JP3590499B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3590499B2
JP3590499B2 JP04338697A JP4338697A JP3590499B2 JP 3590499 B2 JP3590499 B2 JP 3590499B2 JP 04338697 A JP04338697 A JP 04338697A JP 4338697 A JP4338697 A JP 4338697A JP 3590499 B2 JP3590499 B2 JP 3590499B2
Authority
JP
Japan
Prior art keywords
temperature
indoor
refrigerant flow
pipe temperature
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04338697A
Other languages
Japanese (ja)
Other versions
JPH10238912A (en
Inventor
和幸 片山
肇 杉山
俊哉 杉山
重伸 望月
和広 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP04338697A priority Critical patent/JP3590499B2/en
Publication of JPH10238912A publication Critical patent/JPH10238912A/en
Application granted granted Critical
Publication of JP3590499B2 publication Critical patent/JP3590499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage

Description

【0001】
【発明の属する技術分野】
この発明は、空気調和機に係り、冷媒量を制御する電磁弁の不具合をユーザに告知する制御に関するものである。
【0002】
【従来の技術】
従来の空気調和機は、冷媒量を制御する電磁弁の不具合により目標とする冷媒量制御ができずに能力不足になった場合は、冷えない暖まらないなどのクレームが発生していた。
【0003】
また、マルチ形空気調和機では、一台の室内機が停止中に、その室内機に接続された電磁弁が故障した場合は、運転中の他の室内機の能力が不足するということがある。
【0004】
一台の室外機に複数の室内機を接続して構成するマルチ形空気調和機に関しては、例えば特開平2−97848号公報記載のものを挙げることができる。これは、各室毎の試運転を行いながら、室外側と各室内側との運転状態の対応を調べていく確認作業の作業性を向上するものである。
【0005】
【発明が解決しようとする課題】
従来の空気調和機は、冷媒量を制御する電磁弁の不具合により目標とする冷媒量制御ができずに能力不足になった場合は、冷えない暖まらないなどのクレームが発生するという問題点があった。
【0006】
また、マルチ形空気調和機では、一台の室内機が停止中に、その室内機に接続された電磁弁が故障した場合は、運転中の他の室内機の能力が不足するという問題点があった。
【0007】
この発明は、上記のような問題点を解消するためになされたもので、冷媒量を制御する電磁弁の不具合により目標とする冷媒量制御できず、能力不足になった場合は、ユーザに告知することを目的とする。
また、マルチ形空気調和機で、停止中の室内機の電磁弁が故障して、運転中の他の室内機の能力が不足した場合に、それをユーザに告知することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の発明に係る空気調和機は、圧縮機等を有する室外機と、室外機に冷媒流量を制御する冷媒流量制御手段を介して接続され、室内空気と熱交換を行う室内熱交換器を有する室内機と、室内熱交換器の配管温度を検出する配管温度検出手段と、冷房運転開始後に配管温度検出手段が検出した配管温度に基づいて、冷媒流量制御手段の状態を監視する冷媒流量制御監視手段と、冷媒流量制御監視手段が冷媒流量制御手段の異常を検出した場合は、警告表示を行う警告表示手段と、圧縮機を駆動するインバータ装置と、ユーザが設定する室内設定温度と実際の室内温度とに基づいて、インバータ装置の設定から圧縮機の能力を判断し、冷媒流量制御監視手段が用いる配管温度に係るデータを補正する補正手段とを備えたものである。
【0010】
請求項の発明に係る空気調和機は、請求項1記載の空気調和機において、記室内機に、室内温度を検出する室内温度検出手段を備え、冷媒流量制御監視手段は、冷房運転開始時に室内温度検出手段が検出した室内温度と、冷房運転を開始してから所定時間経過後に配管温度検出手段が検出した配管温度との温度差ΔTが、補正手段により補正された温度差ΔTの目標値まで低下しているか否かにより、冷媒流量制御手段の状態を監視するものである。
【0011】
請求項の発明に係る空気調和機は、請求項1記載の空気調和機において、冷媒流量制御監視手段は、冷房運転開始時に配管温度検出手段が検出した配管温度TH1と、冷房運転を開始してから所定時間経過後に配管温度検出手段が検出した配管温度TH2との温度差ΔTが、補正手段により補正された温度差ΔTの目標値まで低下しているか否かにより、冷媒流量制御手段の状態を監視するものである。
【0015】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図について説明する。説明の便宜上、マルチ形空気調和機を用いて説明するが、通常の分離形空気調和機にも同じように適用できるものである。
図1はこの発明の実施の形態1によるマルチ形空気調和機の冷媒系統図である。図において、1は空気調和機の室外機であり、冷媒を圧縮する圧縮機2、冷媒の流れを変えて冷房運転と暖房運転の切換を行うための切換弁3、室外機1において冷媒の熱交換を行うための熱交換器4、室内A室への冷媒の流れを止めるための冷媒流量制御手段である電磁弁5、室内B室への冷媒の流れを止めるための冷媒流量制御手段である電磁弁6で構成されている。
【0016】
7はA室の室内機であり、A室の冷媒の熱交換を行うための室内熱交換器8、A室の室内温度を検出するための室内温度センサ9、A室の配管温度を検出するための配管温度センサ10で構成されている。
【0017】
12はB室の室内機であり、B室の冷媒の熱交換を行うための室内熱交換器13、B室の室内温度を検出するための室内温度センサ14、B室の配管温度を検出するための配管温度センサ15で構成されている。
【0018】
次に動作について説明する。
図2は冷房運転開始時の電磁弁の開閉度により決まる冷媒量による配管温度の変化を示す図、図3はこの発明の実施の形態1の動作を説明するフローチャートである。
図1のように構成されたマルチ形空気調和機において、冷房運転開始時、室内温度を検出しTS1とする(ステップS31)。室内配管温度は図2に示すように運転を開始してから変化するが、t時間経過後の配管温度と運転開始時の室内温度TS1の差を△Tとする(ステップS32)。ステップS33でユーザによって設定された設定温度と室内温度により、インバータで駆動される圧縮機2の運転能力を判断する。
【0019】
ステップS34で、判断された圧縮機2の運転能力により前記t時間経過後の△Tの目標値を補正し、△Tが正常に運転できる前記補正された目標値まで低下ているか否かにより電磁弁が正常か否かを判断する。△T、即ち配管温度が目標値まで低下していれば電磁弁は正常と判断し、また、目標値まで低下していなければ電磁弁は異常と判断し、ユーザーに告知するため警告表示を行う(ステップS35)。
【0020】
以上のように、この実施の形態1によれば、マルチ形空気調和機において、運転開始時に電磁弁の異常を検出することにより、効率の悪くなった運転をユーザーに警告できるとともに、電磁弁の故障の程度が圧縮機2に負担がかかる場合には、圧縮機2を保護できるなどの効果がある。
また、検出に必要な室内温度センサと配管温度センサは空気調和機に本来必要なものであり本制御のため特別に設けるものではないので安価にできるという効果もある。
【0021】
実施の形態2.
上述の実施の形態1では、冷房運転開始時の室内温度を検出したが、冷房運転開始時の配管温度を検出して、t時間経過後の配管温度と比較するようにしてもよい。
図4はこの発明の実施の形態2の動作を説明するフローチャートである。図1のように構成されたマルチ形空気調和機において、冷房運転開始時、配管温度を検出し、TH1とする(ステップS41)。運転を開始してからt時間経過後の配管温度TH2と運転開始時の配管温度TH1の差を△Tとする(ステップS42)。ユーザによって設定された設定温度と室内温度により、インバータで駆動される圧縮機2の運転能力を判断する。
【0022】
ステップS44で、判断された圧縮機2の運転能力により前記t時間経過後の△Tの目標値を補正し、△Tが正常に運転できる前記補正された目標値まで低下ているか否かにより電磁弁が正常か否かを判断する。△T、即ち配管温度が目標値まで低下していれば電磁弁は正常と判断し、また、目標値まで低下していなければ電磁弁は異常と判断し、ユーザーに告知するため警告表示を行う(ステップS45)。
【0023】
以上のように、この実施の形態2によれば、上述の実施の形態1と同様に、マルチ形空気調和機において、運転開始時に電磁弁の異常を検出することにより、効率の悪くなった運転をユーザーに警告できるとともに、電磁弁の故障の程度が圧縮機2に負担がかかる場合には、圧縮機2を保護できるなどの効果がある。
また、検出に必要な室内温度センサと配管温度センサは空気調和機に本来必要なものであり本制御のため特別に設けるものではないので安価にできるという効果もある。
【0024】
実施の形態3.
上述の実施の形態では、マルチ形空気調和機において、運転開始時に電磁弁の異常を検出することにより、効率の悪くなった運転をユーザーに警告するようにしたが、本実施の形態3では、マルチ形空気調和機において、一台運転時、停止したもう一台の電磁弁の異常を検出することにより、間接的に運転中の室内機の状態を検出して、効率の悪くなった運転中の室内機の運転状態をユーザーに警告する。
【0025】
図5はマルチ形空気調和機において、A室とB室が冷房運転し、A室の室内機が冷房運転を停止した時の、冷媒量による配管温度の変化を表す図、図6はこの発明の実施の形態3の動作を説明するフローチャートである。
A室とB室が冷房運転し、A室の室内機7が冷房運転を停止した時、A室の配管温度を検出し、TH1とする(ステップS61)。運転を停止してからt時間経過後の配管温度と運転停止時の配管温度TH1の差を△Tとする(ステップS62)。
【0026】
ステップS63で、t時間経過後の△Tが正常に運転できる目標値以上上昇しているか否かにより、A室の電磁弁5が正常か否かを判断する(ステップS63)。目標値以上上昇していれば冷媒の漏れはなく、電磁弁5は正常と判断する。目標値まで上昇していなければ電磁弁5が故障し、冷媒が流れていると判断し、ユーザーに告知するため警告表示を行う(ステップS64)。
【0027】
以上のように、この実施の形態3によれば、マルチ形空気調和機において、一台運転時、停止したもう一台の電磁弁の異常を検出することにより、運転中の室内機の効率の悪くなった運転状態をユーザーに警告できる効果がある。
また、検出に必要な検出器は配管温度センサだけで、しかも配管温度センサは空気調和機に本来必要なものであり本制御のため特別に設けるものではないので安価にできるという効果もある。
【0028】
実施の形態4.
上述の実施の形態4では、停止した室内機の電磁弁の異常を配管温度の変化で検出したが、室内温度と配管温度を比較することにより検出してもよい。
図7はこの発明の実施の形態4の動作を説明するフローチャートである。
A室とB室が冷房運転し、A室の室内機7が冷房運転を停止した時、A室の冷房運転停止してからの変化する配管温度と室内温度TH1を検出し、その差を△Tとする(ステップS71)。t時間経過後の△Tが目標値まで達しているかにより電磁弁5が正常か否かを判断する(ステップS72)。配管温度と室内温度TH1の差△Tが規定値以内になれば冷媒は停止し、電磁弁5は正常と判断し、配管温度と室内温度TH1の差△Tが規定値以内にならない場合は電磁弁5が故障し、冷媒が流れていると判断し、ユーザーに告知するため警告表示を行う(ステップS73)。
【0029】
以上のように、この実施の形態4によれば、マルチ形空気調和機において、一台運転時、停止したもう一台の電磁弁の異常を検出することにより、運転中の室内機の効率の悪くなった運転状態をユーザーに警告できるとともに停止した直後ではなく常時検出できるなどの効果がある。
また、検出に必要な室内温度センサと配管温度センサは、空気調和機に本来必要なものであり本制御のため特別に設けるものではないので安価にできるという効果もある。
【0030】
【発明の効果】
以上のように、この発明によれば、空気調和機において、運転開始時に冷媒流量制御手段の異常を検出することにより、効率の悪くなった運転をユーザーに警告できるとともに、冷媒流量制御手段の故障の程度が圧縮機に負担がかかる場合には、圧縮機を保護できるなどの効果がある。
また、検出に必要な配管温度検出手段や室内温度検出手段は、空気調和機に本来必要なものであり本制御のため特別に設けるものではないので安価にできるという効果もある。
【図面の簡単な説明】
【図1】この発明の実施の形態1〜4のシステム構成及び冷媒系統図である。
【図2】冷房運転開始時の冷媒量による配管温度の変化を表す図である。
【図3】この発明の実施の形態1の空気調和機の動作を説明するフローチャート図である。
【図4】この発明の実施の形態2の空気調和機の動作を説明するフローチャート図である。
【図5】冷房運転停止時の冷媒量による配管温度の変化を表す図である。
【図6】この発明の実施の形態3のマルチ形空気調和機の動作を説明するフローチャート図である。
【図7】この発明の実施の形態4のマルチ形空気調和機の動作を説明するフローチャート図である。
【符号の説明】
1 室外機、2 圧縮機、3 切換弁、4 室外熱交換器、5、6 電磁弁、7、12 室内機、8、13 室内熱交換器、9、14 室内温度センサ、10、15 配管温度センサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner, and relates to control for notifying a user of a malfunction of an electromagnetic valve for controlling a refrigerant amount.
[0002]
[Prior art]
In the conventional air conditioner, if the target refrigerant amount cannot be controlled due to a malfunction of the solenoid valve for controlling the refrigerant amount and the capacity becomes insufficient, complaints such as not cooling or not warming have been generated.
[0003]
Further, in the multi-type air conditioner, when one of the indoor units is stopped and the solenoid valve connected to the indoor unit fails, the capacity of the other indoor units during operation may be insufficient. .
[0004]
Regarding a multi-type air conditioner configured by connecting a plurality of indoor units to one outdoor unit, for example, one described in JP-A-2-97848 can be mentioned. This is to improve the workability of the confirmation work of checking the correspondence between the operation states of the outside and the inside of each room while performing the test operation for each room.
[0005]
[Problems to be solved by the invention]
The conventional air conditioner has a problem in that if the target refrigerant amount cannot be controlled due to a malfunction of the solenoid valve for controlling the refrigerant amount and the capacity becomes insufficient, complaints such as not cooling or not warming are generated. Was.
[0006]
In addition, in the multi-type air conditioner, if one of the indoor units is stopped and the solenoid valve connected to the indoor unit fails, the performance of the other indoor units during operation becomes insufficient. there were.
[0007]
The present invention has been made in order to solve the above-mentioned problems, and notifies a user when a target refrigerant amount cannot be controlled due to a malfunction of a solenoid valve for controlling a refrigerant amount and the capacity becomes insufficient. The purpose is to do.
Another object of the present invention is to notify a user of a multi-type air conditioner when a solenoid valve of a stopped indoor unit breaks down and the capacity of another operating indoor unit becomes insufficient.
[0008]
[Means for Solving the Problems]
An air conditioner according to a first aspect of the present invention is an indoor heat exchanger that is connected to an outdoor unit having a compressor or the like via a refrigerant flow control unit that controls a refrigerant flow rate and that exchanges heat with indoor air. An indoor unit having the same, a pipe temperature detecting means for detecting a pipe temperature of the indoor heat exchanger, and a refrigerant flow rate for monitoring a state of the refrigerant flow rate control means based on the pipe temperature detected by the pipe temperature detecting means after the start of the cooling operation. A control monitoring unit, a warning display unit for displaying a warning when the refrigerant flow control monitoring unit detects an abnormality of the refrigerant flow control unit, an inverter device for driving the compressor, and an indoor set temperature set by a user. And compensating means for judging the capacity of the compressor from the setting of the inverter device based on the indoor temperature of the inverter device and compensating the data relating to the pipe temperature used by the refrigerant flow control monitoring means .
[0010]
An air conditioner according to a second aspect of the present invention is the air conditioner according to the first aspect, wherein the indoor unit includes an indoor temperature detecting unit that detects an indoor temperature, and the refrigerant flow control monitoring unit is configured to start the cooling operation. The temperature difference ΔT between the indoor temperature detected by the indoor temperature detecting means and the pipe temperature detected by the pipe temperature detecting means after a lapse of a predetermined time after starting the cooling operation is a target value of the temperature difference ΔT corrected by the correcting means. The state of the refrigerant flow control means is monitored based on whether or not the temperature has decreased to the maximum.
[0011]
An air conditioner according to a third aspect of the present invention is the air conditioner according to the first aspect, wherein the refrigerant flow rate control monitoring means starts the cooling operation with the pipe temperature TH1 detected by the pipe temperature detecting means at the start of the cooling operation. The state of the refrigerant flow control means depends on whether the temperature difference ΔT from the pipe temperature TH2 detected by the pipe temperature detection means after a predetermined time has elapsed has decreased to the target value of the temperature difference ΔT corrected by the correction means. Is to monitor.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. For convenience of explanation, a multi-type air conditioner will be described, but the present invention can be similarly applied to a normal separation type air conditioner.
FIG. 1 is a refrigerant system diagram of a multi-type air conditioner according to Embodiment 1 of the present invention. In the figure, reference numeral 1 denotes an outdoor unit of an air conditioner, a compressor 2 for compressing a refrigerant, a switching valve 3 for changing the flow of the refrigerant to switch between a cooling operation and a heating operation, and heat of the refrigerant in the outdoor unit 1. A heat exchanger 4 for performing the exchange; a solenoid valve 5 serving as a refrigerant flow rate control means for stopping the flow of the refrigerant to the room A; and a refrigerant flow rate control means for stopping the flow of the refrigerant to the room B room. It is composed of a solenoid valve 6.
[0016]
Reference numeral 7 denotes an indoor unit in the room A, an indoor heat exchanger 8 for exchanging heat of the refrigerant in the room A, an indoor temperature sensor 9 for detecting the room temperature in the room A, and detecting a pipe temperature in the room A. Is constituted by a piping temperature sensor 10.
[0017]
Reference numeral 12 denotes an indoor unit in the room B, an indoor heat exchanger 13 for exchanging heat of the refrigerant in the room B, an indoor temperature sensor 14 for detecting the room temperature in the room B, and detecting a pipe temperature in the room B. And a piping temperature sensor 15.
[0018]
Next, the operation will be described.
FIG. 2 is a diagram showing a change in the pipe temperature depending on the amount of refrigerant determined by the degree of opening and closing of the solenoid valve at the start of the cooling operation, and FIG. 3 is a flowchart illustrating the operation of the first embodiment of the present invention.
In the multi-type air conditioner configured as shown in FIG. 1, at the time of starting the cooling operation, the indoor temperature is detected and set as TS1 (step S31). The indoor pipe temperature changes after the start of the operation as shown in FIG. 2, but the difference between the pipe temperature after elapse of the time t and the indoor temperature TS1 at the start of the operation is ΔT (step S32). In step S33, the operation capability of the compressor 2 driven by the inverter is determined based on the set temperature and the room temperature set by the user.
[0019]
In step S34, the target value of ΔT after the elapse of the time t is corrected based on the determined operation capability of the compressor 2, and the electromagnetic force is determined based on whether ΔT has decreased to the corrected target value that allows normal operation. Determine if the valve is normal. ΔT, that is, if the pipe temperature has fallen to the target value, the solenoid valve is determined to be normal. If not, the solenoid valve is determined to be abnormal, and a warning display is displayed to notify the user. (Step S35).
[0020]
As described above, according to the first embodiment, in the multi-type air conditioner, by detecting an abnormality of the solenoid valve at the start of operation, it is possible to warn the user of inefficient operation and to warn the user of the solenoid valve. When the degree of failure places a burden on the compressor 2, the compressor 2 can be protected.
Further, the indoor temperature sensor and the pipe temperature sensor required for the detection are essentially required for the air conditioner and are not specially provided for this control, so that there is an effect that the cost can be reduced.
[0021]
Embodiment 2 FIG.
In Embodiment 1 described above, the indoor temperature at the start of the cooling operation is detected. However, the pipe temperature at the start of the cooling operation may be detected and compared with the pipe temperature after elapse of the time t.
FIG. 4 is a flowchart illustrating the operation of the second embodiment of the present invention. In the multi-type air conditioner configured as shown in FIG. 1, at the start of the cooling operation, the pipe temperature is detected and set to TH1 (step S41). The difference between the pipe temperature TH2 after the elapse of the time t from the start of the operation and the pipe temperature TH1 at the start of the operation is ΔT (step S42). The operation capability of the compressor 2 driven by the inverter is determined based on the set temperature and the room temperature set by the user.
[0022]
In step S44, the target value of ΔT after the elapse of the time t is corrected based on the determined operation capability of the compressor 2, and electromagnetic waves are determined based on whether ΔT has decreased to the corrected target value that allows normal operation. Determine if the valve is normal. ΔT, that is, if the pipe temperature has fallen to the target value, the solenoid valve is determined to be normal. If not, the solenoid valve is determined to be abnormal, and a warning display is displayed to notify the user. (Step S45).
[0023]
As described above, according to the second embodiment, similarly to the above-described first embodiment, in the multi-type air conditioner, the malfunction of the solenoid valve is detected at the start of the operation, so that the inefficient operation is performed. Can be warned to the user, and when the degree of failure of the solenoid valve places a burden on the compressor 2, the compressor 2 can be protected.
Further, the indoor temperature sensor and the pipe temperature sensor required for the detection are essentially required for the air conditioner and are not specially provided for this control, so that there is an effect that the cost can be reduced.
[0024]
Embodiment 3 FIG.
In the above embodiment, in the multi-type air conditioner, the abnormality of the solenoid valve is detected at the start of the operation to warn the user of the inefficient operation. However, in the third embodiment, In a multi-type air conditioner, when one unit is operating, the status of the operating indoor unit is indirectly detected by detecting the abnormality of the other stopped solenoid valve, resulting in inefficient operation. Warn the user of the operating state of the indoor unit.
[0025]
FIG. 5 is a diagram showing a change in pipe temperature depending on the amount of refrigerant when the cooling operation is performed in the indoor units in the room A and the room B and the cooling operation is stopped in the room A in the multi-type air conditioner, and FIG. 15 is a flowchart illustrating the operation of the third embodiment.
When the room A and the room B perform the cooling operation and the indoor unit 7 in the room A stops the cooling operation, the pipe temperature of the room A is detected and set to TH1 (step S61). The difference between the pipe temperature after the elapse of the time t from the stop of the operation and the pipe temperature TH1 at the time of the stop of the operation is ΔT (step S62).
[0026]
In step S63, it is determined whether or not the solenoid valve 5 in the A room is normal based on whether or not ΔT after the lapse of the time t has increased by a target value that allows normal operation (step S63). If the temperature is higher than the target value, there is no leakage of the refrigerant, and the solenoid valve 5 is determined to be normal. If it has not risen to the target value, it is determined that the solenoid valve 5 has broken down and the refrigerant is flowing, and a warning is displayed to notify the user (step S64).
[0027]
As described above, according to the third embodiment, in the multi-type air conditioner, when one unit is operated, the abnormality of the other stopped solenoid valve is detected, thereby reducing the efficiency of the indoor unit during operation. This has the effect of alerting the user of the deteriorated driving condition.
In addition, the only detector required for detection is the pipe temperature sensor, and the pipe temperature sensor is originally required for the air conditioner and is not specially provided for this control, so that there is an effect that the cost can be reduced.
[0028]
Embodiment 4 FIG.
In the above-described fourth embodiment, the abnormality of the solenoid valve of the stopped indoor unit is detected by a change in the pipe temperature. However, the abnormality may be detected by comparing the indoor temperature with the pipe temperature.
FIG. 7 is a flowchart illustrating the operation of the fourth embodiment of the present invention.
When the room A and the room B perform the cooling operation, and the indoor unit 7 in the room A stops the cooling operation, the pipe temperature and the room temperature TH1 that change after the cooling operation of the room A is stopped are detected, and the difference between them is calculated as △. T (step S71). It is determined whether the electromagnetic valve 5 is normal based on whether ΔT after the elapse of the time t has reached the target value (step S72). If the difference ΔT between the pipe temperature and the room temperature TH1 falls within a specified value, the refrigerant stops, the solenoid valve 5 is judged to be normal, and if the difference ΔT between the pipe temperature and the room temperature TH1 does not fall within the specified value, the electromagnetic valve is turned off. It is determined that the valve 5 has failed and the refrigerant is flowing, and a warning is displayed to notify the user (step S73).
[0029]
As described above, according to the fourth embodiment, in the multi-type air conditioner, during operation of one unit, the abnormality of the other stopped solenoid valve is detected, thereby improving the efficiency of the indoor unit during operation. It is possible to warn the user of the deteriorated driving condition and to detect the driving condition not immediately after stopping but always.
Further, the indoor temperature sensor and the pipe temperature sensor required for the detection are essentially required for the air conditioner and are not specially provided for this control, so that there is an effect that the cost can be reduced.
[0030]
【The invention's effect】
As described above, according to the present invention, in the air conditioner, by detecting an abnormality in the refrigerant flow control unit at the start of operation, it is possible to warn the user of the inefficient operation, and to detect a malfunction of the refrigerant flow control unit. When the load on the compressor is high, the compressor can be protected.
Further, the pipe temperature detecting means and the indoor temperature detecting means required for the detection are essentially required for the air conditioner and are not specially provided for the control, so that there is an effect that the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a system configuration and a refrigerant system diagram according to Embodiments 1 to 4 of the present invention.
FIG. 2 is a diagram showing a change in a pipe temperature depending on a refrigerant amount at the start of a cooling operation.
FIG. 3 is a flowchart illustrating the operation of the air conditioner according to Embodiment 1 of the present invention.
FIG. 4 is a flowchart illustrating an operation of the air conditioner according to Embodiment 2 of the present invention.
FIG. 5 is a diagram illustrating a change in a pipe temperature depending on a refrigerant amount when a cooling operation is stopped.
FIG. 6 is a flowchart illustrating an operation of the multi-type air conditioner according to Embodiment 3 of the present invention.
FIG. 7 is a flowchart illustrating an operation of the multi-type air conditioner according to Embodiment 4 of the present invention.
[Explanation of symbols]
1 outdoor unit, 2 compressor, 3 switching valve, 4 outdoor heat exchanger, 5, 6 solenoid valve, 7, 12 indoor unit, 8, 13 indoor heat exchanger, 9, 14 indoor temperature sensor, 10, 15 piping temperature Sensors.

Claims (3)

圧縮機等を有する室外機と、
前記室外機に冷媒流量を制御する冷媒流量制御手段を介して接続され、室内空気と熱交換を行う室内熱交換器を有する室内機と、
前記室内熱交換器の配管温度を検出する配管温度検出手段と、
冷房運転開始後に前記配管温度検出手段が検出した前記配管温度に基づいて、前記冷媒流量制御手段の状態を監視する冷媒流量制御監視手段と、
前記冷媒流量制御監視手段が前記冷媒流量制御手段の異常を検出した場合は、警告表示を行う警告表示手段と、
前記圧縮機を駆動するインバータ装置と、
ユーザが設定する室内設定温度と実際の室内温度とに基づいて、前記インバータ装置の設定から前記圧縮機の能力を判断し、前記冷媒流量制御監視手段が用いる前記配管温度に係るデータを補正する補正手段と、
を備えたことを特徴とする空気調和機。
An outdoor unit having a compressor and the like;
An indoor unit having an indoor heat exchanger that is connected to the outdoor unit via a refrigerant flow control unit that controls a refrigerant flow rate and that performs heat exchange with indoor air;
A pipe temperature detecting means for detecting a pipe temperature of the indoor heat exchanger,
Based on the pipe temperature detected by the pipe temperature detection means after the start of cooling operation, refrigerant flow control monitoring means for monitoring the state of the refrigerant flow control means,
When the refrigerant flow control monitoring means detects an abnormality of the refrigerant flow control means, a warning display means for performing a warning display,
An inverter device for driving the compressor;
Correction for judging the capacity of the compressor from the setting of the inverter device based on the indoor set temperature set by the user and the actual room temperature, and correcting the data relating to the pipe temperature used by the refrigerant flow control monitoring means. Means,
An air conditioner comprising:
前記室内機に、室内温度を検出する室内温度検出手段を備え、前記冷媒流量制御監視手段は、冷房運転開始時に前記室内温度検出手段が検出した室内温度と、冷房運転を開始してから所定時間経過後に前記配管温度検出手段が検出した配管温度との温度差ΔTが、前記補正手段により補正された前記温度差ΔTの目標値まで低下しているか否かにより、前記冷媒流量制御手段の状態を監視することを特徴とする請求項1記載の空気調和機。The indoor unit is provided with an indoor temperature detecting means for detecting an indoor temperature, and the refrigerant flow rate control monitoring means is configured to detect the indoor temperature detected by the indoor temperature detecting means at the time of starting the cooling operation and a predetermined time after starting the cooling operation. The state of the refrigerant flow control means is determined by whether or not the temperature difference ΔT from the pipe temperature detected by the pipe temperature detection means after the lapse has decreased to the target value of the temperature difference ΔT corrected by the correction means. The air conditioner according to claim 1, wherein monitoring is performed. 前記冷媒流量制御監視手段は、冷房運転開始時に前記配管温度検出手段が検出した配管温度TH1と、冷房運転を開始してから所定時間経過後に前記配管温度検出手段が検出した配管温度TH2との温度差ΔTが、前記補正手段により補正された前記温度差ΔTの目標値まで低下しているか否かにより、前記冷媒流量制御手段の状態を監視することを特徴とする請求項1記載の空気調和機。The refrigerant flow rate control and monitoring means is configured to control the temperature of the pipe temperature TH1 detected by the pipe temperature detecting means at the start of the cooling operation, and the temperature of the pipe temperature TH2 detected by the pipe temperature detecting means after a lapse of a predetermined time from the start of the cooling operation. The air conditioner according to claim 1 , wherein the state of the refrigerant flow control unit is monitored based on whether the difference ΔT has decreased to a target value of the temperature difference ΔT corrected by the correction unit. .
JP04338697A 1997-02-27 1997-02-27 Air conditioner Expired - Fee Related JP3590499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04338697A JP3590499B2 (en) 1997-02-27 1997-02-27 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04338697A JP3590499B2 (en) 1997-02-27 1997-02-27 Air conditioner

Publications (2)

Publication Number Publication Date
JPH10238912A JPH10238912A (en) 1998-09-11
JP3590499B2 true JP3590499B2 (en) 2004-11-17

Family

ID=12662374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04338697A Expired - Fee Related JP3590499B2 (en) 1997-02-27 1997-02-27 Air conditioner

Country Status (1)

Country Link
JP (1) JP3590499B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421762A (en) * 2017-07-31 2017-12-01 特灵空调系统(中国)有限公司 Diagnosis method for heat radiation system and device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3915819B2 (en) * 2005-07-07 2007-05-16 ダイキン工業株式会社 Air conditioner
JP5374034B2 (en) * 2007-10-12 2013-12-25 株式会社不二工機 Valve control method and valve control apparatus
US11105529B2 (en) 2014-05-15 2021-08-31 Carrier Corporation Multi-zone indoor climate control and a method of using the same
JP2019018709A (en) * 2017-07-18 2019-02-07 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
CN108613335B (en) * 2018-03-12 2019-12-27 珠海格力电器股份有限公司 Fault detection method and device of air conditioner, storage medium and processor
CN110173872A (en) * 2019-04-22 2019-08-27 广东美博制冷设备有限公司 The misoperation detection method and device of air conditioner
JP7211913B2 (en) * 2019-08-23 2023-01-24 株式会社コロナ heat pump equipment
CN110986268B (en) * 2019-11-12 2021-08-27 重庆海尔空调器有限公司 Method for detecting and controlling dislocation of expansion valve of multi-split air conditioner under refrigeration working condition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107421762A (en) * 2017-07-31 2017-12-01 特灵空调系统(中国)有限公司 Diagnosis method for heat radiation system and device

Also Published As

Publication number Publication date
JPH10238912A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
US5050397A (en) Air conditioner apparatus with starting control for parallel operated compressors based on high pressure detection
JP3590499B2 (en) Air conditioner
JP3935716B2 (en) Air conditioner
KR100814956B1 (en) Multi Air-Conditioner and its Compressor control method
JP3337545B2 (en) Air conditioner
JPH07120091A (en) Air conditioner
KR100677282B1 (en) Out door unit control method and control apparatus for air conditioner
JP2785627B2 (en) Air conditioner
JPH07234044A (en) Controlling device for protecting compressor of air conditioner
JPH0486444A (en) Air conditioner
JP3687201B2 (en) Air conditioner
WO2001040716A1 (en) Multiple air conditioners
JPH05332647A (en) Air conditioner
JP3420652B2 (en) Air conditioner
JPH0674621A (en) Air conditioner
JP3463447B2 (en) Control device for air conditioner
KR100561538B1 (en) Multi type air conditioning system and method thereof
JPH0378551B2 (en)
JPH10300175A (en) Air conditioner
JP3594358B2 (en) Air conditioner
JP3163115B2 (en) Air conditioner
JPH04151474A (en) Air conditioner
KR19980016168A (en) DETERMINATION APPARATUS AND METHOD FOR DETERMINING OVERFLOW FAILURE
JPH05126443A (en) Controller of refrigerator
JPH07113556A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040820

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees