JPH07190576A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH07190576A
JPH07190576A JP5347261A JP34726193A JPH07190576A JP H07190576 A JPH07190576 A JP H07190576A JP 5347261 A JP5347261 A JP 5347261A JP 34726193 A JP34726193 A JP 34726193A JP H07190576 A JPH07190576 A JP H07190576A
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
detected
air conditioner
temperature sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5347261A
Other languages
Japanese (ja)
Other versions
JP3337545B2 (en
Inventor
Tsunetoshi Inoue
常俊 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP34726193A priority Critical patent/JP3337545B2/en
Publication of JPH07190576A publication Critical patent/JPH07190576A/en
Application granted granted Critical
Publication of JP3337545B2 publication Critical patent/JP3337545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide an air conditioner in which a temperature of an item to be measured can be accurately obtained irrespective of any short circuited trouble of a temperature sensor and thereby a stable and proper operation of the air conditioner can be carried out. CONSTITUTION:Refirgerant temperatures Te1 and Te2 at the same measuring point are detected by temperature sensors 37a and 37b having the same characteristics from each other. If the temperature sensors 37a and 37b are of a negative characteristic thermistor, they select a lower sensing temperature of the detected temperatures Te1 and Te2 (the higher sensing temperature generated by a trouble in short circuit of the temperature sensor is ignored) and then the selected sensing temperature is inputted as a control information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、室外ユニットおよび
複数の室内ユニットからなるマルチタイプの空気調和機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type air conditioner including an outdoor unit and a plurality of indoor units.

【0002】[0002]

【従来の技術】一般に、空気調和機は、圧縮機、四方
弁、室外熱交換器、流量調整弁、および室内熱交換器を
順次に配管接続してヒートポンプ式の冷凍サイクルを構
成し、室外熱交換器を凝縮器、室内熱交換器を蒸発器と
して機能させることにより、冷房運転を実行する。暖房
時は、室内熱交換器が凝縮器、室外熱交換器が蒸発器と
して機能する。
2. Description of the Related Art Generally, an air conditioner has a heat pump type refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a flow rate adjusting valve, and an indoor heat exchanger are sequentially connected by piping to form an outdoor heat exchanger. The cooling operation is executed by causing the exchanger to function as a condenser and the indoor heat exchanger as an evaporator. During heating, the indoor heat exchanger functions as a condenser and the outdoor heat exchanger functions as an evaporator.

【0003】運転中は、室内熱交換器が設置された部屋
の空調負荷に応じて圧縮機の能力を制御するとともに、
蒸発器における冷媒の過熱度を検出し、その過熱度があ
らかじめ定めた一定値に収まるよう、流量調整弁の開度
を調節して蒸発器への冷媒流量を制御する。
During operation, the capacity of the compressor is controlled according to the air conditioning load of the room in which the indoor heat exchanger is installed, and
The degree of superheat of the refrigerant in the evaporator is detected, and the flow rate of the refrigerant to the evaporator is controlled by adjusting the opening of the flow rate adjusting valve so that the degree of superheat falls within a predetermined constant value.

【0004】過熱度は、蒸発器から流出する冷媒の温度
とその蒸発器に流入する冷媒の温度との差に相当し、配
管に取付けた温度センサの検知温度から検出される。こ
の過熱度については、冷凍サイクルの安定した運転を確
保するため、また圧縮機への液バックを防ぐ必要性か
ら、適切な制御が望まれる。このため、温度センサの検
知温度に対し正確さが要求される。
The degree of superheat corresponds to the difference between the temperature of the refrigerant flowing out of the evaporator and the temperature of the refrigerant flowing into the evaporator, and is detected from the temperature detected by the temperature sensor attached to the pipe. Appropriate control of this degree of superheat is desired in order to ensure stable operation of the refrigeration cycle and to prevent liquid back to the compressor. Therefore, accuracy is required for the temperature detected by the temperature sensor.

【0005】[0005]

【発明が解決しようとする課題】温度センサとして一般
に感熱抵抗素子(たとえば負特性サーミスタ)が使用さ
れるが、この感熱抵抗素子には短絡故障や断線故障の心
配がある。
Generally, a thermosensitive resistance element (for example, a negative characteristic thermistor) is used as a temperature sensor, but there is a concern of short-circuit failure or wire breakage failure in the thermosensitive resistance element.

【0006】このうち断線は、故障なしの状態から故障
ありの状態へと一挙に切換わるものであるため、故障の
前後の検知温度に大きな差が生じる。したがって、断線
に関しては、検知温度の変化から故障を直ちに察知する
ことができる。
Of these, the disconnection causes a sudden change from a state without failure to a state with failure, so that a large difference occurs in the detected temperature before and after the failure. Therefore, regarding the disconnection, the failure can be immediately detected from the change in the detected temperature.

【0007】ところが、短絡は部分的に進むことが多
く、検知温度が徐々に変化するため故障の察知がなかな
か難しい。このため、短絡が生じたまま過熱度検出が続
いてしまい、運転および圧縮機の寿命に悪影響を与えて
しまうことが多い。
However, a short circuit often progresses partially and the detected temperature gradually changes, so it is difficult to detect a failure. Therefore, the degree of superheat detection continues with a short circuit, which often adversely affects the operation and the life of the compressor.

【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、温度センサの短絡故障にかか
わらず測定対象の温度を的確に捕らえることができ、こ
れにより安定かつ適正な運転が可能な空気調和機を提供
することにある。
The present invention takes the above circumstances into consideration,
It is an object of the present invention to provide an air conditioner capable of accurately capturing the temperature of a measurement target regardless of a short-circuit failure of a temperature sensor, thereby enabling stable and proper operation.

【0009】[0009]

【課題を解決するための手段】第1の発明の空気調和機
は、冷凍サイクル回路の同一の測定点に設けた互いに同
じ特性の複数の温度センサと、これら温度センサの検知
温度のうち低い方または高い方のいずれか一方を各温度
センサの特性に応じて選択しそれを制御情報として取込
む手段と、を備える。
An air conditioner according to a first aspect of the present invention includes a plurality of temperature sensors having the same characteristics, which are provided at the same measurement point of a refrigeration cycle circuit, and one of the detected temperatures of the temperature sensors, whichever is lower. Or means for selecting one of the higher ones according to the characteristics of each temperature sensor and fetching it as control information.

【0010】第2の発明の空気調和機は、冷凍サイクル
回路の同一の測定点に設けた互いに同じ特性の複数の温
度センサと、これら温度センサの故障を検出する手段
と、この故障が検出されないとき、前記各温度センサの
検知温度のうち低い方または高い方のいずれか一方を各
温度センサの特性に応じて選択しそれを制御情報として
取込む手段と、を備える。
In the air conditioner of the second invention, a plurality of temperature sensors having the same characteristics are provided at the same measurement point of the refrigeration cycle circuit, a means for detecting a failure of these temperature sensors, and this failure is not detected. At this time, there is provided a means for selecting one of the detected temperature of each temperature sensor, whichever is lower or higher, according to the characteristic of each temperature sensor, and fetching it as control information.

【0011】第3の発明の空気調和機は、冷凍サイクル
回路の互いに因果関係のある複数の測定点に設けた、互
いに同じ特性の複数の温度センサと、これら温度センサ
の検知温度のうち、低い方または高い方のいずれか一方
を上記因果関係を加味した上でかつ各温度特性に応じて
選択しそれを制御情報として取込む手段と、を備える。
In the air conditioner of the third aspect of the present invention, among the plurality of temperature sensors having the same characteristics and provided at a plurality of measurement points having a causal relationship with each other in the refrigeration cycle circuit, the temperature detected by these temperature sensors is the lowest. One of the higher side and the higher side is selected in consideration of the above-mentioned causal relationship and according to each temperature characteristic, and it is taken in as control information.

【0012】[0012]

【作用】第1の発明の空気調和機では、冷凍サイクル回
路の同一の測定点の温度を互いに同じ特性の複数の温度
センサで検知し、これら検知温度のうち低い方または高
い方の検知温度を各温度センサの特性に応じて選択し、
それを制御情報として取込む。
In the air conditioner of the first aspect of the invention, the temperature at the same measurement point of the refrigeration cycle circuit is detected by a plurality of temperature sensors having the same characteristics, and the lower or higher one of the detected temperatures is detected. Select according to the characteristics of each temperature sensor,
Take it in as control information.

【0013】第2の発明の空気調和機では、冷凍サイク
ル回路の同一の測定点の温度を互いに同じ特性の複数の
温度センサで検知し、かつ各温度センサの故障を検出
し、この故障が検出されない場合にのみ、各温度センサ
の検知温度のうち低い方または高い方の検知温度を各温
度センサの特性に応じて選択し、それを制御情報として
取込む。
In the air conditioner of the second invention, the temperature at the same measurement point of the refrigeration cycle circuit is detected by a plurality of temperature sensors having the same characteristics, and a failure of each temperature sensor is detected, and this failure is detected. Only when this is not done, the lower or higher detected temperature among the detected temperatures of each temperature sensor is selected according to the characteristics of each temperature sensor, and that is taken in as control information.

【0014】第3の発明の空気調和機では、冷凍サイク
ル回路の互いに因果関係のある複数の測定点の温度を互
いに同じ特性の複数の温度センサで検知し、これら温度
センサの検知温度のうち低い方または高い方を上記因果
関係を加味した上でかつ各温度センサの特性に応じて選
択し、それを制御情報として取込む。
In the air conditioner of the third aspect of the invention, the temperatures at a plurality of measurement points in the refrigeration cycle circuit, which have a causal relationship with each other, are detected by a plurality of temperature sensors having the same characteristics, and the temperature detected by these temperature sensors is the lowest. The higher or higher one is selected in consideration of the above-mentioned causal relationship and according to the characteristics of each temperature sensor, and that is selected as control information.

【0015】[0015]

【実施例】以下、この発明の一実施例について図面を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0016】図4に示すように、室外ユニットAに複数
の室内ユニットBを配管接続する。室外ユニットAは、
共通の密閉ケースに収容した圧縮機1,2を備える。圧
縮機1は、インバータ駆動の能力可変圧縮機である。圧
縮機2は、商用電源駆動の能力固定圧縮機である。
As shown in FIG. 4, a plurality of indoor units B are connected to the outdoor unit A by piping. The outdoor unit A is
The compressors 1 and 2 housed in a common closed case are provided. The compressor 1 is an inverter-driven variable capacity compressor. The compressor 2 is a commercial power source driven fixed capacity compressor.

【0017】圧縮機1の吐出口に高圧側配管4aを接続
する。圧縮機2の吐出口に、高圧側配管4bを接続し、
高圧側配管4bに逆止弁3を設ける。高圧側配管4aお
よび高圧側配管4bを高圧側配管4に接続する。圧縮機
1,2の吸込口に低圧側配管5を接続する。
The high pressure side pipe 4a is connected to the discharge port of the compressor 1. Connect the high pressure side pipe 4b to the discharge port of the compressor 2,
The check valve 3 is provided in the high pressure side pipe 4b. The high pressure side pipe 4 a and the high pressure side pipe 4 b are connected to the high pressure side pipe 4. The low-pressure side pipe 5 is connected to the suction ports of the compressors 1 and 2.

【0018】高圧側配管4にオイルセパレータ6および
四方弁7を介して室外熱交換器8を接続する。この室外
熱交換器8に逆止弁9およびリキッドタンク10を介し
てドライヤ11を接続する。逆止弁9に暖房用膨張弁1
2を並列に接続する。室外熱交換器8の近傍に室外ファ
ン13を設ける。
An outdoor heat exchanger 8 is connected to the high pressure side pipe 4 via an oil separator 6 and a four-way valve 7. A dryer 11 is connected to the outdoor heat exchanger 8 via a check valve 9 and a liquid tank 10. Check valve 9 and heating expansion valve 1
Connect 2 in parallel. An outdoor fan 13 is provided near the outdoor heat exchanger 8.

【0019】低圧側配管5にアキュームレータ14およ
び四方弁7を介してストレーナ15を接続する。
A strainer 15 is connected to the low pressure side pipe 5 via an accumulator 14 and a four-way valve 7.

【0020】上記オイルセパレータ6は、圧縮機1,2
から吐出される冷媒に含まれる潤滑油を抽出するもので
ある。このオイルセパレータ6から低圧側配管5にかけ
て、油戻し用の配管16を接続する。
The oil separator 6 is composed of compressors 1 and 2.
Lubricating oil contained in the refrigerant discharged from is extracted. A pipe 16 for returning oil is connected from the oil separator 6 to the low-pressure side pipe 5.

【0021】逆止弁9とリキッドタンク10との間の液
側配管に、クーリングバイパス17の一端を接続する。
このクーリングバイパス17の他端を四方弁7とアキュ
ームレータ14との間の低圧側配管に接続する。そし
て、クーリングバイパス17に流量調整弁18を設け
る。
One end of the cooling bypass 17 is connected to the liquid side pipe between the check valve 9 and the liquid tank 10.
The other end of the cooling bypass 17 is connected to the low pressure side pipe between the four-way valve 7 and the accumulator 14. Then, the cooling bypass 17 is provided with the flow rate adjusting valve 18.

【0022】このような配管接続により、室外ユニット
Aおよび各室内ユニットBにおいてヒートポンプ式の冷
凍サイクル回路を構成している。冷房時は、四方弁7を
ニュートラル状態に設定し、これにより圧縮機1,2の
吐出冷媒を図示実線矢印の方向に冷媒を流して冷房サイ
クルを形成し、室外熱交換器8を凝縮器、各室内熱交換
器33を蒸発器として機能させる。暖房時は、四方弁7
を切換え、これにより圧縮機1,2の吐出冷媒を図示破
線矢印の方向に冷媒を流して暖房サイクルを形成し、各
室内熱交換器33を凝縮器、室外熱交換器8を蒸発器と
して機能させる。
By such pipe connections, the outdoor unit A and each indoor unit B constitute a heat pump type refrigeration cycle circuit. During cooling, the four-way valve 7 is set to a neutral state, whereby the refrigerant discharged from the compressors 1 and 2 is caused to flow in the direction of the solid line arrow in the drawing to form a cooling cycle, and the outdoor heat exchanger 8 is connected to the condenser, Each indoor heat exchanger 33 functions as an evaporator. Four-way valve 7 when heating
By this, the refrigerant discharged from the compressors 1 and 2 is caused to flow in the direction of the broken line arrow to form a heating cycle, and each indoor heat exchanger 33 functions as a condenser and the outdoor heat exchanger 8 functions as an evaporator. Let

【0023】上記流量調整弁18および各流量調整弁3
2は、入力される駆動パルスの数に応じて開度が連続的
に変化するパルスモータバルブである。以下、流量調整
弁のことをPMVと略称する。
The flow rate adjusting valve 18 and each flow rate adjusting valve 3
Reference numeral 2 is a pulse motor valve whose opening continuously changes according to the number of input drive pulses. Hereinafter, the flow rate adjusting valve is abbreviated as PMV.

【0024】高圧側配管4aに、高圧スイッチ21およ
び温度センサ25を取付ける。高圧側配管4bに、高圧
スイッチ22および温度センサ26を取付ける。高圧ス
イッチ21,22は、冷媒の圧力が異常上昇して所定値
に達すると、作動する。
The high pressure switch 21 and the temperature sensor 25 are attached to the high pressure side pipe 4a. The high pressure switch 22 and the temperature sensor 26 are attached to the high pressure side pipe 4b. The high pressure switches 21 and 22 are activated when the pressure of the refrigerant rises abnormally and reaches a predetermined value.

【0025】高圧側配管4に圧力センサ23を取付け
る。低圧側配管5に圧力センサ24および温度センサ2
7を取付ける。室外熱交換器8に温度センサ28を取付
ける。室外ユニットAの所定箇所に外気温度センサ29
を取付ける。
A pressure sensor 23 is attached to the high pressure side pipe 4. The pressure sensor 24 and the temperature sensor 2 are attached to the low-pressure side pipe 5.
Install 7. The temperature sensor 28 is attached to the outdoor heat exchanger 8. An outdoor air temperature sensor 29 is installed at a predetermined location of the outdoor unit A.
Install.

【0026】ドライヤ11とストレーナ15との間に、
室内ユニットBのストレーナ31および流量調整弁32
を介して室内熱交換器33を接続する。室内熱交換器3
3の近傍に室内ファン34を設ける。そして、PMV3
2と室内熱交換器33との間の液側配管に圧力センサ3
5および温度センサ37を取付ける。室内熱交換器33
に接続のガス側配管に圧力センサ36および温度センサ
38を取付ける。室内ファン34の吸込み空気の通路に
室内温度センサ39を設ける。他の室内ユニットBにつ
いても、同じ構成および同じ接続である。
Between the dryer 11 and the strainer 15,
Strainer 31 and flow rate adjustment valve 32 of indoor unit B
The indoor heat exchanger 33 is connected via. Indoor heat exchanger 3
An indoor fan 34 is provided in the vicinity of 3. And PMV3
2 and the indoor heat exchanger 33, the pressure sensor 3 is provided on the liquid side pipe.
5 and the temperature sensor 37 are attached. Indoor heat exchanger 33
A pressure sensor 36 and a temperature sensor 38 are attached to the gas side pipe connected to the. An indoor temperature sensor 39 is provided in the passage of the intake air of the indoor fan 34. The other indoor units B have the same configuration and the same connection.

【0027】温度センサ37,38は、室内熱交換器3
3が蒸発器として機能する冷房時、その室内熱交換器3
3における冷媒の過熱度を検出するためのもので、感温
抵抗素子たとえば負特性サーミスタを用いている。
The temperature sensors 37 and 38 are used for the indoor heat exchanger 3.
Indoor heat exchanger 3 during cooling when 3 functions as an evaporator
In order to detect the degree of superheat of the refrigerant in No. 3, a temperature sensitive resistance element such as a negative characteristic thermistor is used.

【0028】また、図1では温度センサ37を1つだけ
示しているが、実際には図1ないし図3に示すように2
つの温度センサ37a,37bを用意している。
Further, although only one temperature sensor 37 is shown in FIG. 1, it is actually 2 as shown in FIGS.
Two temperature sensors 37a and 37b are prepared.

【0029】すなわち、室内熱交換器33につながる配
管40に一対のサーモ挿入パイプ41,41を取付け、
そのサーモ挿入パイプ41,41に2つの温度センサ3
7a,37bをそれぞれ挿入する。この挿入に際しては
バネ状の固定用部材42,42をいっしょに挿入し、固
定用部材42,42の弾性によって温度センサ37a,
37bをそれぞれサーモ挿入パイプ41,41の内周面
(配管40側)に圧接する。
That is, a pair of thermo insertion pipes 41, 41 are attached to the pipe 40 connected to the indoor heat exchanger 33,
Two temperature sensors 3 are provided on the thermo insertion pipes 41, 41.
7a and 37b are inserted respectively. At the time of this insertion, the spring-shaped fixing members 42, 42 are inserted together, and the elasticity of the fixing members 42, 42 causes the temperature sensor 37a,
37b is pressed against the inner peripheral surfaces (pipe 40 side) of the thermo insertion pipes 41, 41, respectively.

【0030】温度センサ38についても、図示していな
いが、実際には温度センサ37a,37bと同じく2つ
の温度センサ38a,38bを用意している。
Although not shown, the temperature sensor 38 is actually provided with two temperature sensors 38a and 38b like the temperature sensors 37a and 37b.

【0031】制御回路を図5に示す。The control circuit is shown in FIG.

【0032】室外ユニットAは室外制御部50を備え
る。この室外制御部50に各室内ユニットBの室内制御
部60を配線接続する。
The outdoor unit A has an outdoor controller 50. The indoor control unit 60 of each indoor unit B is wire-connected to the outdoor control unit 50.

【0033】室外制御部50は、マイクロコンピュ―タ
およびその周辺回路からなる。この室外制御部50に、
四方弁7、室外ファンモータ13M、PMV18、高圧
スイッチ21,22、圧力センサ23,24、温度セン
サ25,26,27、熱交換器温度センサ28、外気温
度センサ29、商用交流電源51、インバ―タ52、ス
イッチ53を接続する。
The outdoor controller 50 comprises a microcomputer and its peripheral circuits. In this outdoor control unit 50,
Four-way valve 7, outdoor fan motor 13M, PMV 18, high pressure switches 21 and 22, pressure sensors 23 and 24, temperature sensors 25, 26 and 27, heat exchanger temperature sensor 28, outside air temperature sensor 29, commercial AC power supply 51, and inverter. Switch 52 and switch 53 are connected.

【0034】インバ―タ52は、室外制御部50内の交
流電源ラインの電圧を整流し、それを室外制御部50の
指令に応じたスイッチングにより所定周波数の電圧に変
換し、出力する。この出力は、圧縮機モ―タ1Mの駆動
電力となる。
The inverter 52 rectifies the voltage of the AC power supply line in the outdoor control unit 50, converts it into a voltage of a predetermined frequency by switching according to a command from the outdoor control unit 50, and outputs it. This output becomes the drive power for the compressor motor 1M.

【0035】スイッチ53は、たとえば電磁接触器の接
点である。室外制御部50内の交流電源ラインにスイッ
チ53を介して圧縮機モータ2Mを接続する。
The switch 53 is, for example, a contact of an electromagnetic contactor. The compressor motor 2M is connected to the AC power supply line in the outdoor control unit 50 via the switch 53.

【0036】室内制御部60は、マイクロコンピュ―タ
およびその周辺回路からなる。この室内制御部60に、
PMV32、室内ファンモータ34M、圧力センサ3
5,36、温度センサ37a,37b,38a,38
b、室内温度センサ39、リモートコントロール式の操
作器(以下、リモコンと略称する)61を接続する。
The indoor control unit 60 comprises a microcomputer and its peripheral circuits. In this indoor control unit 60,
PMV 32, indoor fan motor 34M, pressure sensor 3
5, 36, temperature sensors 37a, 37b, 38a, 38
b, the room temperature sensor 39, and a remote control type operation device (hereinafter, abbreviated as remote controller) 61 are connected.

【0037】なお、室内制御部60と温度センサ37
a,37bとの接続間に、図6に示す温度検知回路を介
在させる。
The indoor control unit 60 and the temperature sensor 37
The temperature detection circuit shown in FIG. 6 is interposed between the connection with a and 37b.

【0038】すなわち、温度センサ37aと抵抗Raと
の直列回路に直流電圧Vを印加し、温度センサ37aの
抵抗値変化に基づいて抵抗Raに生じる電圧Va(以
下、温度センサ37aの出力電圧と称する)を、検知温
度情報として室外制御部60に入力する。温度センサ3
7bと抵抗Rbとの直列回路に直流電圧Vを印加し、温
度センサ37bの抵抗値変化に基づいて抵抗Rbに生じ
る電圧Vb(以下、温度センサ37bの出力電圧と称す
る)を、検知温度情報として室外制御部60に入力す
る。
That is, the DC voltage V is applied to the series circuit of the temperature sensor 37a and the resistor Ra, and the voltage Va generated at the resistor Ra based on the change in the resistance value of the temperature sensor 37a (hereinafter referred to as the output voltage of the temperature sensor 37a). ) Is input to the outdoor control unit 60 as the detected temperature information. Temperature sensor 3
The DC voltage V is applied to the series circuit of the resistor 7b and the resistor Rb, and the voltage Vb (hereinafter referred to as the output voltage of the temperature sensor 37b) generated in the resistor Rb based on the change in the resistance value of the temperature sensor 37b is used as the detected temperature information. Input to the outdoor control unit 60.

【0039】室内制御部60と温度センサ38a,38
bとの接続間にも、同様の温度検知回路を介在させる。
Indoor control unit 60 and temperature sensors 38a, 38
A similar temperature detection circuit is also interposed between the connection with b.

【0040】室内制御部60は、主として次の機能手段
を備える。
The indoor control unit 60 mainly includes the following functional means.

【0041】[1]リモコン61の操作に基づく運転モ
ード指令、運転開始指令、運転停止指令を室外ユニット
Aに送る手段。
[1] Means for sending the operation mode command, the operation start command, and the operation stop command to the outdoor unit A based on the operation of the remote controller 61.

【0042】[2]室内温度センサ39の検知温度(吸
込空気温度)とリモコン61での設定温度との差(空調
負荷)を求め、その温度差に対応する要求能力を室外ユ
ニットAに知らせる手段。
[2] A means for obtaining the difference (air conditioning load) between the temperature detected by the indoor temperature sensor 39 (intake air temperature) and the temperature set by the remote controller 61 and notifying the outdoor unit A of the required capacity corresponding to the temperature difference. .

【0043】[3]PMV32の開度を、当該室内ユニ
ットの要求能力に応じて制御する手段。
[3] Means for controlling the opening of the PMV 32 according to the required capacity of the indoor unit.

【0044】[4]冷房時、室内熱交換器33の出口側
の温度センサ38a,38bのうち低い方を制御情報
(検知温度Te2 )として取込み、室内熱交換器33の
入口側の温度センサ37a,37bのうち低い方を制御
情報(検知温度Te1 )として取込み、取込んだ両検知
温度の差(=Te2 −Te1 )を室内熱交換器33にお
ける冷媒の過熱度として検出する手段。
[4] During cooling, the lower one of the temperature sensors 38a, 38b on the outlet side of the indoor heat exchanger 33 is taken in as control information (detection temperature Te 2 ) and the temperature sensor on the inlet side of the indoor heat exchanger 33 is taken in. A means for taking in the lower one of 37a and 37b as control information (detection temperature Te 1 ) and detecting the difference (= Te 2 −Te 1 ) between the two detection temperatures taken in as the degree of superheat of the refrigerant in the indoor heat exchanger 33. .

【0045】[5]温度センサ37a(および38a)
の出力電圧Vaが零のとき温度センサ37a(および3
8a)が断線故障と判定し、温度センサ37b(および
38b)の出力電圧Vbが零のとき温度センサ37b
(および38b)が断線故障と判定する手段。
[5] Temperature sensor 37a (and 38a)
Output voltage Va is zero, the temperature sensor 37a (and 3
If the output voltage Vb of the temperature sensor 37b (and 38b) is zero, it is determined that the temperature sensor 37b
(And 38b) is a means for determining a disconnection failure.

【0046】[6]温度センサ37a(および38a)
の断線故障が判定されると上記の過熱度検出に温度セン
サ37b(および38b)を使用し、温度センサ37b
(および38b)の断線故障が判定されると過熱度検出
に温度センサ37a(および38a)を使用する手段。
[6] Temperature sensor 37a (and 38a)
When it is determined that the disconnection failure of the temperature sensor 37b (and 38b) is used for the above-mentioned superheat detection, the temperature sensor 37b
A means for using the temperature sensor 37a (and 38a) for detecting the degree of superheat when the disconnection failure of (and 38b) is determined.

【0047】[8]検出した過熱度があらかじめ定めて
いる一定値に収まるよう、PMV32の開度を補正する
手段。
[8] A means for correcting the opening of the PMV 32 so that the detected degree of superheat falls within a predetermined constant value.

【0048】室外制御部50は、主として次の機能手段
を備える。
The outdoor control unit 50 mainly includes the following functional means.

【0049】[1]圧縮機1,2の運転能力(圧縮機
1,2の運転台数および圧縮機1の運転周波数F)を、
各室内ユニットBの要求能力の合計に応じて制御する手
段。
[1] The operating capacity of the compressors 1 and 2 (the number of operating compressors 1 and 2 and the operating frequency F of the compressor 1)
A means for controlling according to the total required capacity of each indoor unit B.

【0050】[2]四方弁7をニュートラル状態に設定
し、圧縮機1,2の吐出冷媒を四方弁7、室外熱交換器
8、各流量調整弁32、各室内熱交換器33、四方弁7
に通して圧縮機1,2に戻し、冷房運転を実行する手
段。
[2] The four-way valve 7 is set to the neutral state, and the refrigerant discharged from the compressors 1 and 2 is transferred to the four-way valve 7, the outdoor heat exchanger 8, each flow rate adjusting valve 32, each indoor heat exchanger 33, and the four-way valve. 7
Means for returning to the compressors 1 and 2 through the air conditioner to execute the cooling operation.

【0051】[3]四方弁7を切換え、圧縮機1,2の
吐出冷媒を四方弁7、各室内熱交換器33、各流量調整
弁32、室外熱交換器8、四方弁7に通して圧縮機1,
2に戻し、暖房運転を実行する手段。
[3] The four-way valve 7 is switched, and the refrigerant discharged from the compressors 1 and 2 is passed through the four-way valve 7, each indoor heat exchanger 33, each flow rate adjusting valve 32, the outdoor heat exchanger 8, and the four-way valve 7. Compressor 1,
A means for returning to 2 and performing heating operation.

【0052】つぎに、上記の構成の作用を説明する。Next, the operation of the above configuration will be described.

【0053】任意の室内ユニットBのリモコン61で、
所望の運転モードおよび室内温度(以下、設定温度と称
する)が設定され、かつ運転開始操作がなされたとす
る。
With the remote controller 61 of any indoor unit B,
It is assumed that a desired operation mode and a room temperature (hereinafter, referred to as a set temperature) are set and an operation for starting operation is performed.

【0054】すると、圧縮機1,2のうち少なくとも圧
縮機1が起動し、運転開始となる。冷房運転モードであ
れば、四方弁7がニュートラル状態に設定され、冷媒が
図1の実線矢印の方向に流れて冷房サイクルが形成され
る。これにより、室外熱交換器8が凝縮器、室内熱交換
器33が蒸発器として機能する。
Then, at least the compressor 1 of the compressors 1 and 2 is started and the operation is started. In the cooling operation mode, the four-way valve 7 is set in the neutral state, the refrigerant flows in the direction of the solid arrow in FIG. 1, and the cooling cycle is formed. Thereby, the outdoor heat exchanger 8 functions as a condenser, and the indoor heat exchanger 33 functions as an evaporator.

【0055】室内ユニットBは、室内温度センサ39の
検知温度(吸込空気温度)とリモコン61での設定温度
との差を求め、その温度差に対応する要求能力を室外ユ
ニットAに知らせる。さらに、PMV32の開度を、当
該ユニットの要求能力に応じた開度に設定する。
The indoor unit B obtains the difference between the temperature detected by the indoor temperature sensor 39 (intake air temperature) and the temperature set by the remote controller 61, and informs the outdoor unit A of the required capacity corresponding to the temperature difference. Further, the opening degree of the PMV 32 is set to an opening degree according to the required capacity of the unit.

【0056】室外ユニットAは、圧縮機1,2の運転能
力(圧縮機1,2の運転台数および圧縮機1の運転周波
数F)を、各室内ユニットBからの要求能力の合計に応
じた運転容量に設定する。
The outdoor unit A operates the operating capacities of the compressors 1 and 2 (the operating number of the compressors 1 and 2 and the operating frequency F of the compressor 1) in accordance with the total required capacity from each indoor unit B. Set to capacity.

【0057】たとえば、要求能力の合計が小さいとき
は、インバータ52の出力周波数Fを制御して圧縮機1
の単独の能力可変運転を実行する。要求能力の合計が増
すと、インバータ52の出力周波数Fを制御するととも
に、スイッチ53をオンし、圧縮機1の能力可変運転お
よび圧縮機2の能力固定運転を実行する。
For example, when the total required capacity is small, the output frequency F of the inverter 52 is controlled to control the compressor 1
The single variable capacity operation of is executed. When the total required capacity increases, the output frequency F of the inverter 52 is controlled, the switch 53 is turned on, and the variable capacity operation of the compressor 1 and the fixed capacity operation of the compressor 2 are executed.

【0058】一方、図7のフローチャートに示すよう
に、温度センサ37aの出力電圧Vaが零かどうか、お
よび温度センサ37bの出力電圧Vbが零かどうかを確
認する。出力電圧Va,Vbが共に零でなければ、温度
センサ37a,37bが断線していないとの判断の下
に、出力電圧Va,Vbに基づく冷媒温度Ta,Tbを
検知する。
On the other hand, as shown in the flow chart of FIG. 7, it is confirmed whether the output voltage Va of the temperature sensor 37a is zero and whether the output voltage Vb of the temperature sensor 37b is zero. If both the output voltages Va and Vb are not zero, the refrigerant temperatures Ta and Tb based on the output voltages Va and Vb are detected under the judgment that the temperature sensors 37a and 37b are not broken.

【0059】温度センサ37a,37bは負特性サーミ
スタであるから、冷媒温度Ta,Tbが高くなると、温
度センサ37a,37bの抵抗値が小さくなって抵抗R
a,Rbに生じる電圧Va,Vbが高くなる。冷媒温度
Ta,Tbが低くなると、温度センサ37a,37bの
抵抗値が大きくなって抵抗Ra,Rbに生じる電圧V
a,Vbが低くなる。
Since the temperature sensors 37a and 37b are negative characteristic thermistors, when the refrigerant temperatures Ta and Tb increase, the resistance values of the temperature sensors 37a and 37b decrease and the resistance R increases.
The voltages Va and Vb generated at a and Rb become high. When the refrigerant temperatures Ta and Tb decrease, the resistance values of the temperature sensors 37a and 37b increase and the voltage V generated in the resistors Ra and Rb.
a and Vb are lowered.

【0060】冷媒温度Ta,Tbを検知すると、そのう
ちの低い方の検知温度を選択し、それを室内熱交換器3
3に流入する冷媒の温度Te1 として、かつ制御情報と
して取込む。
When the refrigerant temperatures Ta and Tb are detected, the lower detected temperature is selected and the detected temperature is selected as the indoor heat exchanger 3.
It is taken as the temperature Te 1 of the refrigerant flowing into No. 3 and as control information.

【0061】ここで、低い方の検知温度を取込むのは、
次の理由による。すなわち、温度センサ37a,37b
のどちらかに部分的な短絡故障が生じている場合、検知
温度Ta,Tbに誤差が生じる。この誤差の方向は、負
特性サーミスタであることから高い方向である。したが
って、低い方の検知温度を取込むことにより、短絡故障
が生じている温度センサの検知温度を無視した形とな
り、誤差のない温度検知を行なうことができる。仮に、
温度センサ37a,37bの両方に部分的な短絡故障が
生じている場合でも、低い方の検知温度は誤差の小さい
方である。
Here, the reason why the lower detected temperature is taken in is
For the following reasons. That is, the temperature sensors 37a and 37b
When a partial short circuit failure occurs in either of the above, an error occurs in the detected temperatures Ta and Tb. The direction of this error is high because it is a negative characteristic thermistor. Therefore, by incorporating the lower sensed temperature, the sensed temperature of the temperature sensor in which the short circuit failure has occurred is ignored, and the temperature can be sensed without error. what if,
Even if both of the temperature sensors 37a and 37b are partially short-circuited, the lower detected temperature has the smaller error.

【0062】なお、温度センサ37a,37bが正特性
サーミスタであれば、検知温度Ta,Tbのうち高い方
を選択すればよい。
If the temperature sensors 37a and 37b are positive temperature coefficient thermistors, the higher one of the detected temperatures Ta and Tb may be selected.

【0063】温度センサ38a,38bの検知温度T
a,Tbについても同じ選択を行ない、選択した検知温
度を室内熱交換器33から流出する冷媒の温度Te2
して、かつ制御情報として取込む。
Detected temperature T of the temperature sensors 38a and 38b
The same selection is made for a and Tb, and the selected detected temperature is taken in as the temperature Te 2 of the refrigerant flowing out from the indoor heat exchanger 33 and as control information.

【0064】こうして温度Te1 ,Te2 の取込みが完
了すると、両温度の差(=Te2 −Te1 )を室内熱交
換器33における冷媒の過熱度として検出する。そし
て、検出した過熱度があらかじめ定めている一定値に収
まるよう、PMV32の開度を補正する。
When the intake of the temperatures Te 1 and Te 2 is completed in this way, the difference between the two temperatures (= Te 2 -Te 1 ) is detected as the degree of superheat of the refrigerant in the indoor heat exchanger 33. Then, the opening degree of the PMV 32 is corrected so that the detected degree of superheat falls within a predetermined constant value.

【0065】したがって、温度センサの短絡故障にかか
わらず、冷媒の温度を的確に捕らえて精度の良い過熱度
制御が可能であり、安定かつ適正な運転を行なうことが
できる。
Therefore, regardless of the short-circuit failure of the temperature sensor, the temperature of the refrigerant can be accurately captured and the superheat degree can be controlled with high accuracy, and stable and proper operation can be performed.

【0066】ところで、温度センサ37aに断線故障が
生じた場合、温度センサ37aの出力電圧Vaが零とな
る。このとき、温度センサ37aが断線故障と判定し、
温度センサ37bの検知温度Tbを使用して過熱度検出
を行なう。温度センサ37bの断線故障に際しては、温
度センサ37aの検知温度Taを使用する。
By the way, when a disconnection failure occurs in the temperature sensor 37a, the output voltage Va of the temperature sensor 37a becomes zero. At this time, the temperature sensor 37a determines that there is a disconnection failure,
The degree of superheat is detected using the temperature Tb detected by the temperature sensor 37b. When the disconnection failure of the temperature sensor 37b occurs, the detected temperature Ta of the temperature sensor 37a is used.

【0067】この断線故障に際しては、検知温度の低い
方を選択することができなくなるため、過熱度検出の精
度が低下する心配が生じるが、それよりも運転を継続で
きるというメリットの方が大きい。
In the case of this disconnection failure, it is not possible to select the one with the lower detection temperature, so there is a concern that the accuracy of the superheat detection may be reduced, but the advantage of being able to continue operation is greater than that.

【0068】なお、上記実施例では、断線故障のみ判定
したが、図8に示すように、温度センサ37,37b
(および38a,38b)の検知温度Ta,Tbの差Δ
Tを求め、その温度差ΔTが所定値ΔTsを超えている
場合には、短絡故障が許容できない状態まで進んでいる
との判断の下に、検知温度の高い方の温度センサを短絡
故障と判定し、それを表示などによって報知する構成と
してもよい。
In the above embodiment, only the disconnection failure was judged, but as shown in FIG.
(And 38a, 38b) detected temperature Ta, Tb difference Δ
If the temperature difference ΔT exceeds the predetermined value ΔTs, the temperature sensor with the higher detection temperature is determined to be a short circuit failure, assuming that the short circuit failure has progressed to an unacceptable state. However, it may be configured such that it is notified by a display or the like.

【0069】また、上記実施例では、2つの温度センサ
を同一の測定点に取付けたが、2つの温度センサを互い
に因果関係のある複数の測定点に設け、これら温度セン
サの検知温度のうち、低い方または高い方のいずれか一
方を前記因果関係を加味した上でかつ各温度特性に応じ
て選択し、それを制御情報として取込む構成としてもよ
い。これは、温度センサの取付け箇所などに制約があっ
て、2つの温度センサを同一の測定点に取付けることが
困難な場合などに有効である。
Further, in the above embodiment, the two temperature sensors are attached to the same measurement point, but the two temperature sensors are provided at a plurality of measurement points having a causal relationship with each other, and among the detected temperatures of these temperature sensors, A configuration may be adopted in which either the lower one or the higher one is selected in consideration of the causal relationship and according to each temperature characteristic, and that is selected as control information. This is effective when it is difficult to attach two temperature sensors to the same measurement point due to restrictions on the location where the temperature sensors are attached.

【0070】[0070]

【発明の効果】以上述べたように、第1の発明の空気調
和機は、冷凍サイクル回路の同一の測定点の温度を互い
に同じ特性の複数の温度センサで検知し、これら検知温
度のうち低い方または高い方の検知温度を各温度センサ
の特性に応じて選択し、それを制御情報として取込む構
成としたので、温度センサの短絡故障にかかわらず測定
対象の温度を的確に捕らえることができ、これにより安
定かつ適正な運転が可能である。
As described above, the air conditioner of the first invention detects the temperature at the same measurement point of the refrigeration cycle circuit by a plurality of temperature sensors having the same characteristics, and the detected temperature is the lowest. The higher or higher detection temperature is selected according to the characteristics of each temperature sensor, and it is taken in as control information, so the temperature of the measurement target can be accurately captured regardless of short-circuit failure of the temperature sensor. As a result, stable and proper operation is possible.

【0071】第2の発明の空気調和機は、冷凍サイクル
回路の同一の測定点の温度を互いに同じ特性の複数の温
度センサで検知し、かつ各温度センサの異常を検出し、
この異常が検出されない場合にのみ、各温度センサの検
知温度のうち低い方または高い方の検知温度を各温度セ
ンサの特性に応じて選択し、それを制御情報として取込
む構成としたので、温度センサの短絡故障にかかわらず
測定対象の温度を的確に捕らえることができ、これによ
り安定かつ適正な運転が可能である。
The air conditioner of the second invention detects the temperature at the same measurement point of the refrigeration cycle circuit by a plurality of temperature sensors having the same characteristics, and detects an abnormality in each temperature sensor.
Only when this abnormality is not detected, the lower or higher detection temperature among the detection temperatures of each temperature sensor is selected according to the characteristics of each temperature sensor, and it is configured to capture it as control information. It is possible to accurately capture the temperature of the measurement target regardless of the short circuit failure of the sensor, which enables stable and proper operation.

【0072】第3の発明の空気調和機は、冷凍サイクル
回路の互いに因果関係のある複数の測定点の温度を互い
に同じ特性の複数の温度センサで検知し、これら温度セ
ンサの検知温度のうち低い方または高い方を上記因果関
係を加味した上でかつ各温度センサの特性に応じて選択
し、それを制御情報として取込む構成としたので、温度
センサの短絡故障にかかわらず、しかも温度センサの取
付け箇所などに制約を受けることなく、測定対象の温度
を的確に捕らえることができ、これにより安定かつ適正
な運転が可能である。
In the air conditioner of the third aspect of the invention, the temperatures at a plurality of measurement points in the refrigeration cycle circuit, which have a causal relationship with each other, are detected by a plurality of temperature sensors having the same characteristics, and the temperature detected by these temperature sensors is the lowest. Whichever is higher or higher is selected according to the characteristics of each temperature sensor in consideration of the above causal relationship and is taken in as control information. The temperature of the object to be measured can be accurately captured without being restricted by the mounting location, etc., and thus stable and proper operation can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例における温度センサの取付
けを説明するための分解斜視図。
FIG. 1 is an exploded perspective view for explaining attachment of a temperature sensor according to an embodiment of the present invention.

【図2】同実施例における温度センサの取付け状態を示
す図。
FIG. 2 is a view showing a mounting state of a temperature sensor in the embodiment.

【図3】図2を側方から見た図。FIG. 3 is a view of FIG. 2 viewed from the side.

【図4】同実施例の冷凍サイクルの構成図。FIG. 4 is a configuration diagram of a refrigeration cycle of the same embodiment.

【図5】同実施例の制御回路のブロック図。FIG. 5 is a block diagram of a control circuit of the embodiment.

【図6】同実施例における温度検知回路の配線図。FIG. 6 is a wiring diagram of a temperature detection circuit in the embodiment.

【図7】同実施例の作用を説明するためのフローチャー
ト。
FIG. 7 is a flowchart for explaining the operation of the embodiment.

【図8】同実施例の変形例の作用を説明するためのフロ
ーチャート。
FIG. 8 is a flowchart for explaining an operation of a modified example of the same embodiment.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B…室内ユニット、1…能力可変圧
縮機、2…能力固定圧縮機、8…室外熱交換器、32…
PMV(流量調整弁)、33…室内熱交換器、37a,
37b,38a,38b…温度センサ、50…室外制御
部、60…室内制御部。
A ... Outdoor unit, B ... Indoor unit, 1 ... Variable capacity compressor, 2 ... Fixed capacity compressor, 8 ... Outdoor heat exchanger, 32 ...
PMV (flow rate control valve), 33 ... Indoor heat exchanger, 37a,
37b, 38a, 38b ... Temperature sensor, 50 ... Outdoor control unit, 60 ... Indoor control unit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 室外ユニットおよび複数の室内ユニット
からなるマルチタイプの空気調和機において、 冷凍サイクル回路の同一の測定点に設けた互いに同じ特
性の複数の温度センサと、 これら温度センサの検知温度のうち低い方または高い方
のいずれか一方を各温度センサの特性に応じて選択し、
それを制御情報として取込む手段と、 を備えたことを特徴とする空気調和機。
1. In a multi-type air conditioner comprising an outdoor unit and a plurality of indoor units, a plurality of temperature sensors having the same characteristics, which are provided at the same measurement point of a refrigeration cycle circuit, and a temperature detected by these temperature sensors. Select either the lower one or the higher one according to the characteristics of each temperature sensor,
An air conditioner characterized by comprising means for taking it in as control information.
【請求項2】 室外ユニットおよび複数の室内ユニット
からなるマルチタイプの空気調和機において、 冷凍サイクル回路の同一の測定点に設けた互いに同じ特
性の複数の温度センサと、 これら温度センサの故障を検出する手段と、 この故障が検出されないとき、前記各温度センサの検知
温度のうち低い方または高い方のいずれか一方を各温度
センサの特性に応じて選択し、それを制御情報として取
込む手段と、を備えたことを特徴とする空気調和機。
2. In a multi-type air conditioner comprising an outdoor unit and a plurality of indoor units, a plurality of temperature sensors having the same characteristics are provided at the same measurement point of a refrigeration cycle circuit, and a failure of these temperature sensors is detected. Means for selecting one of the detected temperature of each temperature sensor, whichever is lower or higher, according to the characteristics of each temperature sensor, and fetching it as control information. An air conditioner characterized by being equipped with.
【請求項3】 室外ユニットおよび複数の室内ユニット
からなるマルチタイプの空気調和機において、 冷凍サイクル回路の互いに因果関係のある複数の測定点
に設けた、互いに同じ特性の複数の温度センサと、 これら温度センサの検知温度のうち、低い方または高い
方のいずれか一方を前記因果関係を加味した上でかつ各
温度特性に応じて選択し、それを制御情報として取込む
手段と、 を備えたことを特徴とする空気調和機。
3. A multi-type air conditioner comprising an outdoor unit and a plurality of indoor units, and a plurality of temperature sensors having the same characteristics, which are provided at a plurality of measurement points having a causal relationship with each other in a refrigeration cycle circuit. Of the detected temperatures of the temperature sensor, either low or high temperature is selected in consideration of the above-mentioned causal relationship and according to each temperature characteristic, and means for fetching it as control information is provided. An air conditioner characterized by.
JP34726193A 1993-12-27 1993-12-27 Air conditioner Expired - Fee Related JP3337545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34726193A JP3337545B2 (en) 1993-12-27 1993-12-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34726193A JP3337545B2 (en) 1993-12-27 1993-12-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH07190576A true JPH07190576A (en) 1995-07-28
JP3337545B2 JP3337545B2 (en) 2002-10-21

Family

ID=18389022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34726193A Expired - Fee Related JP3337545B2 (en) 1993-12-27 1993-12-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3337545B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246559A (en) * 1997-02-28 1998-09-14 Sanyo Electric Co Ltd Thermometer for showcase
EP1418412A1 (en) * 2002-11-07 2004-05-12 Omron Corporation Temperature detecting device
JP2008232511A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp Refrigerating air-conditioning device and method
JP2010184590A (en) * 2009-02-12 2010-08-26 Nissan Motor Co Ltd Control device of four-wheel drive vehicle
JP2017083171A (en) * 2011-03-04 2017-05-18 ブルックス オートメーション インコーポレイテッド Helium management control system
JP2019092256A (en) * 2017-11-13 2019-06-13 株式会社デンソー Electric motor control device
JP2020069925A (en) * 2018-10-31 2020-05-07 アンデン株式会社 Temperature control device
JP2021071205A (en) * 2019-10-29 2021-05-06 ホシザキ株式会社 Storage house management system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481290B1 (en) * 2013-07-09 2015-01-09 엘에스산전 주식회사 Temperature detector and inverter-charger combined device for electric vehicles including the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246559A (en) * 1997-02-28 1998-09-14 Sanyo Electric Co Ltd Thermometer for showcase
EP1418412A1 (en) * 2002-11-07 2004-05-12 Omron Corporation Temperature detecting device
US6824308B2 (en) 2002-11-07 2004-11-30 Omron Corporation Temperature detecting device
JP2008232511A (en) * 2007-03-19 2008-10-02 Mitsubishi Electric Corp Refrigerating air-conditioning device and method
JP4711438B2 (en) * 2007-03-19 2011-06-29 三菱電機株式会社 Refrigeration air conditioner and refrigeration air conditioning method
JP2010184590A (en) * 2009-02-12 2010-08-26 Nissan Motor Co Ltd Control device of four-wheel drive vehicle
JP2017083171A (en) * 2011-03-04 2017-05-18 ブルックス オートメーション インコーポレイテッド Helium management control system
US10900699B2 (en) 2011-03-04 2021-01-26 Edwards Vacuum Llc Helium management control system
JP2019092256A (en) * 2017-11-13 2019-06-13 株式会社デンソー Electric motor control device
JP2020069925A (en) * 2018-10-31 2020-05-07 アンデン株式会社 Temperature control device
JP2021071205A (en) * 2019-10-29 2021-05-06 ホシザキ株式会社 Storage house management system

Also Published As

Publication number Publication date
JP3337545B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5440895A (en) Heat pump motor optimization and sensor fault detection
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
US5689963A (en) Diagnostics for a heating and cooling system
US7784291B2 (en) Interactive control system for an HVAC system
JP6444577B1 (en) Air conditioner
JP2983269B2 (en) Air conditioner
JP2011247524A (en) Refrigerating device
JPH0674496A (en) Air-conditioner
KR20150016407A (en) Refrigeration device
JP3337545B2 (en) Air conditioner
CN108603681B (en) Air conditioner and air conditioner
US9677798B2 (en) Refrigerating device
JP4844147B2 (en) Air conditioner
JP3290251B2 (en) Air conditioner
JPH0571822A (en) Air-conditioner
JP3590499B2 (en) Air conditioner
JPH07120091A (en) Air conditioner
JP3377632B2 (en) Air conditioner
JPH05332647A (en) Air conditioner
JPH06317357A (en) Air conditioner
JPH04356664A (en) Refrigerating cycle device
JP3322758B2 (en) Air conditioner
JP3302138B2 (en) Air conditioner
JPH0486444A (en) Air conditioner
JPH07113556A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees