JP4043756B2 - Air conditioner and control method thereof - Google Patents

Air conditioner and control method thereof Download PDF

Info

Publication number
JP4043756B2
JP4043756B2 JP2001331367A JP2001331367A JP4043756B2 JP 4043756 B2 JP4043756 B2 JP 4043756B2 JP 2001331367 A JP2001331367 A JP 2001331367A JP 2001331367 A JP2001331367 A JP 2001331367A JP 4043756 B2 JP4043756 B2 JP 4043756B2
Authority
JP
Japan
Prior art keywords
temperature
evaporation
heat exchanger
humidity
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001331367A
Other languages
Japanese (ja)
Other versions
JP2003130430A (en
Inventor
圭介 外囿
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001331367A priority Critical patent/JP4043756B2/en
Publication of JP2003130430A publication Critical patent/JP2003130430A/en
Application granted granted Critical
Publication of JP4043756B2 publication Critical patent/JP4043756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和装置及びその制御方法、特に電算機室用空調機として用いられる空気調和装置及びその制御方法に関するものである。
【0002】
【従来の技術】
図5は、従来の電算機室用空気調和装置の構成を示す冷媒回路図である。
この図において、1は容量可変型の圧縮機、2は圧縮機1から吐出されたガス冷媒を凝縮液化する凝縮側熱交換器、3は凝縮側熱交換器2からの液化冷媒を減圧する流量可変型の絞り装置、4は減圧された冷媒を蒸発ガス化する蒸発側熱交換器、5は上記各機器を接続し冷媒回路を構成する冷媒配管、6は蒸発側熱交換器4に設けられた送風機で、矢印6Aで示す風路を形成する。
7は蒸発側熱交換器4の風路の吸込側に設けられ、吸込側の温度を検出する吸込側乾球温度検出手段、8は同じく吹出側の温度を検出する吹出側乾球温度検出手段、9は蒸発側熱交換器4の流入側に設けられ、蒸発温度を検出する蒸発温度検出手段である。
【0003】
図6は、従来の空気調和装置における顕熱比(SHF)の変化を示す概略空気線図である。ここでは、一例としてある設計ポイントA(吸込空気温度24℃(乾球温度)、湿度(RH)45%の条件でSHF=1、風量300m/min、顕熱能力56kWでの吸込、吹出空気の状態と露点温度を示す)で設計された熱交換器、送風機仕様に対して、設定湿度条件が異なる場合の吸込口、熱交換器部、吹出口の空気の状態を示している。
設計ポイントAにおける100%負荷時(負荷56kW)の吹出温度は、顕熱比(SHF)=1から以下の式でΔTを求めることにより得られる。
Q=60×Va×Cp/v×ΔT/860 (1)
Q :顕熱能力(kW)
Va:風量(m/min)
Cp:空気の比熱(kcal/kg・℃)
v :空気の比容積(m/kg)
ΔT:吸込側と吹出側の乾球温度差(℃)
【0004】
ここでは、簡易的に説明するために、式(1)においてCp=0.24、v=0.85としてΔTを算出すると共に、吹出温度を算出すると、図6に示すように14.5℃となる。この時の露点温度はSHF=1ということと湿り空気線図から、吸込空気温度24℃で設計ポイントAを通るSHF=1の同一絶対湿度線Bと飽和曲線との交点として求められ、11℃となる。この露点温度を目標蒸発温度として制御すれば、除湿することなく、顕熱能力も満足することができる。従来は、ある設計ポイントにおける露点温度+αを目標蒸発温度とし、そこから例えば吸込温度設定値と吸込温度との差(負荷)をみながら目標蒸発温度を調整するのが一般的であった。
【0005】
【発明が解決しようとする課題】
従来の空気調和装置は以上のように構成されていたため、吸込状態が図6の設計ポイントAより少し高湿度条件、例えば湿度(RH)50%の場合には、100%負荷時(負荷56kW)の吹出温度は、湿度(RH)45%の場合と同様に式(1)から14.5℃と算出されるが、この時の露点温度は図6の吸込空気温度24℃と50%RHとの交点Cを通るSHF=1の同一絶対湿度線Dと飽和曲線との交点として求められ、13℃となり、吹出温度と露点温度との差が小さくなる。つまり、吸込空気の湿度状態を知ることなしに、目標蒸発温度を設定し、吸込側乾球温度情報のみで上述の45%RH時と同様に目標蒸発温度を11℃に設定して制御を行なうと、5%の湿度に相当する分を除湿してしまうことになる。特にプルダウン時(50%RH以上の時)には除湿が顕著となり、過渡的に過剰な除湿が行なわれる結果、設計条件である45%RHを大きく下回り、低湿度環境下での静電気発生などによるコンピュ−タなどの電算機器への悪影響が出る可能性があるという問題点があった。
【0006】
また、従来の高顕熱制御方法として、例えば特公平7−92259号公報に示されるように、結露水検知手段を設け、この手段によって結露水(除湿されたドレン水)を検知(除湿したことを検知)した場合に、目標蒸発温度を上げるという方式もあるが、この方式は、高負荷、高湿度条件下で結露水を出さない蒸発温度制御であるがためにプルダウン時などに顕熱能力が出せなくなる可能性があるという問題点があった。
従来はこうした万が一の低湿度条件に陥った場合のバックアップとして、低湿度状態を検知して加湿器による加湿が行なわれているが、この場合には加湿量と加湿容量の増加を招くという問題点があった。
また、コンピュータなどの電算機器周囲の空気状態と蒸発側熱交換器の蒸発温度制御とがアンマッチになった場合には非効率運転となり、消費電力が増大するという問題点もあった。
【0007】
この発明は、上記のような問題点を解消するためになされたもので、蒸発側熱交換器に湿度検出手段を設けて吸込側の湿度を検出すると共に、吸込空気に対する露点温度を検知することにより、過剰に除湿することなく、負荷に応じた高顕熱制御が可能で、除湿量を最小限に抑えることができる空気調和装置及びその制御方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
この発明に係わる空気調和装置は、また、容量可変型の圧縮機と、この圧縮機から吐出されたガス冷媒を凝縮液化する凝縮側熱交換器と、この凝縮側熱交換器からの液化冷媒を減圧する絞り装置と、この絞り装置によって減圧された冷媒を蒸発ガス化する蒸発側熱交換器と、この蒸発側熱交換器の吸込側もしくは吹出側の温度を検出する乾球温度検出手段と、蒸発側熱交換器の吸込側の湿度を検出する湿度検出手段と、蒸発側熱交換器の蒸発温度を検出する蒸発温度検出手段と、蒸発温度を露点温度以上に制御する制御装置とを備え、目標蒸発温度を露点温度に設定すると共に、運転時の蒸発温度が上記目標蒸発温度を含む所定の範囲内となるように上記制御装置を所定の時間毎に動作させ、運転時の蒸発温度が上記所定の範囲の上限を越えた時は、圧縮機の容量を大きくすると共に、絞り装置の絞り流量を増加し、上記所定の範囲の下限を越えた時は、圧縮機の容量を小さくすると共に、絞り装置の絞り流量を少なくするようにしたものである。
【0010】
この発明に係わる空気調和装置は、また、吸込側乾球温度及び湿度と、湿り空気線図での同一絶対湿度線と飽和曲線との交点を対応させた露点温度マトリックスを設け、この露点温度マトリックスから露点温度を得るようにしたものである。
【0011】
この発明に係わる空気調和装置は、また、蒸発側熱交換器から吹出された冷却空気を、蒸発側熱交換器が設置された室の二重床の内側を経由して電算機等の負荷が収納されたラックに供給するようにしたものである。
【0013】
この発明に係わる空気調和装置の制御方法は、また、吸込温度もしくは吹出温度の目標温度を設定すると共に、運転時の吸込温度もしくは吹出温度が目標温度を含む所定の範囲内となるように制御装置を所定の時間毎に動作させ、運転時の吸込温度もしくは吹出温度が所定の範囲の上限を越えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、所定の範囲の下限を越えた時は、目標蒸発温度を高くするようにしたものである。
【0014】
この発明に係わる空気調和装置の制御方法は、また、目標湿度を設定すると共に、蒸発側熱交換器の吸込側湿度が目標湿度を含む所定の範囲内となるように制御装置を所定の時間毎に動作させ、吸込側湿度が所定の範囲の上限を越えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、所定の範囲の下限を越えた時は、目標蒸発温度を高くするようにしたものである。
【0015】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1の構成を示す冷媒回路図である。この図において、1は容量可変型の圧縮機、2は圧縮機1から吐出されたガス冷媒を凝縮液化する凝縮側熱交換器、3は凝縮側熱交換器2からの液化冷媒を減圧する流量可変型の絞り装置、4は減圧された冷媒を蒸発ガス化する蒸発側熱交換器、5は上記各機器を接続し冷媒回路を構成する冷媒配管、6は蒸発側熱交換器4に設けられた送風機で、矢印6Aで示す風路を形成する。7は蒸発側熱交換器4の風路の吸込側に設けられ、吸込側の温度を検出する吸込側乾球温度検出手段、8は同じく吹出側の温度を検出する吹出側乾球温度検出手段、9は蒸発側熱交換器4の流入側に設けられ、蒸発温度を検出する蒸発温度検出手段、10は蒸発側熱交換器4の吸込側に設けられた湿度検出手段、11は吸込側乾球温度検出手段7または吹出側乾球温度検出手段8及び蒸発温度検出手段9並びに湿度検出手段10の検出値にもとづいて圧縮機を容量制御する容量制御手段、12は蒸発温度検出手段9の検出値にもとづいて絞り装置3の冷媒流量を制御する流量制御手段である。
【0016】
図2は、実施の形態1の空気調和装置を電算機室に設置した状態を示す概略図である。この図において、20は電算機室、21はフリーアクセスの床面を形成する二重床で、その内側が後述する室内ユニットから吹出された冷却空気の通路とされている。22は空気調和装置の室内ユニットで、蒸発側熱交換器4、絞り装置3、送風機6、吸込側及び吹出側乾球温度検出手段7,8、湿度検出手段10、流量制御手段12等を収容すると共に、上部の吸込口23から電算機室空気を吸込み、下部の吹出口24から床面21の内側に冷却空気を吹出す構成とされている。なお、この実施の形態では上部を吸込口23、下部を吹出口24としているが、この構成を逆にして下部の吹出口24を吸込口とし、上部の吸込口23を吹出口とすることもできる。
【0017】
また、この実施の形態では、室内ユニットの設置面積を小さくするため、圧縮機、アキュムレータ等の冷媒回路構成部品を図示しない室外ユニットに収容するスプリット方式を前提とした構成を示しているが、上記の各冷媒回路構成部品を室内ユニットに収容するリモート方式とすることもできる。
また、25は電算機器を収容しているラックで、下面が二重床21の内側に連通するようにされている。
【0018】
このような構成において、室内ユニット22の吹出口24から吹出された冷却空気は、矢印6Aで示すようにフリーアクセスの床面21の内側を通過し、負荷となる電算機器が収納されているラック25に吸い込まれ、電算機器を冷却し終えた空気は、ラック25から上方に向けて電算機室20に排出され、室内ユニット22の吸込口23へ吸い込まれる。室内ユニット22では、蒸発温度検出手段9によって蒸発側熱交換器4の蒸発温度を検出し、この温度が露点温度以上となるように圧縮機容量と絞り装置の冷媒流量が制御される。
【0019】
図3は、実施の形態1における露点温度検知の手順を示すブロック図である。
図3(A)に示すように、吸込側乾球温度検出手段7で検出した吸込側乾球温度と、湿度検出手段10で検出した湿度(ここでは相対湿度として説明するが絶対湿度でもよい)とから、図6に例示した湿り空気線図上の乾球温度と湿度曲線との交点を求め、この交点を通る顕熱比(SHF)=1即ち、同一絶対湿度線と飽和曲線との交点から露点温度を求める。この場合、図3(B)に示すように、縦軸に吸込側乾球温度、横軸に湿度をとり、その交点位置に上述のようにして求めた露点温度を表示した露点温度マトリックスをあらかじめ用意しておくことにより、乾球温度と湿度が分かれば簡単に露点温度を得ることができる。
この露点温度マトリックスの乾球温度は1℃間隔、湿度は5%間隔であるが、それぞれの中間の値に対しては内挿近似とし、マトリックス範囲外については外挿近似とする。
【0020】
実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。この実施の形態の冷媒回路図及び温度、湿度の検出手段は図1と同様であるため、図1を流用して説明を省略し、図4のフローチャート図にもとづいて実施の形態2の制御方法について説明する。
【0021】
まず、ステップS1で目標とする湿度RHmと、目標とする吸込温度もしくは吹出温度TLmを設定する。次に、ステップS2で目標湿度RHmと吸込側乾球温度検出手段7で検出した吸込温度Tinとから実施の形態1で述べた手順により露点温度TRを求める。次いで、ステップS3で目標蒸発温度の初期設定値Tem0を、Tem0=TRと設定し、ステップS4において、蒸発温度Teに対してあらかじめ設定しておいた温度差ΔTeにて
Tem0−ΔTe≦Te≦Tem0+ΔTe となるように、蒸発温度Teをある設定された経過時間毎に制御する。蒸発温度Teが上記の範囲を越えた場合はステップS5でチェックし、Tem0+ΔTe<Te の場合には、ステップS6で圧縮機の容量制御手段11により圧縮機容量Fをアップすると共に、絞り装置3の流量制御手段12により絞り流量Lをアップする。反面、Tem0―ΔTe>Teの場合には、ステップS7で圧縮機の容量制御手段11により圧縮機容量Fをダウンすると共に、絞り装置3の流量制御手段12により絞り流量Lをダウンする。
【0022】
そして、ステップS8で、ある設定された経過時間毎に現在の吸込温度もしくは吹出温度TLが目標設定温度TLmに接近したかどうかを判定し、接近していなければ目標蒸発温度Temを変更する。即ち、接近していなければステップS9でチェックし、吸込温度もしくは吹出温度TLに対してあらかじめ設定しておいた温度差ΔTLにて、TLm0+ΔTL<TLの場合には、ステップS10で目標蒸発温度Temをダウンさせる。ただし、この時Te≧TRとする。
反面、TLm0―ΔTL>TLの場合には、ステップS11で目標蒸発温度Temをアップさせる。吸込温度もしくは吹出温度TLが目標設定温度TLmに接近した場合には、ステップS12で現在の湿度RHが目標湿度RHmに接近したかどうかを判定し、接近している場合には、ステップS16で目標蒸発温度Tem、圧縮機容量F及び絞り装置の流量Lを現状のままとし、接近していなければ、目標蒸発温度Temを変更する。即ち、接近していなければステップS13でチェックし、湿度RHに対してあらかじめ設定しておいた湿度差ΔRHにて、RHm+ΔRH<RHの場合には、ステップS14で目標蒸発温度Temをダウンさせる。ただし、この時Te≧TRとする。反面、RHm―ΔRH>RHの場合には、ステップS15で目標蒸発温度Temをアップさせる。
【0023】
このような制御を行なうことによって、吸込もしくは吹出温度の設定温度TLmに対して必要負荷能力を満足させながら、温度が露点温度を下回らずに、除湿量を抑制することができる。
【0025】
【発明の効果】
この発明に係わる空気調和装置は、また、容量可変型の圧縮機と、この圧縮機から吐出されたガス冷媒を凝縮液化する凝縮側熱交換器と、この凝縮側熱交換器からの液化冷媒を減圧する絞り装置と、この絞り装置によって減圧された冷媒を蒸発ガス化する蒸発側熱交換器と、この蒸発側熱交換器の吸込側もしくは吹出側の温度を検出する乾球温度検出手段と、蒸発側熱交換器の吸込側の湿度を検出する湿度検出手段と、蒸発側熱交換器の蒸発温度を検出する蒸発温度検出手段と、蒸発温度を露点温度以上に制御する制御装置とを備え、目標蒸発温度を露点温度に設定すると共に、運転時の蒸発温度が上記目標蒸発温度を含む所定の範囲内となるように上記制御装置を所定の時間毎に動作させ、運転時の蒸発温度が上記所定の範囲の上限を越えた時は、圧縮機の容量を大きくすると共に、絞り装置の絞り流量を増加し、上記所定の範囲の下限を越えた時は、圧縮機の容量を小さくすると共に、絞り装置の絞り流量を少なくするようにしたものであるため、プルダウン時などのような実使用環境条件が設計ポイントよりずれた場合においても、高顕熱運転が可能となる他、必要負荷能力を満足させながら蒸発温度が露点温度を下回ることなく、除湿量を抑制することができる。
【0026】
この発明に係わる空気調和装置は、また、吸込側乾球温度及び湿度と、湿り空気線図での同一絶対湿度線と飽和曲線との交点を対応させた露点温度マトリックスを設け、この露点温度マトリックスから露点温度を得るようにしたため、露点温度を容易に得ることができ、的確な制御が可能となるものである。
【0027】
この発明に係わる空気調和装置は、また、蒸発側熱交換器から吹出された冷却空気を、蒸発側熱交換器が設置された室の二重床の内側を経由して電算機等の負荷が収納されたラックに供給するようにしたものであるため、電算機室の空気調和を容易に的確に行なうことができる。
【0029】
この発明に係わる空気調和装置の制御方法は、また、吸込温度もしくは吹出温度の目標温度を設定すると共に、運転時の吸込温度もしくは吹出温度が目標温度を含む所定の範囲内となるように制御装置を所定の時間毎に動作させ、運転時の吸込温度もしくは吹出温度が所定の範囲の上限を越えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、所定の範囲の下限を越えた時は、目標蒸発温度を高くするようにしたものであるため、高効率で除湿量の少ない高顕熱運転を行なうことができる。
【0030】
この発明に係わる空気調和装置の制御方法は、また、目標湿度を設定すると共に、蒸発側熱交換器の吸込側湿度が目標湿度を含む所定の範囲内となるように制御装置を所定の時間毎に動作させ、吸込側湿度が所定の範囲の上限を越えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、所定の範囲の下限を越えた時は、目標蒸発温度を高くするようにしたものであるため、必要負荷能力を満足させながら蒸発温度が露点温度を下回ることなく、除湿量を抑制することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1の構成を示す冷媒回路図である。
【図2】 実施の形態1の空気調和装置を電算機室に設置した状態を示す概略図である。
【図3】 実施の形態1における露点温度検知の手順を示すブロック図である。
【図4】 この発明の実施の形態2の制御方法を示す高顕熱制御フローチャート図である。
【図5】 従来の空気調和装置の構成を示す冷媒回路図である。
【図6】 従来の空気調和装置におけるSHF変化を示す概略空気線図である。
【符号の説明】
1 圧縮機、 2 凝縮側熱交換器、 3 絞り装置、 4 蒸発側熱交換器、 5 冷媒配管、 6 送風機、 6A 風路、 7 吸込側乾球温度検出手段、 8 吹出側乾球温度検出手段、 9 蒸発温度検出手段、 10 湿度検出手段、 11 容量制御手段、 12 流量制御手段、 20 電算機室、 21 二重床、 22 室内ユニット、 23 吸込口、 24 吹出口、 25 ラック。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioner and a control method thereof, and more particularly to an air conditioner used as an air conditioner for a computer room and a control method thereof.
[0002]
[Prior art]
FIG. 5 is a refrigerant circuit diagram showing a configuration of a conventional computer room air conditioner.
In this figure, 1 is a variable capacity compressor, 2 is a condensation side heat exchanger for condensing and liquefying the gas refrigerant discharged from the compressor 1, and 3 is a flow rate for reducing the pressure of the liquefied refrigerant from the condensation side heat exchanger 2. A variable expansion device, 4 is an evaporation side heat exchanger that evaporates the decompressed refrigerant, 5 is a refrigerant pipe that connects the above devices to form a refrigerant circuit, and 6 is provided in the evaporation side heat exchanger 4. The air path indicated by the arrow 6A is formed by the blower.
7 is provided on the suction side of the air passage of the evaporation side heat exchanger 4, and suction side dry bulb temperature detecting means for detecting the temperature on the suction side, and 8 is a blow side dry bulb temperature detecting means for detecting the temperature on the outlet side. , 9 is an evaporating temperature detecting means provided on the inflow side of the evaporating side heat exchanger 4 for detecting the evaporating temperature.
[0003]
FIG. 6 is a schematic air diagram showing changes in sensible heat ratio (SHF) in a conventional air conditioner. Here, as an example, design point A (suction, blown air with SHF = 1, air volume 300 m 3 / min, sensible heat capacity 56 kW under conditions of suction air temperature 24 ° C. (dry bulb temperature) and humidity (RH) 45% The state of the air at the inlet, the heat exchanger, and the outlet when the set humidity conditions are different from the heat exchanger and the blower specification designed in the above are shown.
The blowing temperature at 100% load (load 56 kW) at the design point A can be obtained by obtaining ΔT from the sensible heat ratio (SHF) = 1 according to the following equation.
Q = 60 × Va × Cp / v × ΔT / 860 (1)
Q: Sensible heat capacity (kW)
Va: Air volume (m 3 / min)
Cp: Specific heat of air (kcal / kg · ° C)
v: Specific volume of air (m 3 / kg)
ΔT: Dry bulb temperature difference (° C) between suction side and outlet side
[0004]
Here, for the sake of simplicity, ΔT is calculated with Cp = 0.24 and v = 0.85 in equation (1), and the blowout temperature is calculated to be 14.5 ° C. as shown in FIG. It becomes. The dew point temperature at this time is obtained as an intersection of the same absolute humidity line B of SHF = 1 passing through the design point A at the intake air temperature of 24 ° C. and the saturation curve from the fact that SHF = 1 and the wet air diagram, and 11 ° C. It becomes. If this dew point temperature is controlled as the target evaporation temperature, the sensible heat capacity can be satisfied without dehumidification. Conventionally, the dew point temperature + α at a certain design point is set as a target evaporation temperature, and the target evaporation temperature is generally adjusted based on the difference (load) between the suction temperature set value and the suction temperature.
[0005]
[Problems to be solved by the invention]
Since the conventional air conditioner is configured as described above, when the suction state is slightly higher than the design point A in FIG. 6, for example, when the humidity (RH) is 50%, the load is 100% (load 56 kW). The blowout temperature is calculated as 14.5 ° C. from the equation (1) as in the case of 45% humidity (RH). The dew point at this time is the intake air temperature of 24 ° C. and 50% RH in FIG. Is obtained as the intersection of the same absolute humidity line D of SHF = 1 passing through the intersection C and the saturation curve and becomes 13 ° C., and the difference between the blowing temperature and the dew point temperature becomes small. That is, the target evaporation temperature is set without knowing the humidity state of the intake air, and control is performed by setting the target evaporation temperature to 11 ° C. as in the above 45% RH only by the suction side dry bulb temperature information. And the part corresponding to the humidity of 5% will be dehumidified. Especially when pulling down (at 50% RH or higher), dehumidification becomes significant, and excessive dehumidification is performed. As a result, the design condition is significantly lower than 45% RH, and static electricity is generated in a low humidity environment. There has been a problem that there is a possibility of adverse effects on computers such as computers.
[0006]
In addition, as a conventional high sensible heat control method, for example, as shown in Japanese Examined Patent Publication No. 7-92259, a dew condensation water detection means is provided, and this means that dew condensation water (dehumidified drain water) is detected (dehumidified). In some cases, the target evaporating temperature is raised when the detection is performed. However, this method is an evaporating temperature control that does not generate condensed water under high load and high humidity conditions. There was a problem that there was a possibility that it could not be put out.
Conventionally, as a backup in case of such a low humidity condition, humidification is performed by detecting a low humidity condition and humidifying is performed, but in this case, the amount of humidification and humidification capacity are increased. was there.
In addition, when the air condition around a computer such as a computer is not matched with the evaporation temperature control of the evaporation side heat exchanger, the operation becomes inefficient and the power consumption increases.
[0007]
The present invention has been made to solve the above-described problems, and is provided with humidity detection means in the evaporation side heat exchanger to detect the humidity on the suction side and to detect the dew point temperature with respect to the intake air. Accordingly, an object of the present invention is to provide an air conditioner that can perform high sensible heat control according to a load without excessively dehumidifying, and can minimize the amount of dehumidification, and a control method thereof.
[0009]
[Means for Solving the Problems]
The air conditioner according to the present invention also includes a variable capacity compressor, a condensation side heat exchanger that condenses and liquefies the gas refrigerant discharged from the compressor, and a liquefied refrigerant from the condensation side heat exchanger. A squeezing device for depressurization, an evaporation side heat exchanger for evaporating and gasifying the refrigerant depressurized by the squeezing device, a dry bulb temperature detecting means for detecting the temperature on the suction side or the outlet side of the evaporation side heat exchanger, Humidity detection means for detecting the humidity on the suction side of the evaporation side heat exchanger, evaporation temperature detection means for detecting the evaporation temperature of the evaporation side heat exchanger, and a control device for controlling the evaporation temperature to be higher than the dew point temperature , The target evaporation temperature is set to the dew point temperature, and the controller is operated every predetermined time so that the evaporation temperature during operation falls within a predetermined range including the target evaporation temperature. Exceeding the upper limit of the predetermined range When increasing the capacity of the compressor, the throttle flow rate of the throttle device is increased. When the lower limit of the predetermined range is exceeded, the compressor capacity is reduced and the throttle flow rate of the throttle device is reduced. It is what I did .
[0010]
The air conditioner according to the present invention is also provided with a dew point temperature matrix corresponding to the intersection of the suction side dry bulb temperature and humidity with the same absolute humidity line and saturation curve in the wet air diagram, and this dew point temperature matrix. The dew point temperature is obtained from
[0011]
In the air conditioning apparatus according to the present invention, the cooling air blown out from the evaporation side heat exchanger is subjected to a load such as a computer through the inside of the double floor of the chamber in which the evaporation side heat exchanger is installed. It is intended to be supplied to a stored rack.
[0013]
The control method of the air conditioner according to the present invention also sets a target temperature of the suction temperature or the blowout temperature, and controls the suction temperature or the blowout temperature during operation to be within a predetermined range including the target temperature. When the suction temperature or blowing temperature during operation exceeds the upper limit of the predetermined range, the target evaporation temperature is lowered within the range not lower than the dew point temperature, and exceeds the lower limit of the predetermined range. In this case, the target evaporation temperature is increased.
[0014]
The control method for the air conditioner according to the present invention also sets the target humidity and sets the control device at predetermined time intervals so that the suction side humidity of the evaporation side heat exchanger is within a predetermined range including the target humidity. When the suction side humidity exceeds the upper limit of the predetermined range, the target evaporation temperature is lowered within the range not lower than the dew point temperature, and when the lower limit of the predetermined range is exceeded, the target evaporation temperature is increased. It is what I did.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1.
Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing the configuration of the first embodiment. In this figure, 1 is a variable capacity compressor, 2 is a condensation side heat exchanger for condensing and liquefying the gas refrigerant discharged from the compressor 1, and 3 is a flow rate for reducing the pressure of the liquefied refrigerant from the condensation side heat exchanger 2. A variable expansion device, 4 is an evaporation side heat exchanger that evaporates the decompressed refrigerant, 5 is a refrigerant pipe that connects the above devices to form a refrigerant circuit, and 6 is provided in the evaporation side heat exchanger 4. The air path indicated by the arrow 6A is formed by the blower. 7 is provided on the suction side of the air passage of the evaporation side heat exchanger 4, and suction side dry bulb temperature detecting means for detecting the temperature on the suction side, and 8 is a blow side dry bulb temperature detecting means for detecting the temperature on the outlet side. , 9 is provided on the inflow side of the evaporation side heat exchanger 4, evaporating temperature detecting means for detecting the evaporating temperature, 10 is humidity detecting means provided on the suction side of the evaporation side heat exchanger 4, and 11 is dry on the suction side. Capacitance control means for controlling the capacity of the compressor based on the detection values of the bulb temperature detection means 7 or the blow-off dry bulb temperature detection means 8, the evaporation temperature detection means 9 and the humidity detection means 10, and 12 is the detection of the evaporation temperature detection means 9. This is a flow rate control means for controlling the refrigerant flow rate of the expansion device 3 based on the value.
[0016]
FIG. 2 is a schematic diagram showing a state in which the air conditioner of Embodiment 1 is installed in the computer room. In this figure, 20 is a computer room, and 21 is a double floor forming a free-access floor, and the inside is a passage for cooling air blown out from an indoor unit to be described later. Reference numeral 22 denotes an indoor unit of an air conditioner that houses the evaporation side heat exchanger 4, the expansion device 3, the blower 6, the suction side and blowout side dry bulb temperature detection means 7, 8, the humidity detection means 10, the flow rate control means 12, and the like. At the same time, the computer room air is sucked from the upper suction port 23, and the cooling air is blown out from the lower air outlet 24 to the inside of the floor surface 21. In this embodiment, the upper part is the inlet 23 and the lower part is the outlet 24. However, the lower outlet 24 may be the inlet and the upper inlet 23 may be the outlet by reversing this configuration. it can.
[0017]
Further, in this embodiment, in order to reduce the installation area of the indoor unit, a configuration based on a split system in which refrigerant circuit components such as a compressor and an accumulator are accommodated in an outdoor unit (not shown) is shown. It is also possible to adopt a remote system in which each refrigerant circuit component is accommodated in an indoor unit.
Reference numeral 25 denotes a rack that accommodates computer equipment, and its lower surface communicates with the inside of the double floor 21.
[0018]
In such a configuration, the cooling air blown from the air outlet 24 of the indoor unit 22 passes through the inside of the free-access floor surface 21 as indicated by an arrow 6A, and a rack in which computer equipment as a load is stored. The air that has been sucked into 25 and has finished cooling the computer equipment is discharged upward from the rack 25 into the computer room 20 and sucked into the suction port 23 of the indoor unit 22. In the indoor unit 22, the evaporation temperature of the evaporation side heat exchanger 4 is detected by the evaporation temperature detecting means 9, and the compressor capacity and the refrigerant flow rate of the expansion device are controlled so that this temperature becomes equal to or higher than the dew point temperature.
[0019]
FIG. 3 is a block diagram showing a procedure of dew point temperature detection in the first embodiment.
As shown in FIG. 3 (A), the suction-side dry bulb temperature detected by the suction-side dry bulb temperature detecting means 7 and the humidity detected by the humidity detecting means 10 (here, the relative humidity is explained, but absolute humidity may be used). From the above, the intersection of the dry bulb temperature and the humidity curve on the wet air diagram illustrated in FIG. 6 is obtained, and the sensible heat ratio (SHF) = 1 passing through this intersection, that is, the intersection of the same absolute humidity line and the saturation curve To determine the dew point temperature. In this case, as shown in FIG. 3B, a dew point temperature matrix in which the vertical axis represents the suction-side dry bulb temperature, the horizontal axis represents humidity, and the dew point temperature obtained as described above is displayed at the intersection point in advance. By preparing, if the dry bulb temperature and humidity are known, the dew point temperature can be easily obtained.
The dew-point temperature matrix has a dry bulb temperature interval of 1 ° C. and a humidity interval of 5% . Interpolation approximation is used for each intermediate value, and extrapolation approximation is used outside the matrix range.
[0020]
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. Since the refrigerant circuit diagram and temperature / humidity detection means of this embodiment are the same as those in FIG. 1, the explanation is omitted by using FIG. 1, and the control method of the second embodiment is based on the flowchart of FIG. Will be described.
[0021]
First, in step S1, a target humidity RHm and a target suction temperature or blowing temperature TLm are set. Next, the dew point temperature TR is obtained by the procedure described in the first embodiment from the target humidity RHm and the suction temperature Tin detected by the suction side dry bulb temperature detection means 7 in step S2. Next, in step S3, the initial setting value Tem0 of the target evaporation temperature is set as Tem0 = TR. In step S4, Tem0−ΔTe ≦ Te ≦ Tem0 + ΔTe at a temperature difference ΔTe set in advance with respect to the evaporation temperature Te. Thus, the evaporation temperature Te is controlled at every set elapsed time. If the evaporation temperature Te exceeds the above range, a check is made in step S5. If Tem0 + ΔTe <Te, the compressor capacity F is increased by the capacity control means 11 of the compressor in step S6 and the expansion device 3 The throttle flow rate L is increased by the flow rate control means 12. On the other hand, if Tem0−ΔTe> Te, the compressor capacity F is reduced by the compressor capacity control means 11 and the throttle flow rate L is reduced by the flow control means 12 of the expansion device 3 in step S7.
[0022]
In step S8, it is determined whether or not the current suction temperature or the blowing temperature TL has approached the target set temperature TLm at every set elapsed time. If not, the target evaporation temperature Tem is changed. That is, if not approaching, it is checked in step S9, and if TLm0 + ΔTL <TL at a temperature difference ΔTL set in advance with respect to the suction temperature or the blow-out temperature TL, the target evaporation temperature Tem is set in step S10. Bring it down. However, Te ≧ TR at this time.
On the other hand, if TLm0−ΔTL> TL, the target evaporation temperature Tem is increased in step S11. If the suction temperature or the blowout temperature TL has approached the target set temperature TLm, it is determined in step S12 whether the current humidity RH has approached the target humidity RHm. If it has approached, the target in step S16. The evaporating temperature Tem, the compressor capacity F, and the flow rate L of the throttle device are left as they are. If they are not approaching, the target evaporating temperature Tem is changed. That is, if not approaching, it is checked in step S13, and if RHm + ΔRH <RH with a humidity difference ΔRH set in advance with respect to the humidity RH, the target evaporation temperature Tem is lowered in step S14. However, Te ≧ TR at this time. On the other hand, if RHm−ΔRH> RH, the target evaporation temperature Tem is increased in step S15.
[0023]
By performing such control, the dehumidification amount can be suppressed without the temperature falling below the dew point temperature while satisfying the required load capacity with respect to the set temperature TLm of the suction or blowing temperature.
[0025]
【The invention's effect】
The air conditioner according to the present invention also includes a variable capacity compressor, a condensation side heat exchanger that condenses and liquefies the gas refrigerant discharged from the compressor, and a liquefied refrigerant from the condensation side heat exchanger. A squeezing device for depressurization, an evaporation side heat exchanger for evaporating and gasifying the refrigerant depressurized by the squeezing device, a dry bulb temperature detecting means for detecting the temperature on the suction side or the outlet side of the evaporation side heat exchanger, Humidity detection means for detecting the humidity on the suction side of the evaporation side heat exchanger, evaporation temperature detection means for detecting the evaporation temperature of the evaporation side heat exchanger, and a control device for controlling the evaporation temperature to be higher than the dew point temperature , The target evaporation temperature is set to the dew point temperature, and the controller is operated every predetermined time so that the evaporation temperature during operation falls within a predetermined range including the target evaporation temperature. Exceeding the upper limit of the predetermined range When increasing the capacity of the compressor, the throttle flow rate of the throttle device is increased. When the lower limit of the predetermined range is exceeded, the compressor capacity is reduced and the throttle flow rate of the throttle device is reduced. since as it is obtained by, in the case where the actual operating environment, such as a pull-down time is shifted from the design point also, in addition to high sensible heat operation is possible, the evaporation temperature while satisfying the required load capacity of the dew-point temperature The dehumidification amount can be suppressed without lowering.
[0026]
The air conditioner according to the present invention is also provided with a dew point temperature matrix corresponding to the intersection of the suction side dry bulb temperature and humidity with the same absolute humidity line and saturation curve in the wet air diagram, and this dew point temperature matrix. Since the dew point temperature is obtained from the dew point temperature, the dew point temperature can be easily obtained and accurate control is possible.
[0027]
In the air conditioning apparatus according to the present invention, the cooling air blown out from the evaporation side heat exchanger is subjected to a load such as a computer through the inside of the double floor of the chamber in which the evaporation side heat exchanger is installed. Since it is supplied to the stored rack, air conditioning in the computer room can be performed easily and accurately.
[0029]
The control method of the air conditioner according to the present invention also sets a target temperature of the suction temperature or the blowout temperature, and controls the suction temperature or the blowout temperature during operation to be within a predetermined range including the target temperature. When the suction temperature or blowing temperature during operation exceeds the upper limit of the predetermined range, the target evaporation temperature is lowered within the range not lower than the dew point temperature, and exceeds the lower limit of the predetermined range. In this case, since the target evaporation temperature is increased, high sensible heat operation with high efficiency and low dehumidification amount can be performed.
[0030]
The control method for the air conditioner according to the present invention also sets the target humidity and sets the control device at predetermined time intervals so that the suction side humidity of the evaporation side heat exchanger is within a predetermined range including the target humidity. When the suction side humidity exceeds the upper limit of the predetermined range, the target evaporation temperature is lowered within the range not lower than the dew point temperature, and when the lower limit of the predetermined range is exceeded, the target evaporation temperature is increased. As a result, the dehumidification amount can be suppressed without the evaporation temperature falling below the dew point temperature while satisfying the required load capacity.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram showing the configuration of Embodiment 1 of the present invention.
FIG. 2 is a schematic diagram showing a state where the air conditioner of Embodiment 1 is installed in a computer room.
FIG. 3 is a block diagram showing a procedure for dew point temperature detection in the first embodiment.
FIG. 4 is a high sensible heat control flowchart showing a control method according to Embodiment 2 of the present invention;
FIG. 5 is a refrigerant circuit diagram showing a configuration of a conventional air conditioner.
FIG. 6 is a schematic air diagram showing SHF change in a conventional air conditioner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Condensation side heat exchanger, 3 Throttling device, 4 Evaporation side heat exchanger, 5 Refrigerant piping, 6 Blower, 6A Air path, 7 Suction side dry bulb temperature detection means, 8 Outlet side dry bulb temperature detection means 9 Evaporation temperature detection means, 10 Humidity detection means, 11 Capacity control means, 12 Flow rate control means, 20 Computer room, 21 Double floor, 22 Indoor unit, 23 Suction port, 24 Outlet, 25 Racks.

Claims (5)

容量可変型の圧縮機と、この圧縮機から吐出されたガス冷媒を凝縮液化する凝縮側熱交換器と、上記凝縮側熱交換器からの液化冷媒を減圧する絞り装置と、上記絞り装置によって減圧された冷媒を蒸発ガス化する蒸発側熱交換器と、上記蒸発側熱交換器の吸込側もしくは吹出側の温度を検出する乾球温度検出手段と、上記蒸発側熱交換器の吸込側の湿度を検出する湿度検出手段と、上記蒸発側熱交換器の蒸発温度を検出する蒸発温度検出手段と、上記蒸発温度を露点温度以上に制御する制御装置とを備え、目標蒸発温度を露点温度に設定すると共に、運転時の蒸発温度が上記目標蒸発温度を含む所定の範囲内となるように上記制御装置を所定の時間毎に動作させ、運転時の蒸発温度が上記所定の範囲の上限を越えた時は、圧縮機の容量を大きくすると共に、絞り装置の絞り流量を増加し、上記所定の範囲の下限を越えた時は、圧縮機の容量を小さくすると共に、絞り装置の絞り流量を少なくするようにしたことを特徴とする空気調和装置。Variable capacity compressor, condensing side heat exchanger for condensing and liquefying gas refrigerant discharged from the compressor, throttling device for decompressing the liquefied refrigerant from the condensing side heat exchanger, and decompression by the throttling device An evaporation side heat exchanger for evaporating the generated refrigerant, dry bulb temperature detecting means for detecting the temperature on the suction side or the outlet side of the evaporation side heat exchanger, and the humidity on the suction side of the evaporation side heat exchanger Humidity detecting means for detecting the evaporating temperature, evaporating temperature detecting means for detecting the evaporating temperature of the evaporating side heat exchanger, and a control device for controlling the evaporating temperature to be equal to or higher than the dew point temperature, and setting the target evaporating temperature to the dew point temperature. In addition, the control device is operated every predetermined time so that the evaporation temperature during operation falls within a predetermined range including the target evaporation temperature, and the evaporation temperature during operation exceeds the upper limit of the predetermined range. When the compressor capacity is increased Air while, to increase the aperture flow throttling device, when exceeding the lower limit of the predetermined range, the capacity of the compressor as well as small, is characterized in that so as to reduce the aperture flow throttling device Harmony device. 上記吸込側乾球温度及び湿度と、湿り空気線図での同一絶対湿度線と飽和曲線との交点を対応させた露点温度マトリックスを設け、この露点温度マトリックスから露点温度を得るようにしたことを特徴とする請求項1記載の空気調和装置。  A dew point temperature matrix is provided that correlates the intersection of the suction side dry bulb temperature and humidity with the same absolute humidity line and saturation curve in the wet air diagram, and the dew point temperature matrix is obtained from this dew point temperature matrix. The air conditioner according to claim 1, wherein 上記蒸発側熱交換器から吹出された冷却空気は、上記蒸発側熱交換器が設置された室の二重床の内側を経由して電算機等の負荷が収納されたラックに供給されるようにされたことを特徴とする請求項1または請求項2記載の空気調和装置。  The cooling air blown from the evaporation side heat exchanger is supplied to a rack in which a load such as a computer is stored via the inside of the double floor of the room where the evaporation side heat exchanger is installed. The air conditioner according to claim 1 or 2, wherein the air conditioner is configured as described above. 請求項1〜請求項3のいずれか1項記載の空気調和装置において、吸込温度もしくは吹出温度の目標温度を設定すると共に、運転時の吸込温度もしくは吹出温度が上記目標温度を含む所定の範囲内となるように上記制御装置を所定の時間毎に動作させ、運転時の吸込温度もしくは吹出温度が上記所定の範囲の上限を越えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、上記所定の範囲の下限を越えた時は、目標蒸発温度を高くするようにしたことを特徴とする空気調和装置の制御方法。The air conditioning apparatus according to any one of claims 1 to 3, wherein a target temperature of the suction temperature or the blowout temperature is set, and the suction temperature or the blowout temperature during operation is within a predetermined range including the target temperature. The control device is operated every predetermined time so that the target evaporation temperature is lowered within a range that does not fall below the dew point temperature when the suction temperature or the blowing temperature during operation exceeds the upper limit of the predetermined range. when it exceeds the lower limit of the predetermined range, the control method of the air conditioner being characterized in that so as to increase the target evaporation temperature. 目標湿度を設定すると共に、蒸発側熱交換器の吸込側湿度が上記目標湿度を含む所定の範囲内となるように上記制御装置を所定の時間毎に動作させ、吸込側湿度が上記所定の範囲の上限を越えた時は、目標蒸発温度を露点温度以下とならない範囲で低くし、上記所定の範囲の下限を越えた時は、目標蒸発温度を高くするようにしたことを特徴とする請求項記載の空気調和装置の制御方法。 The target humidity is set, and the controller is operated every predetermined time so that the suction side humidity of the evaporation side heat exchanger is within a predetermined range including the target humidity, and the suction side humidity is within the predetermined range. The target evaporation temperature is lowered within a range that does not fall below the dew point temperature when the upper limit is exceeded, and the target evaporation temperature is increased when the lower limit of the predetermined range is exceeded. The control method of the air conditioning apparatus of 4 .
JP2001331367A 2001-10-29 2001-10-29 Air conditioner and control method thereof Expired - Lifetime JP4043756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331367A JP4043756B2 (en) 2001-10-29 2001-10-29 Air conditioner and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331367A JP4043756B2 (en) 2001-10-29 2001-10-29 Air conditioner and control method thereof

Publications (2)

Publication Number Publication Date
JP2003130430A JP2003130430A (en) 2003-05-08
JP4043756B2 true JP4043756B2 (en) 2008-02-06

Family

ID=19146962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331367A Expired - Lifetime JP4043756B2 (en) 2001-10-29 2001-10-29 Air conditioner and control method thereof

Country Status (1)

Country Link
JP (1) JP4043756B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090323A (en) * 2013-01-07 2014-07-17 엘지전자 주식회사 An air conditioner and controlling method of the same
CN104879836A (en) * 2015-04-24 2015-09-02 广东美的制冷设备有限公司 Variable frequency dehumidifier control method and device and dehumidifier

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4445246B2 (en) * 2003-11-14 2010-04-07 三菱電機株式会社 Air conditioner
JP4513382B2 (en) * 2004-03-31 2010-07-28 ダイキン工業株式会社 Air conditioning system
JP4525465B2 (en) * 2005-05-24 2010-08-18 ダイキン工業株式会社 Air conditioning system
JP4893057B2 (en) * 2006-03-28 2012-03-07 パナソニック株式会社 Sauna equipment
JP2009047367A (en) * 2007-08-21 2009-03-05 Mitsubishi Electric Corp Air conditioner
US8578727B2 (en) 2008-03-21 2013-11-12 Mitsubishi Electric Corporation Indoor unit and air-conditioning apparatus provided with the same
JP5535504B2 (en) * 2009-03-18 2014-07-02 三菱重工業株式会社 Multi-type air conditioner
GB0905871D0 (en) * 2009-04-03 2009-05-20 Eaton Williams Group Ltd Cooling distribution unit
JP5812570B2 (en) * 2010-02-26 2015-11-17 三菱重工業株式会社 High sensible heat type air conditioner
CH705453B1 (en) * 2011-08-31 2015-06-30 Mentus Holding Ag Method of operating a liquid-to-air heat exchange device.
JP5955383B2 (en) * 2012-04-23 2016-07-20 三菱電機株式会社 Air conditioning system
CN104790191B (en) * 2015-04-20 2017-05-10 广东美的制冷设备有限公司 Method and device for controlling dehumidifier and dehumidifier

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140090323A (en) * 2013-01-07 2014-07-17 엘지전자 주식회사 An air conditioner and controlling method of the same
KR102089362B1 (en) * 2013-01-07 2020-03-16 엘지전자 주식회사 An air conditioner and controlling method of the same
CN104879836A (en) * 2015-04-24 2015-09-02 广东美的制冷设备有限公司 Variable frequency dehumidifier control method and device and dehumidifier
CN104879836B (en) * 2015-04-24 2017-08-25 广东美的制冷设备有限公司 Control method, device and the dehumidifier of frequency conversion dehumidifier

Also Published As

Publication number Publication date
JP2003130430A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP4043756B2 (en) Air conditioner and control method thereof
EP2253898B1 (en) Indoor unit and air conditioning apparatus including the same
KR100512281B1 (en) Method for dehumidification of air conditioner
JP5487857B2 (en) Air conditioning system
TW571060B (en) Air conditioner
JP2008224210A (en) Air conditioner and operation control method of air conditioner
JP4445246B2 (en) Air conditioner
JPH11218351A (en) Dehumidifying equipment of air conditioner and controlling method thereof
JP2011137597A (en) Air conditioning device
JP4711438B2 (en) Refrigeration air conditioner and refrigeration air conditioning method
JP2015001359A5 (en)
JP2001116329A (en) Control of air conditioner
JP3684860B2 (en) Air conditioner
JP5133524B2 (en) Air conditioner
JP3160443U (en) Precision air conditioner for server
KR101153421B1 (en) Condensation volume control method for air conditioner
US20240230137A9 (en) Air-conditioning apparatus
JP2010210222A (en) Air conditioner and its control method
CN1101919C (en) Dehumidifying operation control method for air conditioner
JP3108222B2 (en) Air conditioner
JP2019011950A (en) Air conditioner
JP6938950B2 (en) Air conditioning system
JPH04332331A (en) Humidity control method and air-conditioner
JPH06257865A (en) Air conditioner
JP3444360B2 (en) Constant temperature and constant room equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Ref document number: 4043756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term