JP2003130430A - Air conditioner and its control method - Google Patents

Air conditioner and its control method

Info

Publication number
JP2003130430A
JP2003130430A JP2001331367A JP2001331367A JP2003130430A JP 2003130430 A JP2003130430 A JP 2003130430A JP 2001331367 A JP2001331367 A JP 2001331367A JP 2001331367 A JP2001331367 A JP 2001331367A JP 2003130430 A JP2003130430 A JP 2003130430A
Authority
JP
Japan
Prior art keywords
temperature
evaporation
heat exchanger
side heat
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001331367A
Other languages
Japanese (ja)
Other versions
JP4043756B2 (en
Inventor
Keisuke Sotozono
圭介 外囿
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001331367A priority Critical patent/JP4043756B2/en
Publication of JP2003130430A publication Critical patent/JP2003130430A/en
Application granted granted Critical
Publication of JP4043756B2 publication Critical patent/JP4043756B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of performing a high sensible heat control in response to a load without excess dehumidification and suppressing a dehumidification amount to a minimum, by detecting a dew-point temperature of sucked air, and to provide its control method. SOLUTION: The air conditioner comprises a variable displacement compressor 1, a condensation side heat exchanger 2 for condensing and liquifying gas refrigerant delivered from the compressor, a throttle device 3 for decompressing the liquified refrigerant from the condensation side heat exchanger, and an evaporation side heat exchanger 4 for evaporating and liquifying the refrigerant decompressed by the throttle device. The air conditioner also comprises a dry bulb temperature detecting means 7 or 8 for detecting temperature on the suction side or the discharge side of the evaporation side heat exchanger, a humidity detecting means 10 for detecting a humidity on the suction side of the evaporation side heat exchanger, and controllers 11 and 12 for controlling the compressor and the throttle device based on the detection results of the dry bulb temperature detecting means and the humidity detecting means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、空気調和装置及
びその制御方法、特に電算機室用空調機として用いられ
る空気調和装置及びその制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner and its control method, and more particularly to an air conditioner used as an air conditioner for a computer room and its control method.

【0002】[0002]

【従来の技術】図5は、従来の電算機室用空気調和装置
の構成を示す冷媒回路図である。この図において、1は
容量可変型の圧縮機、2は圧縮機1から吐出されたガス
冷媒を凝縮液化する凝縮側熱交換器、3は凝縮側熱交換
器2からの液化冷媒を減圧する流量可変型の絞り装置、
4は減圧された冷媒を蒸発ガス化する蒸発側熱交換器、
5は上記各機器を接続し冷媒回路を構成する冷媒配管、
6は蒸発側熱交換器4に設けられた送風機で、矢印6A
で示す風路を形成する。7は蒸発側熱交換器4の風路の
吸込側に設けられ、吸込側の温度を検出する吸込側乾球
温度検出手段、8は同じく吹出側の温度を検出する吹出
側乾球温度検出手段、9は蒸発側熱交換器4の流入側に
設けられ、蒸発温度を検出する蒸発温度検出手段であ
る。
2. Description of the Related Art FIG. 5 is a refrigerant circuit diagram showing the structure of a conventional computer room air conditioner. In this figure, 1 is a variable capacity compressor, 2 is a condensation side heat exchanger that condenses and liquefies the gas refrigerant discharged from the compressor 1, and 3 is a flow rate that reduces the pressure of the liquefied refrigerant from the condensation side heat exchanger 2. Variable diaphragm device,
4 is an evaporation side heat exchanger for evaporating the depressurized refrigerant into gas
5 is a refrigerant pipe that connects the above-mentioned devices to form a refrigerant circuit,
6 is a blower provided in the evaporation side heat exchanger 4, which is indicated by an arrow 6A.
The air path shown by is formed. Reference numeral 7 indicates a suction side dry-bulb temperature detecting means which is provided on the suction side of the air passage of the evaporation side heat exchanger 4 and detects the temperature on the suction side. , 9 are evaporation temperature detecting means provided on the inflow side of the evaporation side heat exchanger 4 for detecting the evaporation temperature.

【0003】図6は、従来の空気調和装置における顕熱
比(SHF)の変化を示す概略空気線図である。ここで
は、一例としてある設計ポイントA(吸込空気温度24
℃(乾球温度)、湿度(RH)45%の条件でSHF=
1、風量300m/min、顕熱能力56kWでの吸
込、吹出空気の状態と露点温度を示す)で設計された熱
交換器、送風機仕様に対して、設定湿度条件が異なる場
合の吸込口、熱交換器部、吹出口の空気の状態を示して
いる。設計ポイントAにおける100%負荷時(負荷5
6kW)の吹出温度は、顕熱比(SHF)=1から以下
の式でΔTを求めることにより得られる。 Q=60×Va×Cp/v×ΔT/860 (1) Q :顕熱能力(kW) Va:風量(m/min) Cp:空気の比熱(kcal/kg・℃) v :空気の比容積(m/kg) ΔT:吸込側と吹出側の乾球温度差(℃)
FIG. 6 is a schematic psychrometric chart showing changes in the sensible heat ratio (SHF) in a conventional air conditioner. Here, as an example, a design point A (suction air temperature 24
SHF = 45 ° C (dry bulb temperature) and humidity (RH)
1, air volume of 300 m 3 / min, suction at sensible heat capacity of 56 kW, heat exchanger designed with the state of blown air and dew point temperature), suction port when the set humidity condition is different from the blower specifications, The state of the air of a heat exchanger part and an outlet is shown. At 100% load at design point A (load 5
The blowout temperature of 6 kW) is obtained by calculating ΔT from the sensible heat ratio (SHF) = 1 by the following formula. Q = 60 × Va × Cp / v × ΔT / 860 (1) Q: Sensible heat capacity (kW) Va: Air volume (m 3 / min) Cp: Specific heat of air (kcal / kg · ° C.) v: Air ratio Volume (m 3 / kg) ΔT: Dry-bulb temperature difference between suction side and outlet side (° C)

【0004】ここでは、簡易的に説明するために、式
(1)においてCp=0.24、v=0.85としてΔ
Tを算出すると共に、吹出温度を算出すると、図6に示
すように14.5℃となる。この時の露点温度はSHF
=1ということと湿り空気線図から、吸込空気温度24
℃で設計ポイントAを通るSHF=1の同一絶対湿度線
Bと飽和曲線との交点として求められ、11℃となる。
この露点温度を目標蒸発温度として制御すれば、除湿す
ることなく、顕熱能力も満足することができる。従来
は、ある設計ポイントにおける露点温度+αを目標蒸発
温度とし、そこから例えば吸込温度設定値と吸込温度と
の差(負荷)をみながら目標蒸発温度を調整するのが一
般的であった。
Here, for the sake of simplicity, Δp is set as Cp = 0.24 and v = 0.85 in the equation (1).
When T is calculated and the outlet temperature is calculated, it becomes 14.5 ° C. as shown in FIG. The dew point temperature at this time is SHF.
= 1 and the moist air diagram, the intake air temperature is 24
It is determined as the intersection of the saturation curve and the same absolute humidity line B of SHF = 1 that passes through the design point A in ° C, and becomes 11 ° C.
If the dew point temperature is controlled as the target evaporation temperature, the sensible heat capacity can be satisfied without dehumidifying. In the past, it was general to set the dew point temperature + α at a certain design point as the target evaporation temperature, and then adjust the target evaporation temperature while checking the difference (load) between the suction temperature set value and the suction temperature, for example.

【0005】[0005]

【発明が解決しようとする課題】従来の空気調和装置は
以上のように構成されていたため、吸込状態が図6の設
計ポイントAより少し高湿度条件、例えば湿度(RH)
50%の場合には、100%負荷時(負荷56kW)の
吹出温度は、湿度(RH)45%の場合と同様に式
(1)から14.5℃と算出されるが、この時の露点温
度は図6の吸込空気温度24℃と50%RHとの交点C
を通るSHF=1の同一絶対湿度線Dと飽和曲線との交
点として求められ、13℃となり、吹出温度と露点温度
との差が小さくなる。つまり、吸込空気の湿度状態を知
ることなしに、目標蒸発温度を設定し、吸込側乾球温度
情報のみで上述の45%RH時と同様に目標蒸発温度を
11℃に設定して制御を行なうと、5%の湿度に相当す
る分を除湿してしまうことになる。特にプルダウン時
(50%RH以上の時)には除湿が顕著となり、過渡的
に過剰な除湿が行なわれる結果、設計条件である45%
RHを大きく下回り、低湿度環境下での静電気発生など
によるコンピュ−タなどの電算機器への悪影響が出る可
能性があるという問題点があった。
Since the conventional air conditioner is constructed as described above, the suction state is slightly higher than the design point A in FIG. 6 such as humidity (RH).
At 50%, the outlet temperature at 100% load (56 kW load) is calculated as 14.5 ° C from equation (1) as in the case of 45% humidity (RH), but the dew point at this time is The temperature is the intersection C between the intake air temperature 24 ° C and 50% RH in Fig. 6.
It is determined as the intersection of the saturation curve and the same absolute humidity line D of SHF = 1 passing through, and becomes 13 ° C., and the difference between the outlet temperature and the dew point temperature becomes small. That is, the target evaporating temperature is set without knowing the humidity state of the suction air, and the target evaporating temperature is set to 11 ° C. and is controlled by only the suction side dry-bulb temperature information as in the above 45% RH. Then, the portion corresponding to the humidity of 5% is dehumidified. Especially when pulling down (at 50% RH or more), dehumidification becomes remarkable, and excessive dehumidification is performed transiently, resulting in a design condition of 45%.
There is a problem that it is much lower than RH, and there is a possibility that adverse effects may be exerted on computer devices such as computers due to static electricity generation in a low humidity environment.

【0006】また、従来の高顕熱制御方法として、例え
ば特公平7−92259号公報に示されるように、結露
水検知手段を設け、この手段によって結露水(除湿され
たドレン水)を検知(除湿したことを検知)した場合
に、目標蒸発温度を上げるという方式もあるが、この方
式は、高負荷、高湿度条件下で結露水を出さない蒸発温
度制御であるがためにプルダウン時などに顕熱能力が出
せなくなる可能性があるという問題点があった。従来は
こうした万が一の低湿度条件に陥った場合のバックアッ
プとして、低湿度状態を検知して加湿器による加湿が行
なわれているが、この場合には加湿量と加湿容量の増加
を招くという問題点があった。また、コンピュータなど
の電算機器周囲の空気状態と蒸発側熱交換器の蒸発温度
制御とがアンマッチになった場合には非効率運転とな
り、消費電力が増大するという問題点もあった。
Further, as a conventional high sensible heat control method, for example, as shown in Japanese Patent Publication No. 7-92259, a dew condensation water detecting means is provided, and this means detects dew condensation water (dehumidified drain water). There is also a method to raise the target evaporation temperature when the temperature is detected), but this method is an evaporation temperature control that does not generate dew condensation water under high load and high humidity conditions. There was a problem that the heat capacity could not be achieved. Conventionally, as a backup in case of falling into such a low humidity condition, a low humidity condition is detected and humidification is performed by a humidifier, but in this case, the amount of humidification and the humidification capacity increase. was there. There is also a problem that when the air condition around a computer or other computer is unmatched with the evaporation temperature control of the evaporation side heat exchanger, the operation becomes inefficient and power consumption increases.

【0007】この発明は、上記のような問題点を解消す
るためになされたもので、蒸発側熱交換器に湿度検出手
段を設けて吸込側の湿度を検出すると共に、吸込空気に
対する露点温度を検知することにより、過剰に除湿する
ことなく、負荷に応じた高顕熱制御が可能で、除湿量を
最小限に抑えることができる空気調和装置及びその制御
方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and the humidity detecting means is provided in the heat exchanger on the evaporation side to detect the humidity on the suction side, and at the same time, the dew point temperature with respect to the suction air is measured. An object of the present invention is to provide an air conditioner and a control method thereof that can perform high sensible heat control according to a load without excessive dehumidification by detecting and can suppress the dehumidification amount to a minimum.

【0008】[0008]

【課題を解決するための手段】この発明に係わる空気調
和装置は、容量可変型の圧縮機と、この圧縮機から吐出
されたガス冷媒を凝縮液化する凝縮側熱交換器と、この
凝縮側熱交換器からの液化冷媒を減圧する絞り装置と、
この絞り装置によって減圧された冷媒を蒸発ガス化する
蒸発側熱交換器と、この蒸発側熱交換器の吸込側もしく
は吹出側の温度を検出する乾球温度検出手段と、蒸発側
熱交換器の吸込側の湿度を検出する湿度検出手段と、乾
球温度検出手段及び湿度検出手段の検出結果にもとづい
て圧縮機及び絞り装置を制御する制御装置とを備えたも
のである。
An air conditioner according to the present invention comprises a variable capacity compressor, a condensing side heat exchanger for condensing and liquefying a gas refrigerant discharged from the compressor, and a condensing side heat exchanger. A throttle device for reducing the pressure of the liquefied refrigerant from the exchanger,
An evaporation side heat exchanger for evaporating and gasifying the refrigerant decompressed by this expansion device, a dry-bulb temperature detecting means for detecting the temperature of the suction side or the outlet side of this evaporation side heat exchanger, and an evaporation side heat exchanger It is provided with a humidity detecting means for detecting the humidity on the suction side and a control device for controlling the compressor and the throttle device based on the detection results of the dry bulb temperature detecting means and the humidity detecting means.

【0009】この発明に係わる空気調和装置は、また、
容量可変型の圧縮機と、この圧縮機から吐出されたガス
冷媒を凝縮液化する凝縮側熱交換器と、この凝縮側熱交
換器からの液化冷媒を減圧する絞り装置と、この絞り装
置によって減圧された冷媒を蒸発ガス化する蒸発側熱交
換器と、この蒸発側熱交換器の吸込側もしくは吹出側の
温度を検出する乾球温度検出手段と、蒸発側熱交換器の
吸込側の湿度を検出する湿度検出手段と、蒸発側熱交換
器の蒸発温度を検出する蒸発温度検出手段と、蒸発温度
を露点温度以上に制御する制御装置とを備えたものであ
る。
The air conditioner according to the present invention also includes
A variable capacity compressor, a condensing side heat exchanger that condenses and liquefies the gas refrigerant discharged from this compressor, a throttle device that depressurizes the liquefied refrigerant from this condensing side heat exchanger, and a depressurizing device Evaporation side heat exchanger for evaporating the generated refrigerant, dry bulb temperature detecting means for detecting the temperature of the suction side or blow side of this evaporation side heat exchanger, and the humidity of the suction side of the evaporation side heat exchanger. A humidity detecting means for detecting, an evaporation temperature detecting means for detecting the evaporation temperature of the evaporation side heat exchanger, and a control device for controlling the evaporation temperature to be equal to or higher than the dew point temperature are provided.

【0010】この発明に係わる空気調和装置は、また、
吸込側乾球温度及び湿度と、湿り空気線図での同一絶対
湿度線と飽和曲線との交点を対応させた露点温度マトリ
ックスを設け、この露点温度マトリックスから露点温度
を得るようにしたものである。
The air conditioner according to the present invention also includes
A dew-point temperature matrix is provided that associates the suction-side dry-bulb temperature and humidity with the intersections of the same absolute humidity line and the saturation curve in the moist air diagram, and the dew-point temperature is obtained from this dew-point temperature matrix. .

【0011】この発明に係わる空気調和装置は、また、
蒸発側熱交換器から吹出された冷却空気を、蒸発側熱交
換器が設置された室の二重床の内側を経由して電算機等
の負荷が収納されたラックに供給するようにしたもので
ある。
The air conditioner according to the present invention also includes
Cooling air blown out from the heat exchanger on the evaporation side is supplied to a rack containing a load such as a computer via the inside of the double floor of the room where the heat exchanger on the evaporation side is installed. Is.

【0012】この発明に係わる空気調和装置の制御方法
は、上述した空気調和装置において、目標蒸発温度を露
点温度に設定すると共に、運転時の蒸発温度が目標蒸発
温度を含む所定の範囲内となるように制御装置を所定の
時間毎に動作させ、運転時の蒸発温度が所定の範囲の上
限を越えた時は、圧縮機の容量を大きくすると共に、絞
り装置の絞り流量を増加し、所定の範囲の下限を越えた
時は、圧縮機の容量を小さくすると共に、絞り装置の絞
り流量を少なくするようにしたものである。
In the air conditioner control method according to the present invention, in the air conditioner described above, the target evaporation temperature is set to the dew point temperature, and the evaporation temperature during operation is within a predetermined range including the target evaporation temperature. When the evaporation temperature during operation exceeds the upper limit of the predetermined range, the capacity of the compressor is increased and the throttle flow rate of the expansion device is increased to a predetermined value. When the lower limit of the range is exceeded, the capacity of the compressor is reduced and the throttle flow rate of the throttle device is reduced.

【0013】この発明に係わる空気調和装置の制御方法
は、また、吸込温度もしくは吹出温度の目標温度を設定
すると共に、運転時の吸込温度もしくは吹出温度が目標
温度を含む所定の範囲内となるように制御装置を所定の
時間毎に動作させ、運転時の吸込温度もしくは吹出温度
が所定の範囲の上限を越えた時は、目標蒸発温度を露点
温度以下とならない範囲で低くし、所定の範囲の下限を
越えた時は、目標蒸発温度を高くするようにしたもので
ある。
In the method for controlling an air conditioner according to the present invention, the target temperature of the intake temperature or the outlet temperature is set, and the intake temperature or the outlet temperature during operation is within a predetermined range including the target temperature. When the intake or blowout temperature during operation exceeds the upper limit of the specified range, the control device is operated every predetermined time, and the target evaporation temperature is lowered within the range not falling below the dew point temperature. When the lower limit is exceeded, the target evaporation temperature is increased.

【0014】この発明に係わる空気調和装置の制御方法
は、また、目標湿度を設定すると共に、蒸発側熱交換器
の吸込側湿度が目標湿度を含む所定の範囲内となるよう
に制御装置を所定の時間毎に動作させ、吸込側湿度が所
定の範囲の上限を越えた時は、目標蒸発温度を露点温度
以下とならない範囲で低くし、所定の範囲の下限を越え
た時は、目標蒸発温度を高くするようにしたものであ
る。
In the method for controlling an air conditioner according to the present invention, the target humidity is set, and the controller is set so that the suction side humidity of the evaporation side heat exchanger is within a predetermined range including the target humidity. When the suction side humidity exceeds the upper limit of the specified range, the target evaporation temperature is lowered within the range that does not fall below the dew point temperature, and when the lower limit of the specified range is exceeded, the target evaporation temperature is decreased. Is designed to be higher.

【0015】[0015]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1を図にもとづいて説明する。図1は、実施
の形態1の構成を示す冷媒回路図である。この図におい
て、1は容量可変型の圧縮機、2は圧縮機1から吐出さ
れたガス冷媒を凝縮液化する凝縮側熱交換器、3は凝縮
側熱交換器2からの液化冷媒を減圧する流量可変型の絞
り装置、4は減圧された冷媒を蒸発ガス化する蒸発側熱
交換器、5は上記各機器を接続し冷媒回路を構成する冷
媒配管、6は蒸発側熱交換器4に設けられた送風機で、
矢印6Aで示す風路を形成する。7は蒸発側熱交換器4
の風路の吸込側に設けられ、吸込側の温度を検出する吸
込側乾球温度検出手段、8は同じく吹出側の温度を検出
する吹出側乾球温度検出手段、9は蒸発側熱交換器4の
流入側に設けられ、蒸発温度を検出する蒸発温度検出手
段、10は蒸発側熱交換器4の吸込側に設けられた温度
検出手段、11は吸込側乾球温度検出手段7または吹出
側乾球温度検出手段8及び蒸発温度検出手段9並びに湿
度検出手段10の検出値にもとづいて圧縮機を容量制御
する容量制御手段、12は蒸発温度検出手段9の検出値
にもとづいて絞り装置3の冷媒流量を制御する流量制御
手段である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a refrigerant circuit diagram showing the configuration of the first embodiment. In this figure, 1 is a variable capacity compressor, 2 is a condensation side heat exchanger that condenses and liquefies the gas refrigerant discharged from the compressor 1, and 3 is a flow rate that reduces the pressure of the liquefied refrigerant from the condensation side heat exchanger 2. A variable expansion device, 4 is an evaporative heat exchanger for evaporating the decompressed refrigerant into evaporative gas, 5 is a refrigerant pipe that connects the above-mentioned devices to form a refrigerant circuit, and 6 is provided in the evaporative heat exchanger 4. With a blower
The air path shown by arrow 6A is formed. 7 is the evaporation side heat exchanger 4
Suction side dry-bulb temperature detecting means for detecting the temperature on the suction side, 8 for blowing-side dry-bulb temperature detecting means for detecting the temperature on the blowing side, and 9 for evaporating side heat exchanger. 4, evaporating temperature detecting means for detecting the evaporating temperature, 10 is temperature detecting means provided on the suction side of the evaporating side heat exchanger 4, and 11 is suction side dry-bulb temperature detecting means 7 or blowing side. A capacity control means for controlling the capacity of the compressor based on the detection values of the dry-bulb temperature detection means 8, the evaporation temperature detection means 9 and the humidity detection means 10, and 12 of the expansion device 3 based on the detection values of the evaporation temperature detection means 9. It is a flow rate control means for controlling the flow rate of the refrigerant.

【0016】図2は、実施の形態1の空気調和装置を電
算機室に設置した状態を示す概略図である。この図にお
いて、20は電算機室、21はフリーアクセスの床面を
形成する二重床で、その内側が後述する室内ユニットか
ら吹出された冷却空気の通路とされている。22は空気
調和装置の室内ユニットで、蒸発側熱交換器4、絞り装
置3、送風機6、吸込側及び吹出側乾球温度検出手段
7,8、湿度検出手段10、流量制御手段12等を収容
すると共に、上部の吸込口23から電算機室空気を吸込
み、下部の吹出口24から床面21の内側に冷却空気を
吹出す構成とされている。なお、この実施の形態では上
部を吸込口23、下部を吹出口24としているが、この
構成を逆にして下部の吹出口24を吸込口とし、上部の
吸込口23を吹出口とすることもできる。
FIG. 2 is a schematic diagram showing a state in which the air conditioner of the first embodiment is installed in a computer room. In this figure, 20 is a computer room, 21 is a double floor forming a free access floor, and the inside is a passage for cooling air blown out from an indoor unit described later. An indoor unit 22 of the air conditioner accommodates the evaporation side heat exchanger 4, the expansion device 3, the blower 6, the suction side and blowout side dry bulb temperature detecting means 7 and 8, the humidity detecting means 10, the flow rate controlling means 12 and the like. In addition, the air in the computer room is sucked in through the upper suction port 23, and the cooling air is blown out through the lower air outlet 24 into the floor surface 21. In this embodiment, the upper portion is the suction port 23 and the lower portion is the air outlet 24. However, the configuration may be reversed to use the lower air outlet 24 as the air inlet and the upper air inlet 23 as the air outlet. it can.

【0017】また、この実施の形態では、室内ユニット
の設置面積を小さくするため、圧縮機、アキュムレータ
等の冷媒回路構成部品を図示しない室外ユニットに収容
するスプリット方式を前提とした構成を示しているが、
上記の各冷媒回路構成部品を室内ユニットに収容するリ
モート方式とすることもできる。また、25は電算機器
を収容しているラックで、下面が二重床21の内側に連
通するようにされている。
Further, in this embodiment, in order to reduce the installation area of the indoor unit, a split system in which refrigerant circuit components such as a compressor and an accumulator are housed in an outdoor unit (not shown) is shown. But,
It is also possible to adopt a remote system in which each of the above refrigerant circuit components is housed in an indoor unit. Further, reference numeral 25 is a rack accommodating computer equipment, the lower surface of which communicates with the inside of the double floor 21.

【0018】このような構成において、室内ユニット2
2の吹出口24から吹出された冷却空気は、矢印6Aで
示すようにフリーアクセスの床面21の内側を通過し、
負荷となる電算機器が収納されているラック25に吸い
込まれ、電算機器を冷却し終えた空気は、ラック25か
ら上方に向けて電算機室20に排出され、室内ユニット
22の吸込口23へ吸い込まれる。室内ユニット22で
は、蒸発温度検出手段9によって蒸発側熱交換器4の蒸
発温度を検出し、この温度が露点温度以上となるように
圧縮機容量と絞り装置の冷媒流量が制御される。
In such a structure, the indoor unit 2
The cooling air blown from the outlet 24 of 2 passes through the inside of the floor surface 21 of the free access as shown by the arrow 6A,
The air that has been sucked into the rack 25 in which the load computer is stored and has finished cooling the computer is discharged upward from the rack 25 into the computer room 20, and is sucked into the suction port 23 of the indoor unit 22. Be done. In the indoor unit 22, the evaporation temperature detecting means 9 detects the evaporation temperature of the evaporation side heat exchanger 4, and the compressor capacity and the refrigerant flow rate of the expansion device are controlled so that this temperature becomes equal to or higher than the dew point temperature.

【0019】図3は、実施の形態1における露点温度検
知の手順を示すブロック図である。図3(A)に示すよ
うに、吸込側乾球温度検出手段7で検出した吸込側乾球
温度と、湿度検出手段10で検出した湿度(ここでは相
対湿度として説明するが絶対湿度でもよい)とから、図
6に例示した湿り空気線図上の乾球温度と湿度曲線との
交点を求め、この交点を通る顕熱比(SHF)=1即
ち、同一絶対湿度線と飽和曲線との交点から露点温度を
求める。この場合、図3(B)に示すように、縦軸に吸
込側乾球温度、横軸に湿度をとり、その交点位置に上述
のようにして求めた露点温度を表示した露点温度マトリ
ックスをあらかじめ用意しておくことにより、乾球温度
と湿度が分かれば簡単に露点温度を得ることができる。
この露点温度マトリックスの乾球温度は1℃間隔、湿度
は1%間隔であるが、それぞれの中間の値に対しては内
挿近似とし、マトリックス範囲外については外挿近似と
する。
FIG. 3 is a block diagram showing a procedure of dew point temperature detection in the first embodiment. As shown in FIG. 3 (A), the suction side dry-bulb temperature detected by the suction-side dry-bulb temperature detecting means 7 and the humidity detected by the humidity detecting means 10 (here, the relative humidity is explained, but the absolute humidity may be used). From the above, the intersection point between the dry-bulb temperature and the humidity curve on the wet air diagram illustrated in FIG. 6 is obtained, and the sensible heat ratio (SHF) = 1 passing through this intersection point, that is, the intersection point between the same absolute humidity line and the saturation curve. Calculate the dew point temperature from In this case, as shown in FIG. 3 (B), the vertical axis is the suction side dry-bulb temperature, the horizontal axis is the humidity, and the dew point temperature matrix in which the dew point temperature obtained as described above is displayed at the intersection point is set in advance. By preparing, the dew point temperature can be easily obtained if the dry bulb temperature and the humidity are known.
The dry-bulb temperature of this dew-point temperature matrix is at intervals of 1 ° C., and the humidity is at intervals of 1%. Interpolation approximation is performed for intermediate values and extrapolation approximation is performed outside the matrix range.

【0020】実施の形態2.次に、この発明の実施の形
態2を図にもとづいて説明する。この実施の形態の冷媒
回路図及び温度、湿度の検出手段は図1と同様であるた
め、図1を流用して説明を省略し、図4のフローチャー
ト図にもとづいて実施の形態2の制御方法について説明
する。
Embodiment 2. Next, a second embodiment of the present invention will be described with reference to the drawings. Since the refrigerant circuit diagram and the temperature and humidity detecting means of this embodiment are the same as those in FIG. 1, description thereof will be omitted by diverting FIG. 1, and the control method of the second embodiment will be described based on the flowchart of FIG. Will be described.

【0021】まず、ステップS1で目標とする湿度RH
mと、目標とする吸込温度もしくは吹出温度TLmを設
定する。次に、ステップS2で目標湿度RHmと吸込側
乾球温度検出手段7で検出した吸込温度Tinとから実
施の形態1で述べた手順により露点温度TRを求める。
次いで、ステップS3で目標蒸発温度の初期設定値Te
m0を、Tem0=TRと設定し、ステップS4におい
て、蒸発温度Teに対してあらかじめ設定しておいた温
度差ΔTeにて Tem0−ΔTe≦Te≦Tem0+ΔTe となるよ
うに、蒸発温度Teをある設定された経過時間毎に制御
する。蒸発温度Teが上記の範囲を越えた場合はステッ
プS5でチェックし、Tem0+ΔTe<Te の場合
には、ステップS6で圧縮機の容量制御手段11により
圧縮機容量Fをアップすると共に、絞り装置3の流量制
御手段12により絞り流量Lをアップする。反面、Te
m0―ΔTe>Teの場合には、ステップS7で圧縮機
の容量制御手段11により圧縮機容量Fをダウンすると
共に、絞り装置3の流量制御手段12により絞り流量L
をダウンする。
First, in step S1, the target humidity RH
m and the target suction temperature or blowout temperature TLm are set. Next, in step S2, the dew point temperature TR is obtained from the target humidity RHm and the suction temperature Tin detected by the suction side dry-bulb temperature detecting means 7 by the procedure described in the first embodiment.
Next, in step S3, the initial set value Te of the target evaporation temperature Te
m0 is set to Tem0 = TR, and in step S4, the evaporation temperature Te is set to a certain value such that Tem0−ΔTe ≦ Te ≦ Tem0 + ΔTe at the temperature difference ΔTe set in advance with respect to the evaporation temperature Te. It controls every elapsed time. If the evaporation temperature Te exceeds the above range, a check is made in step S5. If Tem0 + ΔTe <Te, the compressor capacity F is increased by the capacity control means 11 of the compressor in step S6 and the expansion device 3 The flow rate control means 12 increases the throttle flow rate L. On the other hand, Te
If m0-ΔTe> Te, the compressor capacity F is reduced by the compressor capacity controller 11 and the throttle flow rate L is controlled by the flow controller 12 of the expansion device 3 in step S7.
Down.

【0022】そして、ステップS8で、ある設定された
経過時間毎に現在の吸込温度もしくは吹出温度TLが目
標設定温度TLmに接近したかどうかを判定し、接近し
ていなければ目標蒸発温度Temを変更する。即ち、接
近していなければステップS9でチェックし、吸込温度
もしくは吹出温度TLに対してあらかじめ設定しておい
た温度差ΔTLにて、TLm0+ΔTL<TLの場合に
は、ステップS10で目標蒸発温度Temをダウンさせ
る。ただし、この時Te≧TRとする。反面、TLm0
―ΔTL>TLの場合には、ステップS11で目標蒸発
温度Temをアップさせる。吸込温度もしくは吹出温度
TLが目標設定温度TLmに接近した場合には、ステッ
プS12で現在の湿度RHが目標湿度RHmに接近した
かどうかを判定し、接近している場合には、ステップS
16で目標蒸発温度Tem、圧縮機容量F及び絞り装置
の流量Lを現状のままとし、接近していなければ、目標
蒸発温度Temを変更する。即ち、接近していなければ
ステップS13でチェックし、湿度RHに対してあらか
じめ設定しておいた湿度差ΔRHにて、RHm+ΔRH
<RHの場合には、ステップS14で目標蒸発温度Te
mをダウンさせる。ただし、この時Te≧TRとする。
反面、RHm―ΔRH>RHの場合には、ステップS1
5で目標蒸発温度Temをアップさせる。
Then, in step S8, it is determined whether or not the current intake temperature or blowout temperature TL has approached the target set temperature TLm at every set elapsed time, and if not, the target evaporation temperature Tem is changed. To do. That is, if they are not close to each other, it is checked in step S9, and if TLm0 + ΔTL <TL with a temperature difference ΔTL set in advance with respect to the intake temperature or the outlet temperature TL, the target evaporation temperature Tem is set in step S10. Bring it down. However, at this time, Te ≧ TR. On the other hand, TLm0
-If ΔTL> TL, the target evaporation temperature Tem is increased in step S11. When the suction temperature or the outlet temperature TL approaches the target set temperature TLm, it is determined in step S12 whether or not the current humidity RH approaches the target humidity RHm.
At 16, the target evaporation temperature Tem, the compressor capacity F, and the flow rate L of the expansion device are kept as they are. If they are not close to each other, the target evaporation temperature Tem is changed. That is, if they are not close to each other, a check is made in step S13, and a humidity difference ΔRH preset with respect to the humidity RH is calculated as RHm + ΔRH.
<RH, the target evaporation temperature Te in step S14
Down m. However, at this time, Te ≧ TR.
On the other hand, if RHm-ΔRH> RH, step S1
At 5, the target evaporation temperature Tem is increased.

【0023】このような制御を行なうことによって、吸
込もしくは吹出温度の設定温度TLmに対して必要負荷
能力を満足させながら、温度が露点温度を下回らずに、
除湿量を抑制することができる。
By performing such control, the temperature does not fall below the dew point temperature while satisfying the required load capacity with respect to the set temperature TLm of the suction or blowout temperature,
The amount of dehumidification can be suppressed.

【0024】[0024]

【発明の効果】この発明に係わる空気調和装置は、容量
可変型の圧縮機と、この圧縮機から吐出されたガス冷媒
を凝縮液化する凝縮側熱交換器と、この凝縮側熱交換器
からの液化冷媒を減圧する絞り装置と、この絞り装置に
よって減圧された冷媒を蒸発ガス化する蒸発側熱交換器
と、この蒸発側熱交換器の吸込側もしくは吹出側の温度
を検出する乾球温度検出手段と、蒸発側熱交換器の吸込
側の湿度を検出する湿度検出手段と、乾球温度検出手段
及び湿度検出手段の検出結果にもとづいて圧縮機及び絞
り装置を制御する制御装置とを備えたものであるため、
露点温度を知ることが可能となる結果、過剰な除湿を抑
制し、高効率で、除湿量の少ない高顕熱運転が可能とな
るものである。
The air conditioner according to the present invention includes a variable capacity compressor, a condensing side heat exchanger for condensing and liquefying the gas refrigerant discharged from the compressor, and a condensing side heat exchanger. A throttling device that depressurizes the liquefied refrigerant, an evaporation side heat exchanger that evaporates and gasifies the refrigerant depressurized by this throttling device, and a dry-bulb temperature detection that detects the temperature of the suction side or the blowing side of this evaporation side heat exchanger. Means, a humidity detecting means for detecting the humidity of the suction side of the evaporation side heat exchanger, and a control device for controlling the compressor and the throttling device based on the detection results of the dry bulb temperature detecting means and the humidity detecting means. Because it is
As a result of being able to know the dew point temperature, it is possible to suppress excessive dehumidification, achieve high efficiency, and perform high sensible heat operation with a small dehumidification amount.

【0025】この発明に係わる空気調和装置は、また、
容量可変型の圧縮機と、この圧縮機から吐出されたガス
冷媒を凝縮液化する凝縮側熱交換器と、この凝縮側熱交
換器からの液化冷媒を減圧する絞り装置と、この絞り装
置によって減圧された冷媒を蒸発ガス化する蒸発側熱交
換器と、この蒸発側熱交換器の吸込側もしくは吹出側の
温度を検出する乾球温度検出手段と、蒸発側熱交換器の
吸込側の湿度を検出する湿度検出手段と、蒸発側熱交換
器の蒸発温度を検出する蒸発温度検出手段と、蒸発温度
を露点温度以上に制御する制御装置とを備えたものであ
るため、プルダウン時などのような実使用環境条件が設
計ポイントよりずれた場合においても、高顕熱運転が可
能となるものである。
The air conditioner according to the present invention also includes
A variable capacity compressor, a condensing side heat exchanger that condenses and liquefies the gas refrigerant discharged from this compressor, a throttle device that depressurizes the liquefied refrigerant from this condensing side heat exchanger, and a depressurizing device Evaporation side heat exchanger for evaporating the generated refrigerant, dry bulb temperature detecting means for detecting the temperature of the suction side or blow side of this evaporation side heat exchanger, and the humidity of the suction side of the evaporation side heat exchanger. Since it is provided with a humidity detecting means for detecting, an evaporation temperature detecting means for detecting the evaporation temperature of the evaporation side heat exchanger, and a control device for controlling the evaporation temperature above the dew point temperature, such as when pulling down High sensible heat operation is possible even when the actual use environment conditions deviate from the design point.

【0026】この発明に係わる空気調和装置は、また、
吸込側乾球温度及び湿度と、湿り空気線図での同一絶対
湿度線と飽和曲線との交点を対応させた露点温度マトリ
ックスを設け、この露点温度マトリックスから露点温度
を得るようにしたため、露点温度を容易に得ることがで
き、的確な制御が可能となるものである。
The air conditioner according to the present invention also includes
A dew point temperature matrix is created that associates the suction-side dry-bulb temperature and humidity with the intersection of the same absolute humidity line and the saturation curve in the wet air diagram, and the dew-point temperature is obtained from this dew-point temperature matrix. Can be easily obtained and accurate control can be performed.

【0027】この発明に係わる空気調和装置は、また、
蒸発側熱交換器から吹出された冷却空気を、蒸発側熱交
換器が設置された室の二重床の内側を経由して電算機等
の負荷が収納されたラックに供給するようにしたもので
あるため、電算機室の空気調和を容易に的確に行なうこ
とができる。
The air conditioner according to the present invention also includes
Cooling air blown out from the heat exchanger on the evaporation side is supplied to a rack containing a load such as a computer via the inside of the double floor of the room where the heat exchanger on the evaporation side is installed. Therefore, air conditioning in the computer room can be easily and accurately performed.

【0028】この発明に係わる空気調和装置の制御方法
は、目標蒸発温度を露点温度に設定すると共に、運転時
の蒸発温度が目標蒸発温度を含む所定の範囲内となるよ
うに制御装置を所定の時間毎に動作させ、運転時の蒸発
温度が所定の範囲の上限を越えた時は、圧縮機の容量を
大きくすると共に、絞り装置の絞り流量を増加し、所定
の範囲の下限を越えた時は、圧縮機の容量を小さくする
と共に、絞り装置の絞り流量を少なくするようにしたも
のであるため、必要負荷能力を満足させながら蒸発温度
が露点温度を下回ることなく、除湿量を抑制することが
できる。
In the control method of the air conditioner according to the present invention, the target evaporation temperature is set to the dew point temperature, and the controller is set to a predetermined value so that the evaporation temperature during operation falls within a predetermined range including the target evaporation temperature. If the evaporation temperature during operation exceeds the upper limit of the prescribed range, the capacity of the compressor is increased and the throttle flow rate of the expansion device is increased to exceed the lower limit of the prescribed range. Is designed to reduce the compressor capacity and the throttle flow rate of the expansion device, so that the evaporation temperature does not fall below the dew point temperature while the required load capacity is satisfied, and the dehumidification amount is suppressed. You can

【0029】この発明に係わる空気調和装置の制御方法
は、また、吸込温度もしくは吹出温度の目標温度を設定
すると共に、運転時の吸込温度もしくは吹出温度が目標
温度を含む所定の範囲内となるように制御装置を所定の
時間毎に動作させ、運転時の吸込温度もしくは吹出温度
が所定の範囲の上限を越えた時は、目標蒸発温度を露点
温度以下とならない範囲で低くし、所定の範囲の下限を
越えた時は、目標蒸発温度を高くするようにしたもので
あるため、高効率で除湿量の少ない高顕熱運転を行なう
ことができる。
In the air conditioner control method according to the present invention, the target temperature of the intake temperature or the outlet temperature is set, and the intake temperature or the outlet temperature during operation is within a predetermined range including the target temperature. When the intake or blowout temperature during operation exceeds the upper limit of the specified range, the control device is operated every predetermined time, and the target evaporation temperature is lowered within the range not falling below the dew point temperature. When the temperature exceeds the lower limit, the target evaporation temperature is increased, so that highly efficient operation with high efficiency and small dehumidification amount can be performed.

【0030】この発明に係わる空気調和装置の制御方法
は、また、目標湿度を設定すると共に、蒸発側熱交換器
の吸込側湿度が目標湿度を含む所定の範囲内となるよう
に制御装置を所定の時間毎に動作させ、吸込側湿度が所
定の範囲の上限を越えた時は、目標蒸発温度を露点温度
以下とならない範囲で低くし、所定の範囲の下限を越え
た時は、目標蒸発温度を高くするようにしたものである
ため、必要負荷能力を満足させながら蒸発温度が露点温
度を下回ることなく、除湿量を抑制することができる。
In the air conditioner control method according to the present invention, the target humidity is set, and the controller is set so that the suction side humidity of the evaporation side heat exchanger is within a predetermined range including the target humidity. When the suction side humidity exceeds the upper limit of the specified range, the target evaporation temperature is lowered within the range that does not fall below the dew point temperature, and when the lower limit of the specified range is exceeded, the target evaporation temperature is decreased. Therefore, the amount of dehumidification can be suppressed without lowering the evaporation temperature below the dew point temperature while satisfying the required load capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1の構成を示す冷媒回
路図である。
FIG. 1 is a refrigerant circuit diagram showing a configuration of a first embodiment of the present invention.

【図2】 実施の形態1の空気調和装置を電算機室に設
置した状態を示す概略図である。
FIG. 2 is a schematic diagram showing a state in which the air conditioner of the first embodiment is installed in a computer room.

【図3】 実施の形態1における露点温度検知の手順を
示すブロック図である。
FIG. 3 is a block diagram showing a procedure of dew point temperature detection in the first embodiment.

【図4】 この発明の実施の形態2の制御方法を示す高
顕熱制御フローチャート図である。
FIG. 4 is a high sensible heat control flowchart showing a control method according to a second embodiment of the present invention.

【図5】 従来の空気調和装置の構成を示す冷媒回路図
である。
FIG. 5 is a refrigerant circuit diagram showing a configuration of a conventional air conditioner.

【図6】 従来の空気調和装置におけるSHF変化を示
す概略空気線図である。
FIG. 6 is a schematic psychrometric chart showing SHF changes in a conventional air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、 2 凝縮側熱交換器、 3 絞り装置、
4 蒸発側熱交換器、 5 冷媒配管、 6 送風
機、 6A 風路、 7 吸込側乾球温度検出手段、
8 吹出側乾球温度検出手段、 9 蒸発温度検出手
段、 10 湿度検出手段、 11 容量制御手段、
12 流量制御手段、 20 電算機室、21 二重
床、 22 室内ユニット、 23 吸込口、 24
吹出口、 25 ラック。
1 compressor, 2 condensation side heat exchanger, 3 throttling device,
4 evaporation side heat exchanger, 5 refrigerant piping, 6 blower, 6A air passage, 7 suction side dry bulb temperature detecting means,
8 blow-out side dry bulb temperature detection means, 9 evaporation temperature detection means, 10 humidity detection means, 11 capacity control means,
12 flow rate control means, 20 computer room, 21 double floor, 22 indoor unit, 23 suction port, 24
Outlet, 25 racks.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 容量可変型の圧縮機と、この圧縮機から
吐出されたガス冷媒を凝縮液化する凝縮側熱交換器と、
上記凝縮側熱交換器からの液化冷媒を減圧する絞り装置
と、上記絞り装置によって減圧された冷媒を蒸発ガス化
する蒸発側熱交換器と、上記蒸発側熱交換器の吸込側も
しくは吹出側の温度を検出する乾球温度検出手段と、上
記蒸発側熱交換器の吸込側の湿度を検出する湿度検出手
段と、上記乾球温度検出手段及び湿度検出手段の検出結
果にもとづいて上記圧縮機及び絞り装置を制御する制御
装置とを備えたことを特徴とする空気調和装置。
1. A variable capacity compressor; a condensing side heat exchanger for condensing and liquefying a gas refrigerant discharged from the compressor;
A throttle device for decompressing the liquefied refrigerant from the condensation side heat exchanger, an evaporation side heat exchanger for evaporating and gasifying the refrigerant decompressed by the expansion device, and a suction side or a blowing side of the evaporation side heat exchanger. Dry-bulb temperature detecting means for detecting the temperature, humidity detecting means for detecting the humidity of the suction side of the evaporation side heat exchanger, the compressor based on the detection results of the dry-bulb temperature detecting means and the humidity detecting means and An air conditioner comprising: a control device that controls a diaphragm device.
【請求項2】 容量可変型の圧縮機と、この圧縮機から
吐出されたガス冷媒を凝縮液化する凝縮側熱交換器と、
上記凝縮側熱交換器からの液化冷媒を減圧する絞り装置
と、上記絞り装置によって減圧された冷媒を蒸発ガス化
する蒸発側熱交換器と、上記蒸発側熱交換器の吸込側も
しくは吹出側の温度を検出する乾球温度検出手段と、上
記蒸発側熱交換器の吸込側の湿度を検出する湿度検出手
段と、上記蒸発側熱交換器の蒸発温度を検出する蒸発温
度検出手段と、上記蒸発温度を露点温度以上に制御する
制御装置とを備えたことを特徴とする空気調和装置。
2. A variable capacity compressor, and a condensation side heat exchanger for condensing and liquefying a gas refrigerant discharged from the compressor.
A throttle device for decompressing the liquefied refrigerant from the condensation side heat exchanger, an evaporation side heat exchanger for evaporating and gasifying the refrigerant decompressed by the expansion device, and a suction side or a blowing side of the evaporation side heat exchanger. Dry-bulb temperature detecting means for detecting a temperature, humidity detecting means for detecting the humidity on the suction side of the evaporation side heat exchanger, evaporation temperature detecting means for detecting the evaporation temperature of the evaporation side heat exchanger, and the evaporation An air conditioner comprising: a controller for controlling the temperature to be equal to or higher than the dew point temperature.
【請求項3】 上記吸込側乾球温度及び湿度と、湿り空
気線図での同一絶対湿度線と飽和曲線との交点を対応さ
せた露点温度マトリックスを設け、この露点温度マトリ
ックスから露点温度を得るようにしたことを特徴とする
請求項1または請求項2記載の空気調和装置。
3. A dew point temperature matrix is provided in which the suction-side dry-bulb temperature and humidity correspond to the intersections of the same absolute humidity line and the saturation curve in the moist air diagram, and the dew-point temperature is obtained from this dew-point temperature matrix. The air conditioner according to claim 1, wherein the air conditioner is configured as described above.
【請求項4】 上記蒸発側熱交換器から吹出された冷却
空気は、上記蒸発側熱交換器が設置された室の二重床の
内側を経由して電算機等の負荷が収納されたラックに供
給されるようにされたことを特徴とする請求項1〜請求
項3のいずれか1項記載の空気調和装置。
4. The rack in which a load such as a computer is stored in the cooling air blown out from the evaporation side heat exchanger via the inside of the double floor of the chamber in which the evaporation side heat exchanger is installed. The air conditioner according to any one of claims 1 to 3, wherein the air conditioner is supplied to the air conditioner.
【請求項5】 請求項1〜請求項4のいずれか1項記載
の空気調和装置において、目標蒸発温度を露点温度に設
定すると共に、運転時の蒸発温度が上記目標蒸発温度を
含む所定の範囲内となるように上記制御装置を所定の時
間毎に動作させ、運転時の蒸発温度が上記所定の範囲の
上限を越えた時は、圧縮機の容量を大きくすると共に、
絞り装置の絞り流量を増加し、上記所定の範囲の下限を
越えた時は、圧縮機の容量を小さくすると共に、絞り装
置の絞り流量を少なくするようにしたことを特徴とする
空気調和装置の制御方法。
5. The air conditioner according to any one of claims 1 to 4, wherein the target evaporation temperature is set to a dew point temperature, and the evaporation temperature during operation is within a predetermined range including the target evaporation temperature. When the evaporation temperature during operation exceeds the upper limit of the predetermined range, the capacity of the compressor is increased and
When the throttle flow rate of the throttle device is increased and exceeds the lower limit of the predetermined range, the capacity of the compressor is reduced and the throttle flow amount of the throttle device is reduced. Control method.
【請求項6】 吸込温度もしくは吹出温度の目標温度を
設定すると共に、運転時の吸込温度もしくは吹出温度が
上記目標温度を含む所定の範囲内となるように上記制御
装置を所定の時間毎に動作させ、運転時の吸込温度もし
くは吹出温度が上記所定の範囲の上限を越えた時は、目
標蒸発温度を露点温度以下とならない範囲で低くし、上
記所定の範囲の下限を越えた時は、目標蒸発温度を高く
するようにしたことを特徴とする請求項5記載の空気調
和装置の制御方法。
6. A target temperature of a suction temperature or an outlet temperature is set, and the control device is operated every predetermined time so that the intake temperature or the outlet temperature during operation falls within a predetermined range including the target temperature. When the suction or blowout temperature during operation exceeds the upper limit of the above specified range, the target evaporation temperature is lowered within the range not falling below the dew point temperature, and when the lower limit of the above specified range is exceeded, the target The method for controlling an air conditioner according to claim 5, wherein the evaporation temperature is increased.
【請求項7】 目標湿度を設定すると共に、蒸発側熱交
換器の吸込側湿度が上記目標湿度を含む所定の範囲内と
なるように上記制御装置を所定の時間毎に動作させ、吸
込側湿度が上記所定の範囲の上限を越えた時は、目標蒸
発温度を露点温度以下とならない範囲で低くし、上記所
定の範囲の下限を越えた時は、目標蒸発温度を高くする
ようにしたことを特徴とする請求項6記載の空気調和装
置の制御方法。
7. The target humidity is set, and at the same time, the control device is operated at a predetermined time so that the suction side humidity of the evaporation side heat exchanger falls within a predetermined range including the target humidity. When the value exceeds the upper limit of the above-mentioned predetermined range, the target evaporation temperature is lowered within a range that does not fall below the dew point temperature, and when it exceeds the lower limit of the above-mentioned predetermined range, the target evaporation temperature is increased. The method for controlling an air conditioner according to claim 6, which is characterized in that.
JP2001331367A 2001-10-29 2001-10-29 Air conditioner and control method thereof Expired - Lifetime JP4043756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331367A JP4043756B2 (en) 2001-10-29 2001-10-29 Air conditioner and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331367A JP4043756B2 (en) 2001-10-29 2001-10-29 Air conditioner and control method thereof

Publications (2)

Publication Number Publication Date
JP2003130430A true JP2003130430A (en) 2003-05-08
JP4043756B2 JP4043756B2 (en) 2008-02-06

Family

ID=19146962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331367A Expired - Lifetime JP4043756B2 (en) 2001-10-29 2001-10-29 Air conditioner and control method thereof

Country Status (1)

Country Link
JP (1) JP4043756B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147490A (en) * 2003-11-14 2005-06-09 Mitsubishi Electric Corp Air conditioner
JP2005291587A (en) * 2004-03-31 2005-10-20 Daikin Ind Ltd Air-conditioning system
JP2006329471A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
JP2007260005A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Sauna apparatus
JP2009047367A (en) * 2007-08-21 2009-03-05 Mitsubishi Electric Corp Air conditioner
WO2009116160A1 (en) * 2008-03-21 2009-09-24 三菱電機株式会社 Indoor unit and air conditioning apparatus including the same
JP2010216761A (en) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Multiple type air conditioner
JP2011179728A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd High sensible heat type air conditioner
WO2013161584A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Air conditioning system
JP2014529054A (en) * 2011-08-31 2014-10-30 メンタス ホールディング エージー Operation method of gas-liquid heat exchanger
CN104790191A (en) * 2015-04-20 2015-07-22 广东美的制冷设备有限公司 Method and device for controlling dehumidifier and dehumidifier
EP3012544A1 (en) * 2009-04-03 2016-04-27 Eaton-Williams Group Limited A cooling unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102089362B1 (en) * 2013-01-07 2020-03-16 엘지전자 주식회사 An air conditioner and controlling method of the same
CN104879836B (en) * 2015-04-24 2017-08-25 广东美的制冷设备有限公司 Control method, device and the dehumidifier of frequency conversion dehumidifier

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147490A (en) * 2003-11-14 2005-06-09 Mitsubishi Electric Corp Air conditioner
JP2005291587A (en) * 2004-03-31 2005-10-20 Daikin Ind Ltd Air-conditioning system
JP4513382B2 (en) * 2004-03-31 2010-07-28 ダイキン工業株式会社 Air conditioning system
JP4525465B2 (en) * 2005-05-24 2010-08-18 ダイキン工業株式会社 Air conditioning system
JP2006329471A (en) * 2005-05-24 2006-12-07 Daikin Ind Ltd Air conditioning system
JP2007260005A (en) * 2006-03-28 2007-10-11 Matsushita Electric Ind Co Ltd Sauna apparatus
JP2009047367A (en) * 2007-08-21 2009-03-05 Mitsubishi Electric Corp Air conditioner
JPWO2009116160A1 (en) * 2008-03-21 2011-07-21 三菱電機株式会社 Indoor unit and air conditioner equipped with the same
CN101925784A (en) * 2008-03-21 2010-12-22 三菱电机株式会社 Indoor unit and air conditioning apparatus including the same
WO2009116160A1 (en) * 2008-03-21 2009-09-24 三菱電機株式会社 Indoor unit and air conditioning apparatus including the same
EP2253898A4 (en) * 2008-03-21 2018-04-04 Mitsubishi Electric Corporation Indoor unit and air conditioning apparatus including the same
US8578727B2 (en) 2008-03-21 2013-11-12 Mitsubishi Electric Corporation Indoor unit and air-conditioning apparatus provided with the same
CN101925784B (en) * 2008-03-21 2014-11-26 三菱电机株式会社 Indoor unit and air conditioning apparatus including the same
JP2010216761A (en) * 2009-03-18 2010-09-30 Mitsubishi Heavy Ind Ltd Multiple type air conditioner
EP3012544A1 (en) * 2009-04-03 2016-04-27 Eaton-Williams Group Limited A cooling unit
JP2011179728A (en) * 2010-02-26 2011-09-15 Mitsubishi Heavy Ind Ltd High sensible heat type air conditioner
JP2014529054A (en) * 2011-08-31 2014-10-30 メンタス ホールディング エージー Operation method of gas-liquid heat exchanger
JPWO2013161584A1 (en) * 2012-04-23 2015-12-24 三菱電機株式会社 Air conditioning system
EP2863139A4 (en) * 2012-04-23 2016-03-16 Mitsubishi Electric Corp Air conditioning system
US9709288B2 (en) 2012-04-23 2017-07-18 Mitsubishi Electric Corporation Air-conditioning system
WO2013161584A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Air conditioning system
CN104790191A (en) * 2015-04-20 2015-07-22 广东美的制冷设备有限公司 Method and device for controlling dehumidifier and dehumidifier

Also Published As

Publication number Publication date
JP4043756B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
JP4043756B2 (en) Air conditioner and control method thereof
KR100512281B1 (en) Method for dehumidification of air conditioner
EP2253898B1 (en) Indoor unit and air conditioning apparatus including the same
JP6494765B2 (en) Air conditioning system
JP5487857B2 (en) Air conditioning system
JP2013092298A (en) Outside air cooling system and data center
JP4445246B2 (en) Air conditioner
WO2019033998A1 (en) Method for regulating evaporation temperature of indoor unit of air conditioner, and air conditioner
KR20100059522A (en) A control method of an air conditioner
KR20140090323A (en) An air conditioner and controlling method of the same
JPH11218351A (en) Dehumidifying equipment of air conditioner and controlling method thereof
JP4302461B2 (en) Air conditioning system
JP2011137597A (en) Air conditioning device
JP2007271112A (en) Air conditioner
JP4711438B2 (en) Refrigeration air conditioner and refrigeration air conditioning method
JP6174386B2 (en) Dehumidification control method for air conditioning system
JP2015001359A5 (en)
JP3684860B2 (en) Air conditioner
KR101064412B1 (en) Method and apparatus for sensing refrigerants leakage of multi type air conditioner
JP3160443U (en) Precision air conditioner for server
CN113566384B (en) Control method for preventing indoor machine of air conditioner from condensation and storage medium
US20240230137A9 (en) Air-conditioning apparatus
JP2010210222A (en) Air conditioner and its control method
JP2019011950A (en) Air conditioner
JP2007198646A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Ref document number: 4043756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term