JP3444360B2 - Constant temperature and constant room equipment - Google Patents

Constant temperature and constant room equipment

Info

Publication number
JP3444360B2
JP3444360B2 JP11952890A JP11952890A JP3444360B2 JP 3444360 B2 JP3444360 B2 JP 3444360B2 JP 11952890 A JP11952890 A JP 11952890A JP 11952890 A JP11952890 A JP 11952890A JP 3444360 B2 JP3444360 B2 JP 3444360B2
Authority
JP
Japan
Prior art keywords
pressure
temperature
heat exchanger
humidity
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11952890A
Other languages
Japanese (ja)
Other versions
JPH0415457A (en
Inventor
浩司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11952890A priority Critical patent/JP3444360B2/en
Publication of JPH0415457A publication Critical patent/JPH0415457A/en
Application granted granted Critical
Publication of JP3444360B2 publication Critical patent/JP3444360B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、恒温恒湿の空気を高精度に作り出し、こ
の恒温恒湿の空気をダクトを通じて配送する恒温恒湿装
置に関するものである。 〔従来の技術〕 第4区および第5図は例えば特公平1−46772号公報
に示された従来の空気調和機の湿度制御装置を示すブロ
ック図および相対湿度推定方法を説明する空気線図であ
り、第4図において、1は空気調和機、2は空気調和機
1が設置される室、3は室2内に設けられる蒸発器、4
ば蒸発器3からの冷媒を圧縮する圧縮機、5は圧縮機4
からの高温高圧冷媒を凝縮する凝縮器、6は凝縮器5か
らの冷媒に膨張作用を与え低温低圧の冷媒と化して、こ
れを蒸発器3へ供給する膨張手段、7は蒸発器3の温度
を検出する温度センサ、8は室2内の温度を検出する温
度センサ、9は温度センサ7,8の出力が加えられ、相対
湿度演算機能を有するマイクロコンピュータ9aを含むと
共に、冷凍サイクルを制御する演算制御装置、10は蒸発
器3の送風ファン、11は凝縮器5の送風ファン、Nは送
風ファン10の送風強さである。 次に動作について説明する。 第4図においては、圧縮機4、凝縮器5、膨張手段6
及び蒸発器3により冷凍サイクルが構成される。この冷
凍サイクルの動作を第5図を参照して説明する。 室内温度がtaでかつ室内室気のエンタルピiaとする
と、先ず温度taの線(c)とエンタルピiaの点からの等
エンタルピ線(b)とが交差する点(d)を通る相対湿
度曲線ψよリ相対湿度が決まる。そしてマイクロコンピ
ュータ9aに各等エンタルピ線をパラメータとした室内温
度と相対湿度の関係が入力され、求めた室内空気のエン
タルピiaと室内温度taとから相対湿度ψが演算される。 上述のように室内の相対湿度ψは蒸発器温度および室
内温度を検出する2個の温度センサ7,8と、これらの両
温度センサ7,8の検出値と送風強さNとに基づいて、上
述のような演算処理をする比較的簡易なマイクロコンピ
ュータ9aとを用いて室内の相対湿度の推定値を得ること
ができ、これによって従来用いられてきた高価な湿度セ
ンサが不要となり、制御系を安価に構成し得る。 〔発明が解決しようとする課題〕 従来の空気調和機の湿度制御装置は以上のように構成
されているので、蒸発器3の出口空気の温・湿度(エン
タルピ)は容易に推定ができるが、この蒸発器3の送風
の下流側に加熱器を設けた場合、加熱器は蒸発器とは別
の制御系統となっているため、その出口空気の温・湿度
を推定するには、全く別の推定アルゴリーズムを設けな
ければならないという課題があった。 この発明は、上記のような課題を解消するためになさ
れたもので、1つの冷凍サイクルによって、加熱、冷
却、除湿等を自由に行えるとともに、調温・調湿された
空気の温・湿度の推定をすべて、単一冷凍サイクルのデ
ータを用いて行うことができるように成し、これによっ
て推定アルゴリズムを簡略化し、広範囲にかつ高応答性
を持った調温・調湿ができる恒温恒湿装置を得ることを
目的とする。 〔課題を解決するための手段〕 この発明に係る恒温恒湿装置は、2つの室内熱交換器
をダクトの中に風の流れに対して直列になるように配置
し、凝集器よりの高圧液冷媒と蒸発器よりの低圧湿り冷
媒とを熱交換すると共にその出口を上記圧縮機の吸入口
と接続した高低圧熱交換アキュムレータと、高圧ガス管
と高圧液管と高圧サブクール管と低圧湿り管との4本の
配管と、室外熱交換器と、上記2つの室内熱交換器及び
室外熱交換器の各一端に高圧ガス管と低圧湿り管とを各
々電磁弁を介して流路選択可能に接続し、かつ各室内及
び室外熱交換器の他端に電子膨張弁の一端を接続し、こ
の電子膨張弁の他端に高圧液管と高圧サブクール管とを
各々電磁弁を介して流路選択可能接続すると共に、利用
者の設定した温・湿度設定値から、2つの室内熱交換器
の運転モードを決定し、除湿量に相当する蒸発器能力、
加熱量に相当する凝縮器能力および目標とすべき蒸発器
配管表面温度、凝縮器配管表面温度に相当する冷凍サイ
クルの低圧・高圧を推定する演算手段と、低圧は湿度目
標値から、高圧は温度目標値からと、高・低圧を別々に
制御する制御手段とを設けたものである。 〔作用〕 この発明における恒温恒湿装置は、各配管を流れる冷
媒が運転モードにかかわらず固定しているため、暖房運
転を行う時は、その室外または室内熱交換器のみの一端
を高圧ガス管に開放し、他端を高圧液管に開放する。そ
の時の電子膨張弁は全開である。また冷房運転を行う時
は、その室外または室内熱交換器のみの一端を低圧湿リ
管に開放し、他端を高圧サブクール管に開放し、電子膨
張弁で熱交換器出口が、適当な湿り冷媒となるように開
度制御を行う。このように、目標とすべき温度・湿度に
応じて2つの室内熱交換器を別個にそれぞれ暖房運転、
冷房運転、停止と切り換えることにより、空気の加熱、
冷却、除湿を行うことができる。このような装置におい
て、利用者が設定した温・湿度目標値および冷凍サイク
ルの冷媒特性値から蒸発器における除湿量、凝集器にお
ける加熱量を計算・推定し、かつ、冷凍サイクルの高圧
・低圧を自由に制御することにより、1つの冷凍サイク
ルで高精度に温・湿度を制御することが可能になる。 〔発明の実施例〕 以下、この発明の一実施例を図について説明する。 第1図において、4は圧縮機、12は室外熱交換器、13
は室内熱交換器No.1,14は室内熱交換器No.2,15は室内熱
交換器13,14が直列に配されたダクト、16は室内熱交換
器No.2の下流側に配された加湿器、17はダクト15用の送
風ファン、18は室外熱交換器12用の室外ファン、19は高
圧サブクール管、20は高圧液管、21は低圧湿り管、22は
高圧ガス管、23は高低圧熱交換アキュムレータ、24は各
熱交換器13,14,12の一端、25は同じく他端、26は各熱交
換器他端25に接続された電子膨張弁、27は各熱交換器一
端24と高圧ガス管22との流路間に接続された電磁弁、28
は同熱交換器一端24と低圧湿り管21との流路間に接続さ
れた電磁弁、29は同熱交換器他端25に接続された電子膨
張弁26と高圧液管20との流路間に介在する電磁弁、30は
同電子膨張弁26と高圧サブクール管19との流路間に介在
する電磁弁である。 以上のように各室内熱交換器13,14と4本の配管19〜2
2との接続形式と、室外熱交換器12と4本の配管19〜22
との接続形式は全く同じ構成となっている。 また、31,32はそれぞれ圧縮機4の吐出、吸入口につ
けられた温度センサ、33,34は室内熱交換器No.1(13)
の一端24、他端25に設けられた温度センサ、35,36は室
内熱交換器No.2(14)の一端24、他端25に設けられた温
度センサ、37,38は室内熱交換器13,14に設けられた飽和
温度検出用温度センサ、39,40はダクト15の入口、出口
のに設けられた温度センサ、41,42はダクト15の入口、
出口に設けられた温度センサである。 また、43は使用者が温・湿度目標値を設定する設定
部、44は冷凍サイクルの低圧、高圧を制御する制御部で
あり、上記温・湿度目標値及び温度センサ31,32〜40、
湿度センサ41,42の出力に基づいて冷媒特性値から蒸発
器の除湿量及び凝縮器の加熱量を推定演算する演算手段
としてのマイクロコンピュータ44aを含んでいる。 次に動作について説明する。 負荷側の空気温・湿度の推定および冷凍サイクルの低
圧・高圧の決定方法を数式を用いて説明する。 室内熱交換器No.1(13)が蒸発器、室内熱交換器No.2
(14)が凝縮器として動作している場合を考えると、室
内熱交換器No.1(13)が除湿器、室内熱交換器No.2(1
4)が加熱器として作用していることになる。この時、
室内熱交換器No.1(13)の冷媒側入口・出口エンタルピ
をそれぞれhei,heo、室内熱交換器No.1(13)を流れる
冷媒流量をGeとすると冷房能力Qeは、 Qe=Ge(heo−hei) ……(1) となる。 また、室内熱交換器No.1(13)の空気側入口・出口エ
ンタルピをそれぞれha1,ha2、ダクト内の風量をGaとす
ると、上記冷房能力Qeは、 Qe=Ga(ha1一ha2) ……(2) とも表現されるため、両氏(1),(2)より室内熱交
換器No.1(13)の出口空気エンタルピha2が求まる。ま
た、室内熱交換器No.1(13)の伝熱面積をA1、冷媒と空
気の熱通過率をK1、室内熱交換器No.1(13)での冷媒側
及び空気側の入口・出口温度より求まる対数平均温度差
をΔt1とすると、上記冷房能力Qeは Qe=A1K1Δt1 ……(3) となるので、室内熱交換器No.1(13)の出口空気温度ta
2を求めることができる。 室内熱交換器No.2(14)についても同様に考え、冷媒
側入口・出口エンタルピhci・hco,空気側入口、出口エ
ンタルピをha2、ha3、室内熱交換器No.2(14)を流れる
冷媒流量をGc、室内熱交換器No.2(14)の伝熱面積を
A2、冷媒と空気の熱通過率をK2、冷媒側及び空気側の入
口・出口温度より求まる対数平均温度差をΔt2、室内熱
交換器No.2(14)での暖房能力をQcとすると、ダクト15
内の風量はGaであるから Qc=Gc(hci−ha2) ……(4) Qc=Ga(ha3−ha2) ……(5) Qc=A2K2Δ ……(6) の3式が成り立ち、これらから室内熱交換器No.2(14)
の空気側出口エンタルピha3と空気側出口温度ta3とが求
まる。すると、空気線図から室内熱交換器No.2(14)出
口での相対湿度ψも求めることができる。 以上を第2図の冷媒側の挙動を示すモリエル線図およ
び第3図の空気側の挙動を示す空気線図をもとに説明す
る。まず、第3図において、室内熱交換器No.1(13)の
入口αの空気の温度、エンタルピ、相対湿度、絶対湿度
をそれぞれtα,hα,ψα,xαとする。これが配管表面
温度がtfである室内熱交換器No.1(13)によって冷却・
除湿されることにより、の軌跡をたどってβとなる。 βの空気の温度、エンタルピ、相対湿度、絶対湿度を
それぞれtβ,hβ,ψβ,xβとすると、tf<tβ
α,hβ<hα、100≧ψβ>ψβ,xβ≦xαなる関係
にある。次に室内熱交換器No.2(14)により加熱される
ため、の軌跡をたどりγの状態となる。γの温度、エ
ンタルピ、相対湿度、絶対湿度はtγ,hγ,ψγ,xγ
あり、tγ>tβ,hγ>hβ,ψγ<ψβ,xγ=xβ
関係にある。 この時の冷媒の挙動を第2図に示すモリエル線図で見
てみると、圧縮機4を出た高温・高圧の冷媒(a)は、
凝縮器として働いている室内熱交換器No.2(14)で冷却
(周囲の空気を加熱)され(b)、さらに高低圧熱交換
アキュムレータ23で冷却され(c)た後、電子膨張弁26
で減圧され(d)、蒸発器として働いている室内熱交換
器No.1(13)で加熱(周囲の空気を冷却・除湿)され
(e)、高低圧熱交換アキュムレータ23で液分離後、少
し加熱され(f)、再び圧縮機4へ吸込まれる。 以上の動作により、空気の調湿・調温が行われるた
め、冷凍サイクルの各部の温度をモニタしておけば、設
定部43で設定された温度・湿度にダクト15内の温度・湿
度を近づけるには、蒸発器を流れる冷媒の圧力(低圧)
および凝縮器を流れる冷媒の圧力(高圧)をどのような
値に設定すればよいかは先に挙げた各式(1)〜(6)
より容易に類推することができる。すなわち、設定温度
・湿度はtγ,ψγに他ならないから、空気線図よりx
γ,hγがすぐにわかる。ここでβはαf上にあり、かつ
βにおいてxβ=xγでなければならないので、その交
点としてβでの状態量が求まる。 よって入口状態αの温・湿度tα,ψαをモニタして
おけば、必要な除湿量、空気側エンタルピ変化量等を計
算することができ、目標とすべき高圧・低圧が決定され
ることになる。 そして制御部44により圧縮機4の周波数、室外熱交換
器12の運転モード及び室外ファン18の回転数等を調節す
ることにより、高圧・低圧をそれぞれ目標高圧・目標低
圧へ近づけることができる。また、加湿器16で適当に加
湿を行うことができる。 なお、上記実施例では各熱交換器13,14,12に4個の電
磁弁27〜30を用いたが、三方切換弁あるいは四方弁等を
用いてもよい。 〔発明の効果〕 以上のように、この発明によれば、圧縮機と高低圧熱
交換アキュムレータと、高圧ガス管と、高圧液管と、高
圧サブクール管と、低圧湿り管を配し、各熱交換器を室
内外の区別なく全く同一の流路選択可能とし、各熱交換
器の一端に高圧ガス管と低圧湿リ管とを選択可能とし、
他端に電子膨張弁を介して、高圧液管と高圧サブクール
管とを選択可能とした冷凍サイクルを用い、2つの室内
熱交換器を1つのダクト内に、風の流れに対して直列に
なるように配置すると共に、設定温・湿度および冷凍サ
イクルの各部温度から各熱交換器の運転モードおよび蒸
発器での除湿量と凝縮器での加熱量、またそれに基づ
く、冷凍サイクルが目標とすべき高圧・低圧を推定し冷
凍サイクルを制御するように構成したので、一つの冷凍
サイクルで高圧と低圧の両者を自由に制御することで
き、これによって温・湿度制御を高範囲に高精度で行う
ことができ、また、安価で高応答性を持った装置が得ら
れる効果がある。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a constant-temperature and constant-humidity apparatus that generates constant-temperature and constant-humidity air with high precision and distributes the constant-temperature and constant-humidity air through a duct. [Prior Art] FIGS. 4 and 5 are a block diagram and a psychrometric chart for explaining a relative humidity estimating method, for example, of a conventional air conditioner humidity control device disclosed in Japanese Patent Publication No. Hei 4-46772. In FIG. 4, reference numeral 1 denotes an air conditioner, 2 denotes a room in which the air conditioner 1 is installed, 3 denotes an evaporator provided in the room 2,
For example, a compressor for compressing the refrigerant from the evaporator 3 and a compressor 5
A condenser for condensing the high-temperature and high-pressure refrigerant from the condenser; 6 an expansion means for expanding the refrigerant from the condenser 5 into a low-temperature and low-pressure refrigerant to supply the refrigerant to the evaporator 3; , A temperature sensor 8 for detecting the temperature in the chamber 2, a reference numeral 9 including a microcomputer 9a to which the outputs of the temperature sensors 7 and 8 are added and having a relative humidity calculation function, and controlling a refrigeration cycle. The arithmetic and control unit, 10 is a blower fan of the evaporator 3, 11 is a blower fan of the condenser 5, and N is a blower intensity of the blower fan 10. Next, the operation will be described. In FIG. 4, the compressor 4, the condenser 5, the expansion means 6
And the evaporator 3 constitute a refrigeration cycle. The operation of the refrigeration cycle will be described with reference to FIG. Assuming that the room temperature is ta and the room air is enthalpy ia, first, a relative humidity curve 通 る passing through a point (d) where a line (c) of the temperature ta intersects with an isoenthalpy line (b) from the point of the enthalpy ia. The relative humidity is determined. Then, the relationship between the room temperature and the relative humidity using the respective enthalpy lines as parameters is input to the microcomputer 9a, and the relative humidity ψ is calculated from the obtained enthalpy ia of the room air and the room temperature ta. As described above, the indoor relative humidity ψ is determined based on the two temperature sensors 7 and 8 that detect the evaporator temperature and the indoor temperature, and the detection values of these two temperature sensors 7 and 8 and the blowing intensity N. The estimated value of the relative humidity in the room can be obtained by using the relatively simple microcomputer 9a that performs the arithmetic processing as described above, whereby the expensive humidity sensor conventionally used becomes unnecessary, and the control system can be implemented. It can be constructed at low cost. [Problem to be Solved by the Invention] Since the conventional humidity controller of the air conditioner is configured as described above, the temperature and humidity (enthalpy) of the outlet air of the evaporator 3 can be easily estimated. When a heater is provided on the downstream side of the blower of the evaporator 3, the heater has a control system different from that of the evaporator. There was a problem that an estimation algorithm had to be provided. The present invention has been made in order to solve the above-described problems. In one refrigeration cycle, heating, cooling, dehumidification, and the like can be freely performed, and the temperature and humidity of the temperature- and humidity-controlled air can be controlled. All estimations can be performed using data from a single refrigeration cycle, which simplifies the estimation algorithm, and provides a wide-range, highly responsive temperature and humidity control system capable of controlling temperature and humidity. The purpose is to obtain. [Means for Solving the Problems] The constant temperature and humidity apparatus according to the present invention includes two indoor heat exchangers arranged in a duct so as to be in series with the flow of wind, and a high pressure liquid from the aggregator. A high-low pressure heat exchange accumulator that exchanges heat between the refrigerant and the low-pressure wet refrigerant from the evaporator and has an outlet connected to the suction port of the compressor, a high-pressure gas pipe, a high-pressure liquid pipe, a high-pressure subcool pipe, and a low-pressure wet pipe. , An outdoor heat exchanger, and a high-pressure gas pipe and a low-pressure wet pipe connected to each end of the two indoor heat exchangers and one end of the outdoor heat exchanger via a solenoid valve, respectively, so that flow paths can be selected. And one end of an electronic expansion valve is connected to the other end of each indoor and outdoor heat exchanger, and the other end of the electronic expansion valve can select a high-pressure liquid pipe and a high-pressure subcool pipe via an electromagnetic valve. Connect to the two rooms based on the temperature and humidity set by the user. Determine the operation mode of the internal heat exchanger, evaporator capacity corresponding to the amount of dehumidification,
Calculation means for estimating the condenser capacity corresponding to the heating amount, the target evaporator pipe surface temperature to be targeted, the low pressure / high pressure of the refrigeration cycle corresponding to the condenser pipe surface temperature, the low pressure is based on the humidity target value, and the high pressure is based on the temperature. Control means for separately controlling the high pressure and the low pressure from the target value is provided. [Operation] In the constant temperature and humidity apparatus according to the present invention, since the refrigerant flowing through each pipe is fixed regardless of the operation mode, one end of only the outdoor or indoor heat exchanger is connected to the high-pressure gas pipe when performing the heating operation. And the other end is opened to a high-pressure liquid pipe. The electronic expansion valve at that time is fully open. When performing the cooling operation, open one end of the outdoor or indoor heat exchanger only to the low-pressure wet pipe, open the other end to the high-pressure subcool pipe, and use an electronic expansion valve to set the heat exchanger outlet to an appropriate level. The opening degree is controlled so as to be a refrigerant. In this way, the two indoor heat exchangers are separately operated for heating in accordance with the target temperature and humidity,
By switching between cooling operation and stop, air heating,
Cooling and dehumidification can be performed. In such a device, the amount of dehumidification in the evaporator and the amount of heating in the aggregator are calculated and estimated from the temperature and humidity target values set by the user and the refrigerant characteristic values of the refrigeration cycle, and the high and low pressures of the refrigeration cycle are calculated. By controlling freely, temperature and humidity can be controlled with high accuracy in one refrigeration cycle. An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 4 is a compressor, 12 is an outdoor heat exchanger, 13
Are the indoor heat exchangers No. 1 and 14, the indoor heat exchangers No. 2 and 15 are the ducts in which the indoor heat exchangers 13 and 14 are arranged in series, and 16 is the downstream side of the indoor heat exchanger No. 2. Humidifier, 17 is a blower fan for duct 15, 18 is an outdoor fan for outdoor heat exchanger 12, 19 is a high-pressure subcool pipe, 20 is a high-pressure liquid pipe, 21 is a low-pressure wet pipe, 22 is a high-pressure gas pipe, 23 is a high and low pressure heat exchange accumulator, 24 is one end of each heat exchanger 13, 14, 12, 25 is the other end, 26 is an electronic expansion valve connected to the other end 25 of each heat exchanger, 27 is each heat exchange A solenoid valve connected between the flow path between the vessel end 24 and the high-pressure gas pipe 22;
Is a solenoid valve connected between the flow path between the heat exchanger one end 24 and the low-pressure wet pipe 21; 29 is a flow path between the electronic expansion valve 26 and the high-pressure liquid pipe 20 connected to the other end 25 of the heat exchanger. An electromagnetic valve 30 interposed therebetween is an electromagnetic valve interposed between the flow paths of the electronic expansion valve 26 and the high-pressure subcool pipe 19. As described above, each of the indoor heat exchangers 13 and 14 and the four pipes 19 to 2
2, the outdoor heat exchanger 12 and four pipes 19-22
Has exactly the same configuration. 31 and 32 are temperature sensors attached to the discharge and suction ports of the compressor 4, respectively, and 33 and 34 are indoor heat exchangers No. 1 (13).
Temperature sensors provided at one end 24 and the other end 25 of the indoor heat exchanger 35, 36 are temperature sensors provided at one end 24 and the other end 25 of the indoor heat exchanger No. 2 (14), and 37 and 38 are indoor heat exchangers. Saturation temperature detection temperature sensors provided at 13, 14; 39, 40 are inlets of duct 15, temperature sensors provided at outlets; 41, 42 are inlets of duct 15,
This is a temperature sensor provided at the outlet. Reference numeral 43 denotes a setting unit for the user to set the temperature / humidity target values, and reference numeral 44 denotes a control unit for controlling the low pressure and the high pressure of the refrigeration cycle, and the temperature / humidity target values and the temperature sensors 31, 32 to 40,
It includes a microcomputer 44a as a calculating means for estimating and calculating the amount of dehumidification of the evaporator and the amount of heating of the condenser from the refrigerant characteristic values based on the outputs of the humidity sensors 41 and 42. Next, the operation will be described. The method of estimating the air temperature and humidity on the load side and determining the low pressure and high pressure of the refrigeration cycle will be described using mathematical expressions. Indoor heat exchanger No.1 (13) is an evaporator, indoor heat exchanger No.2
Considering the case where (14) operates as a condenser, indoor heat exchanger No. 1 (13) is dehumidifier and indoor heat exchanger No. 2 (1
4) is acting as a heater. At this time,
Assuming that the enthalpy on the refrigerant side of the indoor heat exchanger No. 1 (13) is hei, heo and the flow rate of the refrigerant flowing through the indoor heat exchanger No. 1 (13) is Ge, the cooling capacity Qe is Qe = Ge ( heo-hei) ... (1) Also, assuming that the air-side inlet and outlet enthalpies of the indoor heat exchanger No. 1 (13) are ha 1 and ha 2 and the air volume in the duct is Ga, the cooling capacity Qe is Qe = Ga (ha 1 ha 2) (2) also to be expressed, Messrs. (1), it is obtained outlet air enthalpy ha 2 (2) from the indoor heat exchanger No.1 (13). Also, the heat transfer area of the indoor heat exchanger No. 1 (13) is A 1 , the heat transfer rate between the refrigerant and air is K 1 , and the refrigerant side and air side inlets of the indoor heat exchanger No. 1 (13) · the logarithmic mean temperature difference calculated from the outlet temperature When Delta] t 1, the cooling capacity Qe because the Qe = a 1 K 1 Δt 1 ...... (3), the outlet air of the indoor heat exchanger No.1 (13) Temperature ta
You can ask for 2 . The same applies to the indoor heat exchanger No. 2 (14), and the refrigerant side inlet / outlet enthalpy hci / hco, the air side inlet / outlet enthalpy are ha 2 and ha 3 , and the indoor heat exchanger No. 2 (14) is used. The refrigerant flow rate is Gc, and the heat transfer area of indoor heat exchanger No.2 (14) is
A 2 , K 2 is the heat transfer rate between the refrigerant and air, Δt 2 is the logarithmic average temperature difference obtained from the inlet and outlet temperatures of the refrigerant and air, and Qc is the heating capacity of the indoor heat exchanger No. 2 (14). Then, duct 15
Since the air volume of the inner is a Ga Qc = Gc (hci-ha 2) ...... (4) Qc = Ga (ha 3 -ha 2) ...... (5) Qc = A 2 K 2 Δ 2 ...... (6) The following three equations hold, and from these, the indoor heat exchanger No. 2 (14)
The air-side outlet enthalpy ha 3 and the air-side outlet temperature ta 3 are obtained. Then, the indoor heat exchanger from the psychrometric chart No.2 (14) relative humidity [psi 3 at the outlet can also be determined. The above is described based on the Mollier diagram showing the behavior on the refrigerant side in FIG. 2 and the psychrometric diagram showing the behavior on the air side in FIG. First, in FIG. 3, the temperature, enthalpy, relative humidity, and absolute humidity of the air at the inlet α of the indoor heat exchanger No. 1 (13) are represented by t α , h α , ψ α , x α , respectively. This cooled by the indoor heat exchanger No.1 pipe surface temperature is t f (13) ·
By being dehumidified, it follows the trajectory and becomes β. Assuming that the temperature, enthalpy, relative humidity, and absolute humidity of the air of β are t β , h β , ψ β , and x β , respectively, t f <t β <
a t α, h β in <h α, 100 ≧ ψ β > ψ β, consisting of x β ≦ x α relationship. Next, since it is heated by the indoor heat exchanger No. 2 (14), it follows the trajectory and enters the state of γ. Temperature of gamma, enthalpy, relative humidity, absolute humidity t γ, h γ, ψ γ , a x γ, t γ> t β , the h γ> h β, ψ γ <ψ β, x γ = x β In a relationship. Looking at the behavior of the refrigerant at this time in a Mollier diagram shown in FIG. 2, the high-temperature and high-pressure refrigerant (a) that has exited the compressor 4 is:
After being cooled (heating the surrounding air) by the indoor heat exchanger No. 2 (14) functioning as a condenser (b) and further cooled by the high / low pressure heat exchange accumulator 23 (c), the electronic expansion valve 26
(D), heated (cooling and dehumidifying the surrounding air) in the indoor heat exchanger No. 1 (13) working as an evaporator (e), and after liquid separation in the high / low pressure heat exchange accumulator 23, It is slightly heated (f) and sucked into the compressor 4 again. With the above operation, the humidity and temperature of the air are adjusted.If the temperature of each part of the refrigeration cycle is monitored, the temperature and humidity in the duct 15 are brought closer to the temperature and humidity set by the setting unit 43. Is the pressure (low pressure) of the refrigerant flowing through the evaporator
And what value the pressure (high pressure) of the refrigerant flowing through the condenser should be set in each of the expressions (1) to (6) given above.
It can be more easily analogized. That is, since the set temperature and humidity are nothing but t γ and ψ γ , x
γ and h γ are immediately known. Here beta is on .alpha.f, and so must be x β = x γ in beta, the state amount in the beta is obtained as the intersection. Therefore, by monitoring the temperature and humidity t α and ψ α of the inlet state α, it is possible to calculate the required dehumidification amount, the change amount on the air side enthalpy, etc., and determine the target high pressure and low pressure. become. By adjusting the frequency of the compressor 4, the operation mode of the outdoor heat exchanger 12, the rotation speed of the outdoor fan 18, and the like by the control unit 44, the high pressure and the low pressure can be made closer to the target high pressure and the target low pressure, respectively. Further, the humidifier 16 can appropriately perform humidification. In the above embodiment, four solenoid valves 27 to 30 are used for each of the heat exchangers 13, 14, and 12, but a three-way switching valve or a four-way valve may be used. [Effects of the Invention] As described above, according to the present invention, a compressor, a high / low pressure heat exchange accumulator, a high pressure gas pipe, a high pressure liquid pipe, a high pressure subcool pipe, and a low pressure wet pipe are arranged, The same flow path can be selected for the heat exchanger regardless of whether it is indoor or outdoor, and a high-pressure gas pipe and a low-pressure wet pipe can be selected at one end of each heat exchanger.
Two indoor heat exchangers are connected in series to the flow of wind in one duct using a refrigeration cycle that can select a high-pressure liquid pipe and a high-pressure subcool pipe via the electronic expansion valve at the other end. The operation mode of each heat exchanger, the amount of dehumidification in the evaporator and the amount of heating in the condenser, and the refrigeration cycle based on it should be set based on the set temperature / humidity and the temperature of each part of the refrigeration cycle. Since the refrigeration cycle is controlled by estimating the high and low pressures, both high and low pressures can be controlled freely in one refrigeration cycle, which enables temperature and humidity control to be performed in a wide range with high accuracy. In addition, there is an effect that an inexpensive and highly responsive device can be obtained.

【図面の簡単な説明】 第1図はこの発明の一実施例による恒温恒湿装置を示す
構成図、第2図はモリエル線図上の冷媒の特性図、第3
図は同装置におけるダクト内の2つの熱交換器が上流側
からそれぞれ蒸発器、凝縮器である時の空気の状態変化
を表した空気線図、第4図は従来の空気調和機の湿度制
御装置を示すブロック図、第5図は従来の空気調和機に
おける相対湿度推定法を示す特性図である。 4は圧縮機、12は室外熱交換器、13,14は室内熱交換
器、15はダクト、19は高圧サブクール管、20ば高圧液
管、21ば低圧湿り管、22は高圧ガス管、23は高低圧熱交
換アキュムレータ、24,25はそれぞれ各熱交換器の一
端,他端、26は電子膨張弁、27〜30は電磁弁、31〜40は
温度センサ、41,42は湿度センサ、44は制御部、44aはマ
イクロコンピュータ。 なお、図中、同一符号は同一、又は相当部分を示す。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a constant temperature and humidity apparatus according to an embodiment of the present invention, FIG. 2 is a characteristic diagram of a refrigerant on a Mollier diagram, FIG.
Fig. 4 is an air line diagram showing changes in the state of air when the two heat exchangers in the duct are evaporators and condensers from the upstream side, respectively. Fig. 4 is the humidity control of a conventional air conditioner. FIG. 5 is a block diagram showing the apparatus, and FIG. 5 is a characteristic diagram showing a relative humidity estimation method in a conventional air conditioner. 4 is a compressor, 12 is an outdoor heat exchanger, 13 and 14 are indoor heat exchangers, 15 is a duct, 19 is a high-pressure subcooled pipe, 20 is a high-pressure liquid pipe, 21 is a low-pressure wet pipe, 22 is a high-pressure gas pipe, 23 Are high and low pressure heat exchange accumulators, 24 and 25 are one end and the other end of each heat exchanger, 26 is an electronic expansion valve, 27 to 30 are solenoid valves, 31 to 40 are temperature sensors, 41 and 42 are humidity sensors, 44 Is a control unit, and 44a is a microcomputer. In the drawings, the same reference numerals indicate the same or corresponding parts.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−52964(JP,A) 特開 平2−68467(JP,A) 特開 昭62−14273(JP,A) 特開 昭58−184476(JP,A) 特開 昭61−289246(JP,A) 実開 昭55−67954(JP,U) 特公 平1−46772(JP,B2)   ────────────────────────────────────────────────── ─── Continuation of front page       (56) References JP-A-2-52964 (JP, A)                 JP-A-2-68467 (JP, A)                 JP-A-62-14273 (JP, A)                 JP-A-58-184476 (JP, A)                 JP-A-61-289246 (JP, A)                 Showa 55-67954 (JP, U)                 Tokiko Hei 1-46772 (JP, B2)

Claims (1)

(57)【特許請求の範囲】 【請求項1】送風ダクト内に風の流れに対して直列に配
された2つの室内熱交換器と、室外熱交換器と、圧縮機
と、凝縮器よりの高圧液冷媒と蒸発器よりの低圧湿り冷
媒とを熱交換すると共にその出口を上記圧縮機の吸入口
と接続した高低圧熱交換アキュムレータと、上記高低圧
熱交換アキュムレータにそれぞれ一端が接続された高圧
サブクール管、高圧液管及び低圧湿り管と、上記圧縮機
の吐出側に一端が接続された高圧ガス管と、上記2つの
室内熱交換器及び上記室外熱交換器の各一端をそれぞれ
上記低圧湿り管又は高圧ガス管に選択的に接続するため
の電磁弁と、上記2つの室内熱交換器及び上記室外熱交
換器の各他端にそれぞれ一端が接続される電子膨張弁
と、上記電子膨張弁の各他端を上記高圧サブクール管又
は高圧液管に選択的に接続する電磁弁と、上記2つの室
内熱交換器とそれらの上記一端及び他端と上記送風ダク
トの入口側及び出口側とにそれぞれ設けられた温度セン
サと、上記送風ダクトの入口側及び出口側に設けられた
湿度センサと、温度目標値及び湿度目標値を設定する設
定部と、上記各温度センサ及び湿度センサの検出値と冷
凍サイクルの所定の冷媒特性とに基づいて上記冷凍サイ
クルの冷媒の高圧、低圧を推定する演算手段と、上記演
算手段で推定された低圧、高圧に応じて低圧は上記湿度
目標値に基づき高圧は上記温度目標値に基づいて低圧の
冷媒と高圧の冷媒とを別々に制御する制御手段とを備え
て成る恒温恒湿装置。
(57) [Claims 1] An indoor heat exchanger, an outdoor heat exchanger, a compressor, and a condenser arranged in series in a ventilation duct with respect to the flow of wind. The heat exchange between the high-pressure liquid refrigerant and the low-pressure wet refrigerant from the evaporator is performed, and one end is connected to each of the high-low pressure heat exchange accumulator whose outlet is connected to the suction port of the compressor, and the high-low pressure heat exchange accumulator. A high-pressure subcooled pipe, a high-pressure liquid pipe, a low-pressure wet pipe, a high-pressure gas pipe having one end connected to the discharge side of the compressor, and one end of each of the two indoor heat exchangers and the outdoor heat exchanger connected to the low-pressure pipe. An electromagnetic valve for selectively connecting to a wet pipe or a high-pressure gas pipe; an electronic expansion valve having one end connected to each of the other ends of the two indoor heat exchangers and the outdoor heat exchanger; Connect the other end of the valve to the high pressure subcool Or a solenoid valve selectively connected to a high-pressure liquid pipe, the two indoor heat exchangers, the temperature sensors provided at the one end and the other end thereof, and the inlet side and the outlet side of the air duct, respectively, Humidity sensors provided on the inlet side and the outlet side of the air duct, a setting unit for setting a temperature target value and a humidity target value, and the detected values of the temperature sensors and the humidity sensors and predetermined refrigerant characteristics of the refrigeration cycle. A calculating means for estimating a high pressure and a low pressure of the refrigerant of the refrigeration cycle based on the low pressure and the high pressure estimated by the calculating means, the low pressure is based on the humidity target value, and the high pressure is a low pressure based on the temperature target value. A constant-temperature and constant-humidity device comprising: a control unit that separately controls a refrigerant and a high-pressure refrigerant.
JP11952890A 1990-05-09 1990-05-09 Constant temperature and constant room equipment Expired - Fee Related JP3444360B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11952890A JP3444360B2 (en) 1990-05-09 1990-05-09 Constant temperature and constant room equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11952890A JP3444360B2 (en) 1990-05-09 1990-05-09 Constant temperature and constant room equipment

Publications (2)

Publication Number Publication Date
JPH0415457A JPH0415457A (en) 1992-01-20
JP3444360B2 true JP3444360B2 (en) 2003-09-08

Family

ID=14763520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11952890A Expired - Fee Related JP3444360B2 (en) 1990-05-09 1990-05-09 Constant temperature and constant room equipment

Country Status (1)

Country Link
JP (1) JP3444360B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2253898B1 (en) * 2008-03-21 2019-09-11 Mitsubishi Electric Corporation Indoor unit and air conditioning apparatus including the same
JP5755753B2 (en) 2011-10-25 2015-07-29 三菱電機株式会社 Illumination unit and image reading apparatus using the same
US8982430B2 (en) 2011-10-25 2015-03-17 Mitsubishi Electric Corporation Lighting unit and image scanner using same

Also Published As

Publication number Publication date
JPH0415457A (en) 1992-01-20

Similar Documents

Publication Publication Date Title
WO2016158938A1 (en) Air conditioner
JP2007333219A (en) Multi-type air-conditioning system
JP6106449B2 (en) Outside air treatment device
Li et al. A DDC-based capacity controller of a direct expansion (DX) air conditioning (A/C) unit for simultaneous indoor air temperature and humidity control–Part I: Control algorithms and preliminary controllability tests
JPS58120054A (en) Air conditioner
Chen et al. An experimental study on the operational characteristics of a direct expansion based enhanced dehumidification air conditioning system
JP2016138666A (en) Air conditioner
JP3444360B2 (en) Constant temperature and constant room equipment
KR101579827B1 (en) Home appliance and controlling method for the same of
CN112944618B (en) Air conditioner capacity estimation method and air conditioner
JPH1114125A (en) Multichamber type air conditioner
JP2000018766A (en) Air conditioner
JP3384150B2 (en) Multi-room air conditioner and operation method thereof
WO2018037496A1 (en) Air conditioning device
JP2893844B2 (en) Air conditioner
JP3225738B2 (en) Air conditioner
JPH08136078A (en) Multi-room cooling and heating device
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JP3199746B2 (en) Multi-room air conditioner
JPH06147558A (en) Radiation air conditioning device
JP2883536B2 (en) Air conditioner
KR20050075099A (en) Linear expansion valve control method of a multi-type air conditioner
JPH046371A (en) Multi-room type air-conditioning machine
JP3284578B2 (en) Operation control device for multi-room air conditioner
JPS60133267A (en) Separate type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees