JP4711438B2 - Refrigeration air conditioner and refrigeration air conditioning method - Google Patents

Refrigeration air conditioner and refrigeration air conditioning method Download PDF

Info

Publication number
JP4711438B2
JP4711438B2 JP2007071123A JP2007071123A JP4711438B2 JP 4711438 B2 JP4711438 B2 JP 4711438B2 JP 2007071123 A JP2007071123 A JP 2007071123A JP 2007071123 A JP2007071123 A JP 2007071123A JP 4711438 B2 JP4711438 B2 JP 4711438B2
Authority
JP
Japan
Prior art keywords
heat exchanger
temperature
use side
enthalpy
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007071123A
Other languages
Japanese (ja)
Other versions
JP2008232511A (en
Inventor
広有 柴
正則 青木
正人 四十宮
一隆 鈴木
尚文 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007071123A priority Critical patent/JP4711438B2/en
Publication of JP2008232511A publication Critical patent/JP2008232511A/en
Application granted granted Critical
Publication of JP4711438B2 publication Critical patent/JP4711438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍空調装置および冷凍空調方法に関するものであり、特にドレン水を排出するドレンポンプを搭載した利用側冷凍空調装置の構造および運転方法に係るものである。   The present invention relates to a refrigeration air-conditioning apparatus and a refrigeration air-conditioning method, and more particularly to a structure and operation method of a use-side refrigeration air-conditioning apparatus equipped with a drain pump that discharges drain water.

従来のドレンポンプを搭載した利用側冷凍空調装置では、ドレン水を排出するドレンポンプと、室温を検出する温度検出手段と、湿度を検出する湿度検出手段と、空調運転を制御するマイクロコンピュータを備え、冷房運転において、一定時間ごとに室温と湿度を読み込み、マイクロコンピュータ内の記憶部に温度と湿度をパラメータとして予め割付された設定領域を決定し、その設定領域に対応してドレンポンプの運転時間と停止時間を決めるものである。   A conventional refrigeration air conditioner equipped with a conventional drain pump includes a drain pump for discharging drain water, a temperature detection means for detecting room temperature, a humidity detection means for detecting humidity, and a microcomputer for controlling the air conditioning operation. In cooling operation, room temperature and humidity are read at regular intervals, a setting area pre-assigned to the storage unit in the microcomputer as parameters of temperature and humidity is determined, and the operation time of the drain pump corresponding to the setting area And stop time.

マイクロコンピュータ内の記憶部に温度と湿度をパラメータとして予め割付された設定領域を設け、高温・高湿度域Aから低温低湿度域Dまで4つの領域A、B、C、Dに区分けしている。検出した室温、湿度は上記4つの領域の内のどの領域にあるのかを判断し、各領域ごとに定めたドレンポンプ運転モードにしたがってドレンポンプを運転する(例えば、特許文献1参照)。   A setting area pre-allocated with temperature and humidity as parameters is provided in the storage unit in the microcomputer, and is divided into four areas A, B, C, and D from a high temperature / high humidity area A to a low temperature / low humidity area D. . It is determined which of the above four areas the detected room temperature and humidity are in, and the drain pump is operated in accordance with the drain pump operation mode determined for each area (see, for example, Patent Document 1).

特開平4−158150号公報(第2頁右下欄第3行〜第3頁左上欄第5行、図1、図3)JP-A-4-158150 (page 2, lower right column, line 3 to page 3, upper left column, line 5, FIG. 1, FIG. 3)

従来の技術では室内空気の温度、湿度の状態からドレンポンプの運転方法を定めているが、室内空気の温度、湿度だけでは熱交換器から発生する除湿量は推測できないという問題がある。たとえば冷房運転時、利用側冷凍空調装置が検出した周囲空気の温度、湿度が高温・高湿度域Aにあてはまっていても、熱交換器の冷媒温度が室内空気の露点温度以上の場合、利用側冷凍空調装置を通過する空気は除湿されないのでドレンは発生しない。その結果、ドレンポンプは無駄運転することになる。   In the conventional technique, the operation method of the drain pump is determined from the temperature and humidity of the room air, but there is a problem that the amount of dehumidification generated from the heat exchanger cannot be estimated only by the temperature and humidity of the room air. For example, during cooling operation, if the ambient air temperature and humidity detected by the user-side refrigeration air conditioner are in the high-temperature / high-humidity range A, but the refrigerant temperature of the heat exchanger is equal to or higher than the dew point temperature of the room air, the user side Since the air passing through the refrigeration air conditioner is not dehumidified, no drain is generated. As a result, the drain pump is wastefully operated.

一方、冷房運転時、利用側冷凍空調装置が検出した周囲空気の温度、湿度が低温・低湿度域Dにあてはまっていても、熱交換器の冷媒温度が相当低く、かつ送風量が非常に大きい場合、利用側冷凍空調装置を通過する空気は除湿されてドレンは発生する。その量は少なくないため、ドレンポンプの運転時間不足によりドレン水がドレン受け皿をあふれる恐れがある。   On the other hand, during cooling operation, even if the ambient air temperature and humidity detected by the user-side refrigeration air conditioner are in the low-temperature / low-humidity range D, the refrigerant temperature of the heat exchanger is considerably low and the air volume is very large In this case, the air passing through the use side refrigeration air conditioner is dehumidified and drainage is generated. Since the amount is not small, there is a possibility that drain water overflows the drain tray due to insufficient operation time of the drain pump.

本発明は、これらの課題を解消するために為されたものであり、冷房運転時に、ドレンポンプの無駄運転を回避するとともに、必要なドレン水除去を確実に行う冷凍空調装置を提供することを目的としている。   The present invention has been made to solve these problems, and provides a refrigerating and air-conditioning apparatus that avoids wasteful operation of a drain pump and reliably removes necessary drain water during cooling operation. It is aimed.

この発明に係る冷凍空調装置は、圧縮機、熱源側熱交換器、減圧手段、利用側熱交換器、が順次配管によって環状に接続され、圧縮機の運転周波数に基づいて制御する熱源側制御手段と、利用側熱交換器からのドレン水を貯留するドレン水受け皿と、このドレン水受け皿のドレン水を外部へ排出するドレンポンプと、熱源側制御手段と接続する通信手段を有する利用側制御手段と、室内温度を検出する室内温度検出手段と、利用側熱交換器の冷媒温度を検出する冷媒温度検出手段と、を備え、冷房運転時、熱源側制御手段は、圧縮機の運転周波数を通信手段を介して利用側制御手段に送り、利用側制御手段は、冷房運転時、所定時間ごとに熱源側制御手段から受信した圧縮機の運転周波数と、利用側熱交換器の冷媒温度に基づいて利用側熱交換器の冷却能力を算出し、次に冷媒温度検出手段によって検出された利用側熱交換器の冷媒温度に基づいて吹出空気状態のエンタルピを示す第1のエンタルピを算出し、この算出した第1のエンタルピと算出された利用側熱交換器の冷却能力とに基づいて吸込空気のエンタルピを示す第2のエンタルピを算出し、次に室内湿度を変化させながら、この室内湿度と、室内温度検出手段が検出した室内温度とから第3のエンタルピを算出し、この算出した第3のエンタルピと第2のエンタルピとを比較し、等しくなったときの室内湿度を求めるべき室内湿度と推定し、次に室内温度検出手段によって検出された室内温度と推定した室内湿度から室内露点温度を算出し、次にこの算出した室内露点温度と、冷媒温度検出手段によって検出された利用側熱交換器の冷媒温度との温度差に基づいてドレンポンプの運転時間と停止時間を決定し、次に決定した運転時間と停止時間に基づいてドレンポンプを制御することを特徴とするものである。 The refrigerating and air-conditioning apparatus according to the present invention includes a compressor, a heat source side heat exchanger, a decompression unit, a use side heat exchanger, and a heat source side control unit that is controlled in accordance with the operating frequency of the compressor by being connected annularly by a pipe. When the drain water pan for reserving drain water from the utilization-side heat exchanger, a drain pump for discharging the drain water of the drain water pan to the outside, the usage-side control unit having a communication means for connecting the heat source side control unit When the indoor temperature detection means for detecting the room temperature, comprising a refrigerant temperature detecting means for detecting the refrigerant temperature of the utilization for heat exchanger, a cooling operation, the heat source side control unit, the operating frequency of the compressor Sent to the use side control means via the communication means, and the use side control means is based on the operating frequency of the compressor received from the heat source side control means every predetermined time and the refrigerant temperature of the use side heat exchanger during cooling operation. Use side heat exchange And calculating a first enthalpy indicating an enthalpy of the blown air state based on the refrigerant temperature of the use side heat exchanger detected by the refrigerant temperature detecting means, and calculating the calculated first enthalpy. A second enthalpy indicating the enthalpy of the intake air is calculated based on the enthalpy and the calculated cooling capacity of the use side heat exchanger. Next, while changing the indoor humidity, the indoor humidity and the indoor temperature detecting means The third enthalpy is calculated from the detected room temperature, the calculated third enthalpy is compared with the second enthalpy, the indoor humidity when the two become equal is estimated as the indoor humidity, and then calculating the room dew point temperature from the room humidity was estimated detected room temperature by the temperature detecting means, then the indoor dew point temperature and the calculated detected by the coolant temperature detecting means utilizing The operation time and stop time of the drain pump are determined based on the temperature difference from the refrigerant temperature of the heat exchanger, and then the drain pump is controlled based on the determined operation time and stop time. .

この発明によれば、冷凍空調装置は、上記構成により冷房運転時にドレンポンプの無駄運転を回避するとともに、必要なドレン水除去を確実に行うことができる。   According to this invention, the refrigerating and air-conditioning apparatus can avoid the wasteful operation of the drain pump during the cooling operation and can reliably remove the necessary drain water.

実施の形態1.
図1は本発明の実施の形態1における冷媒回路図である。冷媒回路は、熱源側冷凍装置Xと利用側冷凍装置Yから構成され、この熱源側冷凍装置Xと利用側冷凍装置Yはガス延長配管7および液延長配管8を介して接続される。熱源側冷凍装置Xは、圧縮機1、四方弁2、熱源側熱交換器3、減圧手段4、低圧液溜6、熱源側送風ファン9、熱源側送風ファンモータ10、および熱源側制御手段13から構成される。また、利用側冷凍空調装置Yは、利用側熱交換器5、利用側送風ファン11、利用側送風ファンモータ12、および利用側制御手段14から構成される。
室内温度検知手段21、室内湿度検知手段22、利用側熱交換器の冷媒温度検知手段23は、点線で示される有線あるいは無線の通信手段を介して制御手段14と接続される。熱源側熱交換器に搭載されている温度、圧力検知手段、リモコン及びその通信手段については本発明と関係ないため記載を省略した。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention. The refrigerant circuit includes a heat source side refrigeration apparatus X and a use side refrigeration apparatus Y, and the heat source side refrigeration apparatus X and the use side refrigeration apparatus Y are connected via a gas extension pipe 7 and a liquid extension pipe 8. The heat source side refrigeration apparatus X includes a compressor 1, a four-way valve 2, a heat source side heat exchanger 3, a decompression unit 4, a low pressure liquid reservoir 6, a heat source side blower fan 9, a heat source side blower fan motor 10, and a heat source side control unit 13. Consists of The use side refrigeration air conditioner Y includes a use side heat exchanger 5, a use side blower fan 11, a use side blower fan motor 12, and a use side control means 14.
The indoor temperature detection means 21, the indoor humidity detection means 22, and the refrigerant temperature detection means 23 of the use side heat exchanger are connected to the control means 14 via a wired or wireless communication means indicated by a dotted line. The temperature, pressure detection means, remote controller and communication means mounted on the heat source side heat exchanger are not described because they are not related to the present invention.

図2は本発明の実施形態1における利用側冷凍空調装置Yの断面図である。ここでは4方向天井カセット形室内機を例に取り上げた。図2において、図1と同符号は同一または相当部分を示しており、説明を省略する。ここでは、ドレンポンプ24と、ドレン水受け皿25と、ドレン水排出管26が追加されている。
室内温度検知手段21、室内湿度検知手段22を利用側冷凍空調装置Yの吸込空気と接する位置に設置する。また、利用側熱交換器5の冷媒温度検知手段23を利用側熱交換器5の配管部に接する位置に設置する。
FIG. 2 is a cross-sectional view of the use-side refrigeration air conditioner Y according to Embodiment 1 of the present invention. Here, a four-way ceiling cassette type indoor unit is taken as an example. 2, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and the description thereof will be omitted. Here, a drain pump 24, a drain water receiving tray 25, and a drain water discharge pipe 26 are added.
The indoor temperature detection means 21 and the indoor humidity detection means 22 are installed at a position in contact with the intake air of the use side refrigeration air conditioner Y. In addition, the refrigerant temperature detection means 23 of the use side heat exchanger 5 is installed at a position in contact with the piping portion of the use side heat exchanger 5.

次に、冷房運転時の冷媒動作を図1を用いて説明する。圧縮機1から吐出された高圧高温ガス冷媒は四方弁2を介して熱源側熱交換器3に流入し、ここで周囲空気と熱交換して凝縮し、高圧液冷媒となって流出する。流出した高圧液冷媒は減圧手段4で減圧されて低圧気液二相冷媒となり、液延長配管8を介して利用側熱交換器5に流入する。ここで冷媒は周囲空気と熱交換して蒸発し、低圧ガス冷媒となって流出する。流出した低圧ガス冷媒はガス延長配管7、四方弁2、低圧液溜6を介して圧縮機1に戻る。   Next, the refrigerant | coolant operation | movement at the time of air_conditionaing | cooling operation is demonstrated using FIG. The high-pressure and high-temperature gas refrigerant discharged from the compressor 1 flows into the heat source side heat exchanger 3 through the four-way valve 2, where it is condensed by exchanging heat with the surrounding air and flows out as high-pressure liquid refrigerant. The high-pressure liquid refrigerant that has flowed out is decompressed by the decompression means 4 to become a low-pressure gas-liquid two-phase refrigerant, and flows into the use-side heat exchanger 5 through the liquid extension pipe 8. Here, the refrigerant exchanges heat with ambient air, evaporates, and flows out as a low-pressure gas refrigerant. The low-pressure gas refrigerant that has flowed out returns to the compressor 1 via the gas extension pipe 7, the four-way valve 2, and the low-pressure liquid reservoir 6.

冷房運転時の冷媒動作と空気動作について図2を用いて説明する。冷房運転時、利用側熱交換器5は蒸発器として作用するので利用側熱交換器の配管内には周囲空気よりも低温の冷媒が流通し、その結果、フィン部も含めた利用側熱交換器5は周囲空気よりも温度が低くなる。
利用側送風ファン11により図2下端中央部から吸い込まれた空気は利用側熱交換器5に接触して冷やされる。利用側熱交換器5の温度が吸込空気の露点温度より低い場合は、冷やされる過程において吸込空気中に含まれる水蒸気の一部が利用側熱交換器の表面で凝縮して液体(ドレン)になる。冷やされた空気は空気流出口から外部に放出される。
The refrigerant operation and air operation during the cooling operation will be described with reference to FIG. During the cooling operation, the use side heat exchanger 5 acts as an evaporator, so that a refrigerant having a temperature lower than that of the surrounding air flows in the pipe of the use side heat exchanger, and as a result, the use side heat exchange including the fin portion is performed. The vessel 5 is cooler than the ambient air.
The air sucked from the central portion of the lower end of FIG. 2 by the use side blower fan 11 comes into contact with the use side heat exchanger 5 and is cooled. When the temperature of the use side heat exchanger 5 is lower than the dew point temperature of the intake air, a part of the water vapor contained in the intake air is condensed on the surface of the use side heat exchanger in the process of being cooled and becomes liquid (drain). Become. The cooled air is discharged to the outside from the air outlet.

次に、冷房運転時の除湿量の計算方法を説明する。図3は空気線図である。Aは吸込空気状態、Bは利用側熱交換器5の飽和湿り空気状態、Cは吹出空気状態を示す。除湿量L[kg/h]は吸込空気と吹出空気の絶対湿度X1,Xo[kg/kg']の差と、送風量G[kg/h]から下記の式1により求めることができる。
L[kg/h]=(X1−Xo)*G (1)
Next, a method for calculating the dehumidification amount during the cooling operation will be described. FIG. 3 is an air diagram. A shows an intake air state, B shows a saturated humid air state of the use side heat exchanger 5, and C shows a blown air state. The dehumidification amount L [kg / h] can be obtained from the difference between the absolute humidity X1 and Xo [kg / kg '] between the intake air and the blown air and the blown air amount G [kg / h] by the following formula 1.
L [kg / h] = (X1-Xo) * G (1)

吹出空気の絶対湿度Xo[kg/kg']は以下の手順で求める。まず吸込空気のエンタルピi1[kJ/kg]、利用側熱交換器5の冷却能力Q[W]、送風量G[kg/h]から下記の式2により吹出空気のエンタルピi0[kJ/kg]を求めることができる。
io=i1−Q/G*3.6 (2)
次に、図3の空気線図上で吹出空気のエンタルピi0[kJ/kg]の線と、吸込空気状態A、利用側熱交換器5の飽和湿り空気状態Bを結んだ線(A−B)の交点Cから、吹出空気の絶対湿度Xoを求める。
The absolute humidity Xo [kg / kg '] of the blown air is obtained by the following procedure. First, the enthalpy i0 [kJ / kg] of the blown air according to the following equation 2 from the enthalpy i1 [kJ / kg] of the intake air, the cooling capacity Q [W] of the use side heat exchanger 5 and the air flow rate G [kg / h]. Can be requested.
io = i1-Q / G * 3.6 (2)
Next, on the air diagram of FIG. 3, the line connecting the line of enthalpy i0 [kJ / kg] of the blown air with the intake air state A and the saturated humid air state B of the use side heat exchanger 5 (AB) ) To obtain the absolute humidity Xo of the blown air.

吹出空気の絶対湿度Xo、利用側熱交換器5の飽和湿り空気の絶対湿度Xsが吸込空気の絶対湿度X1より大きい場合は、利用側熱交換器5表面で水蒸気から水への物質移動が発生せず除湿できない。従って、利用側冷凍空調装置の送風空気は顕熱変化(温度だけ低下)して吹出すことになる。除湿してドレン水が発生するかどうか、発生する量はどれくらいかを推測するには絶対湿度を求める必要がある。   When the absolute humidity Xo of the blown air and the absolute humidity Xs of the saturated humid air of the use side heat exchanger 5 are larger than the absolute humidity X1 of the intake air, mass transfer from water vapor to water occurs on the surface of the use side heat exchanger 5 Without dehumidification. Accordingly, the blown air of the use side refrigeration air conditioner is blown out with a sensible heat change (decreased by temperature). To estimate whether drain water is generated by dehumidification and how much it is generated, it is necessary to obtain absolute humidity.

次に、絶対湿度のほかに吸込空気の露点温度と利用側熱交換器5の飽和湿り空気温度を利用しても、ドレン水発生有無およびドレン水発生量を推測可能であることを以下に説明する。   Next, it will be described below that the presence / absence of drain water and the amount of drain water generated can be estimated using the dew point temperature of the intake air and the saturated humid air temperature of the use side heat exchanger 5 in addition to the absolute humidity. To do.

吸込空気Aの乾球温度を27℃、湿球温度を19℃とし、吹出空気Cの乾球温度を13℃、湿球温度を12℃とし、利用側熱交換器5の冷媒蒸発温度Dを10℃とする。それぞれの絶対湿度、露点温度を表1に示す。表1より絶対湿度、露点温度において、吸込空気aと吹出空気cの差(a−c)と、吸込空気aと冷媒温度dの差(a−d)の比(a−c)/(a−d)はあまり変わらないので、絶対湿度の代わりに吸込空気の露点温度と利用側熱交換器5の飽和湿り空気温度を利用しても、ドレン水発生有無、発生量が推測できる。   The dry-bulb temperature of the intake air A is 27 ° C., the wet-bulb temperature is 19 ° C., the dry-bulb temperature of the blown air C is 13 ° C., the wet-bulb temperature is 12 ° C., and the refrigerant evaporation temperature D of the use side heat exchanger 5 is Set to 10 ° C. Each absolute humidity and dew point temperature are shown in Table 1. From Table 1, the ratio (ac) / (a) of the difference (ac) between the intake air a and the blown air c (ab) and the difference (ad) between the intake air a and the refrigerant temperature d at the absolute humidity and dew point temperature. Since -d) does not change much, the presence / absence of drain water and the generation amount can be estimated even if the dew point temperature of the intake air and the saturated humid air temperature of the use side heat exchanger 5 are used instead of absolute humidity.

Figure 0004711438
Figure 0004711438

以上、吸込空気状態と、送風量と、利用側熱交換器5の飽和湿り空気状態と、利用側熱交換器5の冷却能力を検出し、これらの値から絶対湿度や露点温度を求めれば吹出空気状態と除湿量を一意的に求めることができることを示した。
実際には吸込空気の温度と湿度、送風量、利用側熱交換器5の冷媒温度、冷却能力を検出すればよい。
As mentioned above, if the absolute humidity and the dew point temperature are calculated from these values by detecting the intake air state, the air flow rate, the saturated humid air state of the use side heat exchanger 5 and the cooling capacity of the use side heat exchanger 5, It was shown that the air condition and dehumidification amount can be obtained uniquely.
Actually, the temperature and humidity of the intake air, the air flow rate, the refrigerant temperature of the use side heat exchanger 5 and the cooling capacity may be detected.

上記の場合、検出データ項目が多すぎるので以下のような仮定を置く。送風量は製品に定められた最大量とし、運転時に検出しないようにする。利用側熱交換器のエンタルピ差基準の熱交換効率を100%とし、吹出空気状態は利用側熱交換器の冷媒温度の飽和空気状態と同一であると仮定し、吹出空気状態を求めるために必要な冷却能力を運転時に検出しないようにする。その結果、運転時に検出するデータは吸込空気の温度と湿度、利用側熱交換器5の冷媒温度の3つとする。以下はこの3つのデータを検出することを前提に説明を続ける。   In the above case, since there are too many detected data items, the following assumptions are made. The air flow rate should be the maximum specified for the product and should not be detected during operation. Necessary for obtaining the air condition, assuming that the heat exchange efficiency based on the enthalpy difference of the use side heat exchanger is 100%, and the blown air condition is the same as the saturated air condition of the refrigerant temperature of the use side heat exchanger. To avoid detecting the cooling capacity during operation. As a result, it is assumed that the data detected during operation is the temperature and humidity of the intake air and the refrigerant temperature of the use side heat exchanger 5. The following description is continued on the assumption that these three data are detected.

図4にドレンポンプ24の運転パターンを決定する手順を示す。冷房運転を開始(ステップS41)後、利用側冷凍空調装置Yにおいて、所定時間ごとに室内温度検出手段21と、室内湿度検出手段22と、利用側熱交換器5の冷媒温度検出手段23と、を用いて室内温度Tindb、室内湿度Tinwb、冷媒温度Trを検出し、利用側制御手段14に温度、湿度データを転送する(ステップS42)。次に、利用側制御手段14は、上記室内温度Tindb、上記室内湿度Tinwbを用いて室内露点温度Troを算出する(ステップS43)。室内露点温度Troは図3の空気線図から一意的に求めることができる。ここでは一例として、水蒸気飽和蒸気圧Psat、絶対湿度Xを求めてから露点温度を求める方法、式を図5に示す。実際は毎回これらの式を用いて計算することはなく、予め計算した結果をデータマップ化して制御手段14に記憶させておき、必要時にこの記憶されたデータマップを利用する。
従って、図5の詳細説明を省略する。
FIG. 4 shows a procedure for determining the operation pattern of the drain pump 24. After starting the cooling operation (step S41), in the usage-side refrigeration air-conditioning apparatus Y, the indoor temperature detection means 21, the indoor humidity detection means 22, the refrigerant temperature detection means 23 of the usage-side heat exchanger 5, Is used to detect the indoor temperature Tindb, the indoor humidity Tinwb, and the refrigerant temperature Tr, and the temperature and humidity data are transferred to the use side control means 14 (step S42). Next, the use side control means 14 calculates the room dew point temperature Tro using the room temperature Tindb and the room humidity Tinwb (step S43). The indoor dew point temperature Tro can be uniquely determined from the air diagram of FIG. As an example, FIG. 5 shows a method and formula for obtaining the dew point temperature after obtaining the water vapor saturated vapor pressure Psat and the absolute humidity X. Actually, the calculation is not performed using these equations every time. The calculation result is converted into a data map and stored in the control means 14, and the stored data map is used when necessary.
Therefore, the detailed description of FIG. 5 is omitted.

次に、利用側制御手段14において、上記の方法で算出した露点温度Troから上記冷媒温度Trを引いて得られた値(以下、温度差と呼ぶ)ΔTを求める(ステップS44)。温度差ΔTをもとにドレンポンプの運転時間、停止時間を組み合わせた運転パターンを決定する(ステップS45)。図6は温度差ΔTとドレンポンプ運転パターン例を示したものである。例えばNo.4領域ではドレンポンプ24の運転パターンは3分運転、3分停止と判断する。   Next, the use side control means 14 obtains a value (hereinafter referred to as a temperature difference) ΔT obtained by subtracting the refrigerant temperature Tr from the dew point temperature Tro calculated by the above method (step S44). Based on the temperature difference ΔT, an operation pattern combining the operation time and stop time of the drain pump is determined (step S45). FIG. 6 shows an example of the temperature difference ΔT and the drain pump operation pattern. For example, in the No. 4 region, it is determined that the operation pattern of the drain pump 24 is a 3-minute operation and a 3-minute stop.

利用側制御手段14はドレンポンプ24の電気回路に組み込まれたリレーを操作してドレンポンプ24の運転/停止を実行する(ステップS46)。   The use side control means 14 operates / stops the drain pump 24 by operating a relay incorporated in the electric circuit of the drain pump 24 (step S46).

なお、本説明では露点温度を利用したが、吸込空気の絶対湿度と、冷媒温度の飽和空気の絶対湿度を利用してもよいことは言うまでもない。   In this description, the dew point temperature is used, but it goes without saying that the absolute humidity of the intake air and the absolute humidity of the saturated air at the refrigerant temperature may be used.

また、本説明では室内機に4方向天井カセット形室内機を想定したが、天吊形や壁掛形など、他の構造の室内機でも同様の動作、制御ができることは言うまでもない。   In this description, the indoor unit is assumed to be a four-way ceiling cassette type indoor unit. However, it goes without saying that the same operation and control can be performed with indoor units having other structures such as a ceiling-mounted type and a wall-mounted type.

また、利用側熱交換器5の冷媒温度検知手段23は、熱交換器5を構成する配管パスの中央付近で、配管に接するように設置する。信頼性を向上するために利用側熱交換器5の冷媒温度検知手段23は、熱交換器5を構成する配管パスの冷房時入口付近と中央付近の2箇所に設置することは効果的である。この場合、冷房運転中に検出した温度が低い方を冷媒温度とみなす。   Further, the refrigerant temperature detection means 23 of the use side heat exchanger 5 is installed in contact with the pipe in the vicinity of the center of the pipe path constituting the heat exchanger 5. In order to improve the reliability, it is effective to install the refrigerant temperature detecting means 23 of the use side heat exchanger 5 at two locations near the inlet and the center of the cooling path of the pipe path constituting the heat exchanger 5. . In this case, the lower temperature detected during the cooling operation is regarded as the refrigerant temperature.

以上により本実施の形態1によれば、圧縮機、熱源側熱交換器、減圧手段、利用側熱交換器、が順次配管によって環状に接続され、利用側熱交換器からのドレン水を貯留するドレン水受け皿と、このドレン水受け皿のドレン水を外部へ排出するドレンポンプと、利用側制御手段と、室内温度を検出する室内温度検出手段と、室内の湿度を検出する室内湿度検出手段と、利用側熱交換器の冷媒温度を検出する冷媒温度検出手段と、を備え、利用側制御手段は、温度差とドレンポンプの運転時間と停止時間とを対応させたテーブルを記憶する記憶手段を備え、冷房運転時、所定時間ごとに室内温度検出手段によって検出された室内温度と、室内湿度検出手段によって検出された室内湿度から室内露点温度を算出し、次に算出した室内露点温度と、冷媒温度検出手段によって検出された利用側熱交換器の冷媒温度との温度差と記憶手段のテーブルに基づいてドレンポンプの運転時間と停止時間を決定し、次に決定した運転時間と停止時間に基いてドレンポンプを制御することで、ドレンポンプの無駄運転を回避するとともに、必要なドレン水除去を確実に行うことができる。   As described above, according to the first embodiment, the compressor, the heat source side heat exchanger, the pressure reducing means, and the use side heat exchanger are sequentially connected in a ring shape by the piping, and the drain water from the use side heat exchanger is stored. A drain water tray, a drain pump for discharging the drain water of the drain water tray to the outside, a use side control means, an indoor temperature detection means for detecting indoor temperature, an indoor humidity detection means for detecting indoor humidity, Refrigerant temperature detection means for detecting the refrigerant temperature of the use side heat exchanger, and the use side control means includes storage means for storing a table in which the temperature difference, the operation time and the stop time of the drain pump are associated with each other. In the cooling operation, the indoor dew point temperature is calculated from the room temperature detected by the room temperature detecting means every predetermined time and the room humidity detected by the room humidity detecting means, and then the calculated room dew point temperature, The operation time and stop time of the drain pump are determined based on the temperature difference between the refrigerant temperature of the use side heat exchanger detected by the medium temperature detection means and the table of the storage means, and then the determined operation time and stop time are determined. By controlling the drain pump based on this, it is possible to avoid unnecessary operation of the drain pump and to reliably remove the necessary drain water.

実施の形態2.
以下、本発明に係る冷凍空調装置の実施形態2について説明する。図7に冷媒回路図、図8に利用側冷凍空調装置の断面図を示す。実施の形態1と異なるのは利用側冷凍空調装置Yに室内湿度検出手段22を搭載していないことである。冷房運転の冷媒動作は先の実施の形態と同一なので説明を省略する。
Embodiment 2. FIG.
Hereinafter, Embodiment 2 of the refrigerating and air-conditioning apparatus according to the present invention will be described. FIG. 7 is a refrigerant circuit diagram, and FIG. 8 is a cross-sectional view of the use-side refrigeration air conditioner. The difference from the first embodiment is that the indoor-side humidity detecting means 22 is not mounted in the use-side refrigeration air-conditioning apparatus Y. Since the refrigerant operation in the cooling operation is the same as that in the previous embodiment, the description thereof is omitted.

また、実施の形態1と同様に以下の仮定を置く。送風量は製品に定められた最大量とし、運転時に検出しないようにする。利用側熱交換器5のエンタルピ差基準の熱交換効率を100%とし、吹出空気状態は利用側熱交換器の冷媒温度の飽和空気状態と同一であると仮定し、吹出空気状態を求めるために必要な冷却能力を運転時に検出しないようにする。その結果、運転時に検出するデータは吸込空気の温度、利用側熱交換器5の冷媒温度の2つとする。   The following assumptions are made as in the first embodiment. The air flow rate should be the maximum specified for the product and should not be detected during operation. In order to obtain the blown air state, assuming that the heat exchange efficiency based on the enthalpy difference of the use side heat exchanger 5 is 100% and the blown air state is the same as the saturated air state of the refrigerant temperature of the use side heat exchanger. Do not detect the required cooling capacity during operation. As a result, two data are detected during operation: the temperature of the intake air and the refrigerant temperature of the use side heat exchanger 5.

本実施の形態の特徴は、室内湿度検出手段22を利用せずに、圧縮機運転周波数Fと、利用側熱交換器5の冷媒温度検出手段23から検出する冷媒温度Trを用いて室内湿度を推測することである。圧縮機運転周波数Fと、冷媒温度Trから室内湿度を推定する具体的な手順を図9に示す。   The feature of this embodiment is that the indoor humidity is detected by using the compressor operating frequency F and the refrigerant temperature Tr detected from the refrigerant temperature detecting means 23 of the use side heat exchanger 5 without using the indoor humidity detecting means 22. To guess. FIG. 9 shows a specific procedure for estimating the indoor humidity from the compressor operating frequency F and the refrigerant temperature Tr.

まず、利用側制御手段14は、圧縮機冷媒流量Gr[kg/h]を計算する(ステップS91)。冷媒流量は以下の式3により求めることができる。但し、Fは圧縮機1の運転周波数、Vstは圧縮室容積、ρsは圧縮機吸入冷媒密度である。
Gr[kg/h]=F[Hz]×3600×Vst[m3]×ρs[kg/m3] (3)
圧縮機1の運転周波数Fは熱源側制御手段13で所定時間ごとに制御しており、その制御値を用いる。Vstは固定値なので予め熱源側制御手段に記憶させる。圧縮機吸入冷媒密度は、利用側熱交換器5の冷媒温度から計算した飽和ガス密度に補正係数を乗算した値とする。
First, the use side control means 14 calculates the compressor refrigerant flow rate Gr [kg / h] (step S91). The refrigerant flow rate can be obtained by the following Equation 3. Where F is the operating frequency of the compressor 1, Vst is the compression chamber volume, and ρs is the compressor suction refrigerant density.
Gr [kg / h] = F [Hz] × 3600 × Vst [m3] × ρs [kg / m3] (3)
The operating frequency F of the compressor 1 is controlled by the heat source side control means 13 every predetermined time, and the control value is used. Since Vst is a fixed value, it is stored in advance in the heat source side control means. The compressor suction refrigerant density is a value obtained by multiplying the saturated gas density calculated from the refrigerant temperature of the use side heat exchanger 5 by a correction coefficient.

次に、利用側制御手段14は、冷媒流量Gr[kg/h]から下記の式4を用いて冷却能力Q[kW]を推定する(ステップS92)。今回は、蒸発器の比エンタルピ差ΔI[kJ/kg]はあらかじめ固定値を設定し、熱源側制御手段13に記憶することで運転時に計算して求めない。
Q=Gr×ΔI/3.6/1000 (4)
Next, the use side control means 14 estimates the cooling capacity Q [kW] from the refrigerant flow rate Gr [kg / h] using the following equation 4 (step S92). This time, the specific enthalpy difference ΔI [kJ / kg] of the evaporator is not calculated and calculated during operation by setting a fixed value in advance and storing it in the heat source side control means 13.
Q = Gr × ΔI / 3.6 / 1000 (4)

次に、利用側制御手段14は、冷媒温度Trから吹出空気状態のエンタルピIsを求める(ステップS93)。吹出空気状態は利用側熱交換器の冷媒温度の飽和空気状態と同一である。   Next, the use side control means 14 obtains the enthalpy Is of the blown air state from the refrigerant temperature Tr (step S93). The blown air state is the same as the saturated air state of the refrigerant temperature of the use side heat exchanger.

次に、利用側制御手段14は、式2を用いて吸込空気のエンタルピI1を求める(ステップS94)。次に、利用側制御手段14は、室内湿度Tinwbとして仮の値を設定し(ステップS95)、この値と、室内温度検知手段21が検出した室内温度TindbとからエンタルピIin'を算出する (ステップS96)。そしてエンタルピIin'がステップS94で算出したエンタルピIinと等しくなるか否かを調べ、等しくなければ、ステップS95に戻る。このようにして、エンタルピIin'がエンタルピIinと等しくなるまでステップS95〜ステップS97を繰り返し実行して、室内湿度Tinwbを変化させていく。そして、等しくなったときのTinwbの値が求めるべき室内湿度(吸込空気湿度)となる。   Next, the use side control means 14 calculates | requires enthalpy I1 of suction air using Formula 2 (step S94). Next, the use side control means 14 sets a temporary value as the room humidity Tinwb (step S95), and calculates the enthalpy Iin ′ from this value and the room temperature Tindb detected by the room temperature detecting means 21 (step S95). S96). Then, it is checked whether or not the enthalpy Iin ′ is equal to the enthalpy Iin calculated in step S94. If not, the process returns to step S95. In this way, step S95 to step S97 are repeatedly executed until the enthalpy Iin ′ becomes equal to the enthalpy Iin, thereby changing the indoor humidity Tinwb. And the value of Tinwb when it becomes equal becomes indoor humidity (suction air humidity) which should be calculated.

図10にドレンポンプの運転パターンを決定する手順を示す。まず、冷房運転を開始(ステップS101)後、まず所定時間ごとに、利用側冷凍空調装置Yにおいては室内温度検出手段21と、利用側熱交換器5の冷媒温度検出手段23と、を用いて室内温度Tindb、冷媒温度Trを検出し、利用側制御手段14にデータを転送する。一方、熱源側制御手段13は圧縮機運転周波数Fの設定値を読み込む(ステップS102)。次に、熱源側制御手段13から利用側制御手段14へ圧縮機周波数Fを通信手段を介して送付する(ステップS103)。次に、利用側制御手段14は、圧縮機運転周波数Fと冷媒温度Trから冷媒流量Gr、冷却能力を計算する(ステップS104)。次に、利用側制御手段14は、室内温度Tindb、冷媒温度Tr、冷却能力Qから室内空気エンタルピIinを求める(ステップS105)。室内空気エンタルピがIinになるように室内湿度Tinwbを設定する(ステップS106)。   FIG. 10 shows a procedure for determining the operation pattern of the drain pump. First, after the cooling operation is started (step S101), first, at a predetermined time, in the use side refrigeration air conditioner Y, the indoor temperature detection means 21 and the refrigerant temperature detection means 23 of the use side heat exchanger 5 are used. The room temperature Tindb and the refrigerant temperature Tr are detected, and the data is transferred to the use side control means 14. On the other hand, the heat source side control means 13 reads the set value of the compressor operating frequency F (step S102). Next, the compressor frequency F is sent from the heat source side control means 13 to the use side control means 14 via the communication means (step S103). Next, the use side control means 14 calculates the refrigerant flow rate Gr and the cooling capacity from the compressor operating frequency F and the refrigerant temperature Tr (step S104). Next, the use side control means 14 calculates | requires indoor air enthalpy Iin from indoor temperature Tindb, refrigerant | coolant temperature Tr, and cooling capacity Q (step S105). The indoor humidity Tinwb is set so that the indoor air enthalpy becomes Iin (step S106).

これ以降は実施の形態1と同様である。利用側制御手段14は、上記室内温度Tindbと、上記の方法で推定した室内湿度Tinwbを用いて室内露点温度Troを算出する(ステップS107)。露点温度は図3の空気線図から一意的に求めることができるし、図5に示した手順でも求めることができる。次に、利用側制御手段14は、上記露点温度Troから上記冷媒温度Trを引いた値ΔT(温度差)を求める(ステップS108)。次に、利用側制御手段14は、温度差ΔTをもとにドレンポンプ24の運転時間、停止時間を組み合わせた運転パターンを決定する(ステップS109)。図6は温度差ΔTとドレンポンプ運転パターン例を示したものである。例えばNo.4領域ではドレンポンプ24の運転パターンは3分運転、3分停止と判断する。次に、利用側制御手段14はドレンポンプ24の電気回路に組み込まれたリレーを操作してドレンポンプ24の運転/停止を実行する(ステップS110)。   The subsequent steps are the same as in the first embodiment. The use side control means 14 calculates the indoor dew point temperature Tro using the indoor temperature Tindb and the indoor humidity Tinwb estimated by the above method (step S107). The dew point temperature can be uniquely obtained from the air diagram of FIG. 3 or can be obtained by the procedure shown in FIG. Next, the use side control means 14 obtains a value ΔT (temperature difference) obtained by subtracting the refrigerant temperature Tr from the dew point temperature Tro (step S108). Next, the usage-side control means 14 determines an operation pattern that combines the operation time and stop time of the drain pump 24 based on the temperature difference ΔT (step S109). FIG. 6 shows an example of the temperature difference ΔT and the drain pump operation pattern. For example, in the No. 4 region, it is determined that the operation pattern of the drain pump 24 is a 3-minute operation and a 3-minute stop. Next, the use side control means 14 operates / stops the drain pump 24 by operating the relay incorporated in the electric circuit of the drain pump 24 (step S110).

本説明では露点温度を利用したが、吸込空気の絶対湿度と、冷媒温度の飽和空気の絶対湿度を利用してもよいことは言うまでもない。   In this description, the dew point temperature is used, but it goes without saying that the absolute humidity of the intake air and the absolute humidity of the saturated air at the refrigerant temperature may be used.

本説明では室内機に4方向天井カセット形室内機を想定したが、天吊形や壁掛形など、他の構造の室内機でも同様の動作、制御ができることも言うまでもない。   In this description, a four-way ceiling cassette type indoor unit is assumed as the indoor unit. However, it goes without saying that the same operation and control can be performed with indoor units having other structures such as a ceiling-mounted type and a wall-mounted type.

本説明では計算手順の大部分を利用側制御手段で実施したが、熱源側制御手段とのどちらで計算してもよいことも言うまでもない。   In the present description, most of the calculation procedure is performed by the use side control means, but it goes without saying that the calculation may be performed by either the heat source side control means.

本説明では圧縮機運転周波数を用いて冷却能力を推定したが、簡単のため冷却能力を予め一定値として与えてもよい。その場合、ステップS102において熱源側制御手段13で圧縮機運転周波数Fの設定値を読み込む手順と、ステップS103と、ステップS104の手順を省くことができる。   In this description, the cooling capacity is estimated using the compressor operating frequency. However, for the sake of simplicity, the cooling capacity may be given as a constant value in advance. In that case, the procedure of reading the set value of the compressor operating frequency F by the heat source side control means 13 in step S102, the procedure of step S103, and step S104 can be omitted.

以上により、本実施の形態2によれば、圧縮機、熱源側熱交換器、減圧手段、利用側熱交換器、が順次配管によって環状に接続され、圧縮機を運転周波数に基いて制御する熱源側制御手段と、利用側熱交換器からのドレン水を貯留するドレン水受け皿と、ドレン水受け皿のドレン水を外部へ排出するドレンポンプと、熱源側制御手段と接続する通信手段を有する利用側制御手段と、室内温度を検出する室内温度検出手段と、利用側熱交換器の冷媒温度を検出する冷媒温度検出手段と、を備え、冷房運転時、熱源側制御手段は、圧縮機の運転周波数を通信手段を介して利用側制御手段に送り、利用側制御手段は、温度差とドレンポンプの運転時間と停止時間とを対応させたテーブルを記憶する記憶手段を備え、冷房運転時、所定時間ごとに熱源側制御手段から受信した圧縮機の運転周波数に基いて利用側熱交換器の冷却能力を算出し、次に室内温度検出手段によって検出された室内温度と、冷媒温度検出手段によって検出された利用側熱交換器の冷媒温度と、算出された利用側熱交換器の冷却能力とに基いて室内湿度を推算し、次に室内温度と推算した室内湿度に基いて室内露点温度を算出し、次に算出した室内露点温度と利用側熱交換器の冷媒温度との温度差と記憶手段のテーブルに基づいてドレンポンプの運転時間と停止時間を決定し、次に決定した運転時間と停止時間に基いてドレンポンプを制御することで、ドレンポンプの無駄運転を回避するとともに、必要なドレン水除去を確実に行うことができる。   As described above, according to the second embodiment, the compressor, the heat source side heat exchanger, the pressure reducing means, and the use side heat exchanger are sequentially connected in an annular shape by piping, and the heat source that controls the compressor based on the operating frequency. Side control means, a drain side receiving drain water from the use side heat exchanger, a drain pump for discharging drain water from the drain water tray to the outside, and a communication side connecting to the heat source side control means A control means, an indoor temperature detection means for detecting the indoor temperature, and a refrigerant temperature detection means for detecting the refrigerant temperature of the use side heat exchanger, and during the cooling operation, the heat source side control means has an operating frequency of the compressor. Is sent to the use side control means via the communication means, and the use side control means includes a storage means for storing a table in which the temperature difference, the operation time and the stop time of the drain pump are associated with each other, and the cooling operation is performed for a predetermined time. Every heat source The cooling capacity of the use side heat exchanger is calculated based on the operating frequency of the compressor received from the control means, and then the indoor temperature detected by the indoor temperature detection means and the use side heat detected by the refrigerant temperature detection means. The indoor humidity is estimated based on the refrigerant temperature of the exchanger and the calculated cooling capacity of the use side heat exchanger, and then the indoor dew point temperature is calculated based on the indoor temperature and the estimated indoor humidity. The operation time and stop time of the drain pump are determined based on the temperature difference between the indoor dew point temperature and the refrigerant temperature of the use side heat exchanger and the table of the storage means, and then the drain is determined based on the determined operation time and stop time. By controlling the pump, it is possible to avoid unnecessary operation of the drain pump and to reliably remove the necessary drain water.

実施の形態3.
以下、本発明の実施形態3について説明する。冷媒回路図(図7)、利用側冷凍空調装置の断面図(図8)、冷房運転の冷媒動作は実施の形態2と同一なので説明を省略する。
Embodiment 3 FIG.
Hereinafter, Embodiment 3 of the present invention will be described. Since the refrigerant circuit diagram (FIG. 7), the sectional view of the use side refrigeration air conditioner (FIG. 8), and the refrigerant operation in the cooling operation are the same as those in the second embodiment, the description is omitted.

実施の形態1,2に共通した特徴を以下に示す。実施の形態1では、除湿量は吸込空気と吹出空気の絶対湿度の差と、送風量と、冷却能力から求めることができることを説明した。しかし、実際は吹出空気の実状態値を検出することができないので、例えば吹出空気状態と利用側熱交換器の蒸発温度同等の飽和空気状態とを同一と仮定したり、送風機の風量を製品の最大値と仮定して、除湿量を推算してきた。
逆に言えば、室内温度、室内湿度、送風量、冷却能力が一定であれば、予め計算や実験で吹出温度、吹出湿度、それらから求めることができる除湿量を推測することが可能である。室内温度、室内湿度、送風量、冷却能力の組み合わせ固定値が数パターンであれば、製品開発時に計算や試験を行って得た除湿量からドレンポンプの運転パターンを決定し、予め制御手段に記憶させてしまうので計算の手間が省けて良い。
Features common to the first and second embodiments are shown below. In the first embodiment, it has been explained that the dehumidification amount can be obtained from the difference between the absolute humidity of the intake air and the blown air, the blowing amount, and the cooling capacity. However, since the actual state value of the blown air cannot actually be detected, for example, it is assumed that the blown air state and the saturated air state equivalent to the evaporation temperature of the use side heat exchanger are the same, or the air volume of the blower is set to the maximum The dehumidification amount has been estimated assuming the value.
In other words, if the room temperature, the room humidity, the air flow rate, and the cooling capacity are constant, it is possible to estimate the blowing temperature, the blowing humidity, and the dehumidifying amount that can be obtained from them by calculation or experiment in advance. If the combination fixed values of room temperature, room humidity, air flow, and cooling capacity are several patterns, the drain pump operation pattern is determined from the dehumidification amount obtained by calculation and testing during product development, and stored in the control means in advance. So you can save time and effort.

例えば博物館の展示品スペースなどで、他の冷凍空調装置によって安定した負荷状態が生成され、その結果、常時室内温度、室内湿度が一定に調整されている場合において、圧縮機周波数、室内ファンモータの回転数がある値で固定され、その結果、冷却能力、利用側冷凍空調装置の送風量がほぼ一定となる場合を想定している。   For example, in a museum exhibition space, when a stable load state is generated by another refrigeration air conditioner, and as a result, the indoor temperature and the indoor humidity are constantly adjusted, the compressor frequency, the indoor fan motor It is assumed that the number of rotations is fixed at a certain value, and as a result, the cooling capacity and the air flow rate of the use side refrigeration air conditioner are almost constant.

熱源側周囲温度を35℃、利用側周囲温度を27℃DB,19℃WBとし、圧縮機運転周波数、熱源側、利用側のファンモータ回転数を一定にして運転すると、利用側冷凍空調装置Yの吹出空気状態は事前に試験や計算を行うことで把握できるので、除湿量を高精度に把握することができる。その結果、この条件においては高精度なドレンポンプ運転・停止を実施することができる。   When the operating side ambient temperature is 35 ° C, the usage side ambient temperature is 27 ° C DB, 19 ° C WB, and the compressor operating frequency, the heat source side and the usage side fan motor speed are constant, the usage side refrigeration air conditioner Y Since the blown air state can be grasped by performing tests and calculations in advance, the dehumidification amount can be grasped with high accuracy. As a result, the drain pump can be operated and stopped with high accuracy under these conditions.

熱源側周囲温度を35℃、利用側周囲温度を27℃DB,19℃WBとし、圧縮機運転周波数、熱源側、利用側のファンモータ回転数を一定とした場合の試験結果例を図11に示す。横軸に冷却能力、縦軸に利用側熱交換器の冷媒温度を示す。利用側周囲温度の露点温度は14.6℃である。図11より冷却能力が低減すると冷媒温度が増加し、ある能力以下では冷媒温度が利用側周囲空気の露点温度を上回ることがわかる。この状態では除湿できないのでドレンポンプを動かすことは動力の無駄となる。従って、この場合はドレンポンプ24を動かさない。   FIG. 11 shows an example of the test results when the heat source side ambient temperature is 35 ° C., the use side ambient temperature is 27 ° C. DB, and 19 ° C. WB, and the compressor operating frequency, the heat source side, and the use side fan motor speed are constant. Show. The horizontal axis shows the cooling capacity, and the vertical axis shows the refrigerant temperature of the use side heat exchanger. The dew point temperature of the ambient temperature on the use side is 14.6 ° C. It can be seen from FIG. 11 that when the cooling capacity is reduced, the refrigerant temperature increases, and below a certain capacity, the refrigerant temperature exceeds the dew point temperature of the use-side ambient air. Since dehumidification is not possible in this state, moving the drain pump is a waste of power. Therefore, in this case, the drain pump 24 is not moved.

熱源側周囲温度、利用側周囲温度が一定の条件において、圧縮機運転周波数、熱源側、利用側のファンモータ回転数を一定にするためのスイッチを冷凍空調装置に設ける場合、その圧縮機運転周波数、熱源側、利用側のファンモータ回転数で運転した場合の吹出空気状態、除湿量を事前に試験で定量化しておけば、ドレンポンプの運転パターンを事前に設計することができる。その運転パターンを利用側制御手段に記憶させておくと、上記スイッチを入れただけでドレンポンプの運転パターンを一意的に決定でき、かつ冷房運転中にドレンポンプの運転パターンを計算する手間が省ける。
スイッチを元に戻すと、通常の制御に戻る。
When the refrigeration air conditioner is provided with a switch for making the compressor operating frequency, the heat source side, and the use side fan motor rotation speed constant under conditions where the heat source side ambient temperature and the usage side ambient temperature are constant, the compressor operating frequency The operation pattern of the drain pump can be designed in advance by quantifying the blown air state and dehumidification amount in the test in advance when operating at the fan motor rotation speed on the heat source side and the use side. If the operation pattern is stored in the user-side control means, the operation pattern of the drain pump can be uniquely determined just by turning on the switch, and it is possible to save the trouble of calculating the operation pattern of the drain pump during the cooling operation. .
When the switch is restored, normal control is restored.

熱源側周囲温度、利用側周囲温度が一定の条件において、圧縮機運転周波数、熱源側、利用側のファンモータ回転数を一定にするためのスイッチを冷凍空調装置に設ける場合、定格より低い冷却能力を継続的に実施することを目的とすることがある。事前に吹出空気状態、除湿量を事前に試験で定量化する必要があるが、冷却能力が定格比50%未満の場合には、除湿量がゼロあるいは微量であることが多い。その場合、ドレンポンプの運転パターンは常時停止、あるいは2時間以上停止を継続する。   When the refrigeration air conditioner is equipped with a switch to keep the compressor operating frequency, the heat source side, and the use side fan motor rotation speed constant under conditions where the heat source side ambient temperature and the use side ambient temperature are constant, the cooling capacity lower than the rating May be intended to be implemented continuously. It is necessary to quantify the blown air condition and dehumidification amount in advance by tests, but when the cooling capacity is less than 50% of the rated ratio, the dehumidification amount is often zero or very small. In that case, the operation pattern of the drain pump is always stopped or continuously stopped for 2 hours or more.

本発明の実施の形態3によると、圧縮機、熱源側熱交換器、減圧手段、利用側熱交換器、が順次配管によって環状に接続され、圧縮機と、熱源側熱交換器と、減圧手段と、熱源側制御手段とを有する熱源側冷凍空調装置と、利用側熱交換器と、室内空気を利用側熱交換器へ送る送風ファンと、利用側熱交換器からのドレン水を貯留するドレン水受け皿と、このドレン水受け皿のドレン水を外部へ排出するドレンポンプと、利用側制御手段と、利用側熱交換器の冷媒温度を検出する冷媒温度検出手段と、を有する利用側冷凍空調装置と、を備え、利用側制御手段は、室内露点温度を記憶する記憶手段を備え、熱源側冷凍空調装置の周囲温度、および利用側冷凍空調装置の周囲温度が±0.5℃以内でほぼ一定で、圧縮機の運転周波数、熱源側、利用側のファンモータ回転数が一定で冷房運転されることがわかっている場合、冷媒温度検出手段によって検出された利用側熱交換器の冷媒温度と、記憶手段に記憶した室内露点温度の温度差に基づいてドレンポンプの運転時間と停止時間を決定し、次に決定した運転時間と停止時間に基づいてドレンポンプを制御するので、ドレンポンプの無駄運転を回避するとともに、必要なドレン水除去を確実に行うことができる。   According to Embodiment 3 of the present invention, the compressor, the heat source side heat exchanger, the pressure reducing means, and the use side heat exchanger are sequentially connected in an annular shape by piping, and the compressor, the heat source side heat exchanger, and the pressure reducing means are connected. A heat source side refrigeration air conditioner having a heat source side control means, a use side heat exchanger, a blower fan that sends room air to the use side heat exchanger, and a drain that stores drain water from the use side heat exchanger A use-side refrigeration air conditioner having a water tray, a drain pump that discharges drain water from the drain water tray to the outside, a use-side control means, and a refrigerant temperature detection means that detects the refrigerant temperature of the use-side heat exchanger The use side control means includes storage means for storing the indoor dew point temperature, and the ambient temperature of the heat source side refrigeration air conditioner and the ambient temperature of the use side refrigeration air conditioner are substantially constant within ± 0.5 ° C. In the compressor operating frequency, heat source side, When it is known that the cooling operation is performed at a constant fan motor rotational speed, the temperature difference between the refrigerant temperature of the use-side heat exchanger detected by the refrigerant temperature detection means and the indoor dew point temperature stored in the storage means The drain pump operation time and stop time are determined on the basis of the flow rate, and then the drain pump is controlled based on the determined operation time and stop time, thereby avoiding unnecessary drain pump operation and removing necessary drain water. It can be done reliably.

本発明の実施の形態1における冷媒回路図である。It is a refrigerant circuit figure in Embodiment 1 of the present invention. 本発明の実施形態1における利用側冷凍空調装置Yの断面図である。It is sectional drawing of the utilization side refrigeration air conditioner Y in Embodiment 1 of this invention. 本発明の実施の形態1における空気線図である。It is an air line figure in Embodiment 1 of this invention. 本発明の実施の形態1におけるドレンポンプ運転パターンを決定する手順である。It is the procedure which determines the drain pump operation pattern in Embodiment 1 of this invention. 本発明の実施の形態1における露点温度を求める手順である。It is a procedure which calculates | requires the dew point temperature in Embodiment 1 of this invention. 本発明の実施の形態1における温度差ΔTとドレンポンプ運転パターンの関係図である。FIG. 5 is a relationship diagram between a temperature difference ΔT and a drain pump operation pattern in Embodiment 1 of the present invention. 本発明の実施の形態2における冷媒回路図である。It is a refrigerant circuit figure in Embodiment 2 of this invention. 本発明の実施の形態2における利用側冷凍空調装置の断面図である。It is sectional drawing of the utilization side refrigerating air conditioner in Embodiment 2 of this invention. 本発明の実施の形態2における室内湿度を推定する手順である。It is a procedure which estimates the indoor humidity in Embodiment 2 of this invention. 本発明の実施の形態2におけるドレンポンプ運転パターンを決定する手順である。It is the procedure which determines the drain pump operation pattern in Embodiment 2 of this invention. 本発明の実施の形態3の冷却能力と利用側熱交換器の冷媒温度との関係図である。It is a related figure of the cooling capacity of Embodiment 3 of this invention, and the refrigerant | coolant temperature of a utilization side heat exchanger.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 熱源側熱交換器、4 減圧手段、5 利用側熱交換器、6 低圧液溜、7 ガス延長配管、8 液延長配管、9 熱源側送風ファン、10 熱源側送風ファンモータ、11 利用側送風ファン、12 利用側送風ファンモータ、13 熱源側制御手段、14 利用側制御手段、X 熱源側冷凍空調装置、Y 利用側冷凍空調装置、21 室内温度検知手段、22 室内湿度検知手段、23 利用側熱交換器の冷媒温度検知手段、24 ドレンポンプ、25 ドレン水受け皿、26 ドレン水排出管。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Heat source side heat exchanger, 4 Pressure reduction means, 5 Use side heat exchanger, 6 Low pressure liquid reservoir, 7 Gas extension piping, 8 Liquid extension piping, 9 Heat source side ventilation fan, 10 Heat source side Blower fan motor, 11 user-side fan, 12 user-side fan motor, 13 heat source side control means, 14 user side control means, X heat source side refrigeration air conditioner, Y user side refrigeration air conditioner, 21 indoor temperature detection means, 22 Indoor humidity detection means, 23 refrigerant temperature detection means of use side heat exchanger, 24 drain pump, 25 drain water tray, 26 drain water discharge pipe.

Claims (12)

圧縮機、熱源側熱交換器、減圧手段、利用側熱交換器、が順次配管によって環状に接続され、
前記圧縮機の運転周波数に基づいて制御する熱源側制御手段と、
前記利用側熱交換器からのドレン水を貯留するドレン水受け皿と、このドレン水受け皿のドレン水を外部へ排出するドレンポンプと、前記熱源側制御手段と接続する通信手段を有する利用側制御手段と、室内温度を検出する室内温度検出手段と、前記利用側熱交換器の冷媒温度を検出する冷媒温度検出手段と、を備え、
冷房運転時、前記熱源側制御手段は、前記圧縮機の運転周波数を前記通信手段を介して前記利用側制御手段に送り、
前記利用側制御手段は、冷房運転時、所定時間ごとに前記熱源側制御手段から受信した圧縮機の運転周波数と、前記利用側熱交換器の冷媒温度に基づいて前記利用側熱交換器の冷却能力を算出し、次に前記冷媒温度検出手段によって検出された前記利用側熱交換器の冷媒温度に基づいて吹出空気状態のエンタルピを示す第1のエンタルピを算出し、この算出した第1のエンタルピと前記算出された利用側熱交換器の冷却能力とに基づいて吸込空気のエンタルピを示す第2のエンタルピを算出し、次に室内湿度を変化させながら、この室内湿度と、前記室内温度検出手段が検出した室内温度とから第3のエンタルピを算出し、この算出した第3のエンタルピと前記第2のエンタルピとを比較し、等しくなったときの室内湿度を求めるべき室内湿度と推定し、次に前記室内温度検出手段によって検出された室内温度と前記推定した室内湿度に基づいて室内露点温度を算出し、次にこの算出した室内露点温度と、前記冷媒温度検出手段によって検出された前記利用側熱交換器の冷媒温度との温度差に基づいて前記ドレンポンプの運転時間と停止時間を決定し、次に前記決定した運転時間と停止時間に基づいて前記ドレンポンプを制御することを特徴とする冷凍空調装置。
The compressor, the heat source side heat exchanger, the pressure reducing means, and the use side heat exchanger are sequentially connected in an annular shape by piping,
Heat source side control means for controlling based on the operating frequency of the compressor;
A drain side receiving means for storing drain water from the use side heat exchanger, a drain pump for discharging the drain water from the drain water receiving tray to the outside, and a use side control means having communication means connected to the heat source side control means. And an indoor temperature detecting means for detecting the indoor temperature, and a refrigerant temperature detecting means for detecting the refrigerant temperature of the use side heat exchanger,
During cooling operation, the heat source side control means sends the operating frequency of the compressor to the use side control means via the communication means,
The use side control means cools the use side heat exchanger based on the operating frequency of the compressor received from the heat source side control means and the refrigerant temperature of the use side heat exchanger every predetermined time during cooling operation. The first enthalpy indicating the enthalpy of the blown air state is calculated based on the refrigerant temperature of the use side heat exchanger detected by the refrigerant temperature detecting means, and the calculated first enthalpy is calculated. And calculating the second enthalpy indicating the enthalpy of the intake air on the basis of the calculated cooling capacity of the use side heat exchanger, and then changing the indoor humidity, the indoor humidity and the indoor temperature detecting means The third enthalpy is calculated from the detected indoor temperature, and the calculated third enthalpy is compared with the second enthalpy to determine the indoor humidity when the room humidity becomes equal. Estimated that calculates the room dew point temperature then based on the indoor temperature detection means room humidity was the presumed detected room temperature by the next and the indoor dew point temperature and the calculated detected by said refrigerant temperature detecting means wherein determining the operating time and stop time of the drain pump, then to control the drain pump based on the operating time and stop time and the determined on the basis of the temperature difference between refrigerant temperature of the utilization side heat exchanger A refrigeration air conditioner characterized by that.
前記利用側制御手段は、下記の式(1)により前記第2のエンタルピを算出することを特徴とする請求項1記載の冷凍空調装置。  The refrigerating and air-conditioning apparatus according to claim 1, wherein the usage-side control means calculates the second enthalpy by the following equation (1).
Iin=Is+Q/G……………(1)      Iin = Is + Q / G ......... (1)
但し、Iinは第2のエンタルピ、Isは第1のエンタルピ、Qは利用側熱交換器の冷却能力、Gは利用側送風量  Where Iin is the second enthalpy, Is is the first enthalpy, Q is the cooling capacity of the use side heat exchanger, and G is the use side air flow
前記利用側制御手段は、前記利用側熱交換器の冷媒温度と室内露点温度の温度差と、前記ドレンポンプの運転時間と停止時間と、を対応させたテーブルを記憶する記憶手段を備え、
前記冷媒温度検出手段が検出した前記利用側熱交換器の冷媒温度と、前記記憶手段の室内露点温度との温度差と、前記記憶手段のテーブルに基づいて前記ドレンポンプの運転時間と停止時間を決定することを特徴とする請求項1または請求項2に記載の冷凍空調装置。
The usage-side control means includes storage means for storing a table in which the temperature difference between the refrigerant temperature and the indoor dew point temperature of the usage-side heat exchanger and the operation time and stop time of the drain pump are associated with each other.
Based on the temperature difference between the refrigerant temperature of the use side heat exchanger detected by the refrigerant temperature detection means and the indoor dew point temperature of the storage means, and the operation time and stop time of the drain pump based on the table of the storage means The refrigeration air conditioner according to claim 1 or 2 , wherein the refrigeration air conditioner is determined.
前記利用側熱交換器の冷媒温度検手段は、前記熱交換器を構成する配管パスの中央付近で、配管に接するように設置されることを特徴とする請求項1〜のいずれかに記載の冷凍空調装置。 The coolant temperature detecting means of the use-side heat exchanger, near the center of the pipe path which constitutes the heat exchanger, to any one of claims 1 to 3, characterized in that it is installed in contact with the pipe Refrigeration air conditioner of description. 前記利用側熱交換器の冷媒温度検手段は、前記熱交換器を構成する配管パスの冷房時入口付近と中央付近の2箇所に設置され、
前記利用側制御手段は、冷房運転中に前記2つの冷媒温度検手段が検出した温度のうち、低い方を冷媒温度とみなすことを特徴とする請求項1〜のいずれかに記載の冷凍空調装置。
The coolant temperature detecting means of the use-side heat exchanger is installed in two locations in the vicinity of the cooling time of the inlet and near the center of the pipe path which constitutes the heat exchanger,
The utilization-side control unit, of the temperature at which the two refrigerant temperature detecting means detected during cooling operation, a refrigeration according lower the to any one of claims 1 to 3, characterized in that considered as the refrigerant temperature Air conditioner.
前記利用側制御手段は、所定時間ごとに前記利用側熱交換器の冷媒温度検手段によって検出される前記利用側熱交換器の冷媒温度が所定値より高い場合には、前記ドレンポンプを停止し続けることを特徴とする請求項1〜のいずれかに記載の冷凍空調装置。 The utilization-side control unit, when the refrigerant temperature of the utilization side heat exchanger is detected by the refrigerant temperature detecting means of the use side heat exchanger at predetermined time is higher than a predetermined value, stops the drain pump The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3 , wherein the refrigerating and air-conditioning apparatus is continued. 前記所定値とは、前記露点温度、あるいは前記露点温度近傍の温度であることを特徴とする請求項に記載の冷凍空調装置。 The refrigerating and air-conditioning apparatus according to claim 6 , wherein the predetermined value is the dew point temperature or a temperature near the dew point temperature. 前記圧縮機の運転周波数、熱源側、利用側のファンモータ回転数を所定の固定値に設定して冷房運転するためのスイッチを備え、
前記利用側制御手段は、前記スイッチを入れている間、前記ドレンポンプを特定の運転パターンで制御することを特徴とする請求項1〜のいずれかに記載の冷凍空調装置。
A switch for cooling operation by setting the operating frequency of the compressor, the heat source side, the fan motor rotation number on the use side to a predetermined fixed value,
The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3 , wherein the usage-side control unit controls the drain pump with a specific operation pattern while the switch is turned on.
前記圧縮機の運転周波数、熱源側、利用側のファンモータ回転数を所定の固定値に設定して冷房運転し、前記利用側熱交換器の冷却能力が定格未満になる専用スイッチを備え、
前記利用側制御手段は、前記スイッチを入れている間、前記ドレンポンプを停止し続けることを特徴とする請求項1〜のいずれかに記載の冷凍空調装置。
The operation frequency of the compressor, the heat source side, the fan motor rotation speed on the use side is set to a predetermined fixed value for cooling operation, and a dedicated switch that makes the cooling capacity of the use side heat exchanger less than rated,
The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3 , wherein the user-side control means continues to stop the drain pump while the switch is turned on.
圧縮機、熱源側熱交換器、減圧手段、利用側熱交換器、が順次配管によって環状に接続され、
前記圧縮機の運転周波数に基づいて制御する熱源側制御手段と、
前記利用側熱交換器からのドレン水を貯留するドレン水受け皿と、このドレン水受け皿のドレン水を外部へ排出するドレンポンプと、前記熱源側制御手段と接続する通信手段を有する利用側制御手段と、室内温度を検出する室内温度検出手段と、前記利用側熱交換器の冷媒温度を検出する冷媒温度検出手段と、を備えた冷凍空調装置に用いられ、
冷房運転時、前記熱源側制御手段が前記圧縮機の運転周波数を前記通信手段を介して前記利用側制御手段に送るステップと、
冷房運転時、所定時間ごとに前記利用側制御手段が前記熱源側制御手段から受信した圧縮機の運転周波数と、前記利用側熱交換器の冷媒温度に基づいて前記利用側熱交換器の冷却能力を算出するステップと、
前記利用側制御手段が前記冷媒温度検出手段によって検出された前記利用側熱交換器の冷媒温度に基づいて吹出空気状態のエンタルピを示す第1のエンタルピを算出するステップと、
前記利用側制御手段が前記算出した第1のエンタルピと前記算出された利用側熱交換器の冷却能力とに基づいて吸込空気のエンタルピを示す第2のエンタルピを算出するステップと、
前記利用側制御手段が室内湿度を変化させながら、この室内湿度と、前記室内温度検出手段が検出した室内温度とから第3のエンタルピを算出するステップと、
前記利用側制御手段が前記算出した第3のエンタルピと前記第2のエンタルピとを比較し、等しくなったときの室内湿度を求めるべき室内湿度と推定するステップと、
前記利用側制御手段が前記室内温度検出手段によって検出された室内温度と前記推定した室内湿度に基づいて室内露点温度を算出するステップと、
前記利用側制御手段が前記算出した室内露点温度と、前記冷媒温度検出手段によって検出された前記利用側熱交換器の冷媒温度の温度差を算出するステップと、
前記利用側制御手段が前記算出した温度差に基づいて前記ドレンポンプの運転時間と停止時間を決定するステップと、
前記利用側制御手段が前記決定した運転時間と停止時間に基づいて前記ドレンポンプを制御するステップと、を備えたことを特徴とする冷凍空調方法。
The compressor, the heat source side heat exchanger, the pressure reducing means, and the use side heat exchanger are sequentially connected in an annular shape by piping,
Heat source side control means for controlling based on the operating frequency of the compressor;
Drain water receiving tray for storing drain water from the use side heat exchanger, a drain pump for discharging drain water from the drain water receiving tray to the outside, and use side control means having communication means connected to the heat source side control means. And an indoor temperature detecting means for detecting the indoor temperature and a refrigerant temperature detecting means for detecting the refrigerant temperature of the use side heat exchanger,
During cooling operation, the heat source side control means sends the operating frequency of the compressor to the user side control means via the communication means;
During the cooling operation, the utilization side heat exchanger cools the utilization side heat exchanger based on the operating frequency of the compressor received from the heat source side control means by the utilization side control means and the refrigerant temperature of the utilization side heat exchanger every predetermined time. Calculating steps,
A step of calculating a first enthalpy indicating an enthalpy of a blown air state based on a refrigerant temperature of the usage side heat exchanger detected by the refrigerant temperature detection unit by the usage side control unit ;
A step of calculating a second enthalpy indicating the enthalpy of the intake air based on the calculated first enthalpy and the calculated cooling capacity of the use side heat exchanger by the use side control means;
Calculating the third enthalpy from the indoor humidity and the indoor temperature detected by the indoor temperature detecting means while the usage-side control means changes the indoor humidity;
A step of comparing the calculated third enthalpy with the second enthalpy by the use side control means and estimating the indoor humidity to be obtained when equalized;
Calculating the room dew point temperature based on the room humidity the utilization-side control unit has the estimated indoor temperature detected by the indoor temperature detection means,
Calculating a temperature difference between the indoor dew point calculated by the use side control means and the refrigerant temperature of the use side heat exchanger detected by the refrigerant temperature detection means ;
A step of determining an operation time and a stop time of the drain pump based on the calculated temperature difference by the use side control means;
And a step of controlling the drain pump based on the determined operation time and stop time by the use side control means.
前記利用側制御手段が前記第1のエンタルピと前記利用側熱交換器の冷却能力とに基づいて前記第2のエンタルピを算出するステップにおいて、前記利用側制御手段は下記の式(1)を用いることを特徴とする請求項10記載の冷凍空調方法。  In the step of calculating the second enthalpy based on the first enthalpy and the cooling capacity of the use side heat exchanger, the use side control means uses the following formula (1). The refrigerating and air-conditioning method according to claim 10.
Iin=Is+Q/G……………(1)      Iin = Is + Q / G ......... (1)
但し、Iinは第2のエンタルピ、Isは第1のエンタルピ、Qは利用側熱交換器の冷却能力、Gは利用側送風量  Where Iin is the second enthalpy, Is is the first enthalpy, Q is the cooling capacity of the use side heat exchanger, and G is the use side air flow
前記利用側制御手段は、予め利用側熱交換器の冷媒温度と室内露点温度との温度差と、前記ドレンポンプの運転時間と停止時間と、を対応させたテーブルを前記記憶手段に記憶しておき、前記ドレンポンプの運転時間と停止時間を決定するステップにおいて、前記冷媒温度検出手段が検出した利用側熱交換器の冷媒温度と、前記記憶手段に記憶した室内露点温度との温度差を算出し、算出した温度差と、前記記憶手段に記憶するテーブルと、に基づいて前記ドレンポンプの運転時間と停止時間を決定することを特徴とする請求項10または請求項11に記載の冷凍空調方法。 The usage-side control means stores in the storage means a table in which the temperature difference between the refrigerant temperature of the usage-side heat exchanger and the indoor dew point temperature and the operation time and stop time of the drain pump are associated with each other. In the step of determining the operation time and stop time of the drain pump, the temperature difference between the refrigerant temperature of the use side heat exchanger detected by the refrigerant temperature detection means and the indoor dew point temperature stored in the storage means is calculated. The refrigeration and air conditioning method according to claim 10 or 11 , wherein the operation time and stop time of the drain pump are determined based on the calculated temperature difference and a table stored in the storage means. .
JP2007071123A 2007-03-19 2007-03-19 Refrigeration air conditioner and refrigeration air conditioning method Active JP4711438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007071123A JP4711438B2 (en) 2007-03-19 2007-03-19 Refrigeration air conditioner and refrigeration air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007071123A JP4711438B2 (en) 2007-03-19 2007-03-19 Refrigeration air conditioner and refrigeration air conditioning method

Publications (2)

Publication Number Publication Date
JP2008232511A JP2008232511A (en) 2008-10-02
JP4711438B2 true JP4711438B2 (en) 2011-06-29

Family

ID=39905517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007071123A Active JP4711438B2 (en) 2007-03-19 2007-03-19 Refrigeration air conditioner and refrigeration air conditioning method

Country Status (1)

Country Link
JP (1) JP4711438B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5198404B2 (en) * 2009-10-15 2013-05-15 株式会社東芝 Humidity estimation apparatus and humidity estimation method
JP5533637B2 (en) * 2010-12-23 2014-06-25 株式会社デンソー Air conditioner for vehicles
JP6336800B2 (en) * 2014-03-28 2018-06-06 高砂熱学工業株式会社 Method and apparatus for calculating the amount of production heat during heating operation of an air heat source heat pump
JP7193754B2 (en) * 2021-05-07 2022-12-21 ダイキン工業株式会社 Indoor unit and air conditioner
JP7193753B2 (en) * 2021-05-07 2022-12-21 ダイキン工業株式会社 Indoor unit and air conditioner
WO2022234859A1 (en) * 2021-05-07 2022-11-10 ダイキン工業株式会社 Indoor unit and air conditioning device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493545A (en) * 1990-08-07 1992-03-26 Matsushita Electric Ind Co Ltd Control device of drain pump in air conditioner
JPH0719567A (en) * 1993-07-02 1995-01-20 Toshiba Corp Air conditioner
JPH07103507A (en) * 1993-10-05 1995-04-18 Hitachi Air Conditioning & Refrig Co Ltd Air-conditioner
JPH07190576A (en) * 1993-12-27 1995-07-28 Toshiba Corp Air conditioner
JPH08136065A (en) * 1994-11-04 1996-05-31 Matsushita Refrig Co Ltd Cooler/heater
JPH09303840A (en) * 1996-05-13 1997-11-28 Toshiba Corp Air conditioner
JPH1054138A (en) * 1996-08-09 1998-02-24 Nishimatsu Constr Co Ltd Force feed pipe device for supplying kneaded material
JPH10170052A (en) * 1996-12-03 1998-06-26 Toshiba Corp Air conditioner
JP2001263711A (en) * 2000-03-15 2001-09-26 Daikin Ind Ltd Method for checking drain function and air conditioner
JP2005055107A (en) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd Drain pump controller
JP2005076957A (en) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd Air conditioner

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493545A (en) * 1990-08-07 1992-03-26 Matsushita Electric Ind Co Ltd Control device of drain pump in air conditioner
JPH0719567A (en) * 1993-07-02 1995-01-20 Toshiba Corp Air conditioner
JPH07103507A (en) * 1993-10-05 1995-04-18 Hitachi Air Conditioning & Refrig Co Ltd Air-conditioner
JPH07190576A (en) * 1993-12-27 1995-07-28 Toshiba Corp Air conditioner
JPH08136065A (en) * 1994-11-04 1996-05-31 Matsushita Refrig Co Ltd Cooler/heater
JPH09303840A (en) * 1996-05-13 1997-11-28 Toshiba Corp Air conditioner
JPH1054138A (en) * 1996-08-09 1998-02-24 Nishimatsu Constr Co Ltd Force feed pipe device for supplying kneaded material
JPH10170052A (en) * 1996-12-03 1998-06-26 Toshiba Corp Air conditioner
JP2001263711A (en) * 2000-03-15 2001-09-26 Daikin Ind Ltd Method for checking drain function and air conditioner
JP2005055107A (en) * 2003-08-06 2005-03-03 Matsushita Electric Ind Co Ltd Drain pump controller
JP2005076957A (en) * 2003-08-29 2005-03-24 Matsushita Electric Ind Co Ltd Air conditioner

Also Published As

Publication number Publication date
JP2008232511A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP3977835B2 (en) Control method of multi air conditioner
US20100241287A1 (en) Air conditioning control device, air conditioning apparatus, and air conditioning control method
JP6017068B2 (en) Air conditioner
JP5487857B2 (en) Air conditioning system
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP4711438B2 (en) Refrigeration air conditioner and refrigeration air conditioning method
JP4173880B2 (en) Dehumidification control method for air conditioning system
JP2004233046A (en) Power dehumidification operating method for air conditioner
JP5447360B2 (en) Control method of air conditioner
JP2010133589A (en) Air conditioner
JPWO2017029741A1 (en) Air conditioning system
JP3835453B2 (en) Air conditioner
JP2016008742A (en) Air conditioning device
JP2006275509A (en) Control method of air conditioner
JP3994607B2 (en) Air conditioning method
JP2016138666A (en) Air conditioner
WO2018221052A1 (en) Control device, multi-split air conditioning system provided with same, and control method, and control program
JP4043756B2 (en) Air conditioner and control method thereof
JP2006078026A (en) Air conditioner
JP7284572B2 (en) Latent heat treatment module, outside air treatment device and air conditioning system
JP2008232588A (en) Air conditioner
WO2021214930A1 (en) Air-conditioning system and control method
JP6105933B2 (en) Air conditioner using direct expansion coil
JP5133524B2 (en) Air conditioner
JP7316759B2 (en) Air conditioner and air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110318

R150 Certificate of patent or registration of utility model

Ref document number: 4711438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250