JP3337545B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3337545B2
JP3337545B2 JP34726193A JP34726193A JP3337545B2 JP 3337545 B2 JP3337545 B2 JP 3337545B2 JP 34726193 A JP34726193 A JP 34726193A JP 34726193 A JP34726193 A JP 34726193A JP 3337545 B2 JP3337545 B2 JP 3337545B2
Authority
JP
Japan
Prior art keywords
temperature
temperature sensor
detected
temperature sensors
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34726193A
Other languages
Japanese (ja)
Other versions
JPH07190576A (en
Inventor
常俊 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP34726193A priority Critical patent/JP3337545B2/en
Publication of JPH07190576A publication Critical patent/JPH07190576A/en
Application granted granted Critical
Publication of JP3337545B2 publication Critical patent/JP3337545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、室外ユニットおよび
複数の室内ユニットからなるマルチタイプの空気調和機
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type air conditioner comprising an outdoor unit and a plurality of indoor units.

【0002】[0002]

【従来の技術】一般に、空気調和機は、圧縮機、四方
弁、室外熱交換器、流量調整弁、および室内熱交換器を
順次に配管接続してヒートポンプ式の冷凍サイクルを構
成し、室外熱交換器を凝縮器、室内熱交換器を蒸発器と
して機能させることにより、冷房運転を実行する。暖房
時は、室内熱交換器が凝縮器、室外熱交換器が蒸発器と
して機能する。
2. Description of the Related Art Generally, an air conditioner constitutes a heat pump type refrigeration cycle by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, a flow control valve, and an indoor heat exchanger by piping. The cooling operation is performed by making the exchanger function as a condenser and the indoor heat exchanger as an evaporator. During heating, the indoor heat exchanger functions as a condenser, and the outdoor heat exchanger functions as an evaporator.

【0003】運転中は、室内熱交換器が設置された部屋
の空調負荷に応じて圧縮機の能力を制御するとともに、
蒸発器における冷媒の過熱度を検出し、その過熱度があ
らかじめ定めた一定値に収まるよう、流量調整弁の開度
を調節して蒸発器への冷媒流量を制御する。
[0003] During operation, the capacity of the compressor is controlled according to the air conditioning load of the room where the indoor heat exchanger is installed.
The degree of superheat of the refrigerant in the evaporator is detected, and the flow rate of the refrigerant to the evaporator is controlled by adjusting the opening of the flow control valve so that the degree of superheat falls within a predetermined constant value.

【0004】過熱度は、蒸発器から流出する冷媒の温度
とその蒸発器に流入する冷媒の温度との差に相当し、配
管に取付けた温度センサの検知温度から検出される。こ
の過熱度については、冷凍サイクルの安定した運転を確
保するため、また圧縮機への液バックを防ぐ必要性か
ら、適切な制御が望まれる。このため、温度センサの検
知温度に対し正確さが要求される。
[0004] The degree of superheat corresponds to the difference between the temperature of the refrigerant flowing out of the evaporator and the temperature of the refrigerant flowing into the evaporator, and is detected from the temperature detected by a temperature sensor attached to the pipe. Appropriate control of the degree of superheat is desired in order to ensure stable operation of the refrigeration cycle and to prevent liquid back to the compressor. For this reason, accuracy is required for the temperature detected by the temperature sensor.

【0005】[0005]

【発明が解決しようとする課題】温度センサとして一般
に感熱抵抗素子(たとえば負特性サーミスタ)が使用さ
れるが、この感熱抵抗素子には短絡故障や断線故障の心
配がある。
Generally, a thermal resistance element (for example, a negative temperature coefficient thermistor) is used as a temperature sensor, but this thermal resistance element has a risk of short-circuit failure or disconnection failure.

【0006】このうち断線は、故障なしの状態から故障
ありの状態へと一挙に切換わるものであるため、故障の
前後の検知温度に大きな差が生じる。したがって、断線
に関しては、検知温度の変化から故障を直ちに察知する
ことができる。
[0006] Among them, the disconnection is a change from a state without a failure to a state with a failure at once, so that a large difference occurs in the detected temperature before and after the failure. Therefore, regarding a disconnection, a failure can be immediately detected from a change in the detected temperature.

【0007】ところが、短絡は部分的に進むことが多
く、検知温度が徐々に変化するため故障の察知がなかな
か難しい。このため、短絡が生じたまま過熱度検出が続
いてしまい、運転および圧縮機の寿命に悪影響を与えて
しまうことが多い。
However, short-circuiting often progresses partially, and it is difficult to detect a failure because the detected temperature gradually changes. For this reason, the detection of the degree of superheat continues with a short circuit generated, which often adversely affects the operation and the life of the compressor.

【0008】この発明は上記の事情を考慮したもので、
その目的とするところは、温度センサの短絡故障にかか
わらず測定対象の温度を的確に捕らえることができ、こ
れにより安定かつ適正な運転が可能な空気調和機を提供
することにある。
[0008] The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide an air conditioner that can accurately capture the temperature of a measurement target irrespective of a short-circuit failure of a temperature sensor, thereby enabling stable and proper operation.

【0009】[0009]

【課題を解決するための手段】第1の発明の空気調和機
は、冷凍サイクル回路の同一の測定点に設けた互いに同
じ特性の複数の温度センサと、これら温度センサの検知
温度のうち低い方または高い方のいずれか一方を各温度
センサの負特性または正特性に応じて選択し、それを制
御情報として取込む手段と、を備える。
According to a first aspect of the present invention, there is provided an air conditioner, comprising: a plurality of temperature sensors provided at the same measurement point of a refrigeration cycle circuit; Or a means for selecting one of the higher ones according to the negative characteristic or the positive characteristic of each temperature sensor, and taking it as control information.

【0010】第2の発明の空気調和機は、冷凍サイクル
回路の同一の測定点に設けた互いに同じ特性の複数の温
度センサと、これら温度センサの故障を検出する手段
と、この故障が検出されないとき、前記各温度センサの
検知温度のうち低い方または高い方のいずれか一方を各
温度センサの負特性または正特性に応じて選択し、それ
を制御情報として取込む手段と、を備える。
In the air conditioner of the second invention, a plurality of temperature sensors provided at the same measurement point of the refrigeration cycle circuit and having the same characteristics, means for detecting a failure of these temperature sensors, and the failure is not detected At this time, there is provided a means for selecting either the lower one or the higher one of the detected temperatures of the respective temperature sensors in accordance with the negative characteristic or the positive characteristic of each temperature sensor, and taking in the selected one as control information.

【0011】第3の発明の空気調和機は、冷凍サイクル
回路の互いに因果関係のある複数の測定点に設けた、互
いに同じ特性の複数の温度センサと、これら温度センサ
の検知温度のうち、低い方または高い方のいずれか一方
を上記因果関係を加味した上でかつ各温度センサの負特
性または正特性に応じて選択し、それを制御情報として
取込む手段と、を備える。
An air conditioner according to a third aspect of the present invention is provided with a plurality of temperature sensors having the same characteristics provided at a plurality of measurement points having a causal relationship with each other in a refrigeration cycle circuit, and among the detected temperatures of these temperature sensors, a lower temperature is used. One or the other, taking into account the above causal relationship, and the negative characteristics of each temperature sensor.
Means for selecting according to the gender or the positive characteristic and taking it as control information.

【0012】[0012]

【作用】第1の発明の空気調和機では、冷凍サイクル回
路の同一の測定点の温度を互いに同じ特性の複数の温度
センサで検知し、これら検知温度のうち低い方または高
い方の検知温度を各温度センサの負特性または正特性に
応じて選択し、それを制御情報として取込む。
In the air conditioner of the first invention, the temperatures at the same measurement point in the refrigeration cycle circuit are detected by a plurality of temperature sensors having the same characteristics, and the lower or higher of these detected temperatures is detected. A selection is made according to the negative characteristic or positive characteristic of each temperature sensor, and the selected temperature sensor is taken as control information.

【0013】第2の発明の空気調和機では、冷凍サイク
ル回路の同一の測定点の温度を互いに同じ特性の複数の
温度センサで検知し、かつ各温度センサの故障を検出
し、この故障が検出されない場合にのみ、各温度センサ
の検知温度のうち低い方または高い方の検知温度を各温
度センサの負特性または正特性に応じて選択し、それを
制御情報として取込む。
In the air conditioner of the second invention, the temperature at the same measurement point in the refrigeration cycle circuit is detected by a plurality of temperature sensors having the same characteristics, and a failure of each temperature sensor is detected. Only when not performed, the lower or higher detected temperature among the detected temperatures of each temperature sensor is selected according to the negative characteristic or the positive characteristic of each temperature sensor, and the selected temperature is taken as control information.

【0014】第3の発明の空気調和機では、冷凍サイク
ル回路の互いに因果関係のある複数の測定点の温度を互
いに同じ特性の複数の温度センサで検知し、これら温度
センサの検知温度のうち低い方または高い方を上記因果
関係を加味した上でかつ各温度センサの負特性または正
特性に応じて選択し、それを制御情報として取込む。
In the air conditioner of the third invention, the temperatures of a plurality of measurement points having a causal relationship with each other in the refrigeration cycle circuit are detected by a plurality of temperature sensors having the same characteristics, and the lower of the detected temperatures of the temperature sensors. The higher or higher one is selected in consideration of the causal relationship and according to the negative characteristic or the positive characteristic of each temperature sensor, and the selected one is taken in as control information.

【0015】[0015]

【実施例】以下、この発明の一実施例について図面を参
照して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0016】図4に示すように、室外ユニットAに複数
の室内ユニットBを配管接続する。室外ユニットAは、
共通の密閉ケースに収容した圧縮機1,2を備える。圧
縮機1は、インバータ駆動の能力可変圧縮機である。圧
縮機2は、商用電源駆動の能力固定圧縮機である。
As shown in FIG. 4, a plurality of indoor units B are connected to the outdoor unit A by piping. The outdoor unit A is
Compressors 1 and 2 housed in a common closed case are provided. The compressor 1 is an inverter-driven variable capacity compressor. The compressor 2 is a fixed power compressor driven by a commercial power supply.

【0017】圧縮機1の吐出口に高圧側配管4aを接続
する。圧縮機2の吐出口に、高圧側配管4bを接続し、
高圧側配管4bに逆止弁3を設ける。高圧側配管4aお
よび高圧側配管4bを高圧側配管4に接続する。圧縮機
1,2の吸込口に低圧側配管5を接続する。
A high pressure side pipe 4a is connected to a discharge port of the compressor 1. The high pressure side pipe 4b is connected to the discharge port of the compressor 2,
The check valve 3 is provided on the high pressure side pipe 4b. The high pressure side pipe 4 a and the high pressure side pipe 4 b are connected to the high pressure side pipe 4. The low pressure side pipe 5 is connected to the suction ports of the compressors 1 and 2.

【0018】高圧側配管4にオイルセパレータ6および
四方弁7を介して室外熱交換器8を接続する。この室外
熱交換器8に逆止弁9およびリキッドタンク10を介し
てドライヤ11を接続する。逆止弁9に暖房用膨張弁1
2を並列に接続する。室外熱交換器8の近傍に室外ファ
ン13を設ける。
An outdoor heat exchanger 8 is connected to the high-pressure side pipe 4 via an oil separator 6 and a four-way valve 7. A dryer 11 is connected to the outdoor heat exchanger 8 via a check valve 9 and a liquid tank 10. Heating expansion valve 1 for check valve 9
2 in parallel. An outdoor fan 13 is provided near the outdoor heat exchanger 8.

【0019】低圧側配管5にアキュームレータ14およ
び四方弁7を介してストレーナ15を接続する。
A strainer 15 is connected to the low-pressure side pipe 5 via an accumulator 14 and a four-way valve 7.

【0020】上記オイルセパレータ6は、圧縮機1,2
から吐出される冷媒に含まれる潤滑油を抽出するもので
ある。このオイルセパレータ6から低圧側配管5にかけ
て、油戻し用の配管16を接続する。
The oil separator 6 includes compressors 1 and 2
This is to extract the lubricating oil contained in the refrigerant discharged from the pump. An oil return pipe 16 is connected from the oil separator 6 to the low-pressure side pipe 5.

【0021】逆止弁9とリキッドタンク10との間の液
側配管に、クーリングバイパス17の一端を接続する。
このクーリングバイパス17の他端を四方弁7とアキュ
ームレータ14との間の低圧側配管に接続する。そし
て、クーリングバイパス17に流量調整弁18を設け
る。
One end of a cooling bypass 17 is connected to a liquid side pipe between the check valve 9 and the liquid tank 10.
The other end of the cooling bypass 17 is connected to a low-pressure side pipe between the four-way valve 7 and the accumulator 14. The cooling bypass 17 is provided with a flow regulating valve 18.

【0022】このような配管接続により、室外ユニット
Aおよび各室内ユニットBにおいてヒートポンプ式の冷
凍サイクル回路を構成している。冷房時は、四方弁7を
ニュートラル状態に設定し、これにより圧縮機1,2の
吐出冷媒を図示実線矢印の方向に冷媒を流して冷房サイ
クルを形成し、室外熱交換器8を凝縮器、各室内熱交換
器33を蒸発器として機能させる。暖房時は、四方弁7
を切換え、これにより圧縮機1,2の吐出冷媒を図示破
線矢印の方向に冷媒を流して暖房サイクルを形成し、各
室内熱交換器33を凝縮器、室外熱交換器8を蒸発器と
して機能させる。
With such piping connections, the outdoor unit A and each indoor unit B constitute a heat pump type refrigeration cycle circuit. At the time of cooling, the four-way valve 7 is set to the neutral state, whereby the refrigerant discharged from the compressors 1 and 2 is caused to flow in the direction of the solid arrow in the drawing to form a cooling cycle, and the outdoor heat exchanger 8 is connected to the condenser, Each indoor heat exchanger 33 functions as an evaporator. During heating, the four-way valve 7
This causes the refrigerant discharged from the compressors 1 and 2 to flow in the direction of the dashed arrow in the drawing to form a heating cycle, with each indoor heat exchanger 33 functioning as a condenser and the outdoor heat exchanger 8 functioning as an evaporator. Let it.

【0023】上記流量調整弁18および各流量調整弁3
2は、入力される駆動パルスの数に応じて開度が連続的
に変化するパルスモータバルブである。以下、流量調整
弁のことをPMVと略称する。
The flow control valve 18 and each flow control valve 3
Reference numeral 2 denotes a pulse motor valve whose opening continuously changes according to the number of input driving pulses. Hereinafter, the flow control valve is abbreviated as PMV.

【0024】高圧側配管4aに、高圧スイッチ21およ
び温度センサ25を取付ける。高圧側配管4bに、高圧
スイッチ22および温度センサ26を取付ける。高圧ス
イッチ21,22は、冷媒の圧力が異常上昇して所定値
に達すると、作動する。
The high pressure switch 21 and the temperature sensor 25 are mounted on the high pressure side pipe 4a. The high pressure switch 22 and the temperature sensor 26 are mounted on the high pressure side pipe 4b. The high-pressure switches 21 and 22 operate when the pressure of the refrigerant abnormally increases and reaches a predetermined value.

【0025】高圧側配管4に圧力センサ23を取付け
る。低圧側配管5に圧力センサ24および温度センサ2
7を取付ける。室外熱交換器8に温度センサ28を取付
ける。室外ユニットAの所定箇所に外気温度センサ29
を取付ける。
The pressure sensor 23 is mounted on the high pressure side pipe 4. A pressure sensor 24 and a temperature sensor 2
7 is installed. The temperature sensor 28 is attached to the outdoor heat exchanger 8. An outdoor air temperature sensor 29 is provided at a predetermined location of the outdoor unit A
Install.

【0026】ドライヤ11とストレーナ15との間に、
室内ユニットBのストレーナ31および流量調整弁32
を介して室内熱交換器33を接続する。室内熱交換器3
3の近傍に室内ファン34を設ける。そして、PMV3
2と室内熱交換器33との間の液側配管に圧力センサ3
5および温度センサ37を取付ける。室内熱交換器33
に接続のガス側配管に圧力センサ36および温度センサ
38を取付ける。室内ファン34の吸込み空気の通路に
室内温度センサ39を設ける。他の室内ユニットBにつ
いても、同じ構成および同じ接続である。
Between the dryer 11 and the strainer 15,
Strainer 31 and flow regulating valve 32 of indoor unit B
Is connected to the indoor heat exchanger 33 via the. Indoor heat exchanger 3
3, an indoor fan 34 is provided. And PMV3
A pressure sensor 3 is provided on the liquid side pipe between the heat exchanger 2 and the indoor heat exchanger 33.
5 and the temperature sensor 37 are mounted. Indoor heat exchanger 33
The pressure sensor 36 and the temperature sensor 38 are attached to the gas side pipe connected to the. An indoor temperature sensor 39 is provided in the passage of the intake air of the indoor fan 34. The other indoor units B have the same configuration and the same connection.

【0027】温度センサ37,38は、室内熱交換器3
3が蒸発器として機能する冷房時、その室内熱交換器3
3における冷媒の過熱度を検出するためのもので、感温
抵抗素子たとえば負特性サーミスタを用いている。
The temperature sensors 37 and 38 are connected to the indoor heat exchanger 3
In the case of cooling functioning as an evaporator, the indoor heat exchanger 3
3 for detecting the degree of superheating of the refrigerant, and uses a temperature-sensitive resistance element such as a negative characteristic thermistor.

【0028】また、図1では温度センサ37を1つだけ
示しているが、実際には図1ないし図3に示すように2
つの温度センサ37a,37bを用意している。
Although FIG. 1 shows only one temperature sensor 37, actually, as shown in FIGS.
Two temperature sensors 37a and 37b are prepared.

【0029】すなわち、室内熱交換器33につながる配
管40に一対のサーモ挿入パイプ41,41を取付け、
そのサーモ挿入パイプ41,41に2つの温度センサ3
7a,37bをそれぞれ挿入する。この挿入に際しては
バネ状の固定用部材42,42をいっしょに挿入し、固
定用部材42,42の弾性によって温度センサ37a,
37bをそれぞれサーモ挿入パイプ41,41の内周面
(配管40側)に圧接する。
That is, a pair of thermo insertion pipes 41, 41 are attached to a pipe 40 connected to the indoor heat exchanger 33,
Two temperature sensors 3 are attached to the thermo insertion pipes 41, 41.
7a and 37b are inserted respectively. At the time of this insertion, the spring-like fixing members 42, 42 are inserted together, and the temperature sensors 37a,
37b is pressed against the inner peripheral surfaces of the thermo insertion pipes 41, 41 (on the pipe 40 side).

【0030】温度センサ38についても、図示していな
いが、実際には温度センサ37a,37bと同じく2つ
の温度センサ38a,38bを用意している。
Although not shown, the temperature sensor 38 is actually provided with two temperature sensors 38a and 38b like the temperature sensors 37a and 37b.

【0031】制御回路を図5に示す。FIG. 5 shows the control circuit.

【0032】室外ユニットAは室外制御部50を備え
る。この室外制御部50に各室内ユニットBの室内制御
部60を配線接続する。
The outdoor unit A has an outdoor control section 50. The indoor control unit 60 of each indoor unit B is connected to the outdoor control unit 50 by wiring.

【0033】室外制御部50は、マイクロコンピュ―タ
およびその周辺回路からなる。この室外制御部50に、
四方弁7、室外ファンモータ13M、PMV18、高圧
スイッチ21,22、圧力センサ23,24、温度セン
サ25,26,27、熱交換器温度センサ28、外気温
度センサ29、商用交流電源51、インバ―タ52、ス
イッチ53を接続する。
The outdoor controller 50 comprises a microcomputer and its peripheral circuits. In this outdoor control unit 50,
Four-way valve 7, outdoor fan motor 13M, PMV18, high pressure switches 21, 22, pressure sensors 23, 24, temperature sensors 25, 26, 27, heat exchanger temperature sensor 28, outside air temperature sensor 29, commercial AC power supply 51, inverter And the switch 53 are connected.

【0034】インバ―タ52は、室外制御部50内の交
流電源ラインの電圧を整流し、それを室外制御部50の
指令に応じたスイッチングにより所定周波数の電圧に変
換し、出力する。この出力は、圧縮機モ―タ1Mの駆動
電力となる。
The inverter 52 rectifies the voltage of the AC power supply line in the outdoor control unit 50, converts the rectified voltage into a voltage of a predetermined frequency by switching according to a command from the outdoor control unit 50, and outputs the voltage. This output is the driving power for the compressor motor 1M.

【0035】スイッチ53は、たとえば電磁接触器の接
点である。室外制御部50内の交流電源ラインにスイッ
チ53を介して圧縮機モータ2Mを接続する。
The switch 53 is, for example, a contact of an electromagnetic contactor. The compressor motor 2M is connected to an AC power supply line in the outdoor control unit 50 via a switch 53.

【0036】室内制御部60は、マイクロコンピュ―タ
およびその周辺回路からなる。この室内制御部60に、
PMV32、室内ファンモータ34M、圧力センサ3
5,36、温度センサ37a,37b,38a,38
b、室内温度センサ39、リモートコントロール式の操
作器(以下、リモコンと略称する)61を接続する。
The indoor control unit 60 comprises a microcomputer and its peripheral circuits. In this indoor control unit 60,
PMV32, indoor fan motor 34M, pressure sensor 3
5, 36, temperature sensors 37a, 37b, 38a, 38
b, a room temperature sensor 39 and a remote control type operation device (hereinafter abbreviated as a remote control) 61 are connected.

【0037】なお、室内制御部60と温度センサ37
a,37bとの接続間に、図6に示す温度検知回路を介
在させる。
The indoor controller 60 and the temperature sensor 37
The temperature detection circuit shown in FIG. 6 is interposed between the connection with the terminals a and 37b.

【0038】すなわち、温度センサ37aと抵抗Raと
の直列回路に直流電圧Vを印加し、温度センサ37aの
抵抗値変化に基づいて抵抗Raに生じる電圧Va(以
下、温度センサ37aの出力電圧と称する)を、検知温
度情報として室外制御部60に入力する。温度センサ3
7bと抵抗Rbとの直列回路に直流電圧Vを印加し、温
度センサ37bの抵抗値変化に基づいて抵抗Rbに生じ
る電圧Vb(以下、温度センサ37bの出力電圧と称す
る)を、検知温度情報として室外制御部60に入力す
る。
That is, a DC voltage V is applied to a series circuit of the temperature sensor 37a and the resistor Ra, and a voltage Va generated at the resistor Ra based on a change in the resistance value of the temperature sensor 37a (hereinafter referred to as an output voltage of the temperature sensor 37a). ) Is input to the outdoor controller 60 as detected temperature information. Temperature sensor 3
A DC voltage V is applied to a series circuit of the resistor 7b and the resistor Rb, and a voltage Vb (hereinafter, referred to as an output voltage of the temperature sensor 37b) generated in the resistor Rb based on a change in the resistance value of the temperature sensor 37b is detected temperature information. It is input to the outdoor control unit 60.

【0039】室内制御部60と温度センサ38a,38
bとの接続間にも、同様の温度検知回路を介在させる。
The indoor controller 60 and the temperature sensors 38a, 38
A similar temperature detection circuit is also interposed between the connection with b.

【0040】室内制御部60は、主として次の機能手段
を備える。
The indoor control section 60 mainly has the following functional means.

【0041】[1]リモコン61の操作に基づく運転モ
ード指令、運転開始指令、運転停止指令を室外ユニット
Aに送る手段。
[1] Means for sending an operation mode command, an operation start command, and an operation stop command based on the operation of the remote controller 61 to the outdoor unit A.

【0042】[2]室内温度センサ39の検知温度(吸
込空気温度)とリモコン61での設定温度との差(空調
負荷)を求め、その温度差に対応する要求能力を室外ユ
ニットAに知らせる手段。
[2] Means for finding the difference (air-conditioning load) between the temperature detected by the indoor temperature sensor 39 (suction air temperature) and the temperature set by the remote controller 61, and informing the outdoor unit A of the required capacity corresponding to the temperature difference. .

【0043】[3]PMV32の開度を、当該室内ユニ
ットの要求能力に応じて制御する手段。
[3] Means for controlling the opening of the PMV 32 according to the required capacity of the indoor unit.

【0044】[4]冷房時、室内熱交換器33の出口側
の温度センサ38a,38bのうち低い方を制御情報
(検知温度Te2 )として取込み、室内熱交換器33の
入口側の温度センサ37a,37bのうち低い方を制御
情報(検知温度Te1 )として取込み、取込んだ両検知
温度の差(=Te2 −Te1 )を室内熱交換器33にお
ける冷媒の過熱度として検出する手段。
[4] During cooling, the lower one of the temperature sensors 38a and 38b on the outlet side of the indoor heat exchanger 33 is taken in as control information (detection temperature Te 2 ), and the temperature sensor on the inlet side of the indoor heat exchanger 33 is taken. Means for taking in the lower one of 37a and 37b as control information (detection temperature Te 1 ) and detecting the difference (= Te 2 −Te 1 ) between the two detected temperatures as the degree of superheating of the refrigerant in the indoor heat exchanger 33. .

【0045】[5]温度センサ37a(および38a)
の出力電圧Vaが零のとき温度センサ37a(および3
8a)が断線故障と判定し、温度センサ37b(および
38b)の出力電圧Vbが零のとき温度センサ37b
(および38b)が断線故障と判定する手段。
[5] Temperature sensor 37a (and 38a)
When the output voltage Va is zero, the temperature sensor 37a (and 3
8a) is determined to be a disconnection failure, and when the output voltage Vb of the temperature sensor 37b (and 38b) is zero, the temperature sensor 37b
(And 38b) means for determining a disconnection failure.

【0046】[6]温度センサ37a(および38a)
の断線故障が判定されると上記の過熱度検出に温度セン
サ37b(および38b)を使用し、温度センサ37b
(および38b)の断線故障が判定されると過熱度検出
に温度センサ37a(および38a)を使用する手段。
[6] Temperature sensor 37a (and 38a)
Is determined, the temperature sensor 37b (and 38b) is used for detecting the degree of superheat, and the temperature sensor 37b
Means for using the temperature sensor 37a (and 38a) for detecting the degree of superheat when the disconnection failure of (and 38b) is determined.

【0047】[8]検出した過熱度があらかじめ定めて
いる一定値に収まるよう、PMV32の開度を補正する
手段。
[8] Means for correcting the opening of the PMV 32 so that the detected degree of superheat falls within a predetermined constant value.

【0048】室外制御部50は、主として次の機能手段
を備える。
The outdoor control section 50 mainly has the following functional means.

【0049】[1]圧縮機1,2の運転能力(圧縮機
1,2の運転台数および圧縮機1の運転周波数F)を、
各室内ユニットBの要求能力の合計に応じて制御する手
段。
[1] The operating capacity of the compressors 1 and 2 (the number of operating compressors 1 and 2 and the operating frequency F of the compressor 1)
Means for controlling in accordance with the total required capacity of each indoor unit B.

【0050】[2]四方弁7をニュートラル状態に設定
し、圧縮機1,2の吐出冷媒を四方弁7、室外熱交換器
8、各流量調整弁32、各室内熱交換器33、四方弁7
に通して圧縮機1,2に戻し、冷房運転を実行する手
段。
[2] The four-way valve 7 is set to the neutral state, and the refrigerant discharged from the compressors 1 and 2 is supplied to the four-way valve 7, the outdoor heat exchanger 8, each of the flow regulating valves 32, each of the indoor heat exchangers 33, and the four-way valve. 7
Means for returning to the compressors 1 and 2 to perform a cooling operation.

【0051】[3]四方弁7を切換え、圧縮機1,2の
吐出冷媒を四方弁7、各室内熱交換器33、各流量調整
弁32、室外熱交換器8、四方弁7に通して圧縮機1,
2に戻し、暖房運転を実行する手段。
[3] The four-way valve 7 is switched, and the refrigerant discharged from the compressors 1 and 2 is passed through the four-way valve 7, each indoor heat exchanger 33, each flow regulating valve 32, the outdoor heat exchanger 8, and the four-way valve 7. Compressor 1,
Means for returning to 2 and performing a heating operation.

【0052】つぎに、上記の構成の作用を説明する。Next, the operation of the above configuration will be described.

【0053】任意の室内ユニットBのリモコン61で、
所望の運転モードおよび室内温度(以下、設定温度と称
する)が設定され、かつ運転開始操作がなされたとす
る。
With the remote controller 61 of an arbitrary indoor unit B,
It is assumed that a desired operation mode and room temperature (hereinafter, referred to as a set temperature) are set, and an operation start operation is performed.

【0054】すると、圧縮機1,2のうち少なくとも圧
縮機1が起動し、運転開始となる。冷房運転モードであ
れば、四方弁7がニュートラル状態に設定され、冷媒が
図1の実線矢印の方向に流れて冷房サイクルが形成され
る。これにより、室外熱交換器8が凝縮器、室内熱交換
器33が蒸発器として機能する。
Then, at least the compressor 1 of the compressors 1 and 2 is started and the operation is started. In the cooling operation mode, the four-way valve 7 is set to the neutral state, and the refrigerant flows in the direction of the solid arrow in FIG. 1 to form a cooling cycle. Thereby, the outdoor heat exchanger 8 functions as a condenser, and the indoor heat exchanger 33 functions as an evaporator.

【0055】室内ユニットBは、室内温度センサ39の
検知温度(吸込空気温度)とリモコン61での設定温度
との差を求め、その温度差に対応する要求能力を室外ユ
ニットAに知らせる。さらに、PMV32の開度を、当
該ユニットの要求能力に応じた開度に設定する。
The indoor unit B calculates the difference between the temperature detected by the indoor temperature sensor 39 (suction air temperature) and the temperature set by the remote controller 61, and notifies the outdoor unit A of the required capacity corresponding to the temperature difference. Further, the opening of the PMV 32 is set to an opening according to the required capacity of the unit.

【0056】室外ユニットAは、圧縮機1,2の運転能
力(圧縮機1,2の運転台数および圧縮機1の運転周波
数F)を、各室内ユニットBからの要求能力の合計に応
じた運転容量に設定する。
The outdoor unit A adjusts the operating capacity of the compressors 1 and 2 (the number of operating compressors 1 and 2 and the operating frequency F of the compressor 1) in accordance with the total required capacity of the indoor units B. Set to capacity.

【0057】たとえば、要求能力の合計が小さいとき
は、インバータ52の出力周波数Fを制御して圧縮機1
の単独の能力可変運転を実行する。要求能力の合計が増
すと、インバータ52の出力周波数Fを制御するととも
に、スイッチ53をオンし、圧縮機1の能力可変運転お
よび圧縮機2の能力固定運転を実行する。
For example, when the total required capacity is small, the output frequency F of the inverter 52 is controlled to
Performs a single variable capacity operation. When the total required capacity increases, the output frequency F of the inverter 52 is controlled and the switch 53 is turned on to execute the variable capacity operation of the compressor 1 and the fixed capacity operation of the compressor 2.

【0058】一方、図7のフローチャートに示すよう
に、温度センサ37aの出力電圧Vaが零かどうか、お
よび温度センサ37bの出力電圧Vbが零かどうかを確
認する。出力電圧Va,Vbが共に零でなければ、温度
センサ37a,37bが断線していないとの判断の下
に、出力電圧Va,Vbに基づく冷媒温度Ta,Tbを
検知する。
On the other hand, as shown in the flowchart of FIG. 7, it is confirmed whether the output voltage Va of the temperature sensor 37a is zero and whether the output voltage Vb of the temperature sensor 37b is zero. If both the output voltages Va and Vb are not zero, the refrigerant temperatures Ta and Tb based on the output voltages Va and Vb are detected based on the judgment that the temperature sensors 37a and 37b are not disconnected.

【0059】温度センサ37a,37bは負特性サーミ
スタであるから、冷媒温度Ta,Tbが高くなると、温
度センサ37a,37bの抵抗値が小さくなって抵抗R
a,Rbに生じる電圧Va,Vbが高くなる。冷媒温度
Ta,Tbが低くなると、温度センサ37a,37bの
抵抗値が大きくなって抵抗Ra,Rbに生じる電圧V
a,Vbが低くなる。
Since the temperature sensors 37a and 37b are negative thermistors, when the refrigerant temperatures Ta and Tb increase, the resistance values of the temperature sensors 37a and 37b decrease and the resistance R
The voltages Va and Vb generated at a and Rb increase. When the refrigerant temperatures Ta and Tb decrease, the resistance values of the temperature sensors 37a and 37b increase, and the voltage V generated at the resistances Ra and Rb increases.
a, Vb decrease.

【0060】冷媒温度Ta,Tbを検知すると、そのう
ちの低い方の検知温度を選択し、それを室内熱交換器3
3に流入する冷媒の温度Te1 として、かつ制御情報と
して取込む。
When the refrigerant temperatures Ta and Tb are detected, the lower one of the detected temperatures is selected, and the lower one is selected.
As the temperature Te 1 of the refrigerant flowing into the 3, and taking as control information.

【0061】ここで、低い方の検知温度を取込むのは、
次の理由による。すなわち、温度センサ37a,37b
のどちらかに部分的な短絡故障が生じている場合、検知
温度Ta,Tbに誤差が生じる。この誤差の方向は、負
特性サーミスタであることから高い方向である。したが
って、低い方の検知温度を取込むことにより、短絡故障
が生じている温度センサの検知温度を無視した形とな
り、誤差のない温度検知を行なうことができる。仮に、
温度センサ37a,37bの両方に部分的な短絡故障が
生じている場合でも、低い方の検知温度は誤差の小さい
方である。
Here, the lower detection temperature is taken in.
For the following reasons. That is, the temperature sensors 37a, 37b
If a partial short-circuit fault occurs in either of the above, an error occurs in the detected temperatures Ta and Tb. The direction of this error is a high direction because of the negative characteristic thermistor. Therefore, by taking in the lower detection temperature, the detection temperature of the temperature sensor in which the short-circuit failure has occurred is ignored, and temperature detection without error can be performed. what if,
Even when both of the temperature sensors 37a and 37b have a partial short-circuit fault, the lower detected temperature is the one with the smaller error.

【0062】なお、温度センサ37a,37bが正特性
サーミスタであれば、検知温度Ta,Tbのうち高い方
を選択すればよい。
If the temperature sensors 37a and 37b are PTC thermistors, the higher one of the detected temperatures Ta and Tb may be selected.

【0063】温度センサ38a,38bの検知温度T
a,Tbについても同じ選択を行ない、選択した検知温
度を室内熱交換器33から流出する冷媒の温度Te2
して、かつ制御情報として取込む。
The detection temperature T of the temperature sensors 38a and 38b
The same selection is made for a and Tb, and the selected detected temperature is taken in as the temperature Te 2 of the refrigerant flowing out of the indoor heat exchanger 33 and as control information.

【0064】こうして温度Te1 ,Te2 の取込みが完
了すると、両温度の差(=Te2 −Te1 )を室内熱交
換器33における冷媒の過熱度として検出する。そし
て、検出した過熱度があらかじめ定めている一定値に収
まるよう、PMV32の開度を補正する。
When the intake of the temperatures Te 1 and Te 2 is completed, the difference between the two temperatures (= Te 2 −Te 1 ) is detected as the degree of superheating of the refrigerant in the indoor heat exchanger 33. Then, the opening of the PMV 32 is corrected so that the detected degree of superheat falls within a predetermined constant value.

【0065】したがって、温度センサの短絡故障にかか
わらず、冷媒の温度を的確に捕らえて精度の良い過熱度
制御が可能であり、安定かつ適正な運転を行なうことが
できる。
Therefore, irrespective of the short-circuit failure of the temperature sensor, the temperature of the refrigerant can be accurately detected, the superheat degree can be controlled with high accuracy, and stable and proper operation can be performed.

【0066】ところで、温度センサ37aに断線故障が
生じた場合、温度センサ37aの出力電圧Vaが零とな
る。このとき、温度センサ37aが断線故障と判定し、
温度センサ37bの検知温度Tbを使用して過熱度検出
を行なう。温度センサ37bの断線故障に際しては、温
度センサ37aの検知温度Taを使用する。
When a disconnection fault occurs in the temperature sensor 37a, the output voltage Va of the temperature sensor 37a becomes zero. At this time, the temperature sensor 37a determines that a disconnection failure has occurred,
The superheat degree is detected using the detected temperature Tb of the temperature sensor 37b. In the event of a disconnection failure of the temperature sensor 37b, the detected temperature Ta of the temperature sensor 37a is used.

【0067】この断線故障に際しては、検知温度の低い
方を選択することができなくなるため、過熱度検出の精
度が低下する心配が生じるが、それよりも運転を継続で
きるというメリットの方が大きい。
In the event of a disconnection failure, it is not possible to select the one with a lower detected temperature, so there is a concern that the accuracy of the detection of the degree of superheat is reduced. However, the merit that the operation can be continued is greater than that.

【0068】なお、上記実施例では、断線故障のみ判定
したが、図8に示すように、温度センサ37,37b
(および38a,38b)の検知温度Ta,Tbの差Δ
Tを求め、その温度差ΔTが所定値ΔTsを超えている
場合には、短絡故障が許容できない状態まで進んでいる
との判断の下に、検知温度の高い方の温度センサを短絡
故障と判定し、それを表示などによって報知する構成と
してもよい。
In the above embodiment, only the disconnection failure was determined, but as shown in FIG. 8, the temperature sensors 37, 37b
(And 38a, 38b) detected temperature Ta, Tb difference Δ
When the temperature difference ΔT exceeds the predetermined value ΔTs, the temperature sensor with the higher detected temperature is determined to be a short-circuit failure based on the determination that the short-circuit failure has progressed to an unacceptable state. However, it may be configured to notify the user by displaying the information.

【0069】また、上記実施例では、2つの温度センサ
を同一の測定点に取付けたが、2つの温度センサを互い
に因果関係のある複数の測定点に設け、これら温度セン
サの検知温度のうち、低い方または高い方のいずれか一
方を前記因果関係を加味した上でかつ各温度特性に応じ
て選択し、それを制御情報として取込む構成としてもよ
い。これは、温度センサの取付け箇所などに制約があっ
て、2つの温度センサを同一の測定点に取付けることが
困難な場合などに有効である。
In the above embodiment, two temperature sensors are mounted at the same measurement point. However, two temperature sensors are provided at a plurality of measurement points having a causal relationship with each other. Either the lower or the higher one may be selected in consideration of the causal relationship and according to each temperature characteristic, and the selected one may be taken as control information. This is effective when it is difficult to attach two temperature sensors to the same measurement point due to restrictions on the mounting locations of the temperature sensors.

【0070】[0070]

【発明の効果】以上述べたように、第1の発明の空気調
和機は、冷凍サイクル回路の同一の測定点の温度を互い
に同じ特性の複数の温度センサで検知し、これら検知温
度のうち低い方または高い方の検知温度を各温度センサ
負特性または正特性に応じて選択し、それを制御情報
として取込む構成としたので、温度センサの短絡故障に
かかわらず測定対象の温度を的確に捕らえることがで
き、これにより安定かつ適正な運転が可能である。
As described above, the air conditioner of the first invention detects the temperature at the same measurement point in the refrigeration cycle circuit by a plurality of temperature sensors having the same characteristics, and the lower of these detected temperatures. The higher or higher detection temperature is selected according to the negative or positive characteristics of each temperature sensor, and this is taken in as control information, so that the temperature of the measurement target can be accurately determined regardless of the short-circuit failure of the temperature sensor. And stable and proper operation is possible.

【0071】第2の発明の空気調和機は、冷凍サイクル
回路の同一の測定点の温度を互いに同じ特性の複数の温
度センサで検知し、かつ各温度センサの異常を検出し、
この異常が検出されない場合にのみ、各温度センサの検
知温度のうち低い方または高い方の検知温度を各温度セ
ンサの負特性または正特性に応じて選択し、それを制御
情報として取込む構成としたので、温度センサの短絡故
障にかかわらず測定対象の温度を的確に捕らえることが
でき、これにより安定かつ適正な運転が可能である。
The air conditioner of the second invention detects the temperature at the same measurement point in the refrigeration cycle circuit with a plurality of temperature sensors having the same characteristics, and detects abnormality of each temperature sensor.
Only when this abnormality is not detected, a lower or higher detection temperature among the detection temperatures of each temperature sensor is selected according to the negative or positive characteristic of each temperature sensor, and the selected temperature is taken as control information. Therefore, the temperature of the object to be measured can be accurately detected irrespective of the short-circuit failure of the temperature sensor, thereby enabling stable and proper operation.

【0072】第3の発明の空気調和機は、冷凍サイクル
回路の互いに因果関係のある複数の測定点の温度を互い
に同じ特性の複数の温度センサで検知し、これら温度セ
ンサの検知温度のうち低い方または高い方を上記因果関
係を加味した上でかつ各温度センサの負特性または正
性に応じて選択し、それを制御情報として取込む構成と
したので、温度センサの短絡故障にかかわらず、しかも
温度センサの取付け箇所などに制約を受けることなく、
測定対象の温度を的確に捕らえることができ、これによ
り安定かつ適正な運転が可能である。
In the air conditioner of the third invention, the temperatures of a plurality of measurement points having a causal relationship with each other in the refrigeration cycle circuit are detected by a plurality of temperature sensors having the same characteristic, and the lower of the detected temperatures of the temperature sensors. square or higher a and the upper in consideration of the above causality selected according to the negative characteristics or positive JP <br/> of each temperature sensor, since the collected Komu configure it as control information, short of the temperature sensor Regardless of the failure, and without any restrictions on the mounting location of the temperature sensor, etc.
The temperature of the object to be measured can be accurately detected, thereby enabling stable and proper operation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例における温度センサの取付
けを説明するための分解斜視図。
FIG. 1 is an exploded perspective view for explaining attachment of a temperature sensor according to an embodiment of the present invention.

【図2】同実施例における温度センサの取付け状態を示
す図。
FIG. 2 is a diagram showing an attached state of the temperature sensor in the embodiment.

【図3】図2を側方から見た図。FIG. 3 is a side view of FIG. 2;

【図4】同実施例の冷凍サイクルの構成図。FIG. 4 is a configuration diagram of a refrigeration cycle of the same embodiment.

【図5】同実施例の制御回路のブロック図。FIG. 5 is a block diagram of a control circuit according to the embodiment.

【図6】同実施例における温度検知回路の配線図。FIG. 6 is a wiring diagram of a temperature detection circuit in the embodiment.

【図7】同実施例の作用を説明するためのフローチャー
ト。
FIG. 7 is a flowchart for explaining the operation of the embodiment.

【図8】同実施例の変形例の作用を説明するためのフロ
ーチャート。
FIG. 8 is a flowchart for explaining the operation of a modification of the embodiment.

【符号の説明】[Explanation of symbols]

A…室外ユニット、B…室内ユニット、1…能力可変圧
縮機、2…能力固定圧縮機、8…室外熱交換器、32…
PMV(流量調整弁)、33…室内熱交換器、37a,
37b,38a,38b…温度センサ、50…室外制御
部、60…室内制御部。
A: outdoor unit, B: indoor unit, 1: variable capacity compressor, 2: fixed capacity compressor, 8: outdoor heat exchanger, 32 ...
PMV (flow control valve), 33 ... indoor heat exchanger, 37a,
37b, 38a, 38b: temperature sensor, 50: outdoor control unit, 60: indoor control unit.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 49/02 570 F24F 11/02 103 G01K 7/00 381 G01K 7/22 G01K 7/24 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) F25B 49/02 570 F24F 11/02 103 G01K 7/00 381 G01K 7/22 G01K 7/24

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 室外ユニットおよび複数の室内ユニット
からなるマルチタイプの空気調和機において、 冷凍サイクル回路の同一の測定点に設けた互いに同じ特
性の複数の温度センサと、 これら温度センサの検知温度のうち低い方または高い方
のいずれか一方を各温度センサの負特性または正特性に
応じて選択し、それを制御情報として取込む手段と、 を備えたことを特徴とする空気調和機。
1. A multi-type air conditioner comprising an outdoor unit and a plurality of indoor units, comprising: a plurality of temperature sensors having the same characteristics provided at the same measurement point of a refrigeration cycle circuit; Means for selecting either the lower one or the higher one according to the negative characteristic or the positive characteristic of each temperature sensor, and taking in the control information as control information.
【請求項2】 室外ユニットおよび複数の室内ユニット
からなるマルチタイプの空気調和機において、 冷凍サイクル回路の同一の測定点に設けた互いに同じ特
性の複数の温度センサと、 これら温度センサの故障を検出する手段と、 この故障が検出されないとき、前記各温度センサの検知
温度のうち低い方または高い方のいずれか一方を各温度
センサの負特性または正特性に応じて選択し、それを制
御情報として取込む手段と、 を備えたことを特徴とする空気調和機。
2. A multi-type air conditioner comprising an outdoor unit and a plurality of indoor units, wherein a plurality of temperature sensors having the same characteristics provided at the same measurement point of the refrigeration cycle circuit and failures of these temperature sensors are detected. Means for performing, when this failure is not detected, one of the lower or higher of the detected temperatures of the respective temperature sensors is selected according to the negative characteristic or the positive characteristic of each temperature sensor, and that is selected as control information. An air conditioner comprising: an intake means;
【請求項3】 室外ユニットおよび複数の室内ユニット
からなるマルチタイプの空気調和機において、 冷凍サイクル回路の互いに因果関係のある複数の測定点
に設けた、互いに同じ特性の複数の温度センサと、 これら温度センサの検知温度のうち、低い方または高い
方のいずれか一方を前記因果関係を加味した上でかつ
温度センサの負特性または正特性に応じて選択し、それ
を制御情報として取込む手段と、 を備えたことを特徴とする空気調和機。
3. A multi-type air conditioner comprising an outdoor unit and a plurality of indoor units, wherein a plurality of temperature sensors having the same characteristics are provided at a plurality of measurement points having a causal relationship with each other in a refrigeration cycle circuit. of the temperature sensor sensing the temperature, and the in on lower or higher either one of the consideration of the causality
Means for selecting according to the negative characteristic or the positive characteristic of the temperature sensor, and taking in the control information as control information.
JP34726193A 1993-12-27 1993-12-27 Air conditioner Expired - Fee Related JP3337545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34726193A JP3337545B2 (en) 1993-12-27 1993-12-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34726193A JP3337545B2 (en) 1993-12-27 1993-12-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH07190576A JPH07190576A (en) 1995-07-28
JP3337545B2 true JP3337545B2 (en) 2002-10-21

Family

ID=18389022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34726193A Expired - Fee Related JP3337545B2 (en) 1993-12-27 1993-12-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3337545B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481290B1 (en) * 2013-07-09 2015-01-09 엘에스산전 주식회사 Temperature detector and inverter-charger combined device for electric vehicles including the same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10246559A (en) * 1997-02-28 1998-09-14 Sanyo Electric Co Ltd Thermometer for showcase
JP2004157024A (en) 2002-11-07 2004-06-03 Omron Corp Temperature detection device
JP4711438B2 (en) * 2007-03-19 2011-06-29 三菱電機株式会社 Refrigeration air conditioner and refrigeration air conditioning method
JP5187218B2 (en) * 2009-02-12 2013-04-24 日産自動車株式会社 Control device for four-wheel drive vehicle
TWI705187B (en) * 2011-03-04 2020-09-21 美商艾德華真空有限責任公司 A cryogenic refrigeration system and method for controlling supply of helium refrigerant
JP7006157B2 (en) * 2017-11-13 2022-01-24 株式会社デンソー Motor control device
JP7067421B2 (en) * 2018-10-31 2022-05-16 株式会社デンソーエレクトロニクス Temperature control device
JP7441632B2 (en) * 2019-10-29 2024-03-01 ホシザキ株式会社 Storage management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101481290B1 (en) * 2013-07-09 2015-01-09 엘에스산전 주식회사 Temperature detector and inverter-charger combined device for electric vehicles including the same

Also Published As

Publication number Publication date
JPH07190576A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
US5440895A (en) Heat pump motor optimization and sensor fault detection
JP3290306B2 (en) Air conditioner
JP2909187B2 (en) Air conditioner
JP7257782B2 (en) air conditioning system
KR20070039535A (en) Air-conditioning apparatus
JP6444577B1 (en) Air conditioner
JP3337545B2 (en) Air conditioner
JPH0626723A (en) Multiple air conditioner
JPH0828984A (en) Air conditioner
JPH0674496A (en) Air-conditioner
JP4315585B2 (en) Air conditioner
JPH06201176A (en) Air-conditioner
JP3290251B2 (en) Air conditioner
JPH0571822A (en) Air-conditioner
KR100814956B1 (en) Multi Air-Conditioner and its Compressor control method
JPH07120091A (en) Air conditioner
JP3377632B2 (en) Air conditioner
JP3163133B2 (en) Air conditioner
JPH05332647A (en) Air conditioner
JP4105413B2 (en) Multi-type air conditioner
JP3170532B2 (en) Air conditioner
JP3322758B2 (en) Air conditioner
JP3330194B2 (en) Air conditioner
JPH0626689A (en) Multiple type air conditioner
JPH0486444A (en) Air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees