力不足が発生することな
く制御性の良い制御方法である。しかし、消費電力を少
なくすることについては考慮されていなかった。
In the above-mentioned conventional technology, the heat source temperature of each indoor heat exchanger can be kept substantially constant, and the blowout temperature of each indoor unit is close to the heat source temperature if the imbalance of the refrigerant flow to each indoor unit does not occur. This is a control method with good controllability without causing a shortage of capacity. However, reducing power consumption has not been considered.

多室空気調和機に接続される室内機には室内機容量や
機種の異なるものがあり、それらの室内ファン風量は室
内容量に比例していないものもある。例えば、室内機容
量に比べて室内ファン風量が多い室内機だけを室内機容
量に見合った圧縮機容量で運転すると、冷房では低圧圧
力が上昇し、暖房では高圧圧力が低下するので、従来技
術では、設定圧力になるように制御するので、圧縮機容
量を増大させることとなる。その結果、室内機は室内機
容量以上の能力を出し、消費電力も増大する。
Some indoor units connected to the multi-room air conditioner have different indoor unit capacities and models, and some of these indoor fan airflows are not proportional to the indoor capacity. For example, if only an indoor unit having a large amount of indoor fan airflow compared to the indoor unit capacity is operated with a compressor capacity corresponding to the indoor unit capacity, the low pressure pressure increases in cooling and the high pressure pressure decreases in heating. Since the pressure is controlled to the set pressure, the capacity of the compressor is increased. As a result, the indoor unit has a capacity higher than the indoor unit capacity, and the power consumption also increases.

また、多室空気調和機の各室内機に流れる冷媒流量の
分配は特公平4−71139号公報記載のように、冷房時は
各室内機の室内熱交換器出口側の冷媒過熱度が設定値に
なるように、暖房時は室内熱交換器出口側の過冷却度が
設定値になるように各室内機内の液配管側に設けた弁開
度が調整可能な電動弁で行っている。さらに、室内熱交
換器の出口冷媒温度を検出するために温度センサが冷媒
配管に取り付けられている。
Also, as described in Japanese Patent Publication No. 4-71139, distribution of the flow rate of the refrigerant flowing through each indoor unit of the multi-room air conditioner is such that the cooling degree of the refrigerant at the outlet side of the indoor heat exchanger of each indoor unit is set at the time of cooling. During heating, an electrically operated valve provided on the liquid pipe side of each indoor unit and having an adjustable valve opening is used so that the degree of supercooling on the outlet side of the indoor heat exchanger becomes a set value. Further, a temperature sensor is attached to the refrigerant pipe to detect the temperature of the refrigerant at the outlet of the indoor heat exchanger.

冷房運転時において、温度センサを取り付ける冷媒配
管には、空気中の水分が付着し、その水分が温度センサ
内に入って誤検出したり、温度センサが配管から浮いて
取り付けられて正確な温度が検出できないことがある。
この検出不良が生じると、冷媒過熱度の検出誤差も大き
くなり、室内機への冷媒分配が良好に行えず、能力不足
の室内機が生じる。
During the cooling operation, moisture in the air adheres to the refrigerant pipe to which the temperature sensor is attached, and the moisture enters the temperature sensor and makes an erroneous detection. It may not be detected.
When this detection failure occurs, the detection error of the degree of superheat of the refrigerant also increases, and the distribution of the refrigerant to the indoor units cannot be performed satisfactorily.

例えば、冷媒過熱度を実際より大きく検出すると、冷
媒過熱度が設定値になるようにする従来技術では、その
室内機の室内冷媒流量調整弁を開いて冷媒を多く流すた
め、他の室内機の能力が不足する。
For example, in the related art in which the degree of superheat of the refrigerant is detected to be a set value when the degree of superheat of the refrigerant is detected to be larger than the actual level, the amount of refrigerant is increased by opening the indoor refrigerant flow control valve of the indoor unit. Insufficient ability.

冷媒過熱度を実際より小さく検出すると、その室内機
の室内冷媒流量調整弁を絞るため、その室内機の能力が
不足する。
When the degree of superheat of the refrigerant is detected to be smaller than the actual value, the indoor refrigerant flow regulating valve of the indoor unit is throttled, so that the performance of the indoor unit is insufficient.

暖房運転時においては、次のような課題がある。 During the heating operation, there are the following problems.

(1)過冷却度を大きくするために室内冷媒流量調整弁
を絞り、冷媒流量を減少させると、室内交換器出口の冷
媒温度は吸い込み空気温度に近づき、室内冷媒流量調整
弁の開度が小さいところでは開度を変化させても室内熱
交換器出口の冷媒温度はほとんど変化しない。
(1) When the indoor refrigerant flow control valve is throttled to increase the degree of supercooling and the refrigerant flow is reduced, the refrigerant temperature at the outlet of the indoor exchanger approaches the intake air temperature, and the opening degree of the indoor refrigerant flow control valve is small. By the way, even if the opening degree is changed, the refrigerant temperature at the outlet of the indoor heat exchanger hardly changes.

そのため室内冷媒流量調整弁を絞りすぎて室内熱交換
器内に液冷媒が溜りすぎて、冷凍サイクル内を循環する
冷媒が不足し、他の室内機の能力低下を招く。
As a result, the indoor refrigerant flow control valve is excessively throttled, and the liquid refrigerant is excessively accumulated in the indoor heat exchanger, so that the amount of refrigerant circulating in the refrigeration cycle is insufficient, and the performance of other indoor units is reduced.

(2)停止室内機に流れる冷媒の省電力の面から極力少
なくしなければならず、室内冷媒流量調整弁は微開とな
るように制御される。
(2) The stoppage of the indoor refrigerant flow control valve is controlled to be slightly opened from the viewpoint of power saving of the refrigerant flowing to the stopped indoor unit.

しかし、室内冷媒流量調整弁の開度が微開で、かつ冷
媒流量が非常に少ないと室内熱交換器出口の冷媒温度
は、冷媒が流れない場合の温度とほとんど変化はない。
よって、室内冷媒流量調整弁が全閉になると室内熱交換
器内に冷媒が液で溜り、前述と同様に冷凍サイクル内を
循環する冷媒が不足し、運転している室内機の能力低下
を招く。
However, when the opening degree of the indoor refrigerant flow control valve is slightly opened and the flow rate of the refrigerant is very small, the refrigerant temperature at the outlet of the indoor heat exchanger hardly changes from the temperature when the refrigerant does not flow.
Therefore, when the indoor refrigerant flow control valve is fully closed, the refrigerant accumulates as a liquid in the indoor heat exchanger, and the refrigerant circulating in the refrigeration cycle runs short in the same manner as described above, causing a decrease in the capacity of the operating indoor unit. .

そこで、従来は室内冷媒流量調整弁を微開付近で全閉
にならないように制御するのは難しいので、最小開度を
設けてその開度以下にならないように制御する。
Therefore, conventionally, it is difficult to control the indoor refrigerant flow control valve so as not to be fully closed in the vicinity of the slightly opened state.

しかし、最小開度を設けても、室内熱交換器に溜って
いる液冷媒量は不明なので、冷凍サイクル内を循環する
冷媒が不足し、能力不足の室内機が生じる。
However, even if the minimum opening degree is provided, the amount of the liquid refrigerant accumulated in the indoor heat exchanger is unknown, so that the amount of the refrigerant circulating in the refrigeration cycle is insufficient, and an indoor unit with insufficient capacity is generated.

さらに、暖房中の各室内機に流れる冷媒流量の分配と
して、特開平3−294752号公報記載のように、各室内機
の吹き出し空気温度と吸い込み空気温度との温度差が設
定値になるように各室内機内の液配管側に設けた弁開度
が調整可能な室内冷媒流量調整弁で行っている。
Further, as described in JP-A-3-294752, the distribution of the flow rate of the refrigerant flowing through each indoor unit during heating is set so that the temperature difference between the blown air temperature and the intake air temperature of each indoor unit becomes a set value. The adjustment is performed by an indoor refrigerant flow rate adjustment valve provided on the liquid pipe side in each indoor unit and capable of adjusting the valve opening.

本従来技術では、吹き出し温度の分布や吹き出し空気
がそのまま吸い込み側に流れるショートサーキットによ
って冷媒分配が室内機の能力に見合って行えず、能力不
足の室内機が生じる。
In this prior art, the distribution of the outlet temperature and the short circuit in which the outlet air flows to the suction side as it is cannot distribute the refrigerant in proportion to the capacity of the indoor unit, resulting in an indoor unit with insufficient capacity.

本発明の目的は、上記従来技術の問題点を解決し、運
転室内機の合計能力が要求能力の合計値になるように圧
縮機を容量制御し、室内機の要求能力に見合った消費電
力で運転し、特に暖房運転では消費能力の少ない多室空
気調和機を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the related art, control the capacity of a compressor so that the total capacity of an operating indoor unit becomes a total value of required capacity, and achieve power consumption corresponding to the required capacity of the indoor unit. An object of the present invention is to provide a multi-room air conditioner that has a low consumption capacity in operation, particularly in heating operation.

さらに、他の目的は冷凍サイクル内を循環する冷媒量
を確保し、能力不足を防止した多室空気調和機を提供す
るものである。
Another object of the present invention is to provide a multi-room air conditioner in which the amount of refrigerant circulating in a refrigeration cycle is ensured to prevent a capacity shortage.

発明の開示 本発明による多室空気調和機は、室内機の吸い込み空
気温度と吹き出し空気温度との温度差によって冷房また
は暖房能力を求める手段と、吸い込み空気温度と室温設
定値との差によって目標冷房または暖房能力を定める手
段とを備え、冷房または暖房能力の合計値が目標冷房ま
たは暖房能力の合計値となるように可変容量圧縮機の運
転容量を制御する。
DISCLOSURE OF THE INVENTION A multi-room air conditioner according to the present invention includes a means for determining cooling or heating capacity based on a temperature difference between an intake air temperature and an outlet air temperature of an indoor unit, and a target cooling system based on a difference between the intake air temperature and a room temperature set value. Or means for determining the heating capacity, and controls the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity.

また、室内機の吸い込み空気温度と吹き出し空気温度
との温度差によって冷房能力を求める手段と、吸い込み
空気温度と室温設定値との差によって目標冷房能力を定
める手段とを備え、冷房能力の合計値が目標冷房能力の
合計値となるように可変容量圧縮機の運転容量を制御す
る。
Further, the air conditioner includes means for determining a cooling capacity based on a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, and means for determining a target cooling capacity based on a difference between the suction air temperature and a room temperature set value. Is controlled to be the total value of the target cooling capacity.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱と、顕熱比とから冷房能力を求める手段と、吸い
込み空気温度と室温設定値との差によって目標冷房能力
を定める手段とを備え、冷房能力の合計値が目標冷房能
力の合計値となるように可変容量圧縮機の運転容量を制
御する。
Further, means for determining a cooling capacity from the temperature difference between the suction air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of the air, the specific heat of the air, and the sensible heat ratio, Means for determining a target cooling capacity based on a difference from the room temperature set value, wherein the operating capacity of the variable displacement compressor is controlled such that the total value of the cooling capacity becomes the total value of the target cooling capacity.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段と、吸い込み空気温
度と室温設定値との差によって目標暖房能力を定める手
段とを備え、暖房能力の合計値が目標暖房能力の合計値
となるように可変容量圧縮機の運転容量を制御する。
Further, a means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of the air, and a method of calculating a suction air temperature and a room temperature set value. Means for determining the target heating capacity based on the difference, and controlling the operating capacity of the variable displacement compressor such that the total value of the heating capacity becomes the total value of the target heating capacity.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差によって冷房能力を求める手段と、吸い込
み空気温度から室温設定値の差が2ないし4℃より大き
い時は、目標冷房能力を室内機の定格冷房能力とし、2
ないし4℃以下の時は、目標冷房能力を室内機の定格冷
房能力以下として定める手段とを備え、冷房能力の合計
値が目標冷房能力の合計値となるように可変容量圧縮機
の運転容量を制御する。
Further, means for determining the cooling capacity based on the temperature difference between the suction air temperature and the blow-out air temperature of the indoor unit, and when the difference between the suction air temperature and the room temperature set value is greater than 2 to 4 ° C., the target cooling capacity is determined by the indoor unit. Rated cooling capacity, 2
Means for setting the target cooling capacity to be equal to or less than the rated cooling capacity of the indoor unit when the temperature is equal to or lower than 4 ° C., and operating the variable capacity compressor so that the total value of the cooling capacity becomes the total value of the target cooling capacity. Control.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差によって暖房能力を求める手段と、室温設
定値から吸い込み空気温度の差が2ないし4℃より大き
い時は、目標暖房能力を室内機の定格暖房能力とし、2
ないし4℃以下の時は、目標暖房能力を室内機の定格暖
房能力以下として定める手段とを備え、暖房能力の合計
値が目標暖房能力の合計値となるように可変容量圧縮機
の運転容量を制御する。
Further, a means for determining the heating capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, and when the difference in the intake air temperature from the room temperature set value is greater than 2 to 4 ° C, the target heating capacity is set to the indoor unit. Rated heating capacity, 2
Means for setting the target heating capacity to be equal to or less than the rated heating capacity of the indoor unit when the temperature is equal to or lower than 4 ° C., and operating the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity. Control.

さらに、上記において、冷房能力が目標冷房能力とな
るように室内冷媒流量調整弁の開度を制御する。
Further, in the above, the opening degree of the indoor refrigerant flow control valve is controlled so that the cooling capacity becomes the target cooling capacity.

さらに、上記において、暖房能力が目標暖房能力とな
るように室内冷媒流量調整弁の開度を制御する。
Further, in the above, the opening degree of the indoor refrigerant flow control valve is controlled so that the heating capacity becomes the target heating capacity.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段と、吸い込み空気温
度と室温設定値との差によって目標暖房能力を定める手
段と、暖房能力の合計値が目標暖房能力の合計値となる
ように可変容量圧縮機の運転容量を制御する手段と、暖
房能力が目標暖房能力となるように室内冷媒流量調整弁
の開度を制御する手段と、可変容量圧縮機の吐出圧力が
所定の値以下のとき室内冷媒流量調整弁の最大開度を全
開開度より小さくする手段とを備えている。
Further, a means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of the air, and a method of calculating a suction air temperature and a room temperature set value. Means for determining the target heating capacity by the difference, means for controlling the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the indoor capacity so that the heating capacity becomes the target heating capacity. Means for controlling the opening of the refrigerant flow control valve, and means for making the maximum opening of the indoor refrigerant flow control valve smaller than the full opening when the discharge pressure of the variable displacement compressor is equal to or lower than a predetermined value.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段と、吸い込み空気温
度と室温設定値との差によって目標暖房能力を定める手
段と、暖房能力の合計値が目標暖房能力の合計値となる
ように可変容量圧縮機の運転容量を制御する手段と、暖
房能力が目標暖房能力となるように室内冷媒流量調整弁
の開度を制御する手段と、可変容量圧縮機の吐出圧力が
15ないし20kg/cm2以下となったときOFFする圧力スイッ
チとを備え、圧力スイッチがOFFしたとき室内冷媒流量
調整弁の最大開度を(全開開度×0.5)としている。
Further, a means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of the air, and a method of calculating a suction air temperature and a room temperature set value. Means for determining the target heating capacity by the difference, means for controlling the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the indoor capacity so that the heating capacity becomes the target heating capacity. Means for controlling the opening of the refrigerant flow regulating valve and the discharge pressure of the variable displacement compressor
A pressure switch that is turned off when the pressure becomes 15 to 20 kg / cm 2 or less, and the maximum opening of the indoor refrigerant flow regulating valve when the pressure switch is turned off is (full opening × 0.5).

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段と、吸い込み空気温
度と室温設定値との差によって目標暖房能力を定める手
段と、暖房能力の合計値が目標暖房能力の合計値となる
ように可変容量圧縮機の運転容量を制御する手段と、暖
房能力が目標暖房能力となるように室内冷媒流量調整弁
の開度を制御する手段と、吸い込み空気温度が所定の値
以下のとき室内冷媒流量調整弁の最大開度を全開開度よ
り小さくする手段とを備えている。
Further, a means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of the air, and a method of calculating a suction air temperature and a room temperature set value. Means for determining the target heating capacity by the difference, means for controlling the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the indoor capacity so that the heating capacity becomes the target heating capacity. Means are provided for controlling the opening of the refrigerant flow control valve, and means for making the maximum opening of the indoor refrigerant flow control valve smaller than the full opening when the intake air temperature is equal to or lower than a predetermined value.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段と、吸い込み空気温
度と室温設定値との差によって目標暖房能力を定める手
段と、暖房能力の合計値が目標暖房能力の合計値となる
ように可変容量圧縮機の運転容量を制御する手段と、暖
房能力が目標暖房能力となるように室内冷媒流量調整弁
の開度を制御する手段とを備え、吸い込み空気温度が20
ないし25℃以下のとき室内冷媒流量調整弁の最大開度を
(全開開度×0.5)としている。
Further, a means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of the air, and a method of calculating a suction air temperature and a room temperature set value. Means for determining the target heating capacity by the difference, means for controlling the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the indoor capacity so that the heating capacity becomes the target heating capacity. Means for controlling the degree of opening of the refrigerant flow control valve.
When the temperature is equal to or lower than 25 ° C., the maximum opening of the indoor refrigerant flow control valve is set to (full opening × 0.5).

さらに、上記において、冷房能力を吹き出し空気温度
の温度分布の補正係数と、室内風量係数とで補正して求
めることとしている。
Further, in the above description, the cooling capacity is determined by correcting with the correction coefficient of the temperature distribution of the blown air temperature and the indoor air flow coefficient.

さらに、上記において、暖房能力を吹き出し空気温度
の温度分布の補正係数と、室内風量係数とで補正して求
めることとしている。
Further, in the above description, the heating capacity is determined by correcting the correction coefficient of the temperature distribution of the blown air temperature and the indoor air flow coefficient.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段と、吸い込み空気温
度と室温設定値との差によって目標暖房能力を定める手
段と、暖房能力の合計値が目標暖房能力の合計値となる
ように可変容量圧縮機の運転容量を制御する手段と、室
外機に設置された液タンクとを備え、暖房運転時、室内
機の室内冷媒流量調整弁の開度を室外冷媒流量調整弁の
開度に応じて変化させることとしている。
Further, a means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of the air, and a method of calculating a suction air temperature and a room temperature set value. Means for determining the target heating capacity by the difference, means for controlling the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and a liquid tank installed in the outdoor unit During the heating operation, the opening degree of the indoor refrigerant flow control valve of the indoor unit is changed according to the opening degree of the outdoor refrigerant flow control valve.

さらに、上記において、室外冷媒流量調整弁の開度が
(0.5×全開開度)以下のときは、室内冷媒流量調整弁
の最小開度を(0.1×全開開度)とし、室外冷媒流量調
整弁の開度が(0.8×全開開度)以上のときは、室内冷
媒流量調整弁の最小開度を(0.4×全開開度)とし、室
外冷媒流量調整弁の開度が(0.5×全開開度)から(0.8
×全開開度)の間は、室内冷媒流量調整弁の最小開度を
(0.1×全開開度)から(0.4×全開開度)までの値で室
外冷媒流量調整弁の開度に比例した値としている。
Further, in the above, when the opening degree of the outdoor refrigerant flow regulating valve is equal to or less than (0.5 × full opening degree), the minimum opening degree of the indoor refrigerant flow regulating valve is set to (0.1 × full opening degree), and the outdoor refrigerant flow regulating valve Is greater than (0.8 x full opening), the minimum opening of the indoor refrigerant flow control valve is (0.4 x full opening) and the outdoor refrigerant flow regulating valve is (0.5 x full opening) ) To (0.8
X Full opening), the minimum opening of the indoor refrigerant flow control valve is a value from (0.1 x full opening) to (0.4 x full opening), which is proportional to the opening of the outdoor refrigerant flow adjusting valve. And

上記構成によって、次のように作用する。 With the above configuration, the following operation is performed.

室内機の吸い込み空気温度と吹き出し空気温度との温
度差によって冷房または暖房能力を求める手段とは、室
内機の吸い込み部と吹き出し部の温度を温度センサを用
いて検出し、その差の値を基に現在運転中の冷房または
暖房能力を算出することを意味し、具体的には室内制御
器または室外制御器に設けられたマイクロコンピュータ
が用いられる。
Means for determining the cooling or heating capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit is to detect the temperatures of the suction unit and the blow-out unit of the indoor unit using a temperature sensor and to determine the value of the difference. Means to calculate the cooling or heating capacity currently in operation. Specifically, a microcomputer provided in an indoor controller or an outdoor controller is used.

同様に、吸い込み空気温度と設定値との差によって目
標冷房または暖房能力を定める手段とは、既に検出され
た吸い込み空気温度と設定された室温との差より、目標
とする冷房または暖房能力を定めることを意味し、具体
的には室内制御器または室外制御器に設けられたマイク
ロコンピュータによって、特定の関係を予め定めること
によって行われる。
Similarly, the means for determining the target cooling or heating capacity by the difference between the suction air temperature and the set value is to determine the target cooling or heating capacity from the difference between the already detected suction air temperature and the set room temperature. That is, the specific relationship is determined in advance by a microcomputer provided in the indoor controller or the outdoor controller.

冷房または暖房能力の合計値が目標冷房または暖房能
力の合計値となるように可変容量圧縮機の運転容量を制
御するとは、上記で算出された各室内機の冷房または暖
房能力と、上記で定められた各室内機の目標とする冷房
または暖房能力の値を室外機制御器へ送り、両者のそれ
ぞれの合計値をもって室外機内の可変容量圧縮機の運転
容量を制御することを意味し、具体的には室外制御器に
設けられたマイクロコンピュータによって、算出された
各室内機の冷房または暖房能力の合計値と定められた各
室内機の目標とする冷房または暖房能力の合計値との偏
差から可変容量圧縮機のモータ回転数を求め、可変容量
圧縮機の容量を制御することで行われる。
Controlling the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity means that the cooling or heating capacity of each indoor unit calculated above and the cooling capacity or heating capacity calculated above are determined. Sends the value of the target cooling or heating capacity of each indoor unit to the outdoor unit controller, and controls the operating capacity of the variable displacement compressor in the outdoor unit with the total value of both of them. Variable by the microcomputer provided in the outdoor controller from the deviation between the calculated total value of the cooling or heating capacity of each indoor unit and the target total value of the cooling or heating capacity of each indoor unit determined This is performed by obtaining the motor speed of the displacement compressor and controlling the displacement of the variable displacement compressor.

以上によって、可変容量圧縮機は運転されている室内
機の合計容量以上の容量で運転されることがなくなり、
各室内機の要求能力の合計値に見合った圧縮機容量で圧
縮機が運転される。よって、多室空気調和機は各室内機
の要求能力に見合った消費電力で運転できることとな
る。
By the above, the variable capacity compressor will not be operated with a capacity greater than the total capacity of the operated indoor units,
The compressor is operated with a compressor capacity corresponding to the total value of the required capacity of each indoor unit. Therefore, the multi-room air conditioner can be operated with power consumption corresponding to the required capacity of each indoor unit.

また、上記において、冷房運転時だけ算出された各室
内機の冷房能力の合計値と定められた各室内機の目標と
する冷房能力の合計値との偏差から可変容量圧縮機の容
量を制御することでも効果的に消費電力の低減が行え
る。
Further, in the above, the capacity of the variable displacement compressor is controlled from the deviation between the total value of the cooling capacity of each indoor unit calculated only during the cooling operation and the predetermined total value of the cooling capacity targeted for each indoor unit. Thus, power consumption can be effectively reduced.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱と、顕熱比とから冷房能力を求める手段とは、室
内機の吸い込み部と吹き出し部の温度を温度センサを用
いて検出し、その差の値と、室内機の風量と、空気の密
度と、空気の比熱と、顕熱比とから現在運転中の冷房能
力を算出することを意味し、具体的には室内制御器また
は室外制御器に設けられたマイクロコンピュータが用い
られる。これによって、冷房能力の算出を正確に行うこ
とができる。
Further, means for determining the cooling capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of air, the specific heat of air, and the sensible heat ratio are: The temperature of the suction section and the blow-out section are detected using a temperature sensor, and the cooling capacity during the current operation is determined from the value of the difference, the air volume of the indoor unit, the density of the air, the specific heat of the air, and the sensible heat ratio. This means calculating, and specifically, a microcomputer provided in an indoor controller or an outdoor controller is used. Thereby, the calculation of the cooling capacity can be accurately performed.

さらに、室内機の吸い込み空気温度と吹き出し空気温
度との温度差と、室内機の風量と、空気の密度と、空気
の比熱とから暖房能力を求める手段とは、室内機の吸い
込み部と吹き出し部の温度を温度センサを用いて検出
し、その差の値と、室内機の風量と、空気の密度と、空
気の比熱とから現在運転中の暖房能力を算出することを
意味し、具体的には室内制御器または室外制御器に設け
られたマイクロコンピュータが用いられる。これによっ
て、暖房能力の算出を正確に行うことができる。
Further, the means for determining the heating capacity from the temperature difference between the suction air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of the air, and the specific heat of the air include the suction unit and the blow-out unit of the indoor unit. Means the temperature of the current operation is calculated from the difference value, the air volume of the indoor unit, the density of the air, and the specific heat of the air. A microcomputer provided in an indoor controller or an outdoor controller is used. Thereby, the calculation of the heating capacity can be performed accurately.

さらに、吸い込み空気温度から室温設定値との差が2
ないし4℃より大きい時は、目標冷房能力を室内機の定
格冷房能力とし、2ないし4℃以下の時は、目標冷房能
力を室内機の定格冷房能力以下として定める手段とは、
室内機の吸い込み部を温度センサを用いて検出し、その
値が室温設定値より2ないし4℃より大きい場合は、冷
房負荷が大きいので目標冷房能力を室内機の定格冷房能
力の値とし、室温設定値との差が2ないし4℃以下の時
は、冷房負荷が小さいので目標冷房能力を定格冷房能力
以下の値として定めることを意味し、具体的には室内制
御器または室外制御器に設けられたマイクロコンピュー
タによって判定される。これによって、目標冷房能力を
室温設定値(冷房負荷)に合わせて適切に定めることが
できる。
Furthermore, the difference between the intake air temperature and the room temperature set value is 2
Means for setting the target cooling capacity as the rated cooling capacity of the indoor unit when the cooling capacity is greater than or equal to 4 ° C. and setting the target cooling capacity as the rated cooling capacity or less for the indoor unit when the temperature is 2 to 4 ° C. or less,
The suction unit of the indoor unit is detected using a temperature sensor, and if the value is larger than the room temperature set value by 2 to 4 ° C., the cooling load is large, so the target cooling capacity is set to the value of the rated cooling capacity of the indoor unit. When the difference from the set value is 2 to 4 ° C. or less, it means that the target cooling capacity is determined as a value equal to or less than the rated cooling capacity because the cooling load is small. Specifically, the target cooling capacity is provided in the indoor controller or the outdoor controller. Is determined by the microcomputer. As a result, the target cooling capacity can be appropriately determined according to the room temperature set value (cooling load).

さらに、室温設定値から吸い込み空気温度の差が2な
いし4℃より大きい時は、目標暖房能力を室内機の定格
暖房能力とし、2ないし4℃以下の時は、目標暖房能力
を室内機の定格暖房能力以下として定める手段とは、室
内機の吸い込み部を温度センサを用いて検出し、室温設
定値がその値より2ないし4℃より大きい場合は、暖房
負荷が大きいので目標暖房能力を室内機の定格暖房能力
の値とし、室温設定値との差が2ないし4℃以下の時
は、暖房負荷が小さいので目標暖房能力を定格暖房能力
以下の値として定めることを意味し、具体的には室内制
御器または室外制御器に設けられたマイクロコンピュー
タによって判定される。これによって、目標暖房能力を
室温設定値(暖房負荷)に合わせて適切に定めることが
できる。
Furthermore, when the difference between the intake air temperature from the set room temperature and the intake air temperature is greater than 2 to 4 ° C, the target heating capacity is set to the rated heating capacity of the indoor unit. The means to determine the heating capacity or less means that the suction unit of the indoor unit is detected using a temperature sensor, and if the room temperature set value is greater than 2 to 4 ° C., the heating load is large, so the target heating capacity is set to the indoor unit. When the difference from the room temperature set value is 2 to 4 ° C. or less, since the heating load is small, it means that the target heating capacity is determined as a value equal to or less than the rated heating capacity. The determination is made by the microcomputer provided in the indoor controller or the outdoor controller. Thereby, the target heating capacity can be appropriately determined according to the room temperature set value (heating load).

さらに、上記において、冷房能力が目標冷房能力とな
るように室内冷媒流量調整弁の開度を制御することによ
って、各室内機の冷房能力を直接に制御できることにな
るので、各室内機の冷房能力が不足することがないよう
にできる。
Further, in the above, the cooling capacity of each indoor unit can be directly controlled by controlling the opening degree of the indoor refrigerant flow control valve so that the cooling capacity becomes the target cooling capacity. Can be kept short.

さらに、上記において、暖房能力が目標暖房能力とな
るように室内冷媒流量調整弁の開度を制御することによ
って、各室内機の暖房能力を直接に制御できることにな
るので、各室内機の暖房能力が不足することがないよう
にできる。
Further, in the above, the heating capacity of each indoor unit can be directly controlled by controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity. Can be kept short.

さらに、暖房運転時において、可変容量圧縮機の吐出
圧力が所定の値以下のとき室内冷媒流量調整弁の最大開
度を全開開度より小さくする手段とは、圧縮機の吐出側
に圧力スイッチを取り付けて、その信号を室外制御器に
入力し、吐出圧力が予め定めた所定の値以下となったこ
とを圧力スイッチがOFFあるいはONすることによって検
出し、室内冷媒流量調整弁の最大開度が全開開度より小
さくすることを意味し、具体的には、室内制御器または
室外制御器などに設けられたマイクロコンピュータによ
って判定される。これによって、室内冷媒制御弁の流路
抵抗が増加して吐出圧力が上昇し、それに伴って凝縮圧
力、すなわち凝縮温度が上昇する。そして、凝縮温度
は、熱源温度なので、暖房能力も増加する。したがっ
て、室内機の能力が増加し、その増加分だけ圧縮機の運
転容量が減少され、省電力化が図れる。
Further, in the heating operation, when the discharge pressure of the variable capacity compressor is equal to or less than a predetermined value, the means for making the maximum opening degree of the indoor refrigerant flow control valve smaller than the full opening degree includes a pressure switch on the discharge side of the compressor. Attach the signal to the outdoor controller and detect that the discharge pressure has fallen below the predetermined value by turning the pressure switch off or on. This means that the opening degree is smaller than the full opening degree, and specifically, is determined by a microcomputer provided in an indoor controller or an outdoor controller. As a result, the flow path resistance of the indoor refrigerant control valve increases, and the discharge pressure increases, and accordingly, the condensing pressure, that is, the condensing temperature increases. Since the condensation temperature is the heat source temperature, the heating capacity also increases. Therefore, the capacity of the indoor unit increases, and the operating capacity of the compressor is reduced by the increased amount, so that power saving can be achieved.

さらに、上記において、可変容量圧縮機の吐出圧力が
冷媒にHCF22Rや407Cを使用したときの通常の使用圧力で
ある15ないし20kg/cm2以下となったときOFFする圧力ス
イッチとを備え、圧力スイッチがOFFしたとき室内冷媒
流量調整弁の最大開度を全開開度より小さく、かつ絞り
過ぎない開度(全開開度×0.5)としているので、室内
機の能力を増加させることができ、その増加分だけ圧縮
機の運転容量を減少することができる。
Further, in the above, a pressure switch which is turned off when the discharge pressure of the variable capacity compressor becomes 15 to 20 kg / cm 2 or less, which is a normal use pressure when HCF22R or 407C is used as the refrigerant, When is turned off, the maximum opening of the indoor refrigerant flow control valve is smaller than the full opening and the opening is not too restrictive (full opening x 0.5), so the capacity of the indoor unit can be increased and the increase The operating capacity of the compressor can be reduced by the amount.

さらに、暖房運転時において、吸い込み空気温度が所
定の値以下のとき室内冷媒流量調整弁の最大開度を全開
開度より小さくする手段とは、室内機の吸い込み部を温
度センサを用いて検出し、その値が予め定めた所定の値
以下のとき、室内冷媒流量調整弁の最大開度が全開開度
より小さくすることを意味し、具体的には、室内制御器
または室外制御器などに設けられたマイクロコンピュー
タによって判定される。これによって、上述と同様に室
内機の能力が増加し、その増加分だけ圧縮機の運転容量
が減少され、省電力化を図ることができる。
Further, in the heating operation, the means for making the maximum opening of the indoor refrigerant flow control valve smaller than the full opening when the suction air temperature is equal to or lower than a predetermined value is to detect the suction unit of the indoor unit using a temperature sensor. When the value is equal to or less than a predetermined value, it means that the maximum opening degree of the indoor refrigerant flow control valve is smaller than the full opening degree, and specifically, provided in an indoor controller or an outdoor controller. Is determined by the microcomputer. As a result, the capacity of the indoor unit is increased as described above, the operating capacity of the compressor is reduced by the increased amount, and power saving can be achieved.

さらに、上記において、吸い込み空気温度が20ないし
25℃以下の暖房負荷が比較的大きいとき、室内冷媒流量
調整弁の最大開度を全開開度より小さく、かつ絞り過ぎ
ない開度(全開開度×0.5)としているので、暖房能力
が要求された室内機の能力を増加させることができ、そ
の増加分だけ圧縮機の運転容量を減少することができ
る。
Further, in the above, the suction air temperature is 20 to
When the heating load of 25 ° C or less is relatively large, the maximum opening of the indoor refrigerant flow control valve is smaller than the full opening and the opening is not too narrow (full opening x 0.5). The capacity of the indoor unit can be increased, and the operating capacity of the compressor can be reduced by the increased amount.

さらに、上記において、冷房能力を吹き出し空気温度
の温度分布の補正係数と、室内風量係数とで補正して求
めることとしているので、室内機が設置される部屋の環
境(湿度、ショートサーキットなど)や室内機の特性
(室内ファン風量、吹き出し空気温度の分布など)の補
正が可能となる。これによって、室内機能力を正確に検
出でき、室内機能力を確実に確保できる。
Further, in the above, the cooling capacity is determined by correcting the correction coefficient of the temperature distribution of the blown-out air temperature and the indoor air flow coefficient, so that the environment (humidity, short circuit, etc.) of the room in which the indoor unit is installed and It is possible to correct the characteristics of the indoor unit (such as the distribution of the indoor fan air volume and the blown air temperature). As a result, the indoor functional power can be accurately detected, and the indoor functional power can be reliably ensured.

さらに、上記において、暖房能力を吹き出し空気温度
の温度分布の補正係数と、室内風量係数とで補正して求
めることとしているので、室内機の暖房能力の算出をよ
り正確にして、精度の良い室内冷媒流量調整弁、および
圧縮機容量の制御が実現できる。
Furthermore, in the above, since the heating capacity is determined by correcting the correction coefficient of the temperature distribution of the blown-out air temperature and the indoor air volume coefficient, the calculation of the heating capacity of the indoor unit is made more accurate, and the indoor temperature with high accuracy is obtained. The control of the refrigerant flow control valve and the compressor capacity can be realized.

さらに、暖房運転時、室内機の室内冷媒流量調整弁の
開度を室外冷媒流量調整弁の開度に応じて変化させるこ
ととしているので、室内熱交換器内に液冷媒が溜まりす
ぎて冷媒不足が起こることが解消される。よって、室内
機の暖房能力の不足を防止できる。
Further, during the heating operation, the opening degree of the indoor refrigerant flow control valve of the indoor unit is changed according to the opening degree of the outdoor refrigerant flow control valve, so that the liquid refrigerant is excessively accumulated in the indoor heat exchanger and the refrigerant is insufficient. Is eliminated. Therefore, shortage of the heating capacity of the indoor unit can be prevented.

さらに、上記において、室外冷媒流量調整弁の開度が
通常の使用範囲である(0.5×全開開度)以下のとき
は、室内冷媒流量調整弁の最小開度を(0.1×全開開
度)とし、室外冷媒流量調整弁の開度が(0.8×全開開
度)以上のときは、冷媒が不足状態なので室内冷媒流量
調整弁の最小開度を(0.4×全開開度)とし、室外冷媒
流量調整弁の開度が(0.5×全開開度)から(0.8×全開
開度)の間は、室内冷媒流量調整弁の最小開度を(0.1
×全開開度)から(0.4×全開開度)までの値で室外冷
媒流量調整弁の開度に比例した値としているので、室内
冷媒流量調整弁を絞りすぎることなく、実用的な範囲で
冷媒不足が起こることが解消される。
Furthermore, in the above, when the opening degree of the outdoor refrigerant flow control valve is equal to or less than the normal use range (0.5 × full opening), the minimum opening degree of the indoor refrigerant flow control valve is set to (0.1 × full opening). When the opening of the outdoor refrigerant flow control valve is equal to or greater than (0.8 x full opening), the minimum amount of the indoor refrigerant flow adjusting valve is set to (0.4 x full opening) because the refrigerant is insufficient, and the outdoor refrigerant flow is adjusted. When the valve opening is between (0.5 x full opening) and (0.8 x full opening), the minimum opening of the indoor refrigerant flow control valve is set to (0.1 x
X Full opening) to (0.4 x full opening) and a value proportional to the opening of the outdoor refrigerant flow control valve. The shortage is eliminated.

図面の簡単な説明 第1図は本発明の一実施例に係わる多室空気調和機の
冷凍サイクルの構成を示すブロック図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to one embodiment of the present invention.

第2図は室内機吸い込み空気温度と設定温度との偏差
と、室内機の目的冷房能力比との関係を表わすグラフ線
図である。
FIG. 2 is a graph showing the relationship between the difference between the indoor unit intake air temperature and the set temperature and the target cooling capacity ratio of the indoor unit.

第3図は冷房運転時の圧縮機の容量制御方法を表わす
ブロック線図である。
FIG. 3 is a block diagram showing a compressor capacity control method during a cooling operation.

第4図は冷房運転時の室内冷媒流量調整弁の開度制御
方法を表すブロック線図である。
FIG. 4 is a block diagram showing a method of controlling the opening degree of the indoor refrigerant flow control valve during the cooling operation.

第5図は室内機吸い込み空気温度と設定温度との偏差
と、室内機の目標暖房能力比との関係を表わすグラフ線
図である。
FIG. 5 is a graph showing the relationship between the difference between the indoor unit intake air temperature and the set temperature and the target heating capacity ratio of the indoor unit.

第6図は暖房運転時の圧縮機の容量制御方法を表わす
ブロック線図である。
FIG. 6 is a block diagram showing a compressor capacity control method during the heating operation.

第7図は本発明の他の実施例に係わる多室空気調和機
の冷凍サイクルの構成を示すブロック図である。
FIG. 7 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to another embodiment of the present invention.

第8図は吐出圧力に対する圧力スイッチの動作と室内
冷媒流量調整弁の最大開度の関係を表わすグラフ線図で
ある。
FIG. 8 is a graph showing the relationship between the operation of the pressure switch with respect to the discharge pressure and the maximum opening of the indoor refrigerant flow control valve.

第9図は室内吸い込み空気温度に対する室内冷媒流量
調整弁の最大開度の関係を表わすグラフ線図である。
FIG. 9 is a graph showing the relationship between the indoor suction air temperature and the maximum opening of the indoor refrigerant flow control valve.

第10図は室内機の室内制御器の制御基板の部品配置を
示す平面図である。
FIG. 10 is a plan view showing a component arrangement of a control board of an indoor controller of an indoor unit.

第11図は制御基板のディップスイッチのON/OFFの組合
せと演算係数を表わす関係図である。
FIG. 11 is a relationship diagram showing ON / OFF combinations of DIP switches on the control board and operation coefficients.

第12図は本発明の一実施例に係わる暖房運転時の多室
空気調和機の冷凍サイクルの構成を示すブロック図であ
る。
FIG. 12 is a block diagram showing a configuration of a refrigeration cycle of the multi-room air conditioner during a heating operation according to one embodiment of the present invention.

第13図は室外冷媒流量調整弁開度と室内冷媒流量調整
弁の最小開度および停止室内機の室内冷媒流量調整弁開
度との関係を表わすグラフ線図である。
FIG. 13 is a graph showing the relationship between the opening degree of the outdoor refrigerant flow regulating valve, the minimum opening degree of the indoor refrigerant flow regulating valve, and the opening degree of the indoor refrigerant flow regulating valve of the stopped indoor unit.

発明を実施するための最良の形態 以下、本発明の実施例を図に基づいて説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の一実施例を第1図ないし第6図を参照して説
明する。
One embodiment of the present invention will be described with reference to FIGS.

第1図は本発明の一実施例に係わる多室空気調和機の
冷凍サイクルの構成を示すブロック図である。第2図は
横軸に室内機吸い込み空気温度と設定温度との偏差を示
し、室内機の目標冷房能力比との関係を縦軸に表わした
グラフ線図である。第3図は冷房運転時の圧縮機の容量
制御方法を表わすブロック線図である。第4図は冷房運
転時の室内冷媒流量調整弁の開度制御方法を表わすブロ
ック線図である。第5図は横軸に室内機吸い込み空気温
度と設定温度との偏差を示し、室内機の目標暖房能力比
との関係を縦軸に表わしたグラフ線図である。第6図は
暖房運転時の圧縮機の容量制御方法を表わすブロック線
図である。
FIG. 1 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to one embodiment of the present invention. FIG. 2 is a graph showing the deviation between the indoor unit intake air temperature and the set temperature on the horizontal axis, and the relationship between the target cooling capacity ratio of the indoor unit and the vertical axis. FIG. 3 is a block diagram showing a compressor capacity control method during a cooling operation. FIG. 4 is a block diagram showing a method of controlling the opening degree of the indoor refrigerant flow control valve during the cooling operation. FIG. 5 is a graph showing the deviation between the indoor unit suction air temperature and the set temperature on the horizontal axis, and the relationship between the target heating capacity ratio of the indoor unit and the vertical axis. FIG. 6 is a block diagram showing a compressor capacity control method during the heating operation.

室外機100と室内機200、300は、ガス配管121と液配管
122によって接続されている。室外機100は、モータ回転
数が可変できる圧縮機105、四方弁106、室外熱交換器10
1、室外冷媒流量調整弁102、室外ファン103、アキュム
レータ104、室外制御器151及び吐出温度検出器115で構
成されている。
The outdoor unit 100 and the indoor units 200 and 300 have a gas pipe 121 and a liquid pipe.
Connected by 122. The outdoor unit 100 includes a compressor 105 having a variable motor rotation speed, a four-way valve 106, and an outdoor heat exchanger 10.
1. An outdoor refrigerant flow control valve 102, an outdoor fan 103, an accumulator 104, an outdoor controller 151, and a discharge temperature detector 115.

室外制御器151は、吐出温度検出器115の信号が入力さ
れ、圧縮機105のモータ(図示せず)の回転数及び室外
冷媒流量調整弁102を制御する信号を出力する。
The outdoor controller 151 receives the signal of the discharge temperature detector 115, and outputs a signal for controlling the rotation speed of a motor (not shown) of the compressor 105 and the outdoor refrigerant flow control valve 102.

室内機200は、室内熱交換器201、室内冷媒流量調整弁
202、室内ファン203、温度検出器204、206、207及び室
内制御器208で構成されている。
The indoor unit 200 includes an indoor heat exchanger 201, an indoor refrigerant flow control valve.
202, an indoor fan 203, temperature detectors 204, 206, 207 and an indoor controller 208.

室内制御器208は、温度検出器204、206、207の信号が
入力され、室内冷媒流量調整弁202の開度を制御する。
The indoor controller 208 receives the signals of the temperature detectors 204, 206, and 207 and controls the opening of the indoor refrigerant flow control valve 202.

同様に、室内機300は、室内熱交換器301、室内冷媒流
量調整弁302、室内ファン303、温度検出器304、306、30
7及び室内制御器308で構成され、室内制御器308は、温
度検出器304、306、307の信号が入力され、室内冷媒流
量調整弁302の開度を制御する。
Similarly, the indoor unit 300 includes an indoor heat exchanger 301, an indoor refrigerant flow control valve 302, an indoor fan 303, and temperature detectors 304, 306, and 30.
7 and an indoor controller 308. The indoor controller 308 receives the signals of the temperature detectors 304, 306, and 307 and controls the opening of the indoor refrigerant flow control valve 302.

温度センサ204、304はそれぞれ室内熱交換器201、301
の液側冷媒配管に取り付けられ、液側冷媒温度を検出し
ている。温度センサ206、306はそれぞれ室内機200、300
の吸い込み空気温度を検出している。温度センサ207、3
07はそれぞれ室内機200、300の吹き出し空気温度を検出
している。
Temperature sensors 204 and 304 are indoor heat exchangers 201 and 301, respectively.
And detects the temperature of the liquid-side refrigerant. Temperature sensors 206 and 306 are indoor units 200 and 300, respectively.
Is detected. Temperature sensors 207, 3
Reference numeral 07 indicates the temperature of the blown air from the indoor units 200 and 300, respectively.

また、室内制御器208、308と室外制御器151は伝送線
によって接続され、各種信号のやり取りをしている。
The indoor controllers 208 and 308 and the outdoor controller 151 are connected by a transmission line and exchange various signals.

冷房運転時の各部の動作を説明する。 The operation of each unit during the cooling operation will be described.

ガス配管121及び液配管122部の実線矢印は、冷房運転
時冷媒の流れ方向を示し、室内器200、300内の実線矢印
は空気流れ方向を示している。
Solid arrows in the gas pipe 121 and the liquid pipe 122 indicate the flow direction of the refrigerant during the cooling operation, and solid arrows in the indoor units 200 and 300 indicate the air flow directions.

圧縮機105から吐出された冷媒は、四方弁106を通っ
て、室外熱交換器101へ入り、室外ファン103によって送
られる室外空気と熱交換されて凝縮され、液冷媒とな
る。つぎに、凝縮された冷媒は全開となった室外冷媒流
量調整弁102を通って、液配管122を介して、室内機20
0、300へ送られる。さらに、液冷媒は室内冷媒流量調整
弁202で膨張して減圧され、室内熱交換器201へ入り、室
内ファン203によって送られる室内空気と熱交換されて
蒸発する。そして、冷却された室内空気は室内機200か
ら室内へ吹き出される。
The refrigerant discharged from the compressor 105 passes through the four-way valve 106, enters the outdoor heat exchanger 101, exchanges heat with outdoor air sent by the outdoor fan 103, is condensed, and becomes a liquid refrigerant. Next, the condensed refrigerant passes through the outdoor refrigerant flow control valve 102 that is fully opened, and through the liquid pipe 122, the indoor unit 20.
Sent to 0,300. Further, the liquid refrigerant expands and is decompressed by the indoor refrigerant flow control valve 202, enters the indoor heat exchanger 201, exchanges heat with the indoor air sent by the indoor fan 203, and evaporates. Then, the cooled indoor air is blown from the indoor unit 200 into the room.

同様に、室内機300に入った冷媒は、室内冷媒流量調
整弁302で減圧され、室内熱交換器301へ入り、室内ファ
ン303によって送られる室内空気と熱交換されて蒸発す
る。そして、冷却された室内空気は室内機300から吹き
出される。
Similarly, the refrigerant entering the indoor unit 300 is decompressed by the indoor refrigerant flow control valve 302, enters the indoor heat exchanger 301, and exchanges heat with the indoor air sent by the indoor fan 303 to evaporate. Then, the cooled indoor air is blown out from the indoor unit 300.

室内機200及び室内機300から出た冷媒は、合流して、
ガス配管121を通って室外機100へ送られる。さらに、冷
媒は四方弁106、アキュムレータ104を通って圧縮機105
に吸入され、圧縮されて再び吐出される。
The refrigerant flowing out of the indoor unit 200 and the indoor unit 300 joins,
The gas is sent to the outdoor unit 100 through the gas pipe 121. Further, the refrigerant passes through the four-way valve 106, the accumulator 104, and the compressor 105.
, Compressed and discharged again.

次に、冷房運転時の制御方法を手順を追って説明す
る。
Next, a control method during the cooling operation will be described step by step.

(1)室内制御器208は、室内機200の冷房能力Qc2を吸
い込み空気温度と吹き出し空気温度との温度差(t206−
t207)を用いて次式(1)より算出する。
(1) The indoor controller 208 determines the cooling capacity Qc2 of the indoor unit 200 as the temperature difference between the intake air temperature and the blown air temperature (t206−
This is calculated from the following equation (1) using t207).

(2)同様に、室内制御器308は、室内機300の冷房能力
Qc3を吸い込み空気温度と吹き出し空気温度との温度差
(t306−t307)を用いて次式(2)によって算出する。
(2) Similarly, the indoor controller 308 determines the cooling capacity of the indoor unit 300.
Qc3 is calculated by the following equation (2) using the temperature difference (t306-t307) between the intake air temperature and the blown air temperature.

(3)それぞれ算出された冷房能力Qc2、Qc3の値は、室
外制御器151へ送られ、冷房能力の合計値QcTは、次式
(3)のように求められる。
(3) The calculated values of the cooling capacities Qc2 and Qc3 are sent to the outdoor controller 151, and the total value QcT of the cooling capacities is obtained as in the following equation (3).

QcT=Qc2+Qc3 (3) 以上で各記号は、それぞれ Cp2,Cp3:空気の比熱 SHF2,SHF3:顕熱比(0.7) t206,t306:温度センサ206、306の検出値 t207,t307:温度センサ207、307の検出値 Va2,Va3:室内機200、300の風量 ρ22:空気の密度 であり、顕熱比SHF2、SHF3は本実施例では0.7を採用し
ている。Va2、Va3は室内風量であり、室内機の運転風量
タップで変化できるようになっている。
QcT = Qc2 + Qc3 (3) Each symbol is Cp 2 , Cp 3 : Specific heat of air SHF2, SHF3: Sensible heat ratio (0.7) t206, t306: Detection values of temperature sensors 206 and 306 t207, t307: Temperature sensor The detection values Va2, Va3 of 207 and 307 are the air volumes ρ 2 , ρ 2 of the indoor units 200 and 300: the density of the air, and the sensible heat ratios SHF2 and SHF3 are 0.7 in this embodiment. Va2 and Va3 are the indoor air flow rates, which can be changed by operating air flow taps of the indoor units.

(4)室内制御器208は、室内機200の吸い込み空気温度
t206と室温設定値ts2との差(t206−ts2)によって第2
図に示す関係から室内機200の目標冷房能力比α2を求
め、 Qc20=α2・Qc200 (4) Qc200:室内機200の定格冷房能力 として室内機200の目標冷房能力Qc20を算出する。
(4) The indoor controller 208 calculates the intake air temperature of the indoor unit 200.
The difference between t206 and the room temperature set value ts2 (t206−ts2) is second.
The target cooling capacity ratio α2 of the indoor unit 200 is obtained from the relationship shown in the figure, and Qc20 = α2 · Qc200 (4) Qc200: The target cooling capacity Qc20 of the indoor unit 200 is calculated as the rated cooling capacity of the indoor unit 200.

(5)同様に、室内機300の目標冷房能力Qc30は、 Qc30=α3・Qc300 (5) Qc300:室内機300の定格冷房能力 として算出する。(5) Similarly, the target cooling capacity Qc30 of the indoor unit 300 is calculated as Qc30 = α3 · Qc300 (5) Qc300: Rated cooling capacity of the indoor unit 300.

(6)目標冷房能力Qc20、Qc30の値は、室外制御器151
へ送られ、目標冷房能力の合計値QcT0は、 QcT0=Qc20+Qc30 (6) として求められる。
(6) The values of the target cooling capacity Qc20 and Qc30 are determined by the outdoor controller 151.
The total value QcT0 of the target cooling capacity is obtained as QcT0 = Qc20 + Qc30 (6).

(7)第3図に示すように、室外制御器151は(6)の
目標冷房能力の合計値QcT0と、(3)の冷房能力の合計
値QcTとの偏差から圧縮機105のモータ回転数をPID演算
で求め、圧縮機の容量を制御する。
(7) As shown in FIG. 3, the outdoor controller 151 calculates the motor rotation speed of the compressor 105 from the deviation between the total cooling capacity QcT0 of (6) and the total cooling capacity QcT of (3). Is calculated by PID calculation, and the capacity of the compressor is controlled.

(8)一方、第4図に示すように、室内機200、300の冷
房能力Qc2、Qc3は室内冷媒流量調整弁202、302によって
目標冷房能力Qc20、Qc30に近づくように制御される。
(8) On the other hand, as shown in FIG. 4, the cooling capacities Qc2 and Qc3 of the indoor units 200 and 300 are controlled by the indoor refrigerant flow regulating valves 202 and 302 so as to approach the target cooling capacities Qc20 and Qc30.

以上において、第2図に示すように吸い込み空気温度
と室温設定値との差(t206−ts2)、(t306−ts3)が4
℃より大きい時は、目標冷房能力比α2、α3はそれぞ
れ1で室内機200、300の目標冷房能力Qc20、Qc30は室内
機200、300の定格冷房能力となる。
As described above, as shown in FIG. 2, the difference (t206−ts2) between the intake air temperature and the room temperature set value is (t306−ts3) = 4.
When the temperature is higher than ° C, the target cooling capacity ratios α2 and α3 are 1 respectively, and the target cooling capacity Qc20 and Qc30 of the indoor units 200 and 300 are the rated cooling capacity of the indoor units 200 and 300.

(t206−ts2)、(t306−ts3)が4℃以下の時は、目
標冷房能力比α2、α3はそれぞれ1以下に減少し、目
標冷房能力Qc20、Qc30は室内機200、300の定格冷房能力
以下となり室内機200、300が容量制御される。
When (t206−ts2) and (t306−ts3) are 4 ° C. or less, the target cooling capacity ratios α2 and α3 are respectively reduced to 1 or less, and the target cooling capacity Qc20 and Qc30 are the rated cooling capacity of the indoor units 200 and 300. The capacity of the indoor units 200 and 300 is controlled as follows.

(t206−ts2)、(t306−ts3)が0以下になると、そ
の室内機はサーモオフとなるので目標冷房能力比α2、
α3は0となる。
When (t206−ts2) and (t306−ts3) become equal to or less than 0, the indoor unit is turned off and the target cooling capacity ratio α2,
α3 becomes 0.

なお、定格冷房能力はガス配管121や液配管122の配管
長によって変化し、この配管長が長いほど定格冷房能力
は減少する。
Note that the rated cooling capacity changes depending on the pipe length of the gas pipe 121 and the liquid pipe 122. The longer the pipe length, the lower the rated cooling capacity.

次に、暖房運転時の動作を説明する。 Next, the operation during the heating operation will be described.

ガス配管121及び液配管122部に示す破線矢印は、暖房
運転時の冷媒流れ方向を示す。
Dashed arrows shown in the gas pipe 121 and the liquid pipe 122 indicate the refrigerant flow direction during the heating operation.

圧縮機105から吐出された冷媒は、四方弁106を通っ
て、ガス配管121へ入り、室内機200、300へ送られる。
室内機200に入った冷媒は室内熱交換器201へ入り、室内
ファン203によって送られる室内空気と熱交換されて凝
縮され、室内空気が温められる。さらに、凝縮した冷媒
は室内冷媒流量調整弁202を通って室内機200を出る。
The refrigerant discharged from the compressor 105 passes through the four-way valve 106, enters the gas pipe 121, and is sent to the indoor units 200 and 300.
The refrigerant that has entered the indoor unit 200 enters the indoor heat exchanger 201, exchanges heat with the indoor air sent by the indoor fan 203, condenses, and warms the indoor air. Further, the condensed refrigerant exits the indoor unit 200 through the indoor refrigerant flow control valve 202.

同様に、室内機300に入った冷媒は、凝縮されて室内
機300を出る。室内機200、300を出た冷媒は合流して、
液配管122を通って室外機100へ入る。さらに、冷媒は室
内冷媒流量調整弁102で減圧されて室外熱交換器101へ入
り、室外ファン103によって送られる室外空気と熱交換
されて蒸発し、四方弁106、アキュムレータ104を通って
圧縮機105に吸入され、圧縮されて再び吐出される。
Similarly, the refrigerant entering the indoor unit 300 is condensed and exits the indoor unit 300. The refrigerants that have exited the indoor units 200 and 300 join,
The liquid enters the outdoor unit 100 through the liquid pipe 122. Further, the refrigerant is decompressed by the indoor refrigerant flow control valve 102, enters the outdoor heat exchanger 101, exchanges heat with the outdoor air sent by the outdoor fan 103, evaporates, passes through the four-way valve 106, the accumulator 104, and the compressor 105. , Compressed and discharged again.

次に、暖房運転時の制御方法について手順を追って説
明する。
Next, a control method during the heating operation will be described step by step.

(1)室内機200の室内制御器208は、室内機200の暖房
能力Qh2を吸い込い空気温度と吹き出し空気温度との温
度差(t207−t206)を用いて次式(7)によって算出す
る。
(1) The indoor controller 208 of the indoor unit 200 calculates the heating capacity Qh2 of the indoor unit 200 by the following equation (7) using the temperature difference (t207-t206) between the intake air temperature and the blown air temperature. .

Qh2=Cp2・ρ・Va2・(t207−t206) (7) (2)同様に、室内機300の室内制御器308は、室内機30
0の暖房能力Qh3を吸い込み空気温度と吹き出し空気温度
との温度差(t307−T306)を用いて次式(8)によって
算出する。
Qh2 = Cp 2 · ρ 2 · Va2 · (t207-t206) (7) (2) Similarly, the indoor control unit 308 of the indoor unit 300, the indoor unit 30
The heating capacity Qh3 of 0 is calculated by the following equation (8) using the temperature difference (t307-T306) between the intake air temperature and the blown air temperature.

Qh3=Cp3・ρ・Va3・(t307−t306) (8) (3)それぞれ算出された暖房能力Qh2、Qh3の値は、室
外制御器151へ送られ、暖房能力の合計値QhTは、次式
(9)のように求められる。
Qh3 = Cp 3 · ρ 3 · Va3 · (t307-t306) (8) (3) Heating calculated respectively capability Qh2, the value of QH3 is sent to the outdoor controller 151, the total value QhT of heating capacity, It is obtained as in the following equation (9).

QhT=Qh2+Qh3 (9) (4)室内制御器208は、室内機200の吸い込み空気温度
t206と室温設定値ts2との差(ts2−t206)によって第5
図に示す関係から室内機200の目標暖房能力比β2を求
め、 Qh20=β2・Qh200 (10) Qh200:室内機200の定格暖房能力 として室内機200の目標暖房能力Qh20を算出する。
QhT = Qh2 + Qh3 (9) (4) The indoor controller 208 calculates the suction air temperature of the indoor unit 200.
The fifth difference is determined by the difference (ts2-t206) between t206 and the room temperature set value ts2.
The target heating capacity ratio β2 of the indoor unit 200 is determined from the relationship shown in the figure, and Qh20 = β2 · Qh200 (10) Qh200: The target heating capacity Qh20 of the indoor unit 200 is calculated as the rated heating capacity of the indoor unit 200.

(5)同様に、室内機300の目標暖房能力Qh30は、 Qh30=β3・Qh300 (11) Qh300:室内機300の定格暖房能力 として算出する。(5) Similarly, the target heating capacity Qh30 of the indoor unit 300 is calculated as Qh30 = β3 · Qh300 (11) Qh300: Rated heating capacity of the indoor unit 300.

(6)目標暖房能力Qh20、Qh30の値は、室外制御器151
へ送られ、目標暖房能力の合計値QhT0は、 QhT0=Qh20+Qh30 (12) として求められる。
(6) The values of the target heating capacities Qh20 and Qh30 are determined by the outdoor controller 151.
The total value QhT0 of the target heating capacity is obtained as QhT0 = Qh20 + Qh30 (12).

(7)第6図に示すように、室外制御器151は(6)の
目標暖房能力の合計値QhT0と(3)の暖房能力の合計値
QhTとの偏差から圧縮機105のモータ回転数をPID演算で
求め、圧縮機の容量を制御する。
(7) As shown in FIG. 6, the outdoor controller 151 calculates the total value QhT0 of the target heating capacity in (6) and the total value of the heating capacity in (3).
The motor speed of the compressor 105 is obtained by PID calculation from the deviation from QhT, and the capacity of the compressor is controlled.

(8)一方、室内機200、300の暖房能力Qh2、Qh3は第4
図の冷房時と同様に室内冷媒流量調整弁202、302によっ
て目標暖房能力Qh20、Qh30に近づくように制御される。
(8) On the other hand, the heating capacity Qh2 and Qh3 of the indoor units 200 and 300 are the fourth.
As in the case of the cooling shown in the drawing, the indoor refrigerant flow control valves 202 and 302 are controlled so as to approach the target heating capacities Qh20 and Qh30.

また、室外冷媒流量調整弁102は吐出温度検出器115で
検出される圧縮機105の吐出温度が設定された温度にな
るように室外制御器151によって制御される。
The outdoor refrigerant flow control valve 102 is controlled by the outdoor controller 151 so that the discharge temperature of the compressor 105 detected by the discharge temperature detector 115 becomes a set temperature.

なお、暖房定格能力はガス配管121や液配管122の配管
長によって変化し、配管長が長いほど暖房定格能力は減
少する。
Note that the rated heating capacity varies depending on the length of the gas pipe 121 and the liquid pipe 122. The longer the pipe length, the lower the rated heating capacity.

本実施例によれば、低圧圧力や高圧圧力を制御しなく
てもよいので、それぞれの圧力センサがいらなくなりコ
ストダウンの効果がある。
According to the present embodiment, since it is not necessary to control the low pressure and the high pressure, there is no need for each pressure sensor, and there is an effect of cost reduction.

本発明の他の実施例を第7図、第8図、第9図に示
す。
Another embodiment of the present invention is shown in FIG. 7, FIG. 8, and FIG.

第7図は本発明の他の実施例に係わる多室空気調和機
の冷凍サイクルの構成を示すブロック図である。第8図
は吐出圧力に対する圧力スイッチの動作と室内冷媒流量
調整弁の最大開度の関係を表わすグラフ線図である。第
9図は室内吸い込み空気温度に対する室内冷媒流量調整
弁の最大開度の関係を表わすグラフ線図である。
FIG. 7 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to another embodiment of the present invention. FIG. 8 is a graph showing the relationship between the operation of the pressure switch with respect to the discharge pressure and the maximum opening of the indoor refrigerant flow control valve. FIG. 9 is a graph showing the relationship between the indoor suction air temperature and the maximum opening of the indoor refrigerant flow control valve.

第7図の実施例は第1図の実施例の圧縮機吐出側に圧
力スイッチ107、108を取り付けて、それらの信号を室外
制御器151に入力したものである。冷房運転時の冷媒の
流れ及び制御方法は第1図の実施例と同様である。
In the embodiment shown in FIG. 7, pressure switches 107 and 108 are attached to the compressor discharge side of the embodiment shown in FIG. 1, and their signals are input to the outdoor controller 151. The flow and control method of the refrigerant during the cooling operation are the same as in the embodiment of FIG.

また、暖房運転時の冷媒の流れ及び制御方法も第1図
の実施例と同様であるが、暖房運転時の室内冷媒流量調
整弁202、302の最大開度を第8図に示すように圧力スイ
ッチ107、108の出力信号の組合せで変えている。
Also, the flow and control method of the refrigerant during the heating operation are the same as in the embodiment of FIG. 1, but the maximum opening degree of the indoor refrigerant flow regulating valves 202 and 302 during the heating operation is set to the pressure as shown in FIG. It is changed by the combination of the output signals of the switches 107 and 108.

圧力スイッチ107は20kg/cm2を越えるとON、20kg/cm2
以下でOFFし、圧力スイッチ108は24kg/cm2を越えるとO
N、24kg/cm2以下でOFFする。
ON the pressure switch 107 exceeds 20kg / cm 2, 20kg / cm 2
OFF when below the pressure switch 108 exceeds 24 kg / cm 2 O
Turn off at N, 24 kg / cm 2 or less.

室内冷媒流量調整弁202、302は、圧力スイッチ108がO
Nすると室内冷媒流量調整弁の全開開度を最大開度と
し、圧力スイッチ107がOFFすると全開開度×0.5を最大
開度とする。
The indoor refrigerant flow regulating valves 202 and 302
When N, the full opening of the indoor refrigerant flow regulating valve is set to the maximum opening, and when the pressure switch 107 is turned off, the full opening x 0.5 is set to the maximum opening.

圧力スイッチ107がONで圧力スイッチ108がOFFのとき
は最大開度を変化させない。
When the pressure switch 107 is ON and the pressure switch 108 is OFF, the maximum opening is not changed.

以上は、冷媒にHCF22またはR407Cを使用した場合であ
って、冷媒にR410AまたはR410Bを使用した場合は、圧力
スイッチ107は31kg/cm2を越えるとON、31kg/cm2以下でO
FFし、圧力スイッチ108は35kg/cm2を越えるとON、35kg/
cm2以下でOFFするように設定することが良い。
Above, O a case of using the HCF22 or R407C the refrigerant, when using R410A or R410B the refrigerant, ON when the pressure switch 107 exceeds 31 kg / cm 2, at 31 kg / cm 2 or less
FF, pressure switch 108 turns on when 35 kg / cm 2 is exceeded, 35 kg / cm 2
It is good to set it to be off when cm 2 or less.

第9図は室内冷媒流量調整弁202、302の最大開度をそ
れぞれの室内機の吸い越み空気温度t206、t306によって
変える例を示し、以下説明する。
FIG. 9 shows an example in which the maximum opening degree of the indoor refrigerant flow control valves 202 and 302 is changed by the intake air temperatures t206 and t306 of the respective indoor units, and will be described below.

室内冷媒流量調整弁は、吸い込み空気温度が30℃を越
えると全開開度を最大開度とし、吸い込み空気温度が25
℃以下になると全開開度×0.5を最大開度とする。吸い
込み空気温度が25℃を越え30℃以下のときは最大開度を
変化させない。
When the suction air temperature exceeds 30 ° C, the indoor refrigerant flow control valve sets the full opening to the maximum opening, and the suction air temperature becomes 25 ° C.
When the temperature drops below ℃, the full opening x 0.5 is the maximum opening. The maximum opening is not changed when the suction air temperature is over 25 ℃ and below 30 ℃.

本実施例のように最大開度にヒステリシスを持たせる
ことによって、室内冷媒流量調整弁の頻繁な開度変化に
伴う冷凍サイクルのハンチングが防止できる。
By providing the maximum opening with hysteresis as in the present embodiment, hunting of the refrigeration cycle due to frequent opening changes of the indoor refrigerant flow control valve can be prevented.

室内冷媒流量調整弁の制御方法の他の実施例を第1図
0、第1図1で説明する。
Another embodiment of the method for controlling the indoor refrigerant flow control valve will be described with reference to FIGS.

第10図は室内機の室内制御器の制御基板の部品配置を
示す平面図であり、第11図は制御基板のディップスイッ
チのON/OFFの組合せと演算係数を表わす関係図である。
FIG. 10 is a plan view showing a component arrangement of a control board of an indoor controller of an indoor unit, and FIG. 11 is a relational diagram showing ON / OFF combinations of dip switches of the control board and operation coefficients.

基本的な制御方法は第4図と同じであるが、冷房能力
の求め方を 式(13)および式(14)として補正係数ac2、ac3および
室内風量係数av2、av3によって吸い込み空気温度と吹き
出し空気温度との温度差を変更できるようにしている。
The basic control method is the same as in Fig. 4, but the method for determining the cooling capacity is as follows. The temperature difference between the intake air temperature and the blown air temperature can be changed by the correction coefficients ac2 and ac3 and the indoor air volume coefficients av2 and av3 as Expressions (13) and (14).

また、暖房能力の求め方も式(15)および(16) Qh2=ah2・Cp2・ρ・av2・Va2・(t207−t206) (15) Qh3=ah3・Cp3・ρ・av3・Va3・(t307−t306) (16) として補正係数ah2、ah3および室内風量係数av2、av3に
よって吹き出し空気温度と吸い込み空気温度との温度差
を変更できるようにしている。
Also, how to obtain the heating capacity also equation (15) and (16) Qh2 = ah2 · Cp 2 · ρ 2 · av2 · Va2 · (t207-t206) (15) Qh3 = ah3 · Cp 3 · ρ 3 · av3 · Va3 · (t307−t306) (16) The temperature difference between the outlet air temperature and the inlet air temperature can be changed by the correction coefficients ah2 and ah3 and the indoor air volume coefficients av2 and av3.

以上の補正によって、室内機能力の算出をより正確に
して、精度の良い室内冷媒流量調整弁、および圧縮機容
量の制御が実現できる。
By the above correction, the calculation of the indoor functional force is made more accurate, and the accurate control of the indoor refrigerant flow rate adjustment valve and the compressor capacity can be realized.

つぎに、室内機200の顕熱比、各補正係数および室内
風量係数の変更方法を説明する。
Next, a method of changing the sensible heat ratio of the indoor unit 200, each correction coefficient, and the indoor air volume coefficient will be described.

第10図において、基板上にはディップスイッチ211(D
SW1)、212(DSW2)、213(DSW3)、214(DSW4)が取り
付けられている。1つのディップスイッチは、4個のON
/OFFスイッチで構成されており、その組合せでそれぞれ
の係数を変更できる。
In FIG. 10, a dip switch 211 (D
SW1), 212 (DSW2), 213 (DSW3), 214 (DSW4). One DIP switch is 4 ON
It consists of / OFF switches, and each coefficient can be changed by its combination.

第11図は、係数の変更例であり、顕熱比は室内機が設
置される雰囲気に基づいて変更し、一般事務室は0.7程
度の値とする。この値は、厨房のように湿度の高いとこ
ろは小さく設定し、コンピュータ室のように湿度の低い
ところは大きくする。
FIG. 11 shows an example of changing the coefficient. The sensible heat ratio is changed based on the atmosphere in which the indoor unit is installed, and the general office room has a value of about 0.7. This value is set small in a place with high humidity such as a kitchen, and is set large in a place with low humidity such as a computer room.

補正係数ac2は冷房の吹き出し空気温度の温度分布の
補正係数であり、温度検出器207によって検出された温
度が平均吹き出し空気温度のときは1.0を設定し、それ
より高い温度のときは1より大きい値とする。また、検
出された温度が平均吹き出し空気温度より低い温度のと
きは1より小さい値を設定する。
The correction coefficient ac2 is a correction coefficient for the temperature distribution of the blown air temperature of the cooling, and is set to 1.0 when the temperature detected by the temperature detector 207 is the average blown air temperature, and is larger than 1 when the temperature is higher than that. Value. When the detected temperature is lower than the average blown air temperature, a value smaller than 1 is set.

補正係数ah2は暖房の吹き出し空気温度の温度分布の
補正係数であり、温度検出器207によって検出された温
度が平均吹き出し空気温度のときは1.0を設定し、それ
より高い温度が検出されたときは1より小さい値とす
る。また、検出された温度が平均吹き出し空気温度より
低い温度のときは1より大きい値を設定する。
The correction coefficient ah2 is a correction coefficient for the temperature distribution of the outlet air temperature of heating, and is set to 1.0 when the temperature detected by the temperature detector 207 is the average outlet air temperature, and is set when a higher temperature is detected. The value is set to a value smaller than 1. If the detected temperature is lower than the average blown air temperature, a value larger than 1 is set.

室内制御器208は、室内機容量や室内機種の全ての風
量を記憶すると大きな記憶容量が必要となるので、代表
風量だけを記憶し、室内風量係数av2によって補正して
いる。
Since the indoor controller 208 needs a large storage capacity to store the indoor unit capacity and all the airflows of the indoor models, only the representative airflow is stored and corrected by the indoor airflow coefficient av2.

室内風量係数は、実際の風量が記憶された代表風量と
同じならば1.0とし、代表風量より少なければ1より小
さい値を、より多ければ1より大きい値とする。
The indoor air volume coefficient is set to 1.0 when the actual air volume is the same as the stored representative air volume, and is set to a value smaller than 1 when the actual air volume is smaller than the representative air volume and to a value larger than 1 when the actual air volume is larger than the representative air volume.

本発明のさらに他の実施例を第12図、第13図を参照し
て説明する。
Still another embodiment of the present invention will be described with reference to FIGS.

第12図は本発明の他の実施例に係わる暖房運転時の多
室空気調和機の冷凍サイクルの構成を示すブロック図で
あり、第13図は室外冷媒流量調整弁開度と室内冷媒流量
調整弁の最小開度および停止室内機の室内冷媒流量調整
弁開度との関係を表わすグラフ線図である。
FIG. 12 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner at the time of a heating operation according to another embodiment of the present invention, and FIG. 13 is an outdoor refrigerant flow control valve opening degree and indoor refrigerant flow control. It is a graph showing the relationship between the minimum opening degree of a valve and the opening degree of an indoor refrigerant flow control valve of a stop indoor unit.

第12図は室内機200、300を暖房運転する場合の冷凍サ
イクルを示し、液タンク109をガス配管121側に設置して
いる。それ以外は既に述べた第1図の冷凍サイクルと同
じである。
FIG. 12 shows a refrigeration cycle when the indoor units 200 and 300 perform a heating operation, and the liquid tank 109 is installed on the gas pipe 121 side. Otherwise, it is the same as the refrigeration cycle of FIG. 1 already described.

冷房時、液タンク109内は低圧圧力になり、冷媒温度
が雰囲気温度より低くなるので冷媒が凝縮して液冷媒と
なって溜ることはない。
During cooling, the inside of the liquid tank 109 is at a low pressure, and the temperature of the refrigerant is lower than the ambient temperature. Therefore, the refrigerant does not condense and remain as a liquid refrigerant.

暖房時は、高圧圧力になり冷媒温度が雰囲気温度より
高くなるので冷媒が凝縮して液冷媒となり、液タンク10
9内に溜る。これによって、暖房時の余剰冷媒が吸収で
きる。
During heating, the refrigerant becomes a high pressure and the refrigerant temperature becomes higher than the ambient temperature.
Collect in 9. Thereby, the surplus refrigerant at the time of heating can be absorbed.

液タンク109内に冷媒を導く配管は、液タンク109内の
上部まで立ち上がっており、除霜などによって四方弁が
切り替わっても、液冷媒が一度にアキュムレータ104に
戻らないようになっている。
The pipe for guiding the refrigerant into the liquid tank 109 rises up to the upper part in the liquid tank 109, so that the liquid refrigerant does not return to the accumulator 104 at once even if the four-way valve is switched due to defrosting or the like.

第1図2において、室内機200は最大能力で運転さ
れ、室内機300は容量が制御されて室内冷媒流量調整弁3
02が絞られ、能力は減少されている。そのため、室内機
300の室内熱交換器301内には液冷媒が多く溜っている。
In FIG. 1, the indoor unit 200 is operated at the maximum capacity, and the indoor unit 300 is controlled in capacity and the indoor refrigerant flow regulating valve 3 is controlled.
02 has been squeezed and abilities have been reduced. Therefore, indoor units
A large amount of liquid refrigerant is accumulated in the indoor heat exchanger 301 of the 300.

室外機100の室外冷媒流量調整弁102の開度は、吐出温
度検出器115で検出される圧縮機105の吐出温度が設定値
となるように制御される。ここで、室内機300の室内冷
媒流量調整弁302を絞りすぎると室内熱交換器301内に液
冷媒が溜りすぎて、冷凍サイクル内を循環する冷媒が減
少する。そのため室内機200の冷媒流量が減少し、室内
機200の暖房能力が不足する。
The opening degree of the outdoor refrigerant flow control valve 102 of the outdoor unit 100 is controlled such that the discharge temperature of the compressor 105 detected by the discharge temperature detector 115 becomes a set value. Here, if the indoor refrigerant flow control valve 302 of the indoor unit 300 is excessively throttled, the liquid refrigerant will collect too much in the indoor heat exchanger 301, and the amount of refrigerant circulating in the refrigeration cycle will decrease. Therefore, the flow rate of refrigerant in the indoor unit 200 decreases, and the heating capacity of the indoor unit 200 becomes insufficient.

冷凍サイクル内を循環する冷媒が減少すると圧縮機を
冷却できなくなり吐出温度が上昇する。よって、吐出温
度が設定値となるように制御すると、吐出温度の上昇に
伴って室外冷媒流量調整弁102の開度が開くことにな
る。そこで、第13図に示すように、 (1)室外冷媒流量調整弁102の開度が所定開度A(0.5
×全開開度)以下のときは、室内冷媒流量調整弁202、3
02の最小開度は(0.1×全開開度)とする。
When the amount of the refrigerant circulating in the refrigeration cycle decreases, the compressor cannot be cooled, and the discharge temperature increases. Therefore, when the discharge temperature is controlled to be the set value, the opening degree of the outdoor refrigerant flow control valve 102 is increased as the discharge temperature increases. Therefore, as shown in FIG. 13, (1) the opening degree of the outdoor refrigerant flow control valve 102 is equal to the predetermined opening degree A (0.5
X full opening) or less, the indoor refrigerant flow control valves 202, 3
The minimum opening of 02 is (0.1 x full opening).

(2)室外冷媒流量調整弁102の開度が所定開度B(0.8
×全開開度)以上になったら室内冷媒流量調整弁202、3
02の最小開度は大きく(0.4×全開開度)する。
(2) The opening degree of the outdoor refrigerant flow control valve 102 is equal to the predetermined opening degree B (0.8
X full opening) or more, the indoor refrigerant flow control valves 202 and 3
The minimum opening of 02 is large (0.4 x full opening).

(3)室外冷媒流量調整弁102の開度が上記の所定開度
Aから所定開度Bまでの間は、室内冷媒流量調整弁20
2、302の最小開度は、(0.1×全開開度)から(0.4×全
開開度)までで、室外冷媒流量調整弁102の開度に比例
した値とする。
(3) When the opening of the outdoor refrigerant flow regulating valve 102 is between the predetermined opening A and the predetermined opening B, the indoor refrigerant flow regulating valve 20
2. The minimum opening of 302 is from (0.1 × full opening) to (0.4 × full opening) and is a value proportional to the opening of the outdoor refrigerant flow control valve 102.

として室外冷媒流量調整弁102の開度で室内冷媒流量調
整弁202、302の最小開度を定める。
The minimum opening of the indoor refrigerant flow control valves 202 and 302 is determined by the opening of the outdoor refrigerant flow control valve 102.

以上によって、室内熱交換器内に液冷媒が溜りすぎな
いようにすることができる。
As described above, it is possible to prevent the liquid refrigerant from being excessively accumulated in the indoor heat exchanger.

また、室内機300を停止させるとき、室内冷媒流量調
整弁302を微開の所定開度にするが、このときも上記と
同様に、室内機300の室内熱交換器301内には液冷媒が多
く溜り、この量が多すぎると冷凍サイクル内を循環する
冷媒が減少し、室内機200の暖房能力が不足する。
Further, when the indoor unit 300 is stopped, the indoor refrigerant flow control valve 302 is set to a predetermined slightly-opened degree, but also at this time, the liquid refrigerant is in the indoor heat exchanger 301 of the indoor unit 300 in the same manner as described above. If the amount of refrigerant is large and the amount is too large, the amount of refrigerant circulating in the refrigeration cycle decreases, and the heating capacity of the indoor unit 200 becomes insufficient.

この場合も、上記のように室外冷媒流量調整弁102の
開度で停止室内機の室内冷媒流量調整弁の開度を変化さ
せる。
Also in this case, the opening degree of the indoor refrigerant flow control valve of the stopped indoor unit is changed by the opening degree of the outdoor refrigerant flow control valve 102 as described above.

つまり、第13図に示すように、 (1)室外冷媒流量調整弁102の開度が所定開度A(0.5
×全開開度)以下のときは、停止室内機の冷媒流量調整
弁202、302の最小開度は(0.05×全開開度)とする。
That is, as shown in FIG. 13, (1) the opening degree of the outdoor refrigerant flow control valve 102 is equal to the predetermined opening degree A (0.5
(× full opening) or less, the minimum opening of the refrigerant flow regulating valves 202 and 302 of the stopped indoor unit is (0.05 × full opening).

(2)室外冷媒流量調整弁102の開度が所定開度C(全
開開度)になったら室内停止室内機の冷媒流量調整弁20
2、302の最小開度は大きく(0.1×全開開度)する。
(2) When the opening of the outdoor refrigerant flow regulating valve 102 reaches a predetermined opening C (full opening), the refrigerant flow regulating valve 20 of the indoor stop indoor unit
2. The minimum opening of 302 is large (0.1 x full opening).

(3)室外冷媒流量調整弁102の開度が上記の所定開度
Aから所定開度Cまでの間は、室内停止室内機の室内冷
媒流量調整弁202、302の最小開度は、(0.05×全開開
度)から(0.1×全開開度)までで、室外冷媒流量調整
弁102の開度に比例した値とする。
(3) When the opening degree of the outdoor refrigerant flow control valve 102 is between the predetermined opening degree A and the predetermined opening degree C, the minimum opening degree of the indoor refrigerant flow control valves 202 and 302 of the indoor stop indoor unit is (0.05). The value ranges from (× full opening) to (0.1 × full opening) and is proportional to the opening of the outdoor refrigerant flow control valve 102.

として室外冷媒流量調整弁102の開度で室内停止室内機
の室内冷媒流量調整弁202、302の最小開度を定める。
The minimum opening degree of the indoor refrigerant flow control valves 202 and 302 of the indoor stop indoor unit is determined by the opening degree of the outdoor refrigerant flow control valve 102.

以上で、室内機300を停止させる場合も、室内熱交換
器内に液冷媒が溜りすぎないようにすることができる。
As described above, even when the indoor unit 300 is stopped, the liquid refrigerant can be prevented from being excessively accumulated in the indoor heat exchanger.

本発明によれば、運転されている室内機の能力が要求
される目標能力になるように圧縮機の容量が制御される
ので、室内機の要求能力に見合った消費電力で運転さ
れ、特に暖房運転で消費電力の少ない多室空気調和機が
提供される。
According to the present invention, since the capacity of the compressor is controlled such that the capacity of the operated indoor unit becomes the required target capacity, the compressor is operated with power consumption corresponding to the required capacity of the indoor unit, and in particular, heating is performed. A multi-room air conditioner with low power consumption during operation is provided.

また、特に暖房運転時、室外冷媒流量調整弁の開度に
よって、室内機の室内冷媒流量調整弁開度を変化させる
ことによって、冷凍サイクル内を循環する冷媒量が確保
され、能力の不足を防止した多室空気調和機が提供され
る。
Also, particularly during the heating operation, the amount of refrigerant circulating in the refrigeration cycle is secured by changing the degree of opening of the indoor refrigerant flow control valve of the indoor unit according to the degree of opening of the outdoor refrigerant flow control valve, thereby preventing insufficient capacity. A multi-room air conditioner is provided.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−127842(JP,A) 特開 昭63−465336(JP,A) 特開 平6−18075(JP,A) 特開 平6−50591(JP,A) (58)調査した分野(Int.Cl.7,DB名) F24F 11/02 102 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-1-127842 (JP, A) JP-A-63-465336 (JP, A) JP-A-6-18075 (JP, A) JP-A-6-18075 50591 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) F24F 11/02 102

Claims (16)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】可変容量圧縮機、室外熱交換器を備えた室
内機に、室内熱交換器、室内ファンと吸い込み空気温度
および吹き出し空気温度の検出手段とを備えた複数台の
室内機を液配管およびガス配管で接続して冷凍サイクル
を構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差によって冷房または暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
冷房または暖房能力を定める手段と を備え、前記冷房または暖房能力の合計値が前記目標冷
房または暖房能力の合計値となるように前記可変容量圧
縮機の運転容量を制御することを特徴とする多室空気調
和機。
An indoor unit provided with a variable capacity compressor and an outdoor heat exchanger is connected to a plurality of indoor units provided with an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by a pipe and a gas pipe to form a refrigeration cycle, a means for determining a cooling or heating capacity by a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, and the intake air temperature and room temperature Means for determining a target cooling or heating capacity based on a difference from a set value, and controlling the operating capacity of the variable displacement compressor such that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity. A multi-room air conditioner characterized by:
【請求項2】可変容量圧縮機、室外熱交換器を備えた室
外機に、室内熱交換器、室内ファンと吸い込み空気温度
および吹き出し空気温度の検出手段とを備えた複数台の
室内機を液配管およびガス配管で接続して冷凍サイクル
を構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差によって冷房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
冷房能力を定める手段と を備え、前記冷房能力の合計値が前記目標冷房能力の合
計値となるように前記可変容量圧縮機の運転容量を制御
することを特徴とする多室空気調和機。
2. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by a pipe and a gas pipe to form a refrigeration cycle, a means for determining a cooling capacity by a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, and the intake air temperature and room temperature set value Means for determining a target cooling capacity based on a difference between the cooling capacity and the operating capacity of the variable capacity compressor so that the total value of the cooling capacity becomes the total value of the target cooling capacity. Air conditioner.
【請求項3】可変容量圧縮機、室外熱交換器を備えた室
外機に、室内熱交換器、室内ファンと吸い込み空気温度
および吹き出し空気温度の検出手段とを備えた複数台の
室内機を液配管およびガス配管で接続して冷凍サイクル
を構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
と、顕熱比とから冷房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
冷房能力を定める手段と を備え、前記冷房能力の合計値が前記目標冷房能力の合
計値となるように前記可変容量圧縮機の運転容量を制御
することを特徴とする多室空気調和機。
3. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and air Specific heat, means for determining a cooling capacity from the sensible heat ratio, and means for determining a target cooling capacity by the difference between the suction air temperature and the room temperature set value, the sum of the cooling capacity is the sum of the target cooling capacity A multi-room air conditioner, wherein the operation capacity of the variable displacement compressor is controlled so as to be a value.
【請求項4】可変容量圧縮機、室外熱交換器を備えた室
外機に、室内熱交換器、室内ファンと吸い込み空気温度
および吹き出し空気温度の検出手段とを備えた複数台の
室内機を液配管およびガス配管で接続して冷凍サイクル
を構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
とから暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
暖房能力を定める手段と を備え、前記暖房能力の合計値が前記目標暖房能力の合
計値となるように前記可変容量圧縮機の運転容量を制御
することを特徴とする多室空気調和機。
4. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and air Means for determining a heating capacity from the specific heat, and means for determining a target heating capacity by a difference between the suction air temperature and the room temperature set value, so that a total value of the heating capacity becomes a total value of the target heating capacity. A multi-room air conditioner, wherein an operation capacity of the variable capacity compressor is controlled.
【請求項5】可変容量圧縮機、室外熱交換器を備えた室
外機に、室内熱交換器、室内ファンと吸い込み空気温度
および吹き出し空気温度の検出手段とを備えた複数台の
室内機を液配管およびガス配管で接続して冷凍サイクル
を構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差によって冷房能力を求める手段と、 前記吸い込み空気温度から室温設定値の差が2ないし4
℃より大きい時は、目標冷房能力を前記室内機の定格冷
房能力とし、2ないし4℃以下の時は、目標冷房能力を
前記室内機の定格冷房能力以下として定める手段と を備え、前記冷房能力の合計値が前記目標冷房能力の合
計値となるように前記可変容量圧縮機の運転容量を制御
することを特徴とする多室空気調和機。
5. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by piping and gas piping to constitute a refrigeration cycle, a means for determining a cooling capacity by a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, and a room temperature set value from the intake air temperature The difference between 2 and 4
Means for setting the target cooling capacity as the rated cooling capacity of the indoor unit when the cooling capacity is higher than ° C, and setting the target cooling capacity as the rated cooling capacity or less for the indoor unit when the temperature is 2 to 4 ° C or less. Wherein the operating capacity of the variable displacement compressor is controlled so that the total value of the target cooling capacity becomes the total value of the target cooling capacity.
【請求項6】可変容量圧縮機、室外熱交換器を備えた室
外機に、室内熱交換器、室内ファンと吸い込み空気温度
および吹き出し空気温度の検出手段とを備えた複数台の
室内機を液配管およびガス配管で接続して冷凍サイクル
を構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差によって暖房能力を求める手段と、 室温設定値から前記吸い込み空気温度の差が2ないし4
℃より大きい時は、目標暖房能力を前記室内機の定格暖
房能力とし、2ないし4℃以下の時は、目標暖房能力を
前記室内機の定格暖房能力以下として定める手段と を備え、前記暖房能力の合計値が前記目標暖房能力の合
計値となるように前記可変容量圧縮機の運転容量を制御
することを特徴とする多室空気調和機。
6. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a means for determining a heating capacity based on a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, and the suction air temperature from a room temperature set value. The difference between 2 and 4
Means for setting the target heating capacity as the rated heating capacity of the indoor unit when the temperature is higher than ° C, and setting the target heating capacity as the rated heating capacity or less for the indoor unit when the temperature is 2 to 4 ° C or lower. Wherein the operating capacity of the variable displacement compressor is controlled so that the total value of the target heating capacity becomes the total value of the target heating capacity.
【請求項7】請求項3記載のものにおいて、前記室内機
に室内冷媒流量調整弁を備え、前記冷房能力が前記目標
冷房能力となるように前記室内冷媒流量調整弁の開度を
制御することを特徴とする多室空気調和機。
7. The indoor unit according to claim 3, further comprising an indoor refrigerant flow control valve in the indoor unit, and controlling an opening degree of the indoor refrigerant flow control valve so that the cooling capacity becomes the target cooling capacity. A multi-room air conditioner characterized by the following.
【請求項8】請求項4記載のものにおいて、前記室内機
に室内冷媒流量調整弁を備え、前記暖房能力が前記目標
暖房能力となるように前記室内冷媒流量調整弁の開度を
制御することを特徴とする多室空気調和機。
8. The indoor unit according to claim 4, further comprising an indoor refrigerant flow control valve in the indoor unit, and controlling an opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity. A multi-room air conditioner characterized by the following.
【請求項9】可変容量圧縮機、室外熱交換器を備えた室
外機に、室内熱交換器、室内ファン、室内冷媒流量調整
弁と吸い込み空気温度および吹き出し空気温度の検出手
段とを備えた複数台の室内機を液配管およびガス配管で
接続して冷凍サイクルを構成した多室空気調和機におい
て、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
とから暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
暖房能力を定める手段と、 前記暖房能力の合計値が前記目標暖房能力の合計値とな
るように前記可変容量圧縮機の運転容量を制御する手段
と、 前記暖房能力が前記目標暖房能力となるように室内冷媒
流量調整弁の開度を制御する手段と、 前記可変容量圧縮機の吐出圧力が所定の値以下のとき室
内冷媒流量調整弁の最大開度を全開閉度より小さくする
手段と を備えたことを特徴とする多室空気調和機。
9. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, comprising a plurality of indoor units including an indoor heat exchanger, an indoor fan, an indoor refrigerant flow control valve, and means for detecting suction air temperature and blown air temperature. In a multi-room air conditioner in which two indoor units are connected by a liquid pipe and a gas pipe to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor units, an air volume of the indoor units, and air Means for determining the heating capacity from the density of the air and the specific heat of the air; means for determining the target heating capacity by the difference between the suction air temperature and the room temperature set value; and Means for controlling the operating capacity of the variable capacity compressor such that the opening capacity of the indoor refrigerant flow control valve is controlled such that the heating capacity becomes the target heating capacity; and Multi-room air conditioner discharge pressure is characterized in that a means be smaller than the total opening degree of maximum opening of the indoor refrigerant flow regulating valve when the predetermined value or less.
【請求項10】可変容量圧縮機、室外熱交換器を備えた
室外機に、室内熱交換器、室内ファンと吸い込み空気温
度および吹き出し空気温度の検出手段とを備えた複数台
の室内機を液配管およびガス配管で接続して冷凍サイク
ルを構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
とから暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
暖房能力を定める手段と、 前記暖房能力の合計値が前記目標暖房能力の合計値とな
るように前記可変容量圧縮機の運転容量を制御する手段
と、 前記暖房能力が前記目標暖房能力となるように室内冷媒
流量調整弁の開度を制御する手段と、 前記可変容量圧縮機の吐出圧力が15ないし20kg/cm2以下
となったときOFFする圧力スイッチと、 を備え、前記圧力スイッチがOFFしたとき室内冷媒流量
調整弁の最大開度を(全開開度×0.5)とすることを特
徴とする多室空気調和機。
10. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and air Means for determining a heating capacity from the specific heat; means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value; and the variable so that a total value of the heating capacity becomes a total value of the target heating capacity. Means for controlling the operating capacity of the displacement compressor; means for controlling the opening of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity; and And a pressure switch that is turned off when the pressure becomes 20 kg / cm 2 or less, wherein the maximum opening of the indoor refrigerant flow regulating valve is (full opening x 0.5) when the pressure switch is turned off. Multi-room air conditioner.
【請求項11】可変容量圧縮機、室外熱交換器を備えた
室外機に、室内熱交換器、室内ファンと吸い込み空気温
度および吹き出し空気温度の検出手段とを備えた複数台
の室内機を液配管およびガス配管で接続して冷凍サイク
ルを構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
とから暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
暖房能力を定める手段と、 前記暖房能力の合計値が前記目標暖房能力の合計値とな
るように前記可変容量圧縮機の運転容量を制御する手段
と、 前記暖房能力が前記目標暖房能力となるように室内冷媒
流量調整弁の開度を制御する手段と、 前記吸い込み空気温度が所定の値以下のとき室内冷媒流
量調整弁の最大開度を全開開度より小さくする手段と を備えたことを特徴とする多室空気調和機。
11. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and air Means for determining a heating capacity from the specific heat; means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value; and the variable so that a total value of the heating capacity becomes a total value of the target heating capacity. Means for controlling the operation capacity of the displacement compressor; means for controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity; and wherein the suction air temperature is equal to or less than a predetermined value. Multi-room air conditioner which is characterized in that a means be less than fully open opening a maximum opening of the indoor refrigerant flow regulating valve when.
【請求項12】可変容量圧縮機、室外熱交換器を備えた
室外機に、室内熱交換器、室内ファンと吸い込み空気温
度および吹き出し空気温度の検出手段とを備えた複数台
の室内機を液配管およびガス配管で接続して冷凍サイク
ルを構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
とから暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
暖房能力を定める手段と、 前記暖房能力の合計値が前記目標暖房能力の合計値とな
るように前記可変容量圧縮機の運転容量を制御する手段
と、 前記暖房能力が前記目標暖房能力となるように室内冷媒
流量調整弁の開度を制御する手段と、 を備え、前記吸い込み空気温度が20ないし25℃以下のと
き室内冷媒流量調整弁の最大開度を(全開開度×0.5)
とすることを特徴とする多室空気調和機。
12. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units each having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and air Means for determining a heating capacity from the specific heat; means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value; and the variable so that a total value of the heating capacity becomes a total value of the target heating capacity. Means for controlling the operating capacity of the displacement compressor; and means for controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity, wherein the suction air temperature is not 20. When the temperature is 25 ° C or less, the maximum opening of the indoor refrigerant flow control valve is (full opening × 0.5)
A multi-room air conditioner characterized by the following.
【請求項13】請求項1ないし3に記載のいずれかのも
のにおいて、前記冷房能力を吹き出し空気温度の温度分
布の補正係数と、室内風量係数とで補正して求めること
を特徴とする多室空気調和機。
13. The multi-chamber system according to claim 1, wherein the cooling capacity is obtained by correcting the cooling capacity with a correction coefficient of a temperature distribution of blown air temperature and a indoor air flow coefficient. Air conditioner.
【請求項14】請求項1,4,6に記載のいずれかのものに
おいて、前記暖房能力を吹き出し空気温度の温度分布の
補正係数と、室内風量係数とで補正して求めることを特
徴とする多室空気調和機。
14. The air conditioner according to claim 1, wherein the heating capacity is obtained by correcting the heating capacity with a correction coefficient of a temperature distribution of a blown air temperature and a indoor air volume coefficient. Multi-room air conditioner.
【請求項15】可変容量圧縮機、室外熱交換器を備えた
室外機に、室内熱交換器、室内ファンと吸い込み空気温
度および吹き出し空気温度の検出手段とを備えた複数台
の室内機を液配管およびガス配管で接続して冷凍サイク
ルを構成した多室空気調和機において、 室内機の吸い込み空気温度と吹き出し空気温度との温度
差と、前記室内機の風量と、空気の密度と、空気の比熱
とから暖房能力を求める手段と、 前記吸い込み空気温度と室温設定値との差によって目標
暖房能力を定める手段と 前記暖房能力の合計値が前記目標暖房能力の合計値とな
るように前記可変容量圧縮機の運転容量を制御する手段
と、 を備え、暖房運転時、前記室内機の室内冷媒流量調整弁
の開度を室外冷媒流量調整弁の開度に応じて変化させる
ことを特徴とする多室空気調和機。
15. An outdoor unit having a variable capacity compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, an indoor fan, and means for detecting intake air temperature and blown air temperature. In a multi-room air conditioner connected by pipes and gas pipes to form a refrigeration cycle, a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and air Means for determining a heating capacity from the specific heat; means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value; and the variable capacity so that a total value of the heating capacity becomes a total value of the target heating capacity. Means for controlling the operating capacity of the compressor, wherein during the heating operation, the opening degree of the indoor refrigerant flow regulating valve of the indoor unit is changed according to the opening degree of the outdoor refrigerant flow regulating valve. Murokora Air conditioner.
【請求項16】請求項15に記載のものにおいて、 前記室外冷媒流量調整弁の開度が(0.5×全開開度)以
下のときは、前記室内冷媒流量調整弁の最小開度を(0.
1×全開開度)とし、 前記室外冷媒流量調整弁の開度が(0.8×全開開度)以
上のときは、前記室内冷媒流量調整弁の最小開度を(0.
4×全開開度)とし、 前記室外冷媒流量調整弁の開度が(0.5×全開開度)か
ら(0.8×全開開度)の間は、前記室内冷媒流量調整弁
の最小開度を(0.1×全開開度)から(0.4×全開開度)
までの値で前記室外冷媒流量調整弁の開度に比例した値
とすることを特徴とする多室空気調和機。
16. An outdoor refrigerant flow regulating valve according to claim 15, wherein when the outdoor refrigerant flow regulating valve has an opening of not more than (0.5 × full opening), the minimum opening of the indoor refrigerant flow regulating valve is set to (0.
When the opening of the outdoor refrigerant flow control valve is equal to or more than (0.8 × full opening), the minimum opening of the indoor refrigerant flow control valve is set to (0.
When the opening degree of the outdoor refrigerant flow control valve is between (0.5 x full opening degree) and (0.8 x full opening degree), the minimum opening degree of the indoor refrigerant flow control valve is (0.1 x full opening degree). X full opening) to (0.4 x full opening)
The multi-room air conditioner is characterized in that the value up to is set to a value proportional to the opening of the outdoor refrigerant flow control valve.
JP51256797A 1995-09-20 1995-09-20 Multi-room air conditioner Expired - Lifetime JP3199746B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001879 WO1997011317A1 (en) 1995-09-20 1995-09-20 Multi-chamber air-conditioner

Publications (1)

Publication Number Publication Date
JP3199746B2 true JP3199746B2 (en) 2001-08-20

Family

ID=14126285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51256797A Expired - Lifetime JP3199746B2 (en) 1995-09-20 1995-09-20 Multi-room air conditioner

Country Status (2)

Country Link
JP (1) JP3199746B2 (en)
WO (1) WO1997011317A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP5701137B2 (en) * 2011-04-18 2015-04-15 三菱電機株式会社 Air conditioning apparatus, air conditioning method and program
CN113757816A (en) * 2020-06-04 2021-12-07 青岛海信日立空调系统有限公司 Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346336A (en) * 1986-08-12 1988-02-27 Matsushita Refrig Co Air conditioner
JPH01127842A (en) * 1987-11-13 1989-05-19 Toshiba Corp Air conditioner
JP3108202B2 (en) * 1992-06-30 2000-11-13 三洋電機株式会社 Operation control method for air conditioner
JP3096527B2 (en) * 1992-07-30 2000-10-10 三洋電機株式会社 Operation control method for air conditioner

Also Published As

Publication number Publication date
WO1997011317A1 (en) 1997-03-27

Similar Documents

Publication Publication Date Title
CN101113834B (en) Method of controlling air conditioner
CN107407494B (en) Air conditioner
KR101176635B1 (en) Multi air conditioner capable of heating and cooling simultaneously and control method thereof
CN110762756B (en) Air conditioning system and air conditioning frosting control method
JPH03282164A (en) Air conditioner
JP3740637B2 (en) Air conditioner
JP3982557B2 (en) Air conditioner
JP2020134052A (en) Refrigeration cycle device
CN110726225B (en) Multi-split system and control method thereof
JP3849467B2 (en) Air conditioner
CN111649445B (en) Refrigerant adjusting system for air conditioner and air conditioner
JP3199746B2 (en) Multi-room air conditioner
JP7138790B2 (en) refrigeration cycle equipment
CN112268379A (en) Heat pump system, control method and device thereof, air conditioning equipment and storage medium
JP7150135B2 (en) refrigeration cycle equipment
KR101579827B1 (en) Home appliance and controlling method for the same of
JP2893844B2 (en) Air conditioner
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
JPH1038398A (en) Controller of electric expansion valve
CN114322269A (en) Refrigerant balance control method and device, multi-split air conditioner and computer readable storage medium
JP3637621B2 (en) Refrigeration equipment
JP2663792B2 (en) Operation control device for air conditioner
JP3550772B2 (en) Refrigeration equipment
JP3444360B2 (en) Constant temperature and constant room equipment
JP2536313B2 (en) Operation control device for air conditioner

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080615

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 12

EXPY Cancellation because of completion of term