WO1997011317A1 - Multi-chamber air-conditioner - Google Patents

Multi-chamber air-conditioner Download PDF

Info

Publication number
WO1997011317A1
WO1997011317A1 PCT/JP1995/001879 JP9501879W WO9711317A1 WO 1997011317 A1 WO1997011317 A1 WO 1997011317A1 JP 9501879 W JP9501879 W JP 9501879W WO 9711317 A1 WO9711317 A1 WO 9711317A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
capacity
temperature
air temperature
heating capacity
Prior art date
Application number
PCT/JP1995/001879
Other languages
French (fr)
Japanese (ja)
Inventor
Susumu Nakayama
Kensaku Oguni
Hiromu Yasuda
Yasutaka Yoshida
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/001879 priority Critical patent/WO1997011317A1/en
Priority to JP51256797A priority patent/JP3199746B2/en
Publication of WO1997011317A1 publication Critical patent/WO1997011317A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/85Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using variable-flow pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present invention relates to a control device for a multi-room air conditioner, and more particularly to a multi-room air conditioner that consumes less power by ensuring the performance of an indoor unit.
  • variable capacity compressor used in a multi-room air conditioner is such that the low pressure is equal to the set pressure during cooling, as described in JP-B-4-132298.
  • the volume is controlled to reach the set pressure.
  • the heat source temperature of each indoor heat exchanger can be kept almost constant, and the blowout temperature of each indoor unit is close to the heat source temperature if the imbalance of the refrigerant flow to each indoor unit does not occur. It is a control method with good controllability without temperature drop and capacity shortage. However, reducing power consumption was not considered.
  • Some indoor units connected to multi-room air conditioners have different indoor unit capacities and models, and some of these indoor fan airflows are not proportional to the indoor capacity. For example, if only a room unit with a large fan volume compared to the indoor unit capacity is operated with a compressor capacity commensurate with the indoor unit capacity, the low pressure pressure will increase during cooling and the high pressure pressure will decrease during heating. In the technology, since the pressure is controlled to be the set pressure, the capacity of the compressor is increased. As a result, the indoor unit has a capacity higher than the room unit capacity, and the power consumption is large.
  • the refrigerant at the outlet of the indoor heat exchanger of each indoor unit is cooled.
  • Valve opening provided on the liquid pipe side in each indoor unit so that the superheat degree at the outlet of the indoor heat exchanger becomes the set value during heating so that the superheat degree becomes the set value Is done with an adjustable motorized valve.
  • a temperature sensor is attached to the refrigerant pipe to detect the refrigerant temperature at the outlet of the indoor heat exchanger.
  • the refrigerant superheat degree is set to a set value. Insufficient capacity of machine.
  • the indoor refrigerant flow regulating valve of the indoor unit is throttled, and the capacity of the indoor unit is insufficient.
  • the indoor refrigerant flow control valve is throttled to increase the degree of subcooling and the refrigerant flow is reduced, the refrigerant temperature at the outlet between the room and heat exchanger approaches the intake air temperature, and the room and refrigerant flow control valve is opened.
  • the temperature is low, the refrigerant temperature at the outlet of the indoor heat exchanger hardly changes even if the opening is changed.
  • the indoor refrigerant flow control valve is excessively throttled, and the liquid refrigerant is excessively accumulated in the indoor heat exchanger, so that the amount of refrigerant circulating in the refrigeration cycle is insufficient, and the performance of other indoor units is reduced.
  • the refrigerant temperature at the outlet of the indoor heat exchanger hardly changes from the temperature when no refrigerant flows. Therefore, when the indoor refrigerant flow control valve is fully closed, the refrigerant accumulates as a liquid in the indoor heat exchanger and circulates in the refrigeration cycle as described above. Insufficient refrigerant causes a decrease in the capacity of the operating indoor unit.
  • the distribution of the flow rate of the refrigerant flowing through each indoor unit during heating is determined by comparing the temperature of the blown air and the temperature of the intake air of each indoor unit.
  • An indoor refrigerant flow control valve is provided on the liquid pipe side in each indoor unit that can adjust the valve opening so that the temperature difference becomes the set value.
  • An object of the present invention is to solve the above-described problems of the prior art, control the capacity of a compressor so that the total capacity of an operating indoor unit becomes the total value of required capacity, and reduce power consumption corresponding to the required capacity of the indoor unit It provides a multi-room air conditioner that consumes less power especially in heating operation.
  • Another object of the present invention is to provide a multi-room air conditioner in which the amount of refrigerant circulating in a refrigeration cycle is ensured and the capacity is prevented from being insufficient.
  • the multi-room air conditioner includes means for determining cooling or heating capacity based on a temperature difference between an intake air temperature and an outlet air temperature of an indoor unit, and target cooling based on a difference between the intake air temperature and a room temperature set value. Or means for determining the heating capacity, and controls the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity. Also provided are means for determining the cooling capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, and means for determining the target cooling capacity based on the difference between the intake air temperature and the room temperature set value. The operating capacity of the variable capacity compressor is controlled so that the value becomes the total value of the target cooling capacity.
  • means for determining the cooling capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the air density, the specific heat of air, and the sensible heat ratio, and the intake air temperature Means for determining the target cooling capacity based on the difference between the target cooling capacity and the room temperature setting value, and controls the operating capacity of the variable displacement compressor so that the total value of the cooling capacity becomes the total value of the target cooling capacity.
  • a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of air, and the specific heat of air, and the setting of the intake air temperature and room temperature Means for determining the target heating capacity based on the difference between the target heating capacity and the operating capacity of the variable displacement compressor so that the total heating capacity is equal to the total target heating capacity.
  • the operating capacity of the variable capacity pressure box machine is controlled so that the total value is obtained.
  • the operating capacity of the variable capacity compressor is controlled so that Further, in the above description, the opening degree of the room coolant flow control valve is controlled so that the cooling capacity becomes the target cooling capacity.
  • the opening degree of the indoor coolant flow control valve is controlled so that the heating capacity becomes the target heating capacity.
  • a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of the air, and the specific heat of the air Means for determining the target heating capacity based on the difference, means for controlling the operating capacity of the variable capacity compressor such that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity to the target heating capacity.
  • a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the air density, and the specific heat of the air, and the intake air temperature and the room temperature set value.
  • a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of the air, and the specific heat of the air, the intake air temperature and the room temperature set value, Means for determining the target heating capacity based on the difference between the heating capacity, means for controlling the operating capacity of the variable displacement compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity to the target heating capacity.
  • Means for controlling the degree of opening of the indoor refrigerant flow control valve so that the maximum opening degree of the indoor refrigerant flow control valve is smaller than the full opening degree when the intake air temperature is equal to or lower than a predetermined value.
  • a means for determining the heating capacity from the temperature difference between the intake air temperature and the air temperature of the indoor unit and the air temperature of the indoor unit, the wind ft of the indoor unit, the density of the air, and the specific heat of the air Means for determining the target heating capacity based on the difference from the set value, means for controlling the operating capacity of the variable displacement pressure machine so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity.
  • the cooling capacity is obtained by correcting with the correction coefficient of the temperature distribution of the blown air temperature and the indoor air flow coefficient.
  • the heating capacity is obtained by correcting the correction coefficient of the temperature distribution of the blown air temperature and the indoor air volume coefficient.
  • a method for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the air density, and the specific heat of the air, and the intake air temperature and room temperature set value Means to determine the target heating capacity based on the difference between the two, and means to control the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity.
  • a liquid tank is provided, and during the heating operation, the opening of the indoor refrigerant flow control valve of the indoor unit is changed according to the opening of the outdoor refrigerant flow control valve.
  • the minimum opening degree of the indoor refrigerant flow control valve is set to (0.IX full opening degree).
  • the minimum opening of the indoor refrigerant flow regulating valve is set to (0.4 x full opening)
  • the minimum opening degree of the indoor refrigerant flow control valve is (0.IX full opening). It is a value proportional to the opening of the outdoor refrigerant flow control valve with a value from to (0.4 X full opening).
  • the means for determining the cooling or heating capacity based on the temperature difference between the suction air temperature and the blow-out air temperature of the indoor unit is to detect the temperature of the suction unit and the blow-out unit of the indoor unit using a temperature sensor and calculate the value of the difference. It means to calculate the cooling or heating capacity currently in operation based on this.
  • a microcomputer provided in an indoor controller or an outdoor controller is used.
  • the means for determining the target cooling or heating capacity based on the difference between the suction air temperature and the set value is based on the difference between the already detected suction air temperature and the set room temperature, and the target cooling or heating capacity.
  • a specific relationship is determined in advance by a micro computer provided in an indoor controller or an outdoor controller.
  • Controlling the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity means that the cooling or heating capacity of each indoor unit calculated above and the above
  • the specified target cooling or heating capacity of each indoor unit is sent to the outdoor unit controller, and the operating capacity of the variable displacement compressor in the outdoor unit is controlled based on the sum of the two.
  • the microcomputer provided in the outdoor controller calculates the sum of the calculated cooling or heating capacity of each indoor unit and the determined total cooling or heating capacity of each indoor unit. This is performed by obtaining the motor speed of the variable displacement compressor from the deviation and controlling the displacement of the variable displacement compressor.
  • variable capacity compressor is less than the total capacity of the operating indoor units.
  • the compressor is no longer operated with the above capacity, and the compressor is operated with a compressor capacity corresponding to the total required capacity of each indoor unit. Therefore, the multi-room air conditioner can be operated with power consumption that matches the required capacity of each indoor unit.
  • the capacity of the variable displacement compressor is controlled from the deviation between the total value of the cooling capacity of each of the indoor units calculated only during the cooling operation and the determined total value of the target cooling capacity of each of the indoor units. Even in this case, the power consumption can be effectively reduced.
  • the means for determining the cooling capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit and the air volume of the indoor unit, the density of air, the specific heat of air, and the sensible heat ratio are as follows.
  • the temperature of the inlet and outlet is detected using a temperature sensor, and the difference between the temperature, the air volume of the air conditioner, the air density, the specific heat of air, and the sensible heat ratio is used to determine the current operating cooling.
  • a micro computer provided in an indoor controller or an outdoor controller is used.
  • the cooling capacity can be accurately calculated.
  • the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit and the means for determining the heating capacity from the air volume of the indoor unit, the density of the air, and the specific heat of the air are as follows. Means to detect the temperature of the unit using a temperature sensor and calculate the heating capacity during the current operation from the value of the difference, the air volume of the indoor unit, the density of the air, and the specific heat of the air. Specifically, a microcomputer provided in an indoor controller or an outdoor controller is used. This enables accurate calculation of the heating capacity.
  • the target cooling capacity is the rated cooling capacity of the indoor unit
  • the target cooling capacity is the indoor cooling capacity.
  • the means for determining the cooling capacity of the indoor unit or lower is that the suction unit of the indoor unit is detected using a temperature sensor and the value is detected. If the set temperature is 2 to 4 larger than the set temperature, the cooling load is large, so the target cooling capacity is the rated cooling capacity of the indoor unit, and the difference from the room temperature set value is 2 to 4 mm or less.
  • the target cooling capacity is determined as a value equal to or less than the rated cooling capacity because the cooling load is small.Specifically, it is determined by the microcomputer provided in the indoor controller or the outdoor controller. You. As a result, the target cooling capacity can be appropriately determined according to the room temperature set value (cooling load).
  • the target heating capacity is set to the rated heating capacity of the indoor unit.
  • the target heating capacity is set to the target heating capacity.
  • the means for determining the capacity as being equal to or less than the rated heating capacity of the indoor unit is to detect the suction unit of the indoor unit using a temperature sensor, and if the room temperature set value is 2 to 4 mm greater than that value, heating Since the load is large, the target heating capacity is set to the rated heating capacity value of the indoor unit.
  • the difference from the room temperature setting value is 2 to 4 * C or less
  • the heating load is small and the target heating capacity is set to the rated heating capacity or less. This means that it is determined as the value of. Specifically, it is determined by a microcomputer provided in the indoor controller or the outdoor controller. As a result, the target heating capacity can be appropriately determined according to the room temperature set value (heating load).
  • the cooling capacity of each indoor unit can be directly controlled by controlling the opening of the indoor coolant flow control valve so that the cooling capacity becomes the target cooling capacity. This will ensure that the cooling capacity of the machine will not be insufficient.
  • the heating capacity of each indoor unit can be directly controlled by controlling the opening of the indoor coolant flow control valve so that the heating capacity becomes the target heating capacity. Heating capacity of each indoor unit can be prevented from becoming insufficient.
  • the means for making the maximum opening of the indoor refrigerant flow regulating valve smaller than the full opening is to discharge the compressor. Side, a signal is input to the outdoor controller, and when the discharge pressure falls below a predetermined value is detected by turning off or on the pressure switch. This means that the maximum opening of the room / refrigerant flow control valve is smaller than the full opening, and is specifically determined by a microcomputer provided in an indoor controller or an outdoor controller.
  • the flow path resistance of the indoor refrigerant control valve increases, and the discharge pressure rises, and accordingly, the condensing pressure, that is, the temperature of the solidification box rises. And since the temperature of the box is the temperature of the heat source, the heating capacity also increases. Therefore, the capacity of the indoor unit is increased, and the operating capacity of the compressor is reduced by the increased amount, and power saving can be achieved.
  • Et al is, in the above, the discharge pressure of the variable displacement compressor becomes 1 5 to a 2 0 kg Z cm 2 or less which is a normal operating pressure when using HCF 2 2 R and 4 0 7 C the refrigerant
  • the maximum opening of the indoor refrigerant flow control valve is smaller than the full opening, and the opening is not too restrictive (full opening X 0.5).
  • the capacity of the indoor unit can be increased, and the operating capacity of the compressor can be reduced by the increased amount.
  • the means for making the maximum opening of the chamber / refrigerant flow control valve smaller than the full opening is that the suction unit of the indoor unit is connected to a temperature sensor.
  • the value is equal to or less than a predetermined value, it means that the maximum opening of the indoor refrigerant flow control valve is smaller than the full opening, specifically, The determination is made by a micro computer provided in the controller or outdoor controller. As a result, the capacity of the indoor unit is increased as described above, and the operating capacity of the compressor Power consumption can be reduced.
  • the maximum opening of the indoor refrigerant flow regulating valve is smaller than the full opening and the opening is not too narrow. (Full opening XO .5), it is possible to increase the capacity of the indoor unit required for heating capacity, and to reduce the operating capacity of the compressor by the increase.
  • the cooling capacity is obtained by correcting the temperature distribution correction coefficient of the blown-out air temperature and the indoor air volume coefficient, so that the environment of the room where the indoor unit is installed (S) Humidity, short circuit, etc.) and room equipment characteristics (indoor fan airflow, blown air temperature distribution, etc.) can be corrected. This makes it possible to accurately detect the functional capacity of the room and to ensure the functional capacity of the room.
  • the heating capacity is determined by correcting the correction coefficient of the temperature distribution of the blown air temperature and the indoor air flow coefficient, so that the calculation of the heating capacity of the indoor unit is made more accurate.
  • An accurate control of the indoor refrigerant flow regulating valve and the pressure box machine capacity can be realized.
  • the opening degree of the indoor refrigerant flow control valve of the indoor unit is changed according to the opening degree of the outdoor refrigerant flow control valve, so that the liquid refrigerant flows into the indoor heat exchanger ⁇ .
  • the problem of refrigerant shortage due to excessive accumulation is eliminated.
  • the shortage of the heating capacity of the indoor unit can be prevented.
  • the minimum opening degree of the indoor refrigerant flow control valve is set to (0.IX
  • the opening of the outdoor refrigerant flow control valve is equal to or more than (0.8 X full opening)
  • the refrigerant is in a shortage state and the minimum opening of the indoor refrigerant flow control valve is set to (0.4 X full opening).
  • the indoor refrigerant flow is The minimum opening of the flow control valve is a value from (0.4 IX full opening) to (0.4 X full opening) and is proportional to the opening of the outdoor refrigerant flow control valve. It is possible to prevent the shortage of the refrigerant within a practical range without excessively restricting the refrigerant flow control valve.
  • FIG. 1 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to one embodiment of the present invention.
  • FIG. 2 is a graph showing the relationship between the difference between the indoor unit intake air temperature and the set temperature, and the target cooling capacity ratio of the indoor unit.
  • FIG. 3 is a block diagram showing a compressor capacity control method during a cooling operation.
  • FIG. 4 is a block diagram showing a method of controlling the opening of the indoor refrigerant flow control valve during the cooling operation.
  • FIG. 5 is a graph showing the relationship between the difference between the indoor unit intake air temperature and the set temperature, and the target heating capacity ratio of the indoor unit.
  • FIG. 6 is a block diagram showing a compressor capacity control method during a heating operation.
  • FIG. 7 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to another embodiment of the present invention.
  • FIG. 8 is a graph showing the relationship between the operation of the pressure switch with respect to the discharge pressure and the maximum opening of the indoor refrigerant flow control valve.
  • FIG. 9 is a graph showing the relationship between the temperature of the chamber and the maximum opening of the refrigerant flow regulating valve with respect to the temperature of the suction air.
  • FIG. 10 is a plan view showing a component arrangement of a control board of an indoor controller of the indoor unit.
  • FIG. 11 shows the combination and operation of the ON / OFF of the dip switch on the control board.
  • FIG. 6 is a relationship diagram showing arithmetic coefficients.
  • FIG. 12 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner during a heating operation according to one embodiment of the present invention.
  • FIG. 13 is a graph showing the relationship between the opening degree of the outdoor refrigerant flow control valve, the minimum opening degree of the indoor refrigerant flow control valve, and the opening degree of the indoor refrigerant flow control valve of the stop room.
  • FIG. 1 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to one embodiment of the present invention.
  • the horizontal axis shows the deviation between the indoor unit intake air temperature and the set temperature
  • the vertical axis shows the relationship between the indoor unit's target cooling capacity ratio and the vertical axis.
  • FIG. 3 is a block diagram showing a capacity control method of the pressure box machine during the cooling operation.
  • FIG. 4 is a block diagram showing a method of controlling the opening degree of the chamber / refrigerant flow control valve during the cooling operation.
  • FIG. 5 is a graph showing the deviation between the indoor unit suction air temperature and the set temperature on the horizontal axis, and the relationship between the indoor unit's target heating capacity ratio and the vertical axis on the vertical axis.
  • FIG. 6 is a block diagram showing a compressor capacity control method during the heating operation.
  • the outdoor unit 100 and the indoor units 200 and 300 are connected by a gas pipe 121 and a liquid pipe 122.
  • the outdoor unit 100 is a compressor with variable motor rotation speed 105, a four-way valve 106, an outdoor heat exchanger 101, an outdoor refrigerant flow control valve 102, an outdoor fan 103, and an accumulator. , An outdoor controller 151, and a discharge temperature detector 115.
  • the outdoor controller 15 1 receives the signal of the discharge temperature detector 115, and outputs a signal for controlling the rotation speed of the motor (not shown) of the compressor 105 and the outdoor refrigerant flow control valve 102. Output.
  • the indoor unit 200 includes an indoor heat exchanger 201, an indoor refrigerant flow control valve 202, an indoor fan 203, a temperature detector 204, 206, 207, and an indoor controller.
  • the indoor controller 208 receives the signals of the temperature detectors 204, 206, and 207, and controls the opening degree of the indoor refrigerant flow control valve 202.
  • the indoor unit 300 includes the indoor heat exchanger 310, the indoor refrigerant flow control valve 302, the indoor fan 300, the temperature detectors 304, 306, 300, and the indoor.
  • the controller 308 is composed of a room temperature controller 308,
  • the signals of 306 and 307 are input to control the opening of the indoor refrigerant flow control valve 302.
  • the temperature sensors 204 and 304 are attached to the liquid refrigerant pipes of the indoor heat exchangers 201 and 301, respectively, and detect the liquid refrigerant temperature.
  • the temperature sensors 206 and 303 detect the intake air temperature of the indoor units 200 and 300, respectively.
  • the temperature sensors 207 and 307 detect the temperature of the blown air from the indoor units 200 and 300, respectively.
  • the outdoor controllers 208 and 308 and the outdoor controller 151 are connected by a transmission line, and exchange various signals.
  • Solid arrows in the gas pipe 122 and the liquid pipe 122 indicate the flow direction of the refrigerant during the cooling operation, and the solid arrows in the indoor units 200 and 300 indicate the air flow direction.
  • the refrigerant discharged from the compressor 105 passes through the four-way valve 106, enters the outdoor heat exchanger 101, is heat-exchanged with outdoor air sent by the outdoor fan 103, and is solidified. It becomes a liquid refrigerant.
  • the condensed refrigerant passes through the outdoor refrigerant flow control valve 102 that is fully opened, and is sent to the indoor units 200 and 300 via the liquid pipe 122.
  • the liquid refrigerant is supplied to the indoor refrigerant flow control valve. It expands and decompresses in 202, enters the indoor heat exchanger 201, and exchanges heat with the indoor air sent by the indoor fan 203 to evaporate. Then, the cooled indoor air is blown into the room from the indoor unit 200.
  • the refrigerant entering the indoor unit 300 is decompressed by the indoor refrigerant flow control valve 302, enters the indoor heat exchanger 301, and exchanges heat with the indoor air sent by the indoor fan 303. Evaporate. Then, the cooled room air is blown out from the room machine 300.
  • the refrigerant discharged from the indoor unit 200 and the indoor unit 300 merges and is sent to the outdoor unit 100 through the gas pipe 122. Further, the refrigerant is sucked into the compressor 105 through the four-way valve 106 and the accumulator 104, compressed, and discharged again.
  • the indoor controller 208 obtains the cooling capacity Qc2 of the indoor unit 200 by using the temperature difference (t206-t207) between the intake air temperature and the blown air temperature as follows: 1) Calculate from
  • the indoor controller 300 determines the cooling capacity Qc3 of the indoor unit 300 as the temperature difference between the intake air temperature and the blown air temperature (t306—t30).
  • t207, t307 Detection values of temperature sensors 207, 307
  • V a 2 Air volume of indoor unit 200, 300
  • V a2 and V a3 are the indoor airflow, which can be changed by the operation airflow tap of the indoor unit.
  • the indoor controller 208 determines the indoor temperature from the relationship shown in Fig. 2 by the difference (t206-ts2) between the intake air temperature t206 of the indoor unit 200 and the room temperature set value ts2.
  • the target cooling capacity Q c 20 of the indoor unit 200 is calculated.
  • the outdoor controller 15 1 calculates the pressure from the deviation between the total value QcTO of the target cooling capacity in (6) and the total value QcT of the cooling capacity in (3).
  • the motor speed of the compressor 105 is obtained by PID calculation, and the capacity of the compressor is controlled.
  • the cooling capacity Qc2, Qc3 of the indoor units 200, 300 is the target cooling by the indoor refrigerant flow control valves 202, 302. The power is controlled so as to approach Qc20 and Qc30.
  • the differences (t206-ts2) and (t306-ts3) between the intake air temperature and the room temperature set value are larger than 4, and sometimes the target The cooling capacity ratios ⁇ 2 and ⁇ 3 are 1 respectively, and the target cooling capacity Q c 20 and Q c 30 of the indoor units 200 and 300 are the same as the rated cooling capacity of the indoor units 200 and 300. Become.
  • the dashed arrows shown in the gas pipe 122 and the liquid pipe 122 indicate the direction of the refrigerant flow during the heating operation.
  • the refrigerant discharged from the pressure box unit 105 passes through the four-way valve 106, enters the gas pipe 121, and is sent to the indoor units 200, 300.
  • the refrigerant that has entered the indoor unit 200 enters the indoor heat exchanger 201, exchanges heat with the indoor air sent by the indoor fan 203, condenses, and warms the indoor air. Further, the condensed refrigerant exits the indoor unit 200 through the indoor refrigerant flow control valve 202.
  • refrigerant entering indoor unit 300 is condensed and exits indoor unit 300.
  • the refrigerants that have exited the outdoor units 200 and 300 join and enter the outdoor unit 100 through the liquid pipe 122. Further, the refrigerant is depressurized by the indoor refrigerant flow control valve 102 and enters the outdoor heat exchanger 101, where it exchanges heat with the outdoor air sent by the outdoor fan 103 to evaporate, and evaporates. It is sucked into the compressor 105 through the valve 106 and the accumulator 104, compressed, and discharged again.
  • the indoor controller 208 of the indoor unit 200 receives the heating capacity Qh2 of the indoor unit 200, and calculates the temperature difference between the intake air temperature and the blown air temperature (t207-t
  • the room controller 300 of the indoor unit 300 determines the heating capacity Q h3 of the indoor unit 300 as the temperature difference (t 3
  • the indoor controller 208 is based on the difference (ts 2 -t 206) between the intake air temperature t 206 of the indoor unit 200 and the room temperature set value ts 2 (ts 2 -t 206) from the relationship shown in FIG.
  • the target heating capacity ratio of 200/32 is found,
  • the target heating capacity Qh20 of the room machine 200 is calculated.
  • the outdoor controller 15 1 determines the compressor based on the deviation between the total heating capacity QhTO of (6) and the total heating capacity QhT of (3). Calculate the motor speed of 105 by P 1 D operation and control the capacity of the compressor.
  • C (8) The heating capacity Q h2 and Q h 3 of the indoor units 200 and 300 As in the case of cooling in FIG. 4, the indoor refrigerant flow control valves 202 and 302 are controlled so as to approach the target heating capacity Qh20 and Qh30.
  • the outdoor refrigerant flow regulating valve 102 is controlled by the outdoor controller 15 1 so that the discharge temperature of the compressor 105 detected by the discharge temperature detector 115 becomes the set temperature.
  • the rated heating capacity varies depending on the length of the gas pipes 122 and liquid pipes 122, and the longer the pipe length, the lower the rated heating capacity.
  • FIG. 7 Another embodiment of the present invention is shown in FIG. 7, FIG. 8, and FIG.
  • FIG. 7 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to another embodiment of the present invention.
  • FIG. 8 is a graph showing the relationship between the operation of the pressure switch with respect to the discharge pressure and the maximum opening of the indoor refrigerant flow control valve.
  • FIG. 9 is a graph showing the relationship between the indoor suction air temperature and the maximum opening of the indoor refrigerant flow control valve.
  • pressure switches 107 and 108 are mounted on the compressor discharge side of the embodiment shown in FIG. 1, and their signals are inputted to the outdoor controller 15 1.
  • the flow and control method of the refrigerant during the cooling operation are the same as in the embodiment of FIG.
  • the flow and control method of the refrigerant during the heating operation are the same as in the embodiment of FIG. 1, but the maximum opening degree of the indoor refrigerant flow regulating valves 202 and 302 during the heating operation is shown in FIG. As shown, the combination of the output signals of the pressure switches 107 and 108 is changed.
  • the indoor refrigerant flow regulating valve 202, 302 turns the full opening of the indoor refrigerant flow regulating valve to the maximum opening, and the pressure switch 107 When OFF, the full opening X 0.5 is the maximum opening.
  • FIG. 9 shows an example in which the maximum opening degree of the indoor refrigerant flow control valves 202 and 302 is changed according to the intake air temperatures t206 and t306 of the respective indoor units.
  • the maximum opening of the indoor refrigerant flow control valve is the maximum opening, and when the suction air temperature is 25 or less, the full opening X 0.5 is the maximum opening.
  • the suction air temperature exceeds 25 and is 30 t or less, the maximum opening is not changed.
  • FIG. 1 Another embodiment of the method for controlling the indoor refrigerant flow regulating valve will be described with reference to FIGS. 1 and 1.
  • FIG. 1 Another embodiment of the method for controlling the indoor refrigerant flow regulating valve will be described with reference to FIGS. 1 and 1.
  • FIG. 10 is a plan view showing a component arrangement of a control board of a room controller of an indoor unit
  • FIG. 11 is a relational diagram showing a combination of ONOFF of a dip switch of a control board and an operation coefficient.
  • the basic control method is the same as in Fig. 4, but how to find the cooling capacity
  • the temperature difference between the intake air temperature and the blown air temperature can be changed by the correction coefficients ac2 and ac3 and the indoor air volume coefficients aV2 and av3 as equations (13) and (14). I have.
  • the temperature difference between the outlet air temperature and the inlet air temperature can be changed by the correction coefficients ah2 and ah3 and the indoor airflow coefficients av2 and av3. I'm trying.
  • the calculation of the room ⁇ functional force can be made more accurate, and the accurate control of the indoor refrigerant flow control valve and the compressor capacity can be realized.
  • dip switches 2 1 1 (D SW 1) 2 1 2 (D SW 2), 2 13 (DSW 3), and 2 14 (DSW 4) are mounted on the board. ing.
  • One dip switch is composed of four ON / OFF switches, and each coefficient can be changed by a combination of the ON / OFF switches.
  • Fig. 11 shows an example of changing the coefficient.
  • the sensible heat ratio is changed based on the atmosphere in which the indoor units are installed, and the value for the general office is about 0.7. This value should be set low in places with high humidity, such as in kitchens, and high in places with low humidity, as in computer rooms.
  • the correction coefficient ac 2 is a correction coefficient for the temperature distribution of the cooling air outlet air temperature, and is set to 1.0 when the temperature detected by the temperature detector 207 is the average outlet air temperature, and is set higher than that. For temperature, set to a value greater than 1. Also, if the detected temperature is lower than the average blowing air temperature, set a value smaller than 1.
  • the correction coefficient ah 2 is a correction coefficient for the temperature distribution of the outlet air temperature of the heating, and is set to 1.0 when the temperature detected by the temperature detector 207 is the average outlet air temperature, and is set higher. When the temperature is detected, the value shall be less than 1. Also, if the detected temperature is lower than the average blowing air temperature, set a value greater than 1.
  • the indoor controller 208 needs a large storage capacity to store all the indoor unit capacity / room / model air volume. Therefore, only the representative air volume is stored and corrected by the indoor air volume coefficient a V 2.
  • the indoor airflow coefficient shall be 1.0 if the actual airflow is the same as the stored representative airflow, a value less than 1 if it is less than the representative airflow, and a value greater than 1 if it is more.
  • FIG. 12 is a multi-room air conditioner at the time of heating operation according to another embodiment of the present invention.
  • Fig. 13 is a block diagram showing the configuration of the refrigeration cycle of Fig. 13.
  • Fig. 13 shows the outdoor refrigerant flow control valve opening, the minimum refrigerant flow control valve opening, and the indoor refrigerant flow control valve opening of the stopped indoor unit.
  • FIG. 4 is a graph showing the relationship of FIG.
  • FIG. 12 shows a refrigeration cycle when the indoor units 200 and 300 are in the heating operation, and the liquid tank 109 is installed on the gas pipe 121 side. The rest is the same as the refrigeration cycle in Fig. 1 already described.
  • the inside of the liquid tank 109 is at a low pressure, and the refrigerant temperature becomes lower than the ambient temperature, so that the refrigerant does not condense and remain as a liquid refrigerant.
  • the refrigerant becomes high pressure and the refrigerant temperature becomes higher than the ambient temperature, so that the refrigerant condenses and becomes a liquid refrigerant, and accumulates in the liquid tank 109. This allows excess refrigerant during heating to be absorbed.
  • the pipe that guides the refrigerant into the liquid tank 109 rises up to the top of the liquid tank 109 so that even if the four-way valve is switched due to defrosting, etc., the liquid refrigerant always accumulates. It will not return to.
  • the indoor unit 200 is operated at the maximum capacity, the capacity of the indoor unit 300 is controlled, the indoor refrigerant flow regulating valve 302 is throttled, and the capacity is reduced. Therefore, a large amount of liquid coolant is accumulated in the indoor heat exchanger 301 of the indoor unit 300.
  • the opening degree of the outdoor refrigerant flow control valve 102 of the outdoor unit 100 is controlled such that the discharge temperature of the compressor 105 detected by the discharge temperature detector 115 becomes a set value.
  • the indoor refrigerant flow control valve 302 of the indoor unit 300 is excessively throttled.
  • the liquid refrigerant excessively accumulates in the room heat exchanger 301, and the amount of refrigerant circulating in the refrigeration cycle decreases. Therefore, the flow rate of refrigerant in the indoor unit 200 decreases, and the heating capacity of the indoor unit 200 becomes insufficient.
  • the minimum opening of the indoor refrigerant flow control valves 202 and 302 is (0.1 X full opening).
  • the minimum opening of the indoor refrigerant flow control valves 202 and 302 is as follows.
  • the value shall be in the range from (0.IX full opening) to (0.4X full opening) and proportional to the opening of the outdoor refrigerant flow control valve 102.
  • the minimum opening of the outdoor refrigerant flow regulating valves 202 and 302 is determined by the opening of the outdoor refrigerant flow regulating valve 102.
  • the indoor refrigerant flow regulating valve 302 is set to a predetermined slightly-opened degree, but also at this time, similarly to the above, the indoor heat exchanger 3 A large amount of liquid refrigerant accumulates in the inside of the refrigeration cycle 01, and if this amount is too large, the amount of the refrigerant circulating in the refrigeration cycle decreases, and the heating capacity of the indoor unit 200 is insufficient. Stop room at the opening of the outdoor refrigerant flow control valve 102 The degree of opening of the indoor refrigerant flow control valve of the inner unit is changed.
  • the opening of the outdoor refrigerant flow control valve 102 is smaller than the predetermined opening A (0.5 X full opening)
  • the minimum of the refrigerant flow control valves 202, 302 of the stopped indoor unit The opening shall be (0.05 X full opening).
  • the minimum of the indoor refrigerant flow control valves 202 and 302 of the indoor stop indoor unit shall be from (0.05 X full opening) to (0.IX full opening) and a value proportional to the opening of the outdoor refrigerant flow control valve 102.
  • the minimum opening of the indoor refrigerant flow regulating valves 202 and 302 of the indoor / stop indoor unit is determined by the opening of the outdoor refrigerant flow regulating valve 102.
  • the compressor since the capacity of the compressor is controlled so that the capacity of the operated indoor unit becomes the required target capacity, the compressor is operated with power consumption corresponding to the required capacity of the indoor unit.
  • a multi-room air conditioner with low power consumption during heating operation will be provided.
  • the amount of refrigerant circulating in the refrigeration cycle is secured by changing the opening of the indoor refrigerant flow control valve of the indoor unit according to the opening of the outdoor refrigerant flow control valve, resulting in insufficient capacity.
  • a multi-room air conditioner that prevents the occurrence of air pollution is provided.

Abstract

This invention relates to a multi-chamber air-conditioner in which the consumption of electric power is minimized. The temperature of the air sucked by an indoor fan and that of the air discharged by the fan are detected, and the room cooling or heating capacity is determined on the basis of the difference between these temperatures, a target room cooling or heating capacity being set on the basis of the difference between the suction air temperature and a room temperature setting. The operating capacity of a variable-capacity compressor is controlled so that a total value of the room cooling or heating capacity agrees with that of the target room cooling or heating capacity.

Description

明 細 書  Specification
多室空気調和機  Multi-room air conditioner
技術分野 Technical field
本発明は、 多室空気調和機の制御装置に係り 、 特に室内機の能力を確 保したう えで、 消費電力を少なく した多室空気調和機に関するものであ る。  The present invention relates to a control device for a multi-room air conditioner, and more particularly to a multi-room air conditioner that consumes less power by ensuring the performance of an indoor unit.
背景技術 Background art
従来、 多室空気調和機に用いられる可変容量圧縮機は特公平 4 一 3 2 2 9 8号公報記載のよ うに、 冷房時は低圧圧力が設定圧力になるよ うに. 暖房時は高圧圧力が設定圧力になるよ う に容量制御されている。  Conventionally, the variable capacity compressor used in a multi-room air conditioner is such that the low pressure is equal to the set pressure during cooling, as described in JP-B-4-132298. The volume is controlled to reach the set pressure.
上記従来技術は、 各室内熱交換器の熱源温度をほぼ一定に保つことが でき、 各室内機への冷媒流量のアンパランスが生じないよ う にすれば各 室内機の吹き出し温度は熱源温度に近い温度になり、 能力不足が発生す ることなく制御性の良い制御方法である。 しかし、 消費電力を少なくす ることについては考慮されていなかった。  In the above prior art, the heat source temperature of each indoor heat exchanger can be kept almost constant, and the blowout temperature of each indoor unit is close to the heat source temperature if the imbalance of the refrigerant flow to each indoor unit does not occur. It is a control method with good controllability without temperature drop and capacity shortage. However, reducing power consumption was not considered.
多室空気調和機に接続される室内機には室内機容量や機種の異なるも のがあり、 それらの室内ファン風量は室内容量に比例していないものも ある。 例えば、 室内機容量に比べて室內ファ ン風量が多い室內機だけを 室内機容量に見合った圧縮機容量で運転すると、 冷房では低圧圧力が上 昇し、 暖房では高圧圧力が低下するので、 従来技術では、 設定圧力にな るよ うに制御するので、 圧縮機容量を増大させるこ と となる。 その結果, 室内機は室內機容量以上の能力を出し、 消費電力も增大する。  Some indoor units connected to multi-room air conditioners have different indoor unit capacities and models, and some of these indoor fan airflows are not proportional to the indoor capacity. For example, if only a room unit with a large fan volume compared to the indoor unit capacity is operated with a compressor capacity commensurate with the indoor unit capacity, the low pressure pressure will increase during cooling and the high pressure pressure will decrease during heating. In the technology, since the pressure is controlled to be the set pressure, the capacity of the compressor is increased. As a result, the indoor unit has a capacity higher than the room unit capacity, and the power consumption is large.
また、 多室空気調和機の各室內機に流れる冷媒流量の分配は特公平 4 一 7 1 1 3 9号公報記載のよ うに、 冷房時は各室内機の室内熱交換器出 口側の冷媒過熱度が設定値になるように、 暖房時は室内熱交換器出口側 の過冷却度が設定値になるよ うに各室内機内の液配管側に設けた弁開度 が調整可能な電動弁で行っている。 さ らに、 室内熱交換器の出口冷媒温 度を検出するために温度センサが冷媒配管に取り付けられている。 In addition, as described in Japanese Patent Publication No. 411,139, Japanese Patent Publication No. 471,139, the refrigerant at the outlet of the indoor heat exchanger of each indoor unit is cooled. Valve opening provided on the liquid pipe side in each indoor unit so that the superheat degree at the outlet of the indoor heat exchanger becomes the set value during heating so that the superheat degree becomes the set value Is done with an adjustable motorized valve. In addition, a temperature sensor is attached to the refrigerant pipe to detect the refrigerant temperature at the outlet of the indoor heat exchanger.
冷房運転時において、 温度センサを取り付ける冷媒配管には、 空気中 の水分が付着し、 その水分が温度センサ内に入って誤検出したり 、 温度 センサが配管から浮いて取り付けられて正確な温度が検出できないこと がある。 この検出不良が生じる と、 冷媒過熱度の検出誤差も大き く なり 、 室内機への冷媒分配が良好に行えず、 能力不足の室内機が生じる。  During the cooling operation, moisture in the air adheres to the refrigerant pipe to which the temperature sensor is attached, and the moisture enters the temperature sensor and is erroneously detected. Sometimes not detectable. When this detection failure occurs, the error in detecting the degree of superheat of the refrigerant increases, and the refrigerant cannot be distributed to the indoor units in a satisfactory manner, resulting in an indoor unit with insufficient capacity.
例えば、 冷媒過熱度を実際よ り大き く検出すると、 冷媒過熱度が設定 値になるよ うにする従来技術では、 その室内機の室内冷媒流量調整弁を 開いて冷媒を多く流すため、 他の室內機の能力が不足する。  For example, in the related art in which when the refrigerant superheat degree is detected to be larger than the actual one, the refrigerant superheat degree is set to a set value. Insufficient capacity of machine.
冷媒過熱度を実際よ り小さ く検出すると、 その室内機の室内冷媒流量 調整弁を絞るため、 その室内機の能力が不足する。  If the degree of superheat of the refrigerant is detected to be lower than it actually is, the indoor refrigerant flow regulating valve of the indoor unit is throttled, and the capacity of the indoor unit is insufficient.
暖房運転時においては、 次のよ うな課題がある。  During the heating operation, there are the following issues.
( 1 ) 過冷却度を大き くするために室内冷媒流量調整弁を絞り、 冷媒流 量を減少させると、 室內熱交換器出口の冷媒温度は吸い込み空気温度に 近づき、 室內冷媒流量調整弁の開度が小さいと ころでは開度を変化させ ても室内熱交換器出口の冷媒温度はほとんど変化しない。  (1) If the indoor refrigerant flow control valve is throttled to increase the degree of subcooling and the refrigerant flow is reduced, the refrigerant temperature at the outlet between the room and heat exchanger approaches the intake air temperature, and the room and refrigerant flow control valve is opened. When the temperature is low, the refrigerant temperature at the outlet of the indoor heat exchanger hardly changes even if the opening is changed.
そのため室内冷媒流量調整弁を絞りすぎて室内熱交換器内に液冷媒が 溜りすぎて、 冷凍サイクル内を循環する冷媒が不足し、 他の室内機の能 力低下を招く。  As a result, the indoor refrigerant flow control valve is excessively throttled, and the liquid refrigerant is excessively accumulated in the indoor heat exchanger, so that the amount of refrigerant circulating in the refrigeration cycle is insufficient, and the performance of other indoor units is reduced.
( 2 ) 停止室内機に流れる冷媒は省電力の面から極力少なく しなければ ならず、 室内冷媒流量調整弁は微開となるよ うに制御される。  (2) The amount of refrigerant flowing to the stopped indoor unit must be reduced as much as possible from the viewpoint of power saving, and the indoor refrigerant flow control valve is controlled to be slightly opened.
しかし、 室內冷媒流量調整弁の開度が微開で、 かつ冷媒流量が非常に 少ないと室内熱交換器出口の冷媒温度は、 冷媒が流れない場合の温度と ほとんど変化はない。 よって、 室内冷媒流量調整弁が全閉になる と室内 熱交換器内に冷媒が液で溜り 、 前述と同様に冷凍サイ クル内を循環する 冷媒が不足し、 運転している室内機の能力低下を招く。 However, when the opening of the chamber / refrigerant flow control valve is slightly opened and the flow rate of the refrigerant is very small, the refrigerant temperature at the outlet of the indoor heat exchanger hardly changes from the temperature when no refrigerant flows. Therefore, when the indoor refrigerant flow control valve is fully closed, the refrigerant accumulates as a liquid in the indoor heat exchanger and circulates in the refrigeration cycle as described above. Insufficient refrigerant causes a decrease in the capacity of the operating indoor unit.
そこで、 従来は室内冷媒流量調整弁を微開付近で全閉にならないよ う に制御するのは難しいので、 最小開度を設けてその開度以下にならない よ うに制御する。  Therefore, conventionally, it is difficult to control the indoor refrigerant flow control valve so as not to be fully closed in the vicinity of the slightly open state. Therefore, a minimum opening degree is provided and the control is performed so as not to be less than the minimum opening degree.
しかし、 最小開度を設けても、 室内熱交換器に溜っている液冷媒量は 不明なので、 冷凍サイクル内を循環する冷媒が不足し、 能力不足の室内 機が生じる。  However, even if the minimum opening is set, the amount of liquid refrigerant accumulated in the indoor heat exchanger is unknown, so the amount of refrigerant circulating in the refrigeration cycle is insufficient, and some indoor units have insufficient capacity.
さらに、 暖房時の各室内機に流れる冷媒流量の分配と して、 特開平 3 - 2 9 4 7 5 2号公報記載のよ うに、 各室内機の吹き出し空気温度と吸 い込み空気温度との温度差が設定値になるよ うに各室内機内の液配管側 に設けた弁開度が調整可能な室内冷媒流量制御弁で行っている。  Further, as described in Japanese Patent Laid-Open No. 3-2944752, the distribution of the flow rate of the refrigerant flowing through each indoor unit during heating is determined by comparing the temperature of the blown air and the temperature of the intake air of each indoor unit. An indoor refrigerant flow control valve is provided on the liquid pipe side in each indoor unit that can adjust the valve opening so that the temperature difference becomes the set value.
本従来技術では、 吹き出し温度の分布や吹き出し空気がそのまま吸い 込み側に流れるショ一トサーキッ 卜によって冷媒分配が室內機の能力に 見合って行えず、 能力不足の室内機が生じる。  In the conventional technology, the distribution of the outlet temperature and the short circuit in which the outlet air flows to the suction side as it is cannot distribute the refrigerant in proportion to the capacity of the indoor unit, resulting in an indoor unit with insufficient capacity.
本発明の目的は、 上記従来技術の問題点を解決し、 運転室内機の合計 能力が要求能力の合計値になるよ うに圧縮機を容量制御し、 室内機の要 求能力に見合った消費電力で運転し、 特に暖房運転では消費電力の少な い多室空気調和機を提供するものである。  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, control the capacity of a compressor so that the total capacity of an operating indoor unit becomes the total value of required capacity, and reduce power consumption corresponding to the required capacity of the indoor unit It provides a multi-room air conditioner that consumes less power especially in heating operation.
さ らに、 他の目的は冷凍サイクル内を循環する冷媒量を確保し、 能力 不足を防止した多室空気調和機を提供するものである。  Another object of the present invention is to provide a multi-room air conditioner in which the amount of refrigerant circulating in a refrigeration cycle is ensured and the capacity is prevented from being insufficient.
発明の開示 Disclosure of the invention
本発明による多室空気調和機は、 室内機の吸い込み空気温度と吹き出 し空気温度との温度差によって冷房または暖房能力を求める手段と、 吸 い込み空気温度と室温設定値との差によって目標冷房または暖房能力を 定める手段とを備え、 冷房または暖房能力の合計値が目標冷房または暖 房能力の合計値となるよ うに可変容量圧縮機の運転容量を制御する。 また、 室内機の吸い込み空気温度と吹き出し空気温度との温度差に よって冷房能力を求める手段と、 吸い込み空気温度と室温設定値との差 によって目標冷房能力を定める手段とを備え、 冷房能力の合計値が目標 冷房能力の合計値となるよ うに可変容量圧縮機の運転容量を制御する。 さ らに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差と 室内機の風量と、 空気の密度と、 空気の比熱と、 顕熱比とから冷房能力 を求める手段と、 吸い込み空気温度と室温設定値との差によって目標冷 房能力を定める手段とを備え、 冷房能力の合計値が目標冷房能力の合計 値となるよ う に可変容量圧縮機の運転容量を制御する。 The multi-room air conditioner according to the present invention includes means for determining cooling or heating capacity based on a temperature difference between an intake air temperature and an outlet air temperature of an indoor unit, and target cooling based on a difference between the intake air temperature and a room temperature set value. Or means for determining the heating capacity, and controls the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity. Also provided are means for determining the cooling capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, and means for determining the target cooling capacity based on the difference between the intake air temperature and the room temperature set value. The operating capacity of the variable capacity compressor is controlled so that the value becomes the total value of the target cooling capacity. In addition, means for determining the cooling capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the air density, the specific heat of air, and the sensible heat ratio, and the intake air temperature Means for determining the target cooling capacity based on the difference between the target cooling capacity and the room temperature setting value, and controls the operating capacity of the variable displacement compressor so that the total value of the cooling capacity becomes the total value of the target cooling capacity.
さ らに、 室內機の吸い込み空気温度と吹き出し空気温度との温度差と . 室內機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手 段と、 吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段とを備え、 暖房能力の合計値が目標暖房能力の合計値となるよ うに可変容量圧縮機の運転容量を制御する。  In addition, a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of air, and the specific heat of air, and the setting of the intake air temperature and room temperature Means for determining the target heating capacity based on the difference between the target heating capacity and the operating capacity of the variable displacement compressor so that the total heating capacity is equal to the total target heating capacity.
さ らに、 室內機の吸い込み空気温度と吹き出し空気温度との温度差に よって冷房能力を求める手段と、 吸い込み空気温度から室温設定値の差 が 2ないし 4 T:よ り大きい時は、 目標冷房能力を室內機の定格冷房能力 と し、 2ないし 4で以下の時は、 目標冷房能力を室内機の定格冷房能力 以下と して定める手段とを備え、 冷房能力の合計値が目標冷房能力の合 計値となるよ うに可変容量圧箱機の運転容量を制御する。  In addition, a means for determining the cooling capacity based on the temperature difference between the suction air temperature and the blow-out air temperature of the indoor unit, and the target cooling when the difference between the suction air temperature and the room temperature set value is 2 to 4 T: greater than If the capacity is defined as the rated cooling capacity of the indoor unit, and if it is 2 to 4, the target cooling capacity shall be set to be equal to or less than the rated cooling capacity of the indoor unit. The operating capacity of the variable capacity pressure box machine is controlled so that the total value is obtained.
さ らに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差に よって暖房能力を求める手段と、 室温設定値から吸い込み空気温度の差 が 2ないし 4 よ り大きい時は、 目標暖房能力を室內機の定格暖房能力 と し、 2ないし 4 以下の時は、 目標暖房能力を室內機の定格暖房能力 以下と して定める手段とを備え、 暖房能力の合計値が目標暖房能力の合 計値となるよ うに可変容量圧縮機の運転容量を制御する。 さらに、 上記において、 冷房能力が目標冷房能力となるよ うに室內冷 媒流量調整弁の開度を制御する。 Furthermore, means for determining the heating capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, and setting the target heating capacity when the difference in the intake air temperature is greater than 2 to 4 from the room temperature set value. A means to set the target heating capacity to be equal to or less than the rated heating capacity of the indoor unit when the rated heating capacity of the indoor unit is 2 to 4 or less, and the total value of the heating capacity is the total value of the target heating capacity The operating capacity of the variable capacity compressor is controlled so that Further, in the above description, the opening degree of the room coolant flow control valve is controlled so that the cooling capacity becomes the target cooling capacity.
さらに、 上記において、 暖房能力が目標暖房能力となるよ うに室内冷 媒流量調整弁の開度を制御する。  Further, in the above, the opening degree of the indoor coolant flow control valve is controlled so that the heating capacity becomes the target heating capacity.
さらに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差と 室内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手 段と、 吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、 暖房能力の合計値が目標暖房能力の合計値となるよ うに可 変容量圧縮機の運転容惫を制御する手段と、 暖房能力が目標暖房能力と なるよ う に室内冷媒流量調整弁の開度を制御する手段と、 可変容量圧箱 機の吐出圧力が所定の値以下のとき室内冷媒流量調整弁の最大開度を全 開開度よ り小さくする手段とを備えている。  Furthermore, a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of the air, and the specific heat of the air, Means for determining the target heating capacity based on the difference, means for controlling the operating capacity of the variable capacity compressor such that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity to the target heating capacity. Means for controlling the opening of the indoor refrigerant flow regulating valve so that the maximum opening of the indoor refrigerant flow regulating valve is smaller than the full opening when the discharge pressure of the variable capacity pressure box is below a predetermined value. Means.
さらに、 室內機の吸い込み空気温度と吹き出し空気温度との温度差と , 室内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手 段と、 吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、 暖房能力の合計値が目標暖房能力の合計値となるよ うに可 変容量圧縮機の運転容量を制御する手段と、 暖房能力が目標暖房能力と なるよ うに室内冷媒流量調整弁の開度を制御する手段と、 可変容量圧縮 機の吐出圧力が 1 5ないし 2 0 k c m 2以下となったとき O F Fす る圧力スィ ッチとを備え、 圧力スィ ッチが O F F したとき室内冷媒流量 調整弁の最大開度を (全開開度 X 0 . 5 ) と している。 In addition, a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the air density, and the specific heat of the air, and the intake air temperature and the room temperature set value. Means for determining the target heating capacity based on the difference between the heating capacity, means for controlling the operating capacity of the variable displacement compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity to the target heating capacity. Means for controlling the degree of opening of the indoor refrigerant flow regulating valve, and a pressure switch that is turned off when the discharge pressure of the variable displacement compressor becomes 15 to 20 kcm 2 or less. When the switch is turned off, the maximum opening of the indoor refrigerant flow control valve is defined as (full opening X 0.5).
さらに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差と, 室内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手 段と、 吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、 暖房能力の合計値が目標暖房能力の合計値となるよ うに可 変容量圧縮機の運転容量を制御する手段と、 暖房能力が目標暖房能力と なるよ うに室内冷媒流量調整弁の開度を制御する手段と、 吸い込み空気 温度が所定の値以下のとき室内冷媒流量調整弁の最大開度を全開開度よ り小さ くする手段とを備えている。 Furthermore, a means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of the air, and the specific heat of the air, the intake air temperature and the room temperature set value, Means for determining the target heating capacity based on the difference between the heating capacity, means for controlling the operating capacity of the variable displacement compressor so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity to the target heating capacity. Means for controlling the degree of opening of the indoor refrigerant flow control valve so that the maximum opening degree of the indoor refrigerant flow control valve is smaller than the full opening degree when the intake air temperature is equal to or lower than a predetermined value. I have.
さ らに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差と . 室內機の風 ftと、 空気の密度と、 空気の比熱とから暖房能力を求める手 段と、 吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、 暖房能力の合計値が目標暖房能力の合計値となるよ うに可 変容量圧綰機の運転容量を制御する手段と、 暖房能力が目標暖房能力と なるよ うに室内冷媒流量調整弁の開度を制御する手段とを備え、 吸い込 み空気温度が 2 0ないし 2 5で以下のとき室内冷媒流量調整弁の最大開 度を (全開開度 X 0 . 5 ) と している。  In addition, a means for determining the heating capacity from the temperature difference between the intake air temperature and the air temperature of the indoor unit and the air temperature of the indoor unit, the wind ft of the indoor unit, the density of the air, and the specific heat of the air, Means for determining the target heating capacity based on the difference from the set value, means for controlling the operating capacity of the variable displacement pressure machine so that the total value of the heating capacity becomes the total value of the target heating capacity, and means for controlling the heating capacity. Means for controlling the opening of the indoor refrigerant flow control valve to achieve the target heating capacity. When the suction air temperature is between 20 and 25, the maximum opening of the indoor refrigerant flow control valve is set to (fully open). The opening X 0.5).
さ らに、 上記において、 冷房能力を吹き出し空気温度の温度分布の補 正係数と、 室内風量係数とで補正して求めるこ と と している。  Further, in the above description, the cooling capacity is obtained by correcting with the correction coefficient of the temperature distribution of the blown air temperature and the indoor air flow coefficient.
さ らに、 上記において、 暖房能力を吹き出し空気温度の温度分布の補 正係数と、 室内風量係数とで補正して求めるこ と と している。  Further, in the above description, the heating capacity is obtained by correcting the correction coefficient of the temperature distribution of the blown air temperature and the indoor air volume coefficient.
さ らに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差と 室內機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手 段と、 吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、 暖房能力の合計値が目標暖房能力の合計値となるよ うに可 変容量圧縮機の運転容量を制御する手段と、 室外機に設置された液タン ク とを備え、 暖房運転時、 室內機の室内冷媒流量調整弁の開度を室外冷 媒流量調整弁の開度に応じて変化させるこ と と している。  In addition, a method for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the air density, and the specific heat of the air, and the intake air temperature and room temperature set value Means to determine the target heating capacity based on the difference between the two, and means to control the operating capacity of the variable capacity compressor so that the total value of the heating capacity becomes the total value of the target heating capacity. A liquid tank is provided, and during the heating operation, the opening of the indoor refrigerant flow control valve of the indoor unit is changed according to the opening of the outdoor refrigerant flow control valve.
さ らに、 上記において、 室外冷媒流量調整弁の開度が ( 0 . 5 X全開 開度) 以下のときは、 室內冷媒流量調整弁の最小開度を ( 0 . I X全開 開度) と し、 室外冷媒流量調整弁の開度が ( 0 . 8 X全開開度) 以上の ときは、 室内冷媒流量調整弁の最小開度を ( 0 . 4 X全開開度) と し、 室外冷媒流量調整弁の開度が ( 0 . 5 X全開開度) から ( 0 . 8 X全開 開度) の間は、 室内冷媒流量調整弁の最小開度を ( 0 . I X全開開度) から ( 0 . 4 X全開開度) までの値で室外冷媒流量調整弁の開度に比例 した値と している。 Further, in the above, when the opening degree of the outdoor refrigerant flow control valve is equal to or less than (0.5 X full opening degree), the minimum opening degree of the indoor refrigerant flow control valve is set to (0.IX full opening degree). When the opening of the outdoor refrigerant flow regulating valve is equal to or more than (0.8 X full opening), the minimum opening of the indoor refrigerant flow regulating valve is set to (0.4 x full opening), When the opening degree of the outdoor refrigerant flow control valve is between (0.5 X full opening) and (0.8 X full opening), the minimum opening degree of the indoor refrigerant flow control valve is (0.IX full opening). It is a value proportional to the opening of the outdoor refrigerant flow control valve with a value from to (0.4 X full opening).
上記構成によって、 次のよ うに作用する。 With the above configuration, the following operation is performed.
室内機の吸い込み空気温度と吹き出し空気温度との温度差によって冷 房または暖房能力を求める手段とは、 室内機の吸い込み部と吹き出し部 の温度を温度センサを用いて検出し、 その差の値を基に現在運転中の冷 房または暖房能力を算出するこ とを意味し、 具体的には室内制御器また は室外制御器に設けられたマイク ロコンピュータが用いられる。  The means for determining the cooling or heating capacity based on the temperature difference between the suction air temperature and the blow-out air temperature of the indoor unit is to detect the temperature of the suction unit and the blow-out unit of the indoor unit using a temperature sensor and calculate the value of the difference. It means to calculate the cooling or heating capacity currently in operation based on this. Specifically, a microcomputer provided in an indoor controller or an outdoor controller is used.
同様に、 吸い込み空気温度と設定値との差によって目標冷房または暖 房能力を定める手段とは、 既に検出された吸い込み空気温度と設定され た室温との差よ り、 目標とする冷房または暖房能力を定めるこ とを意味 し、 具体的には室内制御器または室外制御器に設けられたマイ クロコン ピュータによって、 特定の関係を予め定めるこ とによって行われる。 冷房または暖房能力の合計値が目標冷房または暖房能力の合計値とな るよ うに可変容量圧縮機の運転容量を制御するとは、 上記で算出された 各室内機の冷房または暖房能力と、 上記で定められた各室内機の目標と する冷房または暖房能力の値を室外機制御器へ送り、 両者のそれぞれの 合計値をもって室外機内の可変容量圧縮機の運転容量を制御するこ とを 意味し、 具体的には室外制御器に設けられたマイクロ コンピュータに よって、 算出された各室內機の冷房または暖房能力の合計値と定められ た各室内機の目標とする冷房または暖房能力の合計値との偏差から可変 容量圧縮機のモータ回転数を求め、 可変容量圧縮機の容量を制御するこ とで行われる。  Similarly, the means for determining the target cooling or heating capacity based on the difference between the suction air temperature and the set value is based on the difference between the already detected suction air temperature and the set room temperature, and the target cooling or heating capacity. This means that a specific relationship is determined in advance by a micro computer provided in an indoor controller or an outdoor controller. Controlling the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity means that the cooling or heating capacity of each indoor unit calculated above and the above This means that the specified target cooling or heating capacity of each indoor unit is sent to the outdoor unit controller, and the operating capacity of the variable displacement compressor in the outdoor unit is controlled based on the sum of the two. Specifically, the microcomputer provided in the outdoor controller calculates the sum of the calculated cooling or heating capacity of each indoor unit and the determined total cooling or heating capacity of each indoor unit. This is performed by obtaining the motor speed of the variable displacement compressor from the deviation and controlling the displacement of the variable displacement compressor.
以上によって、 可変容量圧縮機は運転されている室内機の合計容量以 上の容量で運転されるこ とがなく なり 、 各室内機の要求能力の合計値に 見合った圧縮機容量で圧縮機が運転される。 よって、 多室空気調和機は 各室内機の要求能力に見合った消費電力で運転できるこ と となる。 As a result, the variable capacity compressor is less than the total capacity of the operating indoor units. The compressor is no longer operated with the above capacity, and the compressor is operated with a compressor capacity corresponding to the total required capacity of each indoor unit. Therefore, the multi-room air conditioner can be operated with power consumption that matches the required capacity of each indoor unit.
また、 上記において、 冷房運転時だけ算出された各室內機の冷房能力 の合計値と定められた各室内機の目標とする冷房能力の合計値との偏差 から可変容量圧縮機の容量を制御するこ とでも効果的に消费電力の低減 が行える。  Further, in the above, the capacity of the variable displacement compressor is controlled from the deviation between the total value of the cooling capacity of each of the indoor units calculated only during the cooling operation and the determined total value of the target cooling capacity of each of the indoor units. Even in this case, the power consumption can be effectively reduced.
さらに、 室内機の吸い込み空気温度と吹き出し空気温度との温度差と . 室内機の風量と、 空気の密度と、 空気の比熱と、 顕熱比とから冷房能力 を求める手段とは、 室內機の吸い込み部と吹き出し部の温度を温度セン サを用いて検出し、 その差の値と、 室內機の風量と、 空気の密度と、 空 気の比熱と、 顕熱比とから現在運転中の冷房能力を算出するこ とを意味 し、 具体的には室内制御器または室外制御器に設けられたマイ ク ロ コン ピュ一タが用いられる。 これによつて、 冷房能力の算出を正確に行う こ とができる。  Furthermore, the means for determining the cooling capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit and the air volume of the indoor unit, the density of air, the specific heat of air, and the sensible heat ratio are as follows. The temperature of the inlet and outlet is detected using a temperature sensor, and the difference between the temperature, the air volume of the air conditioner, the air density, the specific heat of air, and the sensible heat ratio is used to determine the current operating cooling. This means calculating the capacity. Specifically, a micro computer provided in an indoor controller or an outdoor controller is used. Thus, the cooling capacity can be accurately calculated.
さらに、 室內機の吸い込み空気温度と吹き出し空気温度との温度差と . 室内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手 段とは、 室内機の吸い込み部と吹き出し部の温度を温度センサを用いて 検出し、 その差の値と、 室内機の風量と、 空気の密度と、 空気の比熱と から現在運転中の暖房能力を算出するこ とを意味し、 具体的には室内制 御器または室外制御器に設けられたマイ ク ロ コンピュータが用いられる, これによつて、 暖房能力の算出を正確に行う こ とができる。  Furthermore, the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit and the means for determining the heating capacity from the air volume of the indoor unit, the density of the air, and the specific heat of the air are as follows. Means to detect the temperature of the unit using a temperature sensor and calculate the heating capacity during the current operation from the value of the difference, the air volume of the indoor unit, the density of the air, and the specific heat of the air. Specifically, a microcomputer provided in an indoor controller or an outdoor controller is used. This enables accurate calculation of the heating capacity.
さらに、 吸い込み空気温度から室温設定値との差が 2ないし 4でよ り 大きい時は、 目標冷房能力を室內機の定格冷房能力と し、 2ないし 4で 以下の時は、 目標冷房能力を室内機の定格冷房能力以下と して定める手 段とは、 室内機の吸い込み部を温度センサを用いて検出し、 その値が室 温設定値より 2ないし 4でよ り大きい場合は、 冷房負荷が大きいので目 標冷房能力を室内機の定格冷房能力の値と し、 室温設定値との差が 2な いし 4 ¾以下の時は、 冷房負荷が小さいので目標冷房能力を定格冷房能 力以下の値と して定めるこ とを意味し、 具体的には室内制御器または室 外制御器に設けられたマイ クロコンピュータによって判定される。 これ によって、 目標冷房能力を室温設定値 (冷房負荷) に合わせて適切に定 めるこ とができる。 Furthermore, when the difference between the intake air temperature and the room temperature set value is greater than 2 to 4, the target cooling capacity is the rated cooling capacity of the indoor unit, and when the difference is 2 to 4 or less, the target cooling capacity is the indoor cooling capacity. The means for determining the cooling capacity of the indoor unit or lower is that the suction unit of the indoor unit is detected using a temperature sensor and the value is detected. If the set temperature is 2 to 4 larger than the set temperature, the cooling load is large, so the target cooling capacity is the rated cooling capacity of the indoor unit, and the difference from the room temperature set value is 2 to 4 mm or less. Means that the target cooling capacity is determined as a value equal to or less than the rated cooling capacity because the cooling load is small.Specifically, it is determined by the microcomputer provided in the indoor controller or the outdoor controller. You. As a result, the target cooling capacity can be appropriately determined according to the room temperature set value (cooling load).
さ らに、 室温設定値から吸い込み空気温度の差が 2ないし 4でよ り大 きい時は、 目標暖房能力を室内機の定格暖房能力と し、 2ないし 4で以 下の時は、 目標暖房能力を室内機の定格暖房能力以下と して定める手段 とは、 室内機の吸い込み部を温度センサを用いて検出し、 室温設定値が その値よ り 2ないし 4 ¾よ り大きい場合は、 暖房負荷が大きいので目標 暖房能力を室內機の定格暖房能力の値と し、 室温設定値との差が 2ない し 4 *C以下の時は、 暖房負荷が小さいので目標暖房能力を定格暖房能力 以下の値と して定めるこ とを意味し、 具体的には室内制御器または室外 制御器に設けられたマイクロコンピュータによって判定される。 これに よって、 目標暖房能力を室温設定値 (暖房負荷) に合わせて適切に定め るこ とができる。  In addition, when the difference between the intake air temperature and the set room temperature is larger than 2 to 4, the target heating capacity is set to the rated heating capacity of the indoor unit.When the difference is 2 to 4, the target heating capacity is set to the target heating capacity. The means for determining the capacity as being equal to or less than the rated heating capacity of the indoor unit is to detect the suction unit of the indoor unit using a temperature sensor, and if the room temperature set value is 2 to 4 mm greater than that value, heating Since the load is large, the target heating capacity is set to the rated heating capacity value of the indoor unit.When the difference from the room temperature setting value is 2 to 4 * C or less, the heating load is small and the target heating capacity is set to the rated heating capacity or less. This means that it is determined as the value of. Specifically, it is determined by a microcomputer provided in the indoor controller or the outdoor controller. As a result, the target heating capacity can be appropriately determined according to the room temperature set value (heating load).
さらに、 上記において、 冷房能力が目標冷房能力となるよ うに室内冷 媒流量調整弁の開度を制御することによって、 各室内機の冷房能力を直 接に制御できるこ とになるので、 各室内機の冷房能力が不足することが ないよ う にできる。  Further, in the above, the cooling capacity of each indoor unit can be directly controlled by controlling the opening of the indoor coolant flow control valve so that the cooling capacity becomes the target cooling capacity. This will ensure that the cooling capacity of the machine will not be insufficient.
さ らに、 上記において、 暖房能力が目標暖房能力となるよ う に室内冷 媒流量調整弁の開度を制御するこ とによって、 各室内機の暖房能力を直 接に制御できることになるので、 各室内機の暖房能力が不足するこ とが ないよ うにできる。 さ らに、 暖房運転時において、 可変容量圧縮機の吐出圧力が所定の値 以下のとき室内冷媒流量調整弁の最大開度を全開開度よ り小さ くする手 段とは、 圧縮機の吐出側に圧力スィ ッチを取り付けて、 その信号を室外 制御器に入力し、 吐出圧力が予め定めた所定の値以下となったこ とを圧 カスイ ッチが O F Fあるいは O Nするこ とによって検出し、 室內冷媒流 量調整弁の最大開度が全開開度よ り小さくするこ とを意味し、 具体的に は、 室内制御器または室外制御器などに設けられたマイク ロ コンピュー タによって判定される。 これによつて、 室内冷媒制御弁の流路抵抗が增 加して吐出圧力が上昇し、 それに伴って凝縮圧力、 すなわち凝箱温度が 上昇する。 そして、 凝箱温度は、 熱源温度なので、 暖房能力も增加する。 したがって、 室内機の能力が增加し、 その増加分だけ圧縮機の運転容量 が滅少され、 省電力化が図れる。 Further, in the above, the heating capacity of each indoor unit can be directly controlled by controlling the opening of the indoor coolant flow control valve so that the heating capacity becomes the target heating capacity. Heating capacity of each indoor unit can be prevented from becoming insufficient. Further, in the heating operation, when the discharge pressure of the variable capacity compressor is equal to or lower than a predetermined value, the means for making the maximum opening of the indoor refrigerant flow regulating valve smaller than the full opening is to discharge the compressor. Side, a signal is input to the outdoor controller, and when the discharge pressure falls below a predetermined value is detected by turning off or on the pressure switch. This means that the maximum opening of the room / refrigerant flow control valve is smaller than the full opening, and is specifically determined by a microcomputer provided in an indoor controller or an outdoor controller. As a result, the flow path resistance of the indoor refrigerant control valve increases, and the discharge pressure rises, and accordingly, the condensing pressure, that is, the temperature of the solidification box rises. And since the temperature of the box is the temperature of the heat source, the heating capacity also increases. Therefore, the capacity of the indoor unit is increased, and the operating capacity of the compressor is reduced by the increased amount, and power saving can be achieved.
さ らに、 上記において、 可変容量圧縮機の吐出圧力が冷媒に H C F 2 2 Rや 4 0 7 Cを使用したときの通常の使用圧力である 1 5ないし 2 0 k g Z c m 2以下となったとき O F Fする圧力スィ ツチとを備え、 圧力 スィ ッチが O F F したとき室内冷媒流量調整弁の最大開度を全開開度よ り小さく 、 かつ絞り過ぎない開度 (全開開度 X 0 . 5 ) と しているので, 室内機の能力を增加させることができ、 その増加分だけ圧縮機の運転容 量を滅少することができる。 Et al is, in the above, the discharge pressure of the variable displacement compressor becomes 1 5 to a 2 0 kg Z cm 2 or less which is a normal operating pressure when using HCF 2 2 R and 4 0 7 C the refrigerant When the pressure switch is turned off, the maximum opening of the indoor refrigerant flow control valve is smaller than the full opening, and the opening is not too restrictive (full opening X 0.5). As a result, the capacity of the indoor unit can be increased, and the operating capacity of the compressor can be reduced by the increased amount.
さ らに、 暖房運転時において、 吸い込み空気温度が所定の値以下のと き室內冷媒流量調整弁の最大開度を全開開度よ り小さ くする手段とは、 室内機の吸い込み部を温度センサを用いて検出し、 その値が予め定めた 所定の値以下のとき、 室内冷媒流量調整弁の最大開度が全開開度よ り小 さ くするこ とを意味し、 具体的には、 室内制御器または室外制御器など に設けられたマイ ク ロコ ンピュータによって判定される。 これによつて. 上述と同様に室内機の能力が增加し、 その増加分だけ圧縮機の運転容量 が减少され、 省電力化を図ることができる。 In addition, in the heating operation, when the suction air temperature is equal to or lower than a predetermined value, the means for making the maximum opening of the chamber / refrigerant flow control valve smaller than the full opening is that the suction unit of the indoor unit is connected to a temperature sensor. When the value is equal to or less than a predetermined value, it means that the maximum opening of the indoor refrigerant flow control valve is smaller than the full opening, specifically, The determination is made by a micro computer provided in the controller or outdoor controller. As a result, the capacity of the indoor unit is increased as described above, and the operating capacity of the compressor Power consumption can be reduced.
さ らに、 上記において、 吸い込み空気温度が 2 0ないし 2 5 以下の 暖房負荷が比較的大きいとき、 室内冷媒流量調整弁の最大開度を全開開 度よ り小さ く 、 かつ絞り過ぎない開度 (全開開度 X O . 5 ) と している ので、 暖房能力が要求された室內機の能力を增加させるこ とができ、 そ の増加分だけ圧縮機の運転容量を減少することができる。  Further, in the above, when the heating load with the suction air temperature of 20 to 25 or less is relatively large, the maximum opening of the indoor refrigerant flow regulating valve is smaller than the full opening and the opening is not too narrow. (Full opening XO .5), it is possible to increase the capacity of the indoor unit required for heating capacity, and to reduce the operating capacity of the compressor by the increase.
さ らに、 上記において、 冷房能力を吹き出し空気温度の温度分布の補 正係数と、 室内風量係数とで補正して求めるこ と と しているので、 室内 機が設 Sされる部屋の環境 (湿度、 ショー トサーキッ トなど) や室內機 の特性 (室内ファン風量、 吹き出し空気温度の分布など) の補正が可能 となる。 これによつて、 室內機能力を正確に検出でき、 室内機能力を確 実に確保できる。  Further, in the above, the cooling capacity is obtained by correcting the temperature distribution correction coefficient of the blown-out air temperature and the indoor air volume coefficient, so that the environment of the room where the indoor unit is installed (S) Humidity, short circuit, etc.) and room equipment characteristics (indoor fan airflow, blown air temperature distribution, etc.) can be corrected. This makes it possible to accurately detect the functional capacity of the room and to ensure the functional capacity of the room.
さらに、 上記において、 暖房能力を吹き出し空気温度の温度分布の補 正係数と、 室内風量係数とで補正して求めるこ と と しているので、 室内 機の暖房能力の算出をよ り正確にして、 精度の良い室内冷媒流量調整弁. および圧箱機容量の制御が実現できる。  Furthermore, in the above, the heating capacity is determined by correcting the correction coefficient of the temperature distribution of the blown air temperature and the indoor air flow coefficient, so that the calculation of the heating capacity of the indoor unit is made more accurate. An accurate control of the indoor refrigerant flow regulating valve and the pressure box machine capacity can be realized.
さ らに、 暖房運転時、 室內機の室内冷媒流量調整弁の開度を室外冷媒 流量調整弁の開度に応じて変化させるこ と と しているので、 室内熱交換 器內に液冷媒が溜ま りすぎて冷媒不足が起こることが解消される。 よつ て、 室内機の暖房能力の不足を防止できる。  In addition, during the heating operation, the opening degree of the indoor refrigerant flow control valve of the indoor unit is changed according to the opening degree of the outdoor refrigerant flow control valve, so that the liquid refrigerant flows into the indoor heat exchanger 內. The problem of refrigerant shortage due to excessive accumulation is eliminated. Thus, the shortage of the heating capacity of the indoor unit can be prevented.
さ らに、 上記において、 室外冷媒流量調整弁の開度が通常の使用範囲 である ( 0 . 5 X全開開度) 以下のときは、 室内冷媒流量調整弁の最小 開度を ( 0 . I X全開開度) と し、 室外冷媒流量調整弁の開度が ( 0 . 8 X全開開度) 以上のときは、 冷媒が不足状態なので室内冷媒流量調整 弁の最小開度を ( 0 . 4 X全開開度) と し、 室外冷媒流量調整弁の開度 が ( 0 . 5 X全開開度) から ( 0 . 8 X全開開度) の間は、 室内冷媒流 量調整弁の最小開度を ( 0 . I X全開開度) から ( 0 . 4 X全開開度) までの値で室外冷媒流量調整弁の開度に比例した値と しているので、 室 内冷媒流量調整弁を絞りすぎるこ となく 、 実用的な範囲で冷媒不足が起 こるこ とが解消される。 Further, in the above, when the opening degree of the outdoor refrigerant flow control valve is equal to or less than the normal use range (0.5 X full opening degree), the minimum opening degree of the indoor refrigerant flow control valve is set to (0.IX When the opening of the outdoor refrigerant flow control valve is equal to or more than (0.8 X full opening), the refrigerant is in a shortage state and the minimum opening of the indoor refrigerant flow control valve is set to (0.4 X full opening). When the opening of the outdoor refrigerant flow control valve is between (0.5 x full opening) and (0.8 x full opening), the indoor refrigerant flow is The minimum opening of the flow control valve is a value from (0.4 IX full opening) to (0.4 X full opening) and is proportional to the opening of the outdoor refrigerant flow control valve. It is possible to prevent the shortage of the refrigerant within a practical range without excessively restricting the refrigerant flow control valve.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の一実施例に係わる多室空気調和機の冷凍サイ クルの 構成を示すプロ ック図である。  FIG. 1 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to one embodiment of the present invention.
第 2図は室内機吸い込み空気温度と設定温度との偏差と、 室内機の目 標冷房能力比との関係を表わすグラフ線図である。  FIG. 2 is a graph showing the relationship between the difference between the indoor unit intake air temperature and the set temperature, and the target cooling capacity ratio of the indoor unit.
第 3図は冷房運転時の圧縮機の容量制御方法を表わすプロ ック線図で ある。  FIG. 3 is a block diagram showing a compressor capacity control method during a cooling operation.
第 4図は冷房運転時の室内冷媒流量調整弁の開度制御方法を表すブ 口 ック線図である。  FIG. 4 is a block diagram showing a method of controlling the opening of the indoor refrigerant flow control valve during the cooling operation.
第 5図は室内機吸い込み空気温度と設定温度との偏差と、 室内機の目 標暖房能力比との関係を表わすグラフ線図である。  FIG. 5 is a graph showing the relationship between the difference between the indoor unit intake air temperature and the set temperature, and the target heating capacity ratio of the indoor unit.
第 6図は暖房運転時の圧縮機の容量制御方法を表わすプロ ック線図で ある。  FIG. 6 is a block diagram showing a compressor capacity control method during a heating operation.
第 7図は本発明の他の実施例に係わる多室空気調和機の冷凍サイ クル の構成を示すブロ ック図である。  FIG. 7 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to another embodiment of the present invention.
第 8図は吐出圧力に対する圧力スィ ツチの動作と室内冷媒流量調整弁 の最大開度の関係を表わすグラフ線図である。  FIG. 8 is a graph showing the relationship between the operation of the pressure switch with respect to the discharge pressure and the maximum opening of the indoor refrigerant flow control valve.
第 9図は室內吸い込み空気温度に対する室內冷媒流量調整弁の最大開 度の関係を表わすグラフ線図である。  FIG. 9 is a graph showing the relationship between the temperature of the chamber and the maximum opening of the refrigerant flow regulating valve with respect to the temperature of the suction air.
第 1 0図は室內機の室内制御器の制御基板の部品配置を示す平面図で ある。  FIG. 10 is a plan view showing a component arrangement of a control board of an indoor controller of the indoor unit.
第 1 1 図は制御基板のディ ップスィ ツチの O N O F Fの組合せと演 算係数を表わす関係図である。 Fig. 11 shows the combination and operation of the ON / OFF of the dip switch on the control board. FIG. 6 is a relationship diagram showing arithmetic coefficients.
第 1 2図は本発明の一実施例に係わる暖房運転時の多室空気調和機の 冷凍サイ クルの構成を示すブロ ック図である。  FIG. 12 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner during a heating operation according to one embodiment of the present invention.
第 1 3図は室外冷媒流量調整弁開度と室内冷媒流量調整弁の最小開度 および停止室內機の室内冷媒流量調整弁開度との関係を表わすグラフ線 図である。  FIG. 13 is a graph showing the relationship between the opening degree of the outdoor refrigerant flow control valve, the minimum opening degree of the indoor refrigerant flow control valve, and the opening degree of the indoor refrigerant flow control valve of the stop room.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施例を図に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本発明の一実施例を第 1 図ないし第 6図を参照して説明する。  One embodiment of the present invention will be described with reference to FIGS.
第 1 図は本発明の一実施例に係わる多室空気調和機の冷凍サイ クルの 構成を示すブロ ック図である。 第 2図は横軸に室内機吸い込み空気温度 と設定温度との偏差を示し、 室内機の目標冷房能力比との関係を縦軸に 表わしたグラフ線図である。 第 3図は冷房運転時の圧箱機の容量制御方 法を表わすブロ ック線図である。 第 4図は冷房運転時の室內冷媒流量調 整弁の開度制御方法を表すブロ ック線図である。 第 5図は横軸に室内機 吸い込み空気温度と設定温度との偏差を示し、 室内機の目標暖房能力比 との関係を縦軸に表わしたグラフ線図である。 第 6図は暖房運転時の圧 縮機の容量制御方法を表わすプロ ック線図である。  FIG. 1 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to one embodiment of the present invention. In FIG. 2, the horizontal axis shows the deviation between the indoor unit intake air temperature and the set temperature, and the vertical axis shows the relationship between the indoor unit's target cooling capacity ratio and the vertical axis. FIG. 3 is a block diagram showing a capacity control method of the pressure box machine during the cooling operation. FIG. 4 is a block diagram showing a method of controlling the opening degree of the chamber / refrigerant flow control valve during the cooling operation. FIG. 5 is a graph showing the deviation between the indoor unit suction air temperature and the set temperature on the horizontal axis, and the relationship between the indoor unit's target heating capacity ratio and the vertical axis on the vertical axis. FIG. 6 is a block diagram showing a compressor capacity control method during the heating operation.
室外機 1 0 0 と室内機 2 0 0、 3 0 0は、 ガス配管 1 2 1 と液配管 1 2 2によつて接続されている。 室外機 1 0 0は、 モータ回転数が可変で きる圧縮機 1 0 5、 四方弁 1 0 6、 室外熱交換器 1 0 1 、 室外冷媒流量 調整弁 1 0 2、 室外ファン 1 0 3、 アキュム レータ 1 0 4、 室外制御器 1 5 1 及び吐出温度検出器 1 1 5で構成されている。  The outdoor unit 100 and the indoor units 200 and 300 are connected by a gas pipe 121 and a liquid pipe 122. The outdoor unit 100 is a compressor with variable motor rotation speed 105, a four-way valve 106, an outdoor heat exchanger 101, an outdoor refrigerant flow control valve 102, an outdoor fan 103, and an accumulator. , An outdoor controller 151, and a discharge temperature detector 115.
室外制御器 1 5 1 は、 吐出温度検出器 1 1 5の信号が入力され、 圧縮 機 1 0 5のモータ (図示せず) の回転数及び室外冷媒流量調整弁 1 0 2 を制御する信号を出力する。 室内機 2 0 0は、 室内熱交換器 2 0 1 、 室内冷媒流量調整弁 2 0 2、 室内ファ ン 2 0 3、 温度検出器 2 0 4、 2 0 6、 2 0 7及び室内制御器The outdoor controller 15 1 receives the signal of the discharge temperature detector 115, and outputs a signal for controlling the rotation speed of the motor (not shown) of the compressor 105 and the outdoor refrigerant flow control valve 102. Output. The indoor unit 200 includes an indoor heat exchanger 201, an indoor refrigerant flow control valve 202, an indoor fan 203, a temperature detector 204, 206, 207, and an indoor controller.
2 0 8で構成されている。 It consists of 208.
室内制御器 2 0 8は、 温度検出器 2 0 4、 2 0 6、 2 0 7の信号が入 力され、 室内冷媒流量調整弁 2 0 2の開度を制御する。  The indoor controller 208 receives the signals of the temperature detectors 204, 206, and 207, and controls the opening degree of the indoor refrigerant flow control valve 202.
同様に、 室内機 3 0 0は、 室內熱交換器 3 0 1 、 室内冷媒流量調整弁 3 0 2、 室內ファン 3 0 3、 温度検出器 3 0 4、 3 0 6、 3 0 7及び室 内制御器 3 0 8で構成され、 室內制御器 3 0 8は、 温度検出器 3 0 4 、 Similarly, the indoor unit 300 includes the indoor heat exchanger 310, the indoor refrigerant flow control valve 302, the indoor fan 300, the temperature detectors 304, 306, 300, and the indoor. The controller 308 is composed of a room temperature controller 308,
3 0 6、 3 0 7の信号が入力され、 室内冷媒流量調整弁 3 0 2の開度を 制御する。 The signals of 306 and 307 are input to control the opening of the indoor refrigerant flow control valve 302.
温度センサ 2 0 4、 3 0 4はそれぞれ室内熱交換器 2 0 1 、 3 0 1 の 液側冷媒配管に取り付けられ、 液側冷媒温度を検出している。 温度セン サ 2 0 6、 3 0 6はそれぞれ室内機 2 0 0、 3 0 0の吸い込み空気温度 を検出している。 温度センサ 2 0 7、 3 0 7はそれぞれ室内機 2 0 0、 3 0 0の吹き出し空気温度を検出している。  The temperature sensors 204 and 304 are attached to the liquid refrigerant pipes of the indoor heat exchangers 201 and 301, respectively, and detect the liquid refrigerant temperature. The temperature sensors 206 and 303 detect the intake air temperature of the indoor units 200 and 300, respectively. The temperature sensors 207 and 307 detect the temperature of the blown air from the indoor units 200 and 300, respectively.
また、 室內制御器 2 0 8、 3 0 8 と室外制御器 1 5 1 は伝送線によつ て接続され、 各種信号のやり取り をしている。  The outdoor controllers 208 and 308 and the outdoor controller 151 are connected by a transmission line, and exchange various signals.
冷房運転時の各部の動作を説明する。  The operation of each unit during the cooling operation will be described.
ガス配管 1 2 1及び液配管 1 2 2部の実線矢印は、 冷房運転時冷媒の 流れ方向を示し、 室内器 2 0 0、 3 0 0内の実線矢印は空気流れ方向を 示している。  Solid arrows in the gas pipe 122 and the liquid pipe 122 indicate the flow direction of the refrigerant during the cooling operation, and the solid arrows in the indoor units 200 and 300 indicate the air flow direction.
圧縮機 1 0 5から吐出された冷媒は、 四方弁 1 0 6 を通って、 室外熱 交換器 1 0 1へ入り 、 室外ファン 1 0 3によって送られる室外空気と熱 交換されて凝箱され、 液冷媒となる。 つぎに、 凝縮された冷媒は全開と なった室外冷媒流量調整弁 1 0 2を通って、 液配管 1 2 2を介して、 室 内機 2 0 0、 3 0 0へ送られる。 さ らに、 液冷媒は室内冷媒流量調整弁 2 0 2で膨張して減圧され、 室内熱交換器 2 0 1へ入り 、 室内ファ ン 2 03によって送られる室内空気と熱交換されて蒸発する。 そして、 冷却 された室内空気は室内機 2 00から室内へ吹き出される。 The refrigerant discharged from the compressor 105 passes through the four-way valve 106, enters the outdoor heat exchanger 101, is heat-exchanged with outdoor air sent by the outdoor fan 103, and is solidified. It becomes a liquid refrigerant. Next, the condensed refrigerant passes through the outdoor refrigerant flow control valve 102 that is fully opened, and is sent to the indoor units 200 and 300 via the liquid pipe 122. In addition, the liquid refrigerant is supplied to the indoor refrigerant flow control valve. It expands and decompresses in 202, enters the indoor heat exchanger 201, and exchanges heat with the indoor air sent by the indoor fan 203 to evaporate. Then, the cooled indoor air is blown into the room from the indoor unit 200.
同様に、 室内機 3 00に入った冷媒は、 室内冷媒流量調整弁 3 0 2で 減圧され、 室内熱交換器 3 0 1へ入り、 室内ファン 3 0 3によって送ら れる室内空気と熱交換されて蒸発する。 そして、 冷却された室內空気は 室內機 3 00から吹き出される。  Similarly, the refrigerant entering the indoor unit 300 is decompressed by the indoor refrigerant flow control valve 302, enters the indoor heat exchanger 301, and exchanges heat with the indoor air sent by the indoor fan 303. Evaporate. Then, the cooled room air is blown out from the room machine 300.
室内機 2 00及び室内機 3 00から出た冷媒は、 合流して、 ガス配管 1 2 1 を通って室外機 1 00へ送られる。 さらに、 冷媒は四方弁 1 0 6 , アキュム レータ 1 04を通って圧縮機 1 0 5に吸入され、 圧綰されて再 び吐出される。  The refrigerant discharged from the indoor unit 200 and the indoor unit 300 merges and is sent to the outdoor unit 100 through the gas pipe 122. Further, the refrigerant is sucked into the compressor 105 through the four-way valve 106 and the accumulator 104, compressed, and discharged again.
次に、 冷房運転時の制御方法を手順を追って説明する。  Next, a control method during the cooling operation will be described step by step.
( 1 ) 室内制御器 2 08は、 室内機 2 0 0の冷房能力 Q c 2を吸い込み 空気温度と吹き出し空気温度との温度差 ( t 2 0 6— t 2 0 7) を用い て次式 ( 1 ) よ り算出する。  (1) The indoor controller 208 obtains the cooling capacity Qc2 of the indoor unit 200 by using the temperature difference (t206-t207) between the intake air temperature and the blown air temperature as follows: 1) Calculate from
Q c 2=—^ ~—- Va 2 »(t 206- t 207) ( 1 )  Q c 2 = — ^ ~ —- Va 2 »(t 206- t 207) (1)
SHF 2 >  SHF 2>
( 2) 同様に、 室内制御器 3 0 8は、 室内機 3 0 0の冷房能力 Q c 3を 吸い込み空気温度と吹き出し空気温度との温度差 ( t 3 06— t 3 0 (2) Similarly, the indoor controller 300 determines the cooling capacity Qc3 of the indoor unit 300 as the temperature difference between the intake air temperature and the blown air temperature (t306—t30).
7) を用いて次式 ( 2) によって算出する。 It is calculated by the following equation (2) using 7).
Q c 3 = 3 ' ύ · Va 3 -(t 306- t 307) ( 2 ) Q c 3 = 3 ' VaVa 3- (t 306-t 307) (2)
SHF 3 '  SHF 3 '
( 3 ) それぞれ算出された冷房能力 Q c 2、 Q c 3の値は、 室外制御器 1 5 1へ送られ、 冷房能力の合計値 Q c Tは、 次式 ( 3 ) のよ うに求め られる。 (3) The calculated cooling capacity values Qc2 and Qc3 are sent to the outdoor controller 151, and the total cooling capacity value QcT is calculated by the following equation (3). .
Q c T = Q c 2 + Q c 3 ( 3 )  Q c T = Q c 2 + Q c 3 (3)
以上で各記号は、 それぞれ  In the above, each symbol is
Cp。, Cp 3 : 空気の比熱 S H F 2, S H F 3 : 顕熱比 ( 0. 7 ) Cp. , Cp 3 : Specific heat of air SHF 2, SHF 3: Sensible heat ratio (0.7)
t 2 0 6 , t 3 0 6 : 温度センサ 2 0 6、 3 0 6の検出値  t206, t306: detected values of temperature sensors 206, 306
t 2 0 7 , t 3 0 7 : 温度センサ 2 0 7、 3 0 7の検出値  t207, t307: Detection values of temperature sensors 207, 307
V a 2 , V a 3 : 室内機 2 0 0、 3 0 0の風量  V a 2, V a 3: Air volume of indoor unit 200, 300
p 2 , p 2 : 空気の密度 であり、 顕熱比 S H F 2、 S H F 3は本実施例では 0. 7を採用してい る。 V a 2、 V a 3は室内風量であり、 室內機の運転風量タ ップで変化 できるよ うになつている。  p 2 and p 2 are the densities of air, and the sensible heat ratio S H F 2 and S H F 3 are 0.7 in this embodiment. V a2 and V a3 are the indoor airflow, which can be changed by the operation airflow tap of the indoor unit.
( ) 室内制御器 2 0 8は、 室内機 2 0 0の吸い込み空気温度 t 2 0 6 と室温設定値 t s 2 との差 ( t 2 0 6 — t s 2 ) によって第 2図に示す 関係から室内機 2 0 0の目標冷房能力比 α 2 を求め、 () The indoor controller 208 determines the indoor temperature from the relationship shown in Fig. 2 by the difference (t206-ts2) between the intake air temperature t206 of the indoor unit 200 and the room temperature set value ts2. The target cooling capacity ratio α 2 of the machine 200
Q c 20 =α2 · Q c 200 ( 4 )  Q c 20 = α2Q c 200 (4)
Q c 2 0 0 : 室內機 2 0 0の定格冷房能力  Q c 200: Rated cooling capacity of room 200
と して室内機 2 0 0の目標冷房能力 Q c 2 0を算出する。 As a result, the target cooling capacity Q c 20 of the indoor unit 200 is calculated.
( 5 ) 同様に、 室内機 3 0 0の目標冷房能力 Q c 3 0は、  (5) Similarly, the target cooling capacity Q c 30 of the indoor unit 300 is
Q c 30 =α3 · Q c 3 00 ( 5 )  Q c 30 = α3Q c 300 (5)
Q c 3 0 0 : 室內機 3 0 0の定格冷房能力  Q c 300: The rated cooling capacity of the room machine 300
と して算出する。 It is calculated as
( 6 ) 目標冷房能力 Q c 2 0、 Q c 3 0の値は、 室外制御器 1 5 1 へ送 られ、 目標冷房能力の合計値 Q c T 0は、  (6) The values of the target cooling capacity Qc20 and Qc30 are sent to the outdoor controller 151, and the total value of the target cooling capacity QcT0 is
Q c T 0 = Q c 20 + Q c 30 ( 6 )  Q c T 0 = Q c 20 + Q c 30 (6)
と して求められる。 Is required.
( 7 ) 第 3図に示すよ うに、 室外制御器 1 5 1 は ( 6 ) の目標冷房能力 の合計値 Q c T O と、 ( 3 ) の冷房能力の合計値 Q c Tとの偏差から圧 縮機 1 0 5のモータ回転数を P I D演算で求め、 圧縮機の容量を制御す る。 ( 8 ) —方、 第 4図に示すよ う に、 室內機 2 0 0、 3 0 0の冷房能力 Q c 2 、 Q c 3は室内冷媒流量調整弁 2 0 2、 3 0 2によって目標冷房能 力 Q c 2 0、 Q c 3 0に近づく よ うに制御される。 (7) As shown in Fig. 3, the outdoor controller 15 1 calculates the pressure from the deviation between the total value QcTO of the target cooling capacity in (6) and the total value QcT of the cooling capacity in (3). The motor speed of the compressor 105 is obtained by PID calculation, and the capacity of the compressor is controlled. (8)-As shown in Fig. 4, the cooling capacity Qc2, Qc3 of the indoor units 200, 300 is the target cooling by the indoor refrigerant flow control valves 202, 302. The power is controlled so as to approach Qc20 and Qc30.
以上において、 第 2図に示すよ うに吸い込み空気温度と室温設定値と の差 ( t 2 0 6 — t s 2 ) 、 ( t 3 0 6 — t s 3 ) が 4 よ り大きレ、時 は、 目標冷房能力比 α 2、 α 3はそれぞれ 1 で室内機 2 0 0、 3 0 0の 目標冷房能力 Q c 2 0、 Q c 3 0は室內機 2 0 0、 3 0 0の定格冷房能 力となる。  In the above, as shown in Fig. 2, the differences (t206-ts2) and (t306-ts3) between the intake air temperature and the room temperature set value are larger than 4, and sometimes the target The cooling capacity ratios α 2 and α 3 are 1 respectively, and the target cooling capacity Q c 20 and Q c 30 of the indoor units 200 and 300 are the same as the rated cooling capacity of the indoor units 200 and 300. Become.
( t 2 0 6 - t s 2 ) 、 ( t 3 0 6 - t s 3 ) が 4 以下の時は、 目 標冷房能力比 α 2、 α 3はそれぞれ 1 以下に減少し、 目標冷房能力 Q c 2 0、 Q c 3 0は室内機 2 0 0、 3 0 0の定格冷房能力以下となり室内 機 2 0 0、 3 0 0が容量制御される。  When (t206-ts2) and (t306-ts3) are 4 or less, the target cooling capacity ratios α2 and α3 decrease to 1 or less, respectively, and the target cooling capacity Qc2 0, Qc30 becomes equal to or less than the rated cooling capacity of the indoor units 200, 300, and the capacity of the indoor units 200, 300 is controlled.
( t 2 0 6 - t s 2 ) 、 ( t 3 0 6 - t s 3 ) 力; 0以下になる と、 そ の室內機はサ一モオフとなるので目標冷房能力比 α 2、 α 3は 0 となる。 なお、 定格冷房能力はガス配管 1 2 1や液配管 1 2 2の配管長によつ て変化し、 この配管長が長いほど定格冷房能力は減少する。  (t 206-ts 2), (t 306-ts 3) force; When it becomes 0 or less, the air conditioner turns off and the target cooling capacity ratios α 2 and α 3 become 0. Become. Note that the rated cooling capacity varies depending on the length of the gas piping 122 and the liquid piping 122, and the longer the piping length, the lower the rated cooling capacity.
次に、 暖房運転時の動作を説明する。  Next, the operation during the heating operation will be described.
ガス配管 1 2 1及び液配管 1 2 2部に示す破線矢印は、 暖房運転時の 冷媒流れ方向を示す。  The dashed arrows shown in the gas pipe 122 and the liquid pipe 122 indicate the direction of the refrigerant flow during the heating operation.
圧箱機 1 0 5から吐出された冷媒は、 四方弁 1 0 6を通って、 ガス配 管 1 2 1 へ入り、 室内機 2 0 0、 3 0 0へ送られる。 室内機 2 0 0に 入った冷媒は室内熱交換器 2 0 1 へ入り、 室內ファ ン 2 0 3によって送 られる室内空気と熱交換されて凝縮され、 室內空気が温められる。 さ ら に、 凝縮した冷媒は室内冷媒流量調整弁 2 0 2を通って室內機 2 0 0を 出る。  The refrigerant discharged from the pressure box unit 105 passes through the four-way valve 106, enters the gas pipe 121, and is sent to the indoor units 200, 300. The refrigerant that has entered the indoor unit 200 enters the indoor heat exchanger 201, exchanges heat with the indoor air sent by the indoor fan 203, condenses, and warms the indoor air. Further, the condensed refrigerant exits the indoor unit 200 through the indoor refrigerant flow control valve 202.
同様に、 室内機 3 0 0に入った冷媒は、 凝縮されて室内機 3 0 0を出 る。 室內機 2 00、 3 00を出た冷媒は合流して、 液配管 1 2 2を通つ て室外機 1 00へ入る。 さ らに、 冷媒は室内冷媒流量調整弁 1 0 2で減 圧されて室外熱交換器 1 0 1へ入り 、 室外ファ ン 1 0 3によって送られ る室外空気と熱交換されて蒸発し、 四方弁 1 0 6、 アキュム レータ 1 0 4を通って圧縮機 1 0 5に吸入され、 圧縮されて再び吐出される。 Similarly, refrigerant entering indoor unit 300 is condensed and exits indoor unit 300. You. The refrigerants that have exited the outdoor units 200 and 300 join and enter the outdoor unit 100 through the liquid pipe 122. Further, the refrigerant is depressurized by the indoor refrigerant flow control valve 102 and enters the outdoor heat exchanger 101, where it exchanges heat with the outdoor air sent by the outdoor fan 103 to evaporate, and evaporates. It is sucked into the compressor 105 through the valve 106 and the accumulator 104, compressed, and discharged again.
次に、 暖房運転時の制御方法について手順を追って説明する。  Next, a control method during the heating operation will be described step by step.
( 1 ) 室內機 2 00の室内制御器 208は、 室内機 2 00の暖房能力 Q h 2を吸い込み空気温度と吹き出し空気温度との温度差 ( t 2 0 7 - t (1) The indoor controller 208 of the indoor unit 200 receives the heating capacity Qh2 of the indoor unit 200, and calculates the temperature difference between the intake air temperature and the blown air temperature (t207-t
2 0 6 ) を用いて次式 ( 7) によって算出する。 It is calculated by the following equation (7) using 206).
Q h 2 =C p 2 · ρ2 · V a 2 · ( t 207 - t 206) ( 7 ) Q h 2 = C p 2 · ρ 2 · V a 2 · (t 207 - t 206) (7)
( 2 ) 同様に、 室内機 3 00の室內制御器 3 0 8は、 室内機 3 00の暖 房能力 Q h 3を吸い込み空気温度と吹き出し空気温度との温度差 ( t 3(2) Similarly, the room controller 300 of the indoor unit 300 determines the heating capacity Q h3 of the indoor unit 300 as the temperature difference (t 3
0 7— t 3 0 6) を用いて次式 ( 8) によって算出する。 It is calculated by the following equation (8) using 0 7 t 3 06).
Q h 3 =C p 3 · p 3 · V a 3 · ( t 307 - t 306) ( 8 ) ( 3 ) それぞれ算出された暖房能力 Q h 2、 Q h 3の値は、 室外制御器 1 5 1へ送られ、 暖房能力の合計値 Q h Tは、 次式 ( 9) のよ うに求め られる。 Q h 3 = C p 3 · p 3 · V a 3 · (t 307 - t 306) (8) (3) the value of the heating capacity is respectively calculated Q h 2, Q h 3 is the outdoor controller 1 5 The total value of heating capacity QhT is calculated as shown in the following equation (9).
QhT = Qh 2 +Qh 3 ( 9 )  QhT = Qh 2 + Qh 3 (9)
( ) 室内制御器 2 08は、 室内機 2 0 0の吸い込み空気温度 t 2 0 6 と室温設定値 t s 2 との差 ( t s 2 - t 2 0 6 ) によって第 5図に示す 関係から室內機 2 0 0の目標暖房能力比 /3 2を求め、  () The indoor controller 208 is based on the difference (ts 2 -t 206) between the intake air temperature t 206 of the indoor unit 200 and the room temperature set value ts 2 (ts 2 -t 206) from the relationship shown in FIG. The target heating capacity ratio of 200/32 is found,
Qh 20=β2 · Qh 200 ( 1 0)  Qh 20 = β2Qh 200 (1 0)
Q h 2 00 : 室内機 2 0 0の定格暖房能力 Qh200: Rated heating capacity of indoor unit 200
と して室內機 2 0 0の目標暖房能力 Q h 2 0を算出する。  As a result, the target heating capacity Qh20 of the room machine 200 is calculated.
( 5) 同様に、 室內機 3 0 0の目標暖房能力 Q h 3 0は、  (5) Similarly, the target heating capacity Q h30 of the indoor unit 300 is
Q h 30=β3 · Q h 300 ( 1 1 ) Q h 3 0 0 : 室内機 3 0 0の定格暖房能力 Q h 30 = β3Q h 300 (1 1) Q h 300: Rated heating capacity of indoor unit 300
と して算出する。  It is calculated as
( 6 ) 目標暖房能力 Q h 2 0、 Q h 3 0の値は、 室外制御器 1 5 1 へ送 られ、 目標暖房能力の合計値 Q h T 0は、  (6) The values of the target heating capacity Qh20 and Qh30 are sent to the outdoor controller 151, and the total value of the target heating capacity QhT0 is
Q h T 0 = Q h 20 + Q h 30 ( 1 2 )  Q h T 0 = Q h 20 + Q h 30 (1 2)
と して求められる。 Is required.
( 7 ) 第 6図に示すように、 室外制御器 1 5 1 は ( 6 ) の目標暖房能力 の合計値 Q h T O と ( 3 ) の暖房能力の合計値 Q h Tとの偏差から圧縮 機 1 0 5のモータ回転数を P 1 D演算で求め、 圧縮機の容量を制御する c ( 8 ) —方、 室内機 2 0 0、 3 0 0の暖房能力 Q h 2、 Q h 3は第 4図 の冷房時と同様に室内冷媒流量調整弁 2 0 2、 3 0 2によって目標暖房 能力 Q h 2 0、 Q h 3 0に近づく よ うに制御される。 (7) As shown in FIG. 6, the outdoor controller 15 1 determines the compressor based on the deviation between the total heating capacity QhTO of (6) and the total heating capacity QhT of (3). Calculate the motor speed of 105 by P 1 D operation and control the capacity of the compressor. C (8) — The heating capacity Q h2 and Q h 3 of the indoor units 200 and 300 As in the case of cooling in FIG. 4, the indoor refrigerant flow control valves 202 and 302 are controlled so as to approach the target heating capacity Qh20 and Qh30.
また、 室外冷媒流量調整弁 1 0 2は吐出温度検出器 1 1 5で検出され る圧縮機 1 0 5の吐出温度が設定された温度になるよ うに室外制御器 1 5 1 によって制御される。  Further, the outdoor refrigerant flow regulating valve 102 is controlled by the outdoor controller 15 1 so that the discharge temperature of the compressor 105 detected by the discharge temperature detector 115 becomes the set temperature.
なお、 暖房定格能力はガス配管 1 2 1や液配管 1 2 2の配管長によつ て変化し、 配管長が長いほど暖房定格能力は減少する。  The rated heating capacity varies depending on the length of the gas pipes 122 and liquid pipes 122, and the longer the pipe length, the lower the rated heating capacity.
本実施例によれば、 低圧圧力や高圧圧力を制御しなくてもよいので、 それぞれの圧力センサがいらなく なり コス トダウンの効果がある。 本発明の他の実施例を第 7図、 第 8図、 第 9図に示す。  According to the present embodiment, since it is not necessary to control the low pressure and the high pressure, each pressure sensor is not required, and the cost is reduced. Another embodiment of the present invention is shown in FIG. 7, FIG. 8, and FIG.
第 7図は本発明の他の実施例に係わる多室空気調和機の冷凍サイクル の構成を示すブロ ック図である。 第 8図は吐出圧力に対する圧力スィ ッ チの動作と室内冷媒流量調整弁の最大開度の関係を表わすグラフ線図で ある。 第 9図は室内吸い込み空気温度に対する室内冷媒流量調整弁の最 大開度の関係を表わすグラフ線図である。 第 7図の実施例は第 1 図の実施例の圧縮機吐出側に圧力スィ ツチ 1 0 7、 1 0 8 を取り付けて、 それらの信号を室外制御器 1 5 1 に入力した ものである。 冷房運転時の冷媒の流れ及び制御方法は第 1 図の実施例と 同様である。 FIG. 7 is a block diagram showing a configuration of a refrigeration cycle of a multi-room air conditioner according to another embodiment of the present invention. FIG. 8 is a graph showing the relationship between the operation of the pressure switch with respect to the discharge pressure and the maximum opening of the indoor refrigerant flow control valve. FIG. 9 is a graph showing the relationship between the indoor suction air temperature and the maximum opening of the indoor refrigerant flow control valve. In the embodiment shown in FIG. 7, pressure switches 107 and 108 are mounted on the compressor discharge side of the embodiment shown in FIG. 1, and their signals are inputted to the outdoor controller 15 1. The flow and control method of the refrigerant during the cooling operation are the same as in the embodiment of FIG.
また、 暖房運転時の冷媒の流れ及び制御方法も第 1 図の実施例と同様 であるが、 暖房運転時の室内冷媒流量調整弁 2 0 2、 3 0 2の最大開度 を第 8図に示すよ うに圧力スィ ツチ 1 0 7、 1 0 8の出力信号の組合せ で変えている。  Also, the flow and control method of the refrigerant during the heating operation are the same as in the embodiment of FIG. 1, but the maximum opening degree of the indoor refrigerant flow regulating valves 202 and 302 during the heating operation is shown in FIG. As shown, the combination of the output signals of the pressure switches 107 and 108 is changed.
圧力スィ ッチ 1 0 7は 2 0 k g c m 2を越える と O N、 2 0 k g / c m 2以下で O F F し、 圧力スィ ッチ 1 0 8は 2 4 k g / c m 2を越え る と O N、 Z d k g Z c m 2以下で O F Fする。 ON when the pressure sweep rate pitch 1 0 7 exceeds 2 0 kgcm 2, 2 0 kg / cm 2 and OFF in the following, pressure sweep rate pitch 1 0 8 2 4 kg / cm 2 the Ru exceeds the ON, Z dkg Turns off when Z cm 2 or less.
室内冷媒流量調整弁 2 0 2、 3 0 2は、 圧力スィ ッチ 1 0 8が O Nす る と室内冷媒流量調整弁の全開開度を最大開度と し、 圧力スィ ッチ 1 0 7が O F Fすると全開開度 X 0. 5を最大開度とする。  When the pressure switch 108 is turned on, the indoor refrigerant flow regulating valve 202, 302 turns the full opening of the indoor refrigerant flow regulating valve to the maximum opening, and the pressure switch 107 When OFF, the full opening X 0.5 is the maximum opening.
圧力スィ ッチ 1 0 7が O Nで圧力スィ ッチ 1 0 8が O F Fのときは最 大開度を変化させない。  When the pressure switch 107 is ON and the pressure switch 108 is OFF, the maximum opening is not changed.
以上は、 冷媒に H C F 2 2または R 4 0 7 Cを使用した場合であって 冷媒に R 4 1 0 Aまたは R 4 1 0 Bを使用 した場合は、 圧力スィ ッチ 1 0 7は 3 1 k g / c m 2を越える と O N、 3 1 k g / c m 2以下で O F F し、 圧力スィ ッチ 1 0 8は 3 5 k g Z c m2を越えると O N、 3 5 k g Z c m2以下で O F Fするよ う に設定するこ とが良い。 The above is the case where HCF22 or R407C is used as the refrigerant, and when R410A or R410B is used as the refrigerant, the pressure switch 107 becomes 3 1 exceeds kg / cm 2 and OFF in ON, 3 1 kg / cm 2 or less, the pressure sweep rate pitch 1 0 8 is turned OFF at exceeds 3 5 kg Z cm 2 ON, 3 5 kg Z cm 2 or less It is better to set it as follows.
第 9図は室内冷媒流量調整弁 2 0 2、 3 0 2の最大開度をそれぞれの 室内機の吸い込み空気温度 t 2 0 6、 t 3 0 6 によって変える例を示し 以下説明する。  FIG. 9 shows an example in which the maximum opening degree of the indoor refrigerant flow control valves 202 and 302 is changed according to the intake air temperatures t206 and t306 of the respective indoor units.
室内冷媒流量調整弁は、 吸い込み空気温度が 3 0でを越えると全開開 度を最大開度と し、 吸い込み空気温度が 2 5で以下になる と全開開度 X 0. 5を最大開度とする。 吸い込み空気温度が 2 5でを越え 3 0 t以下 のと きは最大開度を変化させない。 When the suction air temperature exceeds 30, the maximum opening of the indoor refrigerant flow control valve is the maximum opening, and when the suction air temperature is 25 or less, the full opening X 0.5 is the maximum opening. When the suction air temperature exceeds 25 and is 30 t or less, the maximum opening is not changed.
本実施例のよ う に最大開度にヒステ リ シスを持たせることによって、 室内冷媒流量調整弁の頻繁な開度変化に伴う冷凍サイ クルのハンチング が防止できる。  By providing the maximum opening with hysteresis as in the present embodiment, hunting of the refrigeration cycle due to frequent changes in the opening of the indoor refrigerant flow control valve can be prevented.
室内冷媒流量調整弁の制御方法の他の実施例を第 1 図 0、 第 1 図 1 で 説明する。  Another embodiment of the method for controlling the indoor refrigerant flow regulating valve will be described with reference to FIGS. 1 and 1. FIG.
第 1 0図は室内機の室內制御器の制御基板の部品配置を示す平面図で あり 、 第 1 1 図は制御基板のディ ップスィ ッチの O N O F Fの組合せ と演算係数を表わす関係図である。  FIG. 10 is a plan view showing a component arrangement of a control board of a room controller of an indoor unit, and FIG. 11 is a relational diagram showing a combination of ONOFF of a dip switch of a control board and an operation coefficient.
基本的な制御方法は第 4図と同じであるが、 冷房能力の求め方を  The basic control method is the same as in Fig. 4, but how to find the cooling capacity
Cp · p  Cp · p
Q c 2 = a c 2 · —- a v 2 « V a 2 -( t 2 0 6 - t 2 0 7  Q c 2 = a c 2 ·-a v 2 «V a 2-(t 2 06-t 2 0 7
SHF2  SHF2
( 1 3 )  ( 13 )
Cp  Cp
Q c 3 = a c 3 ·—— ί ~ !-^-« a v 3 * V a 3 , t 3 0 6— t 3 0 7  Q c 3 = a c 3 · —— ί ~!-^-«A v 3 * V a 3, t 3 06-t 3 0 7
SHF 3 ! SHF 3!
( 1 4 ) ( 14 )
式 ( 1 3 ) および式 ( 1 4 ) と して補正係数 a c 2、 a c 3および室内 風量係数 a V 2、 a v 3 によって吸い込み空気温度と吹き出し空気温度 との温度差を変更できるよ うにしている。 The temperature difference between the intake air temperature and the blown air temperature can be changed by the correction coefficients ac2 and ac3 and the indoor air volume coefficients aV2 and av3 as equations (13) and (14). I have.
また、 暖房能力の求め方も式 ( 1 5 ) および式 ( 1 6 )  In addition, the method for determining the heating capacity is expressed by Equation (15) and Equation (16).
Q h 2 = a h 2 - C p . « p 2 » a v 2 » V a 2 - ( t 2 0 7 - t 2 06) Q h 2 = ah 2-C p. «P 2 » av 2 »V a 2-(t 2 07-t 206)
( 1 5 ) (15)
Q h 3 = a h 3 « C p , - p3 « a v 3 - V a 3 » ( t 3 0 7 - t 3 0 6) Q h 3 = ah 3 «C p,-p 3 « av 3-V a 3 »(t 3 0 7-t 3 0 6)
( 1 6 ) (16)
と して補正係数 a h 2、 a h 3および室内風量係数 a v 2、 a v 3に よって吹き出し空気温度と吸い込み空気温度との温度差を変更できるよ うにしている。 The temperature difference between the outlet air temperature and the inlet air temperature can be changed by the correction coefficients ah2 and ah3 and the indoor airflow coefficients av2 and av3. I'm trying.
以上の補正によって、 室內機能力の算出をよ り正確にして、 精度の良 い室内冷媒流量調整弁、 および圧縮機容量の制御が実現できる。  With the above correction, the calculation of the room 內 functional force can be made more accurate, and the accurate control of the indoor refrigerant flow control valve and the compressor capacity can be realized.
つぎに、 室内機 2 0 0の顕熱比、 各補正係数および室内風量係数の変 更方法を説明する。  Next, a method of changing the sensible heat ratio of the indoor unit 200, each correction coefficient, and the indoor air flow coefficient will be described.
第 1 0図において、 基板上にはディ ップスィ ッチ 2 1 1 (D SW 1 ) 2 1 2 (D SW 2 ) 、 2 1 3 (D S W 3 ) 、 2 1 4 (D S W 4 ) が取り 付けられている。 1 つのディ ップスィ ッチは、 4個の ON/O F Fス ィ ツチで構成されており 、 その組合せでそれぞれの係数を変更できる。 第 1 1 図は、 係数の変更例であり、 顕熱比は室内機が設置される雰囲 気に基づいて変更し、 一般事務室は 0. 7程度の値とする。 この値は、 厨房のよ う に湿度の高いと ころは小さく設定し、 コンピュータ室のよ う に湿度の低いと ころは大き くする。  In FIG. 10, dip switches 2 1 1 (D SW 1) 2 1 2 (D SW 2), 2 13 (DSW 3), and 2 14 (DSW 4) are mounted on the board. ing. One dip switch is composed of four ON / OFF switches, and each coefficient can be changed by a combination of the ON / OFF switches. Fig. 11 shows an example of changing the coefficient. The sensible heat ratio is changed based on the atmosphere in which the indoor units are installed, and the value for the general office is about 0.7. This value should be set low in places with high humidity, such as in kitchens, and high in places with low humidity, as in computer rooms.
補正係数 a c 2は冷房の吹き出し空気温度の温度分布の補正係数であ り 、 温度検出器 2 0 7によって検出された温度が平均吹き出し空気温度 のときは 1 . 0を設定し、 それよ り高い温度のときは 1 よ り大きい値と する。 また、 検出された温度が平均吹き出し空気温度よ り低い温度のと きは 1 よ り小さい値を設定する。  The correction coefficient ac 2 is a correction coefficient for the temperature distribution of the cooling air outlet air temperature, and is set to 1.0 when the temperature detected by the temperature detector 207 is the average outlet air temperature, and is set higher than that. For temperature, set to a value greater than 1. Also, if the detected temperature is lower than the average blowing air temperature, set a value smaller than 1.
補正係数 a h 2は暖房の吹き出し空気温度の温度分布の補正係数であ り、 温度検出器 2 0 7によって検出された温度が平均吹き出し空気温度 のときは 1 . 0を設定し、 それよ り高い温度が検出されたときは 1 よ り 小さい値とする。 また、 検出された温度が平均吹き出し空気温度よ り低 い温度のときは 1 よ り大きい値を設定する。  The correction coefficient ah 2 is a correction coefficient for the temperature distribution of the outlet air temperature of the heating, and is set to 1.0 when the temperature detected by the temperature detector 207 is the average outlet air temperature, and is set higher. When the temperature is detected, the value shall be less than 1. Also, if the detected temperature is lower than the average blowing air temperature, set a value greater than 1.
室内制御器 2 0 8は、 室内機容量ゃ室內機種の全ての風量を記憶する と大きな記憶容量が必要となるので、 代表風量だけを記憶し、 室内風量 係数 a V 2によって補正している。 室内風量係数は、 実際の風量が記憶された代表風量と同じならば 1 . 0 と し、 代表風量よ り少なければ 1 よ り小さい値を、 よ り多ければ 1 よ り大きい値とする。 The indoor controller 208 needs a large storage capacity to store all the indoor unit capacity / room / model air volume. Therefore, only the representative air volume is stored and corrected by the indoor air volume coefficient a V 2. The indoor airflow coefficient shall be 1.0 if the actual airflow is the same as the stored representative airflow, a value less than 1 if it is less than the representative airflow, and a value greater than 1 if it is more.
本発明のさ らに他の実施例を第 1 2図、 第 1 3図を参照して説明する < 第 1 2図は本発明の他の実施例に係わる暖房運転時の多室空気調和機 の冷凍サイクルの構成を示すブロ ック図であり 、 第 1 3図は室外冷媒流 量調整弁開度と室內冷媒流量調整弁の最小開度および停止室内機の室内 冷媒流量調整弁開度との関係を表わすグラフ線図である。  Another embodiment of the present invention will be described with reference to FIGS. 12 and 13. <FIG. 12 is a multi-room air conditioner at the time of heating operation according to another embodiment of the present invention. Fig. 13 is a block diagram showing the configuration of the refrigeration cycle of Fig. 13. Fig. 13 shows the outdoor refrigerant flow control valve opening, the minimum refrigerant flow control valve opening, and the indoor refrigerant flow control valve opening of the stopped indoor unit. FIG. 4 is a graph showing the relationship of FIG.
第 1 2図は室内機 2 0 0、 3 0 0を暖房運転する場合の冷凍サイクル を示し、 液タンク 1 0 9をガス配管 1 2 1側に設置している。 それ以外 は既に述べた第 1 図の冷凍サイクルと同じである。  FIG. 12 shows a refrigeration cycle when the indoor units 200 and 300 are in the heating operation, and the liquid tank 109 is installed on the gas pipe 121 side. The rest is the same as the refrigeration cycle in Fig. 1 already described.
冷房時、 液タンク 1 0 9内は低圧圧力になり、 冷媒温度が雰囲気温度 よ り低く なるので冷媒が凝縮して液冷媒となって溜ることはない。  During cooling, the inside of the liquid tank 109 is at a low pressure, and the refrigerant temperature becomes lower than the ambient temperature, so that the refrigerant does not condense and remain as a liquid refrigerant.
暖房時は、 高圧圧力になり冷媒温度が雰囲気温度よ り高く なるので冷 媒が凝縮して液冷媒となり、 液タンク 1 0 9内に溜る。 これによつて、 暖房時の余剰冷媒が吸収できる。  During heating, the refrigerant becomes high pressure and the refrigerant temperature becomes higher than the ambient temperature, so that the refrigerant condenses and becomes a liquid refrigerant, and accumulates in the liquid tank 109. This allows excess refrigerant during heating to be absorbed.
液タンク 1 0 9内に冷媒を導く配管は、 液タンク 1 0 9內の上部まで 立ち上がつており 、 除霜などによって四方弁が切り替わっても、 液冷媒 がー度にアキュム レータ 1 0 4 に戻らないよ うになつている。  The pipe that guides the refrigerant into the liquid tank 109 rises up to the top of the liquid tank 109 so that even if the four-way valve is switched due to defrosting, etc., the liquid refrigerant always accumulates. It will not return to.
第 1 図 2において、 室内機 2 0 0は最大能力で運転され、 室内機 3 0 0は容量が制御されて室内冷媒流量調整弁 3 0 2が絞られ、 能力は減少 されている。 そのため、 室内機 3 0 0の室内熱交換器 3 0 1 内には液冷 媒が多く溜っている。  In FIG. 1, the indoor unit 200 is operated at the maximum capacity, the capacity of the indoor unit 300 is controlled, the indoor refrigerant flow regulating valve 302 is throttled, and the capacity is reduced. Therefore, a large amount of liquid coolant is accumulated in the indoor heat exchanger 301 of the indoor unit 300.
室外機 1 0 0の室外冷媒流量調整弁 1 0 2の開度は、 吐出温度検出器 1 1 5で検出される圧縮機 1 0 5 の吐出温度が設定値となるよ う に制御 される。 こ こで、 室内機 3 0 0の室内冷媒流量調整弁 3 0 2を絞りすぎ る と室內熱交換器 3 0 1 内に液冷媒が溜りすぎて、 冷凍サイ クル内を循 環する冷媒が減少する。 そのため室内機 2 0 0の冷媒流量が減少し、 室 内機 2 0 0の暖房能力が不足する。 The opening degree of the outdoor refrigerant flow control valve 102 of the outdoor unit 100 is controlled such that the discharge temperature of the compressor 105 detected by the discharge temperature detector 115 becomes a set value. Here, the indoor refrigerant flow control valve 302 of the indoor unit 300 is excessively throttled. As a result, the liquid refrigerant excessively accumulates in the room heat exchanger 301, and the amount of refrigerant circulating in the refrigeration cycle decreases. Therefore, the flow rate of refrigerant in the indoor unit 200 decreases, and the heating capacity of the indoor unit 200 becomes insufficient.
冷凍サイ クル内を循環する冷媒が減少する と圧縮機を冷却できなく な り吐出温度が上昇する。 よって、 吐出温度が設定値となるよ うに制御す ると、 吐出温度の上昇に伴って室外冷媒流量調整弁 1 0 2の開度が開く こ とになる。 そこで、 第 1 3図に示すよ うに、  When the amount of refrigerant circulating in the refrigeration cycle decreases, the compressor cannot be cooled, and the discharge temperature rises. Therefore, if the discharge temperature is controlled so as to be the set value, the opening degree of the outdoor refrigerant flow control valve 102 is increased as the discharge temperature increases. Therefore, as shown in Fig. 13,
( 1 ) 室外冷媒流量調整弁 1 0 2 の開度が所定開度 A ( 0. 5 X全開開 度) 以下のときは、 室内冷媒流量調整弁 2 0 2 、 3 0 2の最小開度は ( 0 . 1 X全開開度) とする。  (1) When the opening of the outdoor refrigerant flow control valve 102 is less than the predetermined opening A (0.5 X full opening), the minimum opening of the indoor refrigerant flow control valves 202 and 302 is (0.1 X full opening).
( 2 ) 室外冷媒流量調整弁 1 0 2の開度が所定開度 B ( 0. 8 X全開開 度) 以上になったら室內冷媒流量調整弁 2 0 2 、 3 0 2の最小開度は大 き く ( 0. 4 X全開開度) する。  (2) When the opening of the outdoor refrigerant flow control valve 102 exceeds the predetermined opening B (0.8 X full opening), the minimum opening of the room / refrigerant flow control valve 202, 302 is large. (0.4 X full opening).
( 3 ) 室外冷媒流量調整弁 1 0 2の開度が上記の所定開度 Aから所定開 度 Bまでの間は、 室内冷媒流量調整弁 2 0 2 、 3 0 2の最小開度は、 (3) When the opening of the outdoor refrigerant flow control valve 102 is between the predetermined opening A and the predetermined opening B, the minimum opening of the indoor refrigerant flow control valves 202 and 302 is as follows.
( 0. I X全開開度) から ( 0. 4 X全開開度) までで、 室外冷媒流量 調整弁 1 0 2の開度に比例した値とする。 The value shall be in the range from (0.IX full opening) to (0.4X full opening) and proportional to the opening of the outdoor refrigerant flow control valve 102.
と して室外冷媒流量調整弁 1 0 2 の開度で室內冷媒流量調整弁 2 0 2 、 3 0 2 の最小開度を定める。 As a result, the minimum opening of the outdoor refrigerant flow regulating valves 202 and 302 is determined by the opening of the outdoor refrigerant flow regulating valve 102.
以上によって、 室内熱交換器內に液冷媒が溜りすぎないよ うにするこ とができる。  As described above, it is possible to prevent the liquid refrigerant from excessively collecting in the indoor heat exchanger 內.
また、 室内機 3 0 0を停止させる とき、 室内冷媒流量調整弁 3 0 2を 微開の所定開度にするが、 このとき も上記と同様に、 室內機 3 0 0の室 內熱交換器 3 0 1 内には液冷媒が多く溜り 、 この量が多すぎる と冷凍サ イ クル内を循環する冷媒が減少し、 室内機 2 0 0の暖房能力が不足する, この場合も、 上記のよ うに室外冷媒流量調整弁 1 0 2の開度で停止室 内機の室内冷媒流量調整弁の開度を変化させる。 Further, when the indoor unit 300 is stopped, the indoor refrigerant flow regulating valve 302 is set to a predetermined slightly-opened degree, but also at this time, similarly to the above, the indoor heat exchanger 3 A large amount of liquid refrigerant accumulates in the inside of the refrigeration cycle 01, and if this amount is too large, the amount of the refrigerant circulating in the refrigeration cycle decreases, and the heating capacity of the indoor unit 200 is insufficient. Stop room at the opening of the outdoor refrigerant flow control valve 102 The degree of opening of the indoor refrigerant flow control valve of the inner unit is changed.
つま り、 第 1 3図に示すよ うに、  In other words, as shown in FIG.
( 1 ) 室外冷媒流量調整弁 1 0 2の開度が所定開度 A ( 0. 5 X全開開 度) 以下のときは、 停止室内機の冷媒流量調整弁 2 0 2、 3 0 2の最小 開度は ( 0. 0 5 X全開開度) とする。  (1) When the opening of the outdoor refrigerant flow control valve 102 is smaller than the predetermined opening A (0.5 X full opening), the minimum of the refrigerant flow control valves 202, 302 of the stopped indoor unit The opening shall be (0.05 X full opening).
( 2 ) 室外冷媒流量調整弁 1 0 2の開度が所定開度 C (全開開度) に なったら室内停止室内機の冷媒流量調整弁 2 0 2 、 3 0 2の最小開度は 大き く ( 0. 1 X全開開度) する。  (2) When the opening of the outdoor refrigerant flow control valve 102 reaches the predetermined opening C (full opening), the minimum opening of the refrigerant flow control valves 202 and 302 of the indoor stop indoor unit is large. (0.1 X full opening).
( 3 ) 室外冷媒流量調整弁 1 0 2の開度が上記の所定開度 Aから所定開 度 Cまでの間は、 室内停止室内機の室内冷媒流量調整弁 2 0 2、 3 0 2 の最小開度は、 ( 0. 0 5 X全開開度) から ( 0. I X全開開度) まで で、 室外冷媒流量調整弁 1 0 2の開度に比例した値とする。  (3) When the opening of the outdoor refrigerant flow control valve 102 is between the above-mentioned predetermined opening A and the predetermined opening C, the minimum of the indoor refrigerant flow control valves 202 and 302 of the indoor stop indoor unit The opening shall be from (0.05 X full opening) to (0.IX full opening) and a value proportional to the opening of the outdoor refrigerant flow control valve 102.
と して室外冷媒流量調整弁 1 0 2の開度で室內停止室内機の室内冷媒流 量調整弁 2 0 2、 3 0 2の最小開度を定める。 The minimum opening of the indoor refrigerant flow regulating valves 202 and 302 of the indoor / stop indoor unit is determined by the opening of the outdoor refrigerant flow regulating valve 102.
以上で、 室內機 3 0 0を停止させる場合も、 室内熱交換器内に液冷媒 が溜りすぎないよ うにするこ とができる。  As described above, even when the indoor unit 300 is stopped, it is possible to prevent the liquid refrigerant from being excessively accumulated in the indoor heat exchanger.
本発明によれば、 運転されている室内機の能力が要求される 目標能力 になるよ うに圧縮機の容量が制御されるので、 室内機の要求能力に見 合った消費電力で運転され、 特に暖房運転で消費電力の少ない多室空気 調和機が提供される。  According to the present invention, since the capacity of the compressor is controlled so that the capacity of the operated indoor unit becomes the required target capacity, the compressor is operated with power consumption corresponding to the required capacity of the indoor unit. A multi-room air conditioner with low power consumption during heating operation will be provided.
また、 特に暖房運転時、 室外冷媒流量調整弁の開度によって、 室内機 の室内冷媒流量調整弁開度を変化させるこ とによって、 冷凍サイ クル内 を循環する冷媒量が確保され、 能力の不足を防止した多室空気調和機が 提供される。  In addition, especially during the heating operation, the amount of refrigerant circulating in the refrigeration cycle is secured by changing the opening of the indoor refrigerant flow control valve of the indoor unit according to the opening of the outdoor refrigerant flow control valve, resulting in insufficient capacity. A multi-room air conditioner that prevents the occurrence of air pollution is provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファ ンと吸い込み空気温度および吹き出し空気温度の検出手段と を 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイ クル を構成した多室空気調和機において、  1. An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger, and an indoor unit equipped with an indoor heat exchanger, an indoor fan, and a means for detecting the intake air temperature and the blown air temperature are connected to the liquid piping and In a multi-room air conditioner connected by gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差によって冷 房または暖房能力を求める手段と、  Means for determining the cooling or heating capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit;
前記吸い込み空気温度と室温設定値との差によって目標冷房または暖 房能力を定める手段と  Means for determining a target cooling or heating capacity based on a difference between the suction air temperature and a room temperature set value.
を備え、 前記冷房または暖房能力の合計値が前記目標冷房または暖房 能力の合計値となるよ うに前記可変容量圧縮機の運転容量を制御するこ とを特徴とする多室空気調和機。  A multi-room air conditioner, comprising: controlling the operating capacity of the variable displacement compressor so that the total value of the cooling or heating capacity becomes the total value of the target cooling or heating capacity.
2 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファ ンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室內機を液配管およびガス配管で接続して冷凍サイ クル を構成した多室空気調和機において、  2. An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger, and a plurality of indoor units equipped with an indoor heat exchanger, an indoor fan and means for detecting the intake air temperature and the blow-out air temperature are connected to the liquid piping and In a multi-room air conditioner connected by gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差によって冷 房能力を求める手段と、  Means for determining the cooling capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit;
前記吸い込み空気温度と室温設定値との差によって目標冷房能力を定 める手段と  Means for determining a target cooling capacity based on a difference between the suction air temperature and a room temperature set value;
を備え、 前記冷房能力の合計値が前記目標冷房能力の合計値となるよ うに前記可変容量圧縮機の運転容量を制御するこ とを特徴とする多室空 気調和機。  A multi-room air conditioner, wherein the operating capacity of the variable displacement compressor is controlled such that the total value of the cooling capacity becomes the total value of the target cooling capacity.
3 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファ ンと吸い込み空気温度および吹き出し空気温度の検出手段と を 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイ クル を構成した多室空気調和機において、 3. An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger is connected to multiple indoor units equipped with an indoor heat exchanger, an indoor fan, and means for detecting the intake air temperature and the blown air temperature. Refrigeration cycle connected by gas piping In the multi-room air conditioner,
室内機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱と、 顕熱比とから冷房能力を 求める手段と、  Means for determining a cooling capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, a specific heat of air, and a sensible heat ratio,
前記吸い込み空気温度と室温設定値との差によって目標冷房能力を定 める手段と  Means for determining a target cooling capacity based on a difference between the suction air temperature and a room temperature set value;
を備え、 前記冷房能力の合計値が前記目標冷房能力の合計値となるよ うに前記可変容量圧縮機の運転容量を制御するこ とを特徴とする多室空 気調和機。  A multi-room air conditioner, wherein the operating capacity of the variable displacement compressor is controlled such that the total value of the cooling capacity becomes the total value of the target cooling capacity.
4 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファ ンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイ クル を構成した多室空気調和機において、 4. An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger is connected to a plurality of indoor units equipped with an indoor heat exchanger, an indoor fan and means for detecting the intake air temperature and the blown air temperature. In a multi-room air conditioner connected by gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手段 と、  Means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of air;
前記吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と  Means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value;
を備え、 前記暖房能力の合計値が前記目標暖房能力の合計値となるよ うに前記可変容量圧縮機の運転容量を制御するこ とを特徴とする多室空 気調和機。  A multi-room air conditioner, wherein the operating capacity of the variable displacement compressor is controlled so that the total value of the heating capacity becomes the total value of the target heating capacity.
5 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファ ンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室內機を液配管およびガス配管で接続して冷凍サイクル を構成した多室空気調和機において、  5. An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger is connected to a plurality of indoor units equipped with an indoor heat exchanger, an indoor fan, and means for detecting the intake air temperature and the outlet air temperature. In a multi-room air conditioner connected by gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差によって冷 房能力を求める手段と、 Cooled by the temperature difference between the intake air temperature and the air temperature of the indoor unit. Means to determine the capacity of the tuft,
前記吸い込み空気温度から室温設定値の差が 2ないし 4 *Cよ り大きい 時は、 目標冷房能力を前記室内機の定格冷房能力と し、 2ないし 4で以 下の時は、 目標冷房能力を前記室內機の定格冷房能力以下と して定める 手段と  When the difference between the suction air temperature and the room temperature set value is greater than 2 to 4 * C, the target cooling capacity is the rated cooling capacity of the indoor unit.When the difference is 2 to 4 or less, the target cooling capacity is Means to be set to be equal to or less than the rated cooling capacity of the indoor unit
を備え、 前記冷房能力の合計値が前記目標冷房能力の合計値となるよ うに前記可変容量圧縮機の運転容量を制御するこ とを特徴とする多室空 気調和機。  A multi-room air conditioner, wherein the operating capacity of the variable displacement compressor is controlled such that the total value of the cooling capacity becomes the total value of the target cooling capacity.
6 - 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイ クル を構成した多室空気調和機において、  6-An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger, and an indoor unit equipped with an indoor heat exchanger, an indoor fan, and a means for detecting the intake air temperature and the blown air temperature are connected with liquid piping and gas. In a multi-room air conditioner connected by piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差によって暖 房能力を求める手段と、  Means for determining the heating capacity based on the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit;
室温設定値から前記吸い込み空気温度の差が 2ないし 4でよ り大きい 時は、 目標暖房能力を前記室内機の定格暖房能力と し、 2ないし 4 ^以 下の時は、 目標暖房能力を前記室内機の定格暖房能力以下と して定める 手段と  When the difference between the intake air temperature and the set room temperature is larger than 2 to 4, the target heating capacity is the rated heating capacity of the indoor unit, and when the difference is 2 to 4 ^ or less, the target heating capacity is Means to be set below the indoor unit's rated heating capacity and
を備え、 前記暖房能力の合計値が前記目標暖房能力の合計値となるよ うに前記可変容量圧縮機の運転容量を制御するこ とを特徴とする多室空 気調和機。  A multi-room air conditioner, wherein the operating capacity of the variable displacement compressor is controlled so that the total value of the heating capacity becomes the total value of the target heating capacity.
7 . 請求項 3記載のものにおいて、 前記室内機に室內冷媒流量調整弁を 備え、 前記冷房能力が前記目標冷房能力となるよ うに前記室內冷媒流量 調整弁の開度を制御するこ とを特徴とする多室空気調和機。  7. The air conditioner according to claim 3, wherein the indoor unit is provided with a room-based refrigerant flow control valve, and the opening degree of the room-based refrigerant flow control valve is controlled such that the cooling capacity becomes the target cooling capacity. And a multi-room air conditioner.
8 . 請求項 4記載のものにおいて、 前記室内機に室内冷媒流量調整弁を 備え、 前記暖房能力が前記目標暖房能力となるよ うに前記室内冷媒流量 調整弁の開度を制御するこ とを特徴とする多室空気調和機。 8. The device according to claim 4, wherein the indoor unit includes an indoor refrigerant flow control valve, and the indoor refrigerant flow rate is adjusted so that the heating capacity becomes the target heating capacity. A multi-room air conditioner characterized by controlling the opening of a regulating valve.
9 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファン、 室内冷媒流量調整弁と吸い込み空気温度および吹き出し空 気温度の検出手段とを備えた複数台の室内機を液配管およびガス配管で 接続して冷凍サイ クルを構成した多室空気調和機において、  9. An outdoor unit equipped with a variable displacement compressor and an outdoor heat exchanger, a plurality of units equipped with an indoor heat exchanger, an indoor fan, an indoor refrigerant flow control valve, and means for detecting the intake air temperature and the blow-out air temperature In a multi-room air conditioner in which indoor units are connected by liquid piping and gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手段 と、  Means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of air;
前記吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、  Means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value;
前記暖房能力の合計値が前記目標暖房能力の合計値となるよ うに前記 可変容量圧縮機の運転容量を制御する手段と、  Means for controlling the operating capacity of the variable displacement compressor so that the total value of the heating capacity becomes the total value of the target heating capacity;
前記暖房能力が前記目標暖房能力となるよ うに室内冷媒流量調整弁の 開度を制御する手段と、  Means for controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity;
前記可変容量圧縮機の吐出圧力が所定の値以下のとき室内冷媒流量調 整弁の最大開度を全開開度よ り小さくする手段と  Means for making the maximum opening of the indoor refrigerant flow regulating valve smaller than the full opening when the discharge pressure of the variable displacement compressor is equal to or less than a predetermined value.
を備えたこ とを特徴とする多室空気調和機。  A multi-room air conditioner characterized by having:
1 0 . 可変容量圧箱機、 室外熱交換器を備えた室外機に、 室內熱交換器. 室內ファンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイ クル を構成した多室空気調和機において、  10. An outdoor unit equipped with a variable-capacity pressure box machine and an outdoor heat exchanger, an indoor unit heat exchanger. Liquid units are connected to multiple indoor units equipped with an indoor unit fan and suction air temperature and outlet air temperature detection means. And a multi-room air conditioner connected by gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手段 と、  Means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of air;
前記吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、 前記暖房能力の合計値が前記目標暖房能力の合計値となるよ うに前記 可変容量圧綰機の運転容量を制御する手段と、 Means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value; Means for controlling the operating capacity of the variable displacement pressure machine so that the total value of the heating capacity becomes the total value of the target heating capacity;
前記暖房能力が前記目標暖房能力となるよ う に室内冷媒流量調整弁の 開度を制御する手段と、  Means for controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity;
前記可変容量圧縮機の吐出圧力が 1 5ないし 2 0 k gノ c m 2以下と なったとき O F Fする圧力スィ ツチと、 A pressure switch which is turned off when the discharge pressure of the variable displacement compressor becomes 15 to 20 kg / cm 2 or less;
を備え、 前記圧力スィ ツチが O F F したとき室内冷媒流量調整弁の最 大開度を (全開開度 X 0 . 5 ) とするこ とを特徴とする多室空気調和機 ( 1 1 . 可変容量圧箱機、 室外熱交換器を備えた室外機に、 室内熱交換器. 室内ファンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイクル を構成した多室空気調和機において、  A multi-room air conditioner (11. Variable displacement pressure) wherein the maximum opening of the indoor refrigerant flow control valve is set to (full opening X 0.5) when the pressure switch is turned off. An indoor heat exchanger is connected to an outdoor unit equipped with a box machine and an outdoor heat exchanger. A plurality of indoor units equipped with an indoor fan and means for detecting the intake air temperature and the blow-out air temperature are connected by liquid piping and gas piping. In a multi-room air conditioner with a refrigeration cycle,
室內機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手段 と、  Means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of air, and the specific heat of air;
前記吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、  Means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value;
前記暖房能力の合計値が前記目標暖房能力の合計値となるよ うに前記 可変容量圧箱機の運転容量を制御する手段と、  Means for controlling the operating capacity of the variable capacity pressure box machine so that the total value of the heating capacity becomes the total value of the target heating capacity;
前記暖房能力が前記目標暖房能力となるよ う に室内冷媒流量調整弁の 開度を制御する手段と、  Means for controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity;
前記吸い込み空気温度が所定の値以下のとき室內冷媒流量調整弁の最 大開度を全開開度よ り小さ くする手段と  Means for reducing the maximum opening of the chamber / refrigerant flow control valve to less than the full opening when the suction air temperature is equal to or lower than a predetermined value;
を備えたこ とを特徴とする多室空気調和機。  A multi-room air conditioner characterized by having:
1 2 . 可変容量圧箱機、 室外熱交換器を備えた室外機に、 室内熱交換器. 室内ファンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室內機を液配管およびガス配管で接続して冷凍サイクル を構成した多室空気調和機において、 1 2. An outdoor unit equipped with a variable-capacity pressure box machine and an outdoor heat exchanger, and an indoor heat exchanger. An indoor fan and means for detecting the intake air temperature and the outlet air temperature In a multi-room air conditioner in which a refrigeration cycle is configured by connecting multiple air conditioners equipped with liquid piping and gas piping,
室内機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手段 と、  Means for determining a heating capacity from a temperature difference between an intake air temperature and an outlet air temperature of the indoor unit, an air volume of the indoor unit, an air density, and a specific heat of air;
前記吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と、  Means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value;
前記暖房能力の合計値が前記目標暖房能力の合計値となるよ う に前記 可変容量圧縮機の運転容量を制御する手段と、  Means for controlling the operating capacity of the variable displacement compressor so that the total value of the heating capacity becomes the total value of the target heating capacity;
前記暖房能力が前記目標暖房能力となるよ うに室内冷媒流量調整弁の 開度を制御する手段と、  Means for controlling the opening degree of the indoor refrigerant flow control valve so that the heating capacity becomes the target heating capacity;
を備え、 前記吸い込み空気温度が 2 0ないし 2 5で以下のとき室内冷 媒流量調整弁の最大開度を (全開開度 X 0 . 5 ) とするこ とを特徴とす る多室空気調和機。  A multi-chamber air conditioner, wherein the maximum opening of the indoor coolant flow control valve is set to (full opening X 0.5) when the suction air temperature is 20 to 25 and the following. Machine.
1 3 . 請求項 1 ないし 3に記載のいずれかのものにおいて、 前記冷房能 力を吹き出し空気温度の温度分布の補正係数と、 室内風量係数とで補正 して求めることを特徴とする多室空気調和機。 13. The multi-room air according to any one of claims 1 to 3, wherein the cooling capacity is obtained by correcting the cooling capacity with a correction coefficient of a temperature distribution of a blown air temperature and an indoor air flow coefficient. Harmony machine.
1 4 . 請求項 1, 4, 6に記載のいずれかのものにおいて、 前記暖房能 力を吹き出し空気温度の温度分布の補正係数と、 室内風量係数とで補正 して求めることを特徴とする多室空気調和機。  14. The method according to any one of claims 1, 4, and 6, wherein the heating power is obtained by correcting the heating power with a correction coefficient of a temperature distribution of a blown air temperature and an indoor air flow coefficient. Room air conditioner.
1 5 . 可変容量圧縮機、 室外熱交換器を備えた室外機に、 室内熱交換器、 室内ファンと吸い込み空気温度および吹き出し空気温度の検出手段とを 備えた複数台の室内機を液配管およびガス配管で接続して冷凍サイクル を構成した多室空気調和機において、  15. An outdoor unit equipped with a variable capacity compressor and an outdoor heat exchanger is connected to a plurality of indoor units equipped with an indoor heat exchanger, an indoor fan, and means for detecting the intake air temperature and the outlet air temperature. In a multi-room air conditioner connected by gas piping to form a refrigeration cycle,
室内機の吸い込み空気温度と吹き出し空気温度との温度差と、 前記室 内機の風量と、 空気の密度と、 空気の比熱とから暖房能力を求める手段 と、 Means for determining the heating capacity from the temperature difference between the intake air temperature and the blow-out air temperature of the indoor unit, the air volume of the indoor unit, the density of air, and the specific heat of air When,
前記吸い込み空気温度と室温設定値との差によって目標暖房能力を定 める手段と  Means for determining a target heating capacity based on a difference between the suction air temperature and a room temperature set value;
前記暖房能力の合計値が前記目標暖房能力の合計値となるよ うに前記 可変容量圧縮機の運転容量を制御する手段と、  Means for controlling the operating capacity of the variable displacement compressor so that the total value of the heating capacity becomes the total value of the target heating capacity;
を備え、 暖房運転時、 前記室內機の室内冷媒流量調整弁の開度を室外 冷媒流量調整弁の開度に応じて変化させるこ とを特徴とする多室空気調 和機。  A multi-room air conditioner, comprising: during a heating operation, changing an opening of an indoor refrigerant flow control valve of the indoor unit according to an opening of an outdoor refrigerant flow control valve.
1 6 . 請求項 1 5に記載のものにおいて、  1 6. In the method according to claim 15,
前記室外冷媒流量調整弁の開度が ( 0. 5 X全開開度) 以下のときは 前記室内冷媒流量調整弁の最小開度を ( 0. I X全開開度) と し、 前記室外冷媒流量調整弁の開度が ( 0. 8 X全開関度) 以上のときは. 前記室内冷媒流量調整弁の最小開度を ( 0. 4 X全開開度) と し、 前記室外冷媒流量調整弁の開度が ( 0. 5 X全開開度) から ( 0. 8 X全開開度) の間は、 前記室内冷媒流量調整弁の最小開度を ( 0. I X 全開開度) から ( 0. 4 X全開開度) までの値で前記室外冷媒流量調整 弁の開度に比例した値とするこ とを特徴とする多室空気調和機。  When the opening degree of the outdoor refrigerant flow regulating valve is equal to or less than (0.5 X full opening degree), the minimum opening degree of the indoor refrigerant flow regulating valve is set to (0.IX full opening degree), and the outdoor refrigerant flow adjustment is performed. When the opening degree of the valve is equal to or more than (0.8 X full opening degree). The minimum opening degree of the indoor refrigerant flow regulating valve is set to (0.4 X full opening degree), and the opening of the outdoor refrigerant flow regulating valve is performed. When the degree is between (0.5 X full opening) and (0.8 X full opening), the minimum opening of the indoor refrigerant flow regulating valve is set to (0.4 X full opening) from (0.4 X full opening). The multi-room air conditioner is characterized in that a value up to the full opening degree is proportional to the opening degree of the outdoor refrigerant flow control valve.
PCT/JP1995/001879 1995-09-20 1995-09-20 Multi-chamber air-conditioner WO1997011317A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1995/001879 WO1997011317A1 (en) 1995-09-20 1995-09-20 Multi-chamber air-conditioner
JP51256797A JP3199746B2 (en) 1995-09-20 1995-09-20 Multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/001879 WO1997011317A1 (en) 1995-09-20 1995-09-20 Multi-chamber air-conditioner

Publications (1)

Publication Number Publication Date
WO1997011317A1 true WO1997011317A1 (en) 1997-03-27

Family

ID=14126285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/001879 WO1997011317A1 (en) 1995-09-20 1995-09-20 Multi-chamber air-conditioner

Country Status (2)

Country Link
JP (1) JP3199746B2 (en)
WO (1) WO1997011317A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP2012225547A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Air conditioner, air conditioning method and program
CN113757816A (en) * 2020-06-04 2021-12-07 青岛海信日立空调系统有限公司 Air conditioner

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346336A (en) * 1986-08-12 1988-02-27 Matsushita Refrig Co Air conditioner
JPH01127842A (en) * 1987-11-13 1989-05-19 Toshiba Corp Air conditioner
JPH0618075A (en) * 1992-06-30 1994-01-25 Sanyo Electric Co Ltd Controlling method for operation of air conditioner
JPH0650591A (en) * 1992-07-30 1994-02-22 Sanyo Electric Co Ltd Operation control in air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346336A (en) * 1986-08-12 1988-02-27 Matsushita Refrig Co Air conditioner
JPH01127842A (en) * 1987-11-13 1989-05-19 Toshiba Corp Air conditioner
JPH0618075A (en) * 1992-06-30 1994-01-25 Sanyo Electric Co Ltd Controlling method for operation of air conditioner
JPH0650591A (en) * 1992-07-30 1994-02-22 Sanyo Electric Co Ltd Operation control in air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050002A1 (en) * 2008-10-29 2010-05-06 三菱電機株式会社 Air conditioner
JP5312471B2 (en) * 2008-10-29 2013-10-09 三菱電機株式会社 Air conditioner
US8752397B2 (en) 2008-10-29 2014-06-17 Mitsubishi Electric Corporation Air-conditioning apparatus
US9115931B2 (en) 2008-10-29 2015-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2012225547A (en) * 2011-04-18 2012-11-15 Mitsubishi Electric Corp Air conditioner, air conditioning method and program
CN113757816A (en) * 2020-06-04 2021-12-07 青岛海信日立空调系统有限公司 Air conditioner

Also Published As

Publication number Publication date
JP3199746B2 (en) 2001-08-20

Similar Documents

Publication Publication Date Title
JP4975164B2 (en) Indoor unit and air conditioner equipped with the same
KR101462745B1 (en) Control device for an air-conditioning device and air-conditioning device provided therewith
CN102422095B (en) Air conditioning device
US7954333B2 (en) Air conditioner
CN101113834B (en) Method of controlling air conditioner
CN107407494B (en) Air conditioner
US8069682B2 (en) Air conditioner that corrects refrigerant quantity determination based on refrigerant temperature
US20090095000A1 (en) Air conditioner
US20090031739A1 (en) Air conditioner
TW571060B (en) Air conditioner
CN112283903A (en) Air conditioner and control method of expansion valve
CN108562013A (en) A kind of anti-condensation air conditioning control method and device
JP4043756B2 (en) Air conditioner and control method thereof
JP3849467B2 (en) Air conditioner
JP6031367B2 (en) Operation control device and method for air conditioner
WO1997011317A1 (en) Multi-chamber air-conditioner
JP7150135B2 (en) refrigeration cycle equipment
KR101579827B1 (en) Home appliance and controlling method for the same of
JPH0763404A (en) Air conditioner
JP3160443U (en) Precision air conditioner for server
JP5634248B2 (en) Air conditioner
CN108917089A (en) A kind of anti-condensation air conditioning control method and device
JP2893844B2 (en) Air conditioner
JP5245575B2 (en) Refrigerant amount determination method for air conditioner and air conditioner
JP7013990B2 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase