JP2014529054A - Operation method of gas-liquid heat exchanger - Google Patents

Operation method of gas-liquid heat exchanger Download PDF

Info

Publication number
JP2014529054A
JP2014529054A JP2014527593A JP2014527593A JP2014529054A JP 2014529054 A JP2014529054 A JP 2014529054A JP 2014527593 A JP2014527593 A JP 2014527593A JP 2014527593 A JP2014527593 A JP 2014527593A JP 2014529054 A JP2014529054 A JP 2014529054A
Authority
JP
Japan
Prior art keywords
liquid
heat exchange
air
temperature
exchange stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2014527593A
Other languages
Japanese (ja)
Other versions
JP2014529054A5 (en
Inventor
ソログベンコ,アレクサンドル
Original Assignee
メンタス ホールディング エージー
メンタス ホールディング エージー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by メンタス ホールディング エージー, メンタス ホールディング エージー filed Critical メンタス ホールディング エージー
Publication of JP2014529054A publication Critical patent/JP2014529054A/en
Publication of JP2014529054A5 publication Critical patent/JP2014529054A5/ja
Ceased legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F13/222Means for preventing condensation or evacuating condensate for evacuating condensate
    • F24F2013/225Means for preventing condensation or evacuating condensate for evacuating condensate by evaporating the condensate in the cooling medium, e.g. in air flow from the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

少なくとも第一の受動的な熱交換段階(2)で熱が液体と空気の間で交換される、気液熱交換器の作動方法であって、以下の手順工程が含まれる:周囲空気の露点温度の算出、周囲空気の露点温度が液体の温度より高いかどうかの特定、及び高い場合に以下の工程に従ったパルス運転と呼ばれる作動モードでの熱交換器の作動:液体を既定の期間の間、第一の熱交換段階(2)を貫流させる、液体が第一の段階を貫流することを阻止、第一の熱交換段階(2)を流出後に空気の温度を測定及び監視、その際第一の熱交換段階(2)を流出後に測定された空気の温度が第一の温度上昇を示し、その後一定時間ほぼ一定のレベルにとどまり、次に第二の温度上昇を示し、第二の温度上昇が検出され、及び第二の温度上昇が検出された後に液体が第一の熱交換段階(2)を流れないよう阻止することが終了し、及びこの工程が空気の露点温度が液体の温度より高い間繰り返される。【選択図】図2A method of operating a gas-liquid heat exchanger in which heat is exchanged between liquid and air in at least a first passive heat exchange stage (2), comprising the following procedural steps: dew point of ambient air Calculate the temperature, determine whether the dew point temperature of the ambient air is higher than the temperature of the liquid, and if it is higher, operate the heat exchanger in an operating mode called pulsing according to the following steps: During which the first heat exchange stage (2) flows through, the liquid is prevented from flowing through the first stage, the temperature of the air is measured and monitored after flowing through the first heat exchange stage (2), The air temperature measured after leaving the first heat exchange stage (2) shows a first temperature rise, then stays at a substantially constant level for a certain period of time, then shows a second temperature rise, After the temperature rise is detected, and after the second temperature rise is detected, the liquid Heat exchange step (2) ends be blocked so as not to flow, and this process is repeated between the dew point temperature of the air is higher than the temperature of the liquid. [Selection] Figure 2

Description

本発明は気液熱交換器の作動方法に関する。   The present invention relates to a method for operating a gas-liquid heat exchanger.

本方法は受動的熱交換段階を有する気液熱交換器の作動に適しており、この受動的熱交換段階では空気が垂直方向に伸びる第一の流路を通って、及び液体が第二の流路を通って案内され、その際2つの流路はこの段階では熱的に受動的な隔壁で分離されている。用語「熱的に受動的」は、熱の交換が仕事の実行なしに行われることを意味する。これら流路は、熱的に受動的な隔壁と熱的に良好に接続している複数のフィンを含んでいる。空気用流路内のフィン同士の間隔はその表面積と比べて小さく、それによって熱交換が効率的である。   The method is suitable for operation of a gas-liquid heat exchanger having a passive heat exchange stage, in which the air passes through a first flow path extending vertically and the liquid passes through a second. Guided through the channels, the two channels are separated at this stage by thermally passive partitions. The term “thermally passive” means that the heat exchange takes place without performing work. These channels include a plurality of fins that are in good thermal connection with a thermally passive partition. The space between the fins in the air flow path is small compared to the surface area thereof, so that heat exchange is efficient.

特に夏季の暑い日などで空気の相対湿度が高い場合は、空気の露点温度は液体の温度より高くなることがある。これにより、空気中に含まれる湿気が凝縮水としてフィンに結露する。熱交換器の寸法は一般に許容差が小さいため、特に空気流を垂直に案内する場合、フィンに生じた水を完全に水切りし、排出するようにフィンを形成することは困難である。これにより、水がフィンの間の隙間に目に見えて溜まり、空気抵抗が生じるために空気を引き続き効率的に冷却することができなくなる。   Especially when the relative humidity of air is high, such as on a hot day in summer, the dew point temperature of air may be higher than the temperature of the liquid. Thereby, the moisture contained in the air condenses on the fins as condensed water. Due to the generally small tolerance of the heat exchanger dimensions, it is difficult to form the fins so that the water generated in the fins is completely drained and discharged, especially when the air flow is guided vertically. As a result, water is visibly accumulated in the gaps between the fins, and air resistance is generated, so that the air cannot be efficiently cooled continuously.

特許文献1から、冷却に使用することも可能な、少なくとも1つのラジエーターを備えたセントラルヒーティングシステムが公知である。冷却モードでは、ラジエーターを循環する液体が、熱交換器を使用して熱を奪われる。奪われた熱は、第二の熱交換器を使用して蓄熱器に送られる。2つの熱交換器はコンプレッサー駆動式のヒートポンプの一部である。ラジエーターで湿気が凝縮できないようにするため、ラジエーター周囲の温度と湿度を測定して空気の露点を算出し、算出された露点温度がラジエーターの温度に近づいた場合は冷却能力を低減させる。   From US Pat. No. 6,057,049, a central heating system with at least one radiator that can also be used for cooling is known. In the cooling mode, the liquid circulating in the radiator is deprived of heat using a heat exchanger. The deprived heat is sent to the regenerator using a second heat exchanger. The two heat exchangers are part of a compressor driven heat pump. In order to prevent moisture from condensing with the radiator, the temperature and humidity around the radiator are measured to calculate the dew point of the air, and when the calculated dew point temperature approaches the temperature of the radiator, the cooling capacity is reduced.

特許文献2から、エアコンディショナーの制御方法が公知である。この方法では冷却モードで試験要素に水の凝縮が生じる温度が算出され、及び冷却液の温度が凝縮温度より高くなるよう調整される。これは例えば冷却モードを止めることで行われる。   From patent document 2, a control method for an air conditioner is known. In this method, the temperature at which water condenses on the test element in the cooling mode is calculated, and the temperature of the coolant is adjusted to be higher than the condensation temperature. This is done, for example, by stopping the cooling mode.

この従来技術から公知の解決方法はすべて、その目的は凝縮水が溜まらないよう防止することであり、このことは冷却能力を低減するか又は冷却モードを中断することによって達成される。   All solutions known from this prior art are aimed at preventing condensation from accumulating, which is achieved by reducing the cooling capacity or interrupting the cooling mode.

英国特許第2461365号明細書British Patent No. 2461365 欧州特許第508766号明細書European Patent No. 508766

本発明の課題は、挙げられた問題を解決することである。   The object of the present invention is to solve the problems mentioned.

上記の課題は、本発明に従い、請求項1の特徴によって解決される。有利な実施形態は従属請求項に開示される。   The above problem is solved according to the invention by the features of claim 1. Advantageous embodiments are disclosed in the dependent claims.

本発明は、空気用の第一の流路と液体用の第二の流路を有している気液熱交換器の作動に関する。この熱交換器は第一の受動的熱交換段階を含み、この段階では第一の流路と第二の流路が熱的に受動的な隔壁によって分離されており、及び任意で第二の能動的熱交換段階を含んでおり、この段階では空気が能動的な方法で、すなわち一方の側から他方の側へ熱をポンピングすることにより冷却されるか又は加熱される。熱的に受動的な隔壁は、熱をよく伝導する材料からなる。第二の熱交換段階では有利には適切な凝縮水排出システムが取り付けられている。第一の及び第二の流路は、それぞれ複数の平行に伸びる流路であってよい。空気用流路はフィンを含んでいる。   The present invention relates to the operation of a gas-liquid heat exchanger having a first flow path for air and a second flow path for liquid. The heat exchanger includes a first passive heat exchange stage in which the first flow path and the second flow path are separated by a thermally passive partition, and optionally a second flow path. An active heat exchange stage is included in which the air is cooled or heated in an active manner, i.e. by pumping heat from one side to the other. The thermally passive partition is made of a material that conducts heat well. In the second heat exchange stage, a suitable condensate drainage system is preferably installed. Each of the first and second channels may be a plurality of channels extending in parallel. The air flow path includes fins.

本発明は上記の課題を解決するための方法を提示する。この方法は2つの部分を含んでおり、第一部では空気の露点温度が液体の温度より高いかどうかが算出される。これは以下の工程で行われる:
周囲空気の露点温度を、つまり空気が第一の熱交換段階に入る前に空気の露点温度を算出し、
算出した空気の露点温度と、測定した又は上位の制御装置が伝達した液体の温度とを比較する。
The present invention presents a method for solving the above problems. This method includes two parts, and in the first part it is calculated whether the dew point temperature of the air is higher than the temperature of the liquid. This is done in the following steps:
Calculate the dew point temperature of the ambient air, that is, the air dew point temperature before the air enters the first heat exchange stage,
The calculated dew point temperature of the air is compared with the temperature of the liquid measured or transmitted by the host control device.

空気の露点温度は、例えば以下のようにして算出される:
空気が第一の熱交換段階に流入する前に空気の温度と湿度を測定し、続いて
測定した空気の温度と湿度から空気の露点温度を特定する。
The dew point temperature of air is calculated, for example, as follows:
The air temperature and humidity are measured before the air enters the first heat exchange stage, and the air dew point temperature is determined from the measured air temperature and humidity.

空気の測定温度Tと測定湿度から空気の露点温度を特定するには、例えばモリエ線図を使用することができる。露点温度(略号Tpl)は、別法として方程式 In order to specify the dew point temperature of air from the measured temperature T and measured humidity of the air, for example, a Mollier diagram can be used. The dew point temperature (abbreviated as Tpl)

を使用して計算することもでき、その際温度T及びTplの度量単位はセ氏温度であり、空気の湿度phiは相対的にパーセンテージで示される空気湿度として使用される。 Where the temperature units T and Tpl are in degrees Celsius, and the air humidity phi is used as a relative percentage of air humidity.

空気のh−x−線図の2つの別の数値(hはエンタルピー、xは絶対湿度を表す)を測定することも可能であり、例えばそれは乾球温度、湿球温度、固有のエンタルピー及び空気密度から2つの数値であり、及びそこから空気の露点温度が算出される。   It is also possible to measure two different values of the hx-diagram of air (h is enthalpy, x is absolute humidity), for example, dry bulb temperature, wet bulb temperature, intrinsic enthalpy and air Two numerical values are calculated from the density, and the dew point temperature of the air is calculated therefrom.

空気の露点温度が液体の温度より高い場合及び高い間は、熱交換器がパルス運転と呼ばれる作動モードで作動される、方法の第二部が実施される。パルス運転は、以下の、連続して同じ順序で繰り返す工程を含む:
液体は既定の期間の間、第一の熱交換段階を通って流され、
液体が第一の熱交換段階を流れないよう阻止され、第一の熱交換段階から流出した後に空気温度が測定及び監視され、その際第一の熱交換段階から流出後に測定された空気温度が第一の温度上昇を示し、次に一定時間ほぼ一定のレベル(給気の湿球温度に相当する)にとどまり、及び次に第二の温度上昇を示し、
第二の温度上昇が検出され、及び第二の温度上昇が検出後に液体が第一の熱交換段階を流れないよう阻止することが終了し、及び
この工程は空気の露点温度が液体の温度より高い間繰り返される。
The second part of the method is carried out, where the heat exchanger is operated in an operating mode called pulse operation, when and during the time when the dew point temperature of the air is higher than that of the liquid. Pulse operation includes the following steps that are repeated in the same sequence in succession:
Liquid flows through the first heat exchange stage for a predetermined period of time,
The liquid is prevented from flowing through the first heat exchange stage, and the air temperature is measured and monitored after exiting the first heat exchange stage, with the measured air temperature after exiting from the first heat exchange stage. Shows a first temperature rise, then stays at a roughly constant level (corresponding to the wet bulb temperature of the supply air) for a certain period of time, and then shows a second temperature rise,
A second temperature rise is detected, and the second temperature rise is terminated to prevent the liquid from flowing through the first heat exchange stage after the detection, and this process is such that the air dew point temperature is less than the liquid temperature. Repeated for high.

パルス運転では、方法の第一部を実施することにより空気の露点温度が液体の温度より高いかどうかという条件が、周期的に又は非周期的に点検される。   In pulse operation, the condition of whether the dew point temperature of the air is higher than the temperature of the liquid by carrying out the first part of the method is checked periodically or aperiodically.

パルス運転では、凝縮水の溜まるフェーズに続いて凝縮水が気化によって除去されるフェーズが周期的に行われるが、他方で空気の冷却は中断することなく続けられる。パルス運転ではフィンの間に一時的に水が溜まってしまうが、空気流を止めてしまう原因となり得る凝縮水によるフィンの詰まりは阻止され、水流遮断時間を最小限まで低減することによって熱交換器の効率性が高められる。   In the pulse operation, a phase in which condensed water is removed by vaporization is periodically performed following the phase in which condensed water is accumulated, while air cooling is continued without interruption. In pulse operation, water temporarily accumulates between the fins, but the clogging of the fins with condensed water, which can cause the air flow to be stopped, is prevented, and the heat exchanger is reduced by reducing the water flow interruption time to a minimum. Efficiency is improved.

本発明による方法を実施できるよう、熱交換器にはそのために必要な温度センサー及び湿度センサーが装備されている。   In order to be able to carry out the method according to the invention, the heat exchanger is equipped with the necessary temperature and humidity sensors.

熱交換器が、熱が液体と空気との間でエネルギーの流入によってポンピングされる第二の能動的段階を含む場合、液体が第一の熱交換段階を貫流することを阻止する工程により第一の変形例に従って液体が第二の熱交換段階を貫流せず及び第二の熱交換段階が遮断され、又は液体が第一の熱交換段階を貫流することを阻止する工程により第二の変形例に従って液体が第一の熱交換段階を迂回して案内され(バイパス)、その結果それにもかかわらず液体が第二の熱交換段階を貫流し得る。   If the heat exchanger includes a second active stage in which heat is pumped between the liquid and air by the inflow of energy, the first is achieved by preventing the liquid from flowing through the first heat exchange stage. According to a variant of the second variant, the liquid does not flow through the second heat exchange stage and the second heat exchange stage is blocked or the liquid is prevented from flowing through the first heat exchange stage. Accordingly, the liquid is guided around the first heat exchange stage (bypass), so that the liquid can nevertheless flow through the second heat exchange stage.

本発明は、以下に実施例と図を使用して詳しく説明される。図は実寸とは一致していない。   The invention is explained in detail below using examples and figures. The figure does not match the actual size.

本発明による方法に従って作動するために配設された、本発明を理解するために必要な気液熱交換器の部分の模式的側面図ないし平面図である。FIG. 2 is a schematic side view or plan view of a portion of a gas-liquid heat exchanger that is arranged to operate according to the method according to the invention and is necessary for understanding the invention. 本発明による方法に従って作動するために配設された、本発明を理解するために必要な気液熱交換器の部分の模式的側面図ないし平面図である。FIG. 2 is a schematic side view or plan view of a portion of a gas-liquid heat exchanger that is arranged to operate according to the method according to the invention and is necessary for understanding the invention. 本発明による方法を説明するための3つの線図である。FIG. 3 is a diagram illustrating the method according to the invention.

図1及び図2は、第一の、受動的熱交換段階2及び、任意の、下流に接続された、能動的熱交換段階3を備えた、本発明を理解するために必要な気液熱交換器1の部分の模式的側面図ないし平面図である。第一の熱交換段階2は、少なくとも1つの、好ましくは複数の空気用流路4及び少なくとも1つの、好ましくは複数の液体用流路5を含む。空気用流路4及び液体用流路5は交互に順に配置され、熱的に受動的な、熱伝導性の高い隔壁によって分離されている。空気用流路4は熱的に受動的な隔壁と熱的に良好に接続された複数のフィン6を含む。空気と液体間の熱交換が効率的になるようフィン6間の間隔は小さい。空気用流路4はこの例では垂直方向に伸びている。   1 and 2 show the gas-liquid heat necessary for understanding the present invention, comprising a first passive heat exchange stage 2 and an optional downstream connected active heat exchange stage 3. It is a typical side view thru | or top view of the part of the exchanger 1. FIG. The first heat exchange stage 2 comprises at least one, preferably a plurality of air channels 4 and at least one, preferably a plurality of liquid channels 5. The air flow path 4 and the liquid flow path 5 are alternately arranged in order, and are separated by a thermally passive partition wall having high thermal conductivity. The air flow path 4 includes a plurality of fins 6 that are thermally well connected to a thermally passive partition wall. The spacing between the fins 6 is small so that heat exchange between air and liquid is efficient. The air channel 4 extends in the vertical direction in this example.

任意の、第二の、能動的熱交換段階3は、さまざまに形成され得る。この段階は例えば冷却液が循環する、コンプレッサーを備えた冷却回路であってよく、その際空気は冷却回路と熱を交換する。   The optional, second, active heat exchange stage 3 can be variously formed. This stage can be, for example, a cooling circuit with a compressor through which the coolant circulates, where the air exchanges heat with the cooling circuit.

図1及び図2に示された例では、第二の熱交換段階3が、熱が液体と空気の間で電気エネルギーの流入によって、つまり少なくとも1つのペルチェ素子10の使用によって交換され得るように形成されている。第二の熱交換段階3は、少なくとも1つの空気用流路7、少なくとも1つの液体用流路8及び少なくとも1つの、その間に配置されたペルチェ素子10を含んでおり、このペルチェ素子は空気を加熱しなければならない場合は熱を液体から空気へポンピングし、空気を冷却しなければならない場合は熱を空気から液体へポンピングする。液体はこの例では物理的状態の変化を受けない。示された例では、少なくとも1つのペルチェ素子10と熱的に良好に接触している平行に配置されたフィン9の間を空気が流れる。   In the example shown in FIGS. 1 and 2, the second heat exchange stage 3 is such that heat can be exchanged between the liquid and air by the inflow of electrical energy, ie by the use of at least one Peltier element 10. Is formed. The second heat exchange stage 3 includes at least one air flow path 7, at least one liquid flow path 8 and at least one Peltier element 10 disposed between the Peltier elements. If it has to be heated, heat is pumped from liquid to air, and if it has to be cooled, heat is pumped from air to liquid. The liquid is not subject to a change in physical state in this example. In the example shown, air flows between parallel fins 9 that are in good thermal contact with at least one Peltier element 10.

加えて熱交換器1はバルブ11及び任意のバイパスライン12を含み、その目的は以下で説明される。   In addition, the heat exchanger 1 includes a valve 11 and an optional bypass line 12, the purpose of which will be described below.

用語「ペルチェ素子」は、専門分野ではしばしば用語「熱電要素」又は用語「ペルチェヒートポンプ」と同義語のように使用される。熱電要素は、特にペルチェ効果に基づいているが、例えば熱トンネル効果(英語は「thermo tunneling」)として公知の原理のような他の電熱効果に拠ってもよい。   The term “Peltier element” is often used synonymously in the technical field with the term “thermoelectric element” or the term “Peltier heat pump”. The thermoelectric element is based in particular on the Peltier effect, but may also depend on other electrothermal effects, such as the principle known as the thermal tunnel effect (English is “thermo tunneling”).

熱交換器1は外部の液体循環系に接続できる入口13と出口14を備えている。液体循環系内で循環する液体は、外部の中央装置によって既定の温度に加熱されるか冷却される。使用される液体は通常水又は水ベースの液体であるが、別の適切などのような液体を使用してもよい。空気用流路4は垂直方向に伸びている。液体用流路は、管路系として設計されており、これが入口13と出口14を互いに接続している。加えて熱交換器1は第一の熱交換段階2を通して空気を強制案内するために送風機ならびに必要な案内板及び案内要素を含んでおり、存在している場合は第二の熱交換段階3、ならびに第二の熱交換段階3内に生じた凝縮水用排出口15を含んでいる。液体の流れ方向は矢印16によって、空気の流れ方向は矢印17によって示されている。   The heat exchanger 1 includes an inlet 13 and an outlet 14 that can be connected to an external liquid circulation system. The liquid circulating in the liquid circulation system is heated or cooled to a predetermined temperature by an external central device. The liquid used is usually water or a water-based liquid, but other suitable liquids may be used. The air flow path 4 extends in the vertical direction. The liquid flow path is designed as a pipeline system, which connects the inlet 13 and the outlet 14 to each other. In addition, the heat exchanger 1 includes a blower and the necessary guide plates and guide elements for forcing the air through the first heat exchange stage 2, if present, the second heat exchange stage 3, And a condensate outlet 15 produced in the second heat exchange stage 3. The liquid flow direction is indicated by arrow 16 and the air flow direction is indicated by arrow 17.

熱交換器1はさらに、本発明による作動に必要なセンサー、すなわち第一の熱交換段階2の前に配置されている温度測定用の少なくとも1つの温度センサー18及び空気湿度測定用湿度センサー19、第一の熱交換段階2の後に配置されている空気温度測定用温度センサー20、及び制御装置21を含んでいる。液体の温度は、例えば入口に配置されている温度センサー22を使用して測定するか又は外部の中央装置から制御装置21に伝達される。制御装置21は、センサーから伝えられたデータを評価し、第一の熱交換段階2を通る液体のフローだけでなく少なくとも1つのペルチェ素子10も制御する。   The heat exchanger 1 further comprises the sensors necessary for the operation according to the invention, i.e. at least one temperature sensor 18 for temperature measurement and a humidity sensor 19 for air humidity measurement arranged before the first heat exchange stage 2; An air temperature measuring temperature sensor 20 and a control device 21 are disposed after the first heat exchange stage 2. The temperature of the liquid is measured, for example, using a temperature sensor 22 located at the inlet or transmitted from an external central device to the control device 21. The control device 21 evaluates the data transmitted from the sensor and controls not only the flow of liquid through the first heat exchange stage 2 but also at least one Peltier element 10.

図3は、3つの重なり合って配置されている線図を示しており、時間tの関数で本発明による方法の以下の特徴が例を使用して示されている。   FIG. 3 shows three overlappingly arranged diagrams, illustrating the following features of the method according to the invention using examples as a function of time t.

中央の線図は、第一の熱交換段階2を通る液体のフローを示している。第一の熱交換段階2を通る液体のフローは、それぞれ既定の期間Tの間、流入させ、次に中断し、その際第一の熱交換段階2を通る液体のフローの遮断は、バルブ11を閉じるか又は、バイパスライン12がある場合はバルブ11を切り替えて行われ、その結果液体はバイパスライン12を貫流し、それによって第一の熱交換段階2を迂回して案内される。 The middle diagram shows the flow of liquid through the first heat exchange stage 2. Flow of liquid through the first heat exchange stage 2, respectively during the predetermined period of time T 1, is flowed, then interrupted, the interruption of the time flow of liquid through the first heat exchange stage 2, valve 11 is closed or the valve 11 is switched if there is a bypass line 12 so that the liquid flows through the bypass line 12 and is thereby guided around the first heat exchange stage 2.

下の線図は、少なくとも1つのペルチェ素子10を通って流れる流れで、第一の熱交換段階を通る液体のフローが中断される場合、第二の熱交換段階3を通る液体のフローも中断される。少なくとも1つのペルチェ素子10を通って流れる流れはそれぞれ、第一の熱交換段階2を通る液体のフローが中断されると、同時に遮断されるか、又は少なくとも1つのペルチェ素子10が過熱しないよう時間的な遅れを伴って遮断される。第二の熱交換段階3を通る液体のフローが中断されない別の場合には、少なくとも1つのペルチェ素子10は遮断されない。   The bottom diagram shows that the flow through the at least one Peltier element 10 interrupts the flow of liquid through the second heat exchange stage 3 if the flow of liquid through the first heat exchange stage is interrupted. Is done. Each of the flows flowing through the at least one Peltier element 10 is interrupted at the same time if the flow of liquid through the first heat exchange stage 2 is interrupted, or a period of time so that the at least one Peltier element 10 does not overheat. Shut off with a delay. In other cases where the flow of liquid through the second heat exchange stage 3 is not interrupted, at least one Peltier element 10 is not interrupted.

上の線図は、第一の熱交換段階2を出た後の空気の温度変化、すなわち温度センサー20が測定した温度の変化を示している。第一の温度上昇23(例では18℃から約22℃へ)、ほぼ一定のレベル24、第二の温度上昇25(例では約22℃から約27℃へ)が明確に見て取れる。   The upper diagram shows the temperature change of the air after leaving the first heat exchange stage 2, ie the temperature change measured by the temperature sensor 20. A first temperature increase 23 (in the example from 18 ° C. to about 22 ° C.), a substantially constant level 24 and a second temperature increase 25 (in the example from about 22 ° C. to about 27 ° C.) are clearly visible.

上の線図に示された温度変化は、以下の、反復されるフェーズA〜Dから構成されている。
フェーズA:第一の熱交換段階2を通る液体のフローは中断されない:空気は冷却される(例では約18℃)。時間が経過するにつれ、フィン6の間に水が凝縮し、空気の流れ抵抗が徐々に増大する。
フェーズB〜D:第一の熱交換段階2を通る液体のフローが中断される。
フェーズB:空気の温度は、ほぼ一定のレベル24に上昇する。
フェーズC:空気の温度はレベル24にとどまる。なぜならフィン6の間に集まった水が気化し、その際空気を断熱的に冷却するからである。
フェーズD:フィン6の間の水が気化するとすぐに、空気の温度がさらに上昇する。
The temperature change shown in the upper diagram is composed of the following repeated phases AD.
Phase A: The flow of liquid through the first heat exchange stage 2 is not interrupted: the air is cooled (in the example about 18 ° C.). As time passes, water condenses between the fins 6 and the air flow resistance gradually increases.
Phases B to D: The liquid flow through the first heat exchange stage 2 is interrupted.
Phase B: The temperature of the air rises to a nearly constant level 24.
Phase C: Air temperature remains at level 24. This is because the water collected between the fins 6 is vaporized and the air is adiabatically cooled.
Phase D: As soon as the water between the fins 6 is vaporized, the temperature of the air further increases.

図3では、パルス運転が非常によく見て取れる。個々のサイクルの持続時間(1つのサイクルはフェーズA〜Dの連続を含む)が典型的には数分又は数十分の範囲にあるため、及び空気の露点温度は一般にゆっくりとしか変化しないため、露点温度はパルス運転中、時々しか、例えば30分に1回又は1時間に1回しか、又は他の時間間隔でしか再測定されない。   In FIG. 3, pulse operation can be seen very well. Because the duration of individual cycles (one cycle includes a sequence of phases A to D) is typically in the range of minutes or tens of minutes, and the dew point temperature of air generally changes only slowly. The dew point temperature is re-measured only occasionally during pulse operation, for example, once every 30 minutes, once every hour, or at other time intervals.

Claims (4)

少なくとも第一の、受動的な熱交換段階(2)において空気が少なくとも1つの、フィン(6)を備えた第一の流路(4)を貫流し、及び液体が少なくとも1つの第二の流路(5)を貫流し、この第二の流路は少なくとも1つの第一の流路(4)から熱的に受動的な隔壁によって分離されている気液熱交換器の作動方法において、以下の手順工程:
周囲空気の露点温度の算出、
周囲空気の露点温度が液体の温度より高いかどうかの特定、及び高い場合に以下の工程に従ったパルス運転と呼ばれる作動モードでの熱交換器の作動:
液体を既定の期間の間、第一の熱交換段階(2)を貫流させる、
液体が第一の熱交換段階(2)を貫流することを阻止、第一の熱交換段階を流出後に空気の温度測定及び監視、その際第一の熱交換段階(2)を流出後に測定された空気の温度が第一の温度上昇を示し、その後一定時間ほぼ一定のレベルにとどまり、次に第二の温度上昇を示し、
第二の温度上昇が検出され、及び第二の温度上昇が検出された後に液体が第一の熱交換段階(2)を貫流しないよう阻止することが終了し、及び
この工程が周囲空気の露点温度が液体の温度より高い間繰り返される、
によって特徴づけられる、気液熱交換器の作動方法。
In at least a first, passive heat exchange stage (2), air flows through at least one first flow path (4) with fins (6) and liquid flows into at least one second flow. In a method of operating a gas-liquid heat exchanger flowing through a channel (5), the second channel being separated from the at least one first channel (4) by a thermally passive partition, the following: Procedure steps:
Calculation of the dew point temperature of the ambient air,
Identifying whether the dew point temperature of the ambient air is higher than the temperature of the liquid and, if higher, operating the heat exchanger in an operating mode called pulsed operation according to the following steps:
Allowing the liquid to flow through the first heat exchange stage (2) for a predetermined period of time;
The liquid is prevented from flowing through the first heat exchange stage (2), the temperature of the air is measured and monitored after leaving the first heat exchange stage, in which case the first heat exchange stage (2) is measured after flowing out. Air temperature shows a first temperature rise, then stays at a roughly constant level for a certain period of time, then shows a second temperature rise,
The second temperature rise is detected, and after the second temperature rise is detected, the liquid is stopped from flowing through the first heat exchange stage (2), and this process is the dew point of the ambient air Repeated as long as the temperature is higher than the temperature of the liquid,
A method of operating a gas-liquid heat exchanger characterized by
空気の温度と空気の湿度を空気が第一の熱交換段階(2)に流入する前に測定することによって周囲空気の露点温度が伝えられ、及び空気の露点温度が空気の測定温度と測定湿度から特定される、請求項1に記載の方法。   By measuring the temperature of the air and the humidity of the air before the air flows into the first heat exchange stage (2), the dew point temperature of the ambient air is communicated, and the dew point temperature of the air is the measured temperature of the air and the measured humidity. The method of claim 1, identified from 第二の、能動的熱交換段階(3)で熱が液体と空気の間でエネルギーの流入によってポンピングされる方法において、液体が第一の熱交換段階(2)を貫流することを阻止する工程が、液体が第二の熱交換段階(3)にも貫流しないようにし、及び第二の熱交換段階(3)が遮断されることを特徴とする、請求項1又は2に記載の方法。   In a second, active heat exchange stage (3), in which heat is pumped between the liquid and air by the inflow of energy, the liquid is prevented from flowing through the first heat exchange stage (2). The method according to claim 1 or 2, characterized in that the liquid does not flow through the second heat exchange stage (3) and the second heat exchange stage (3) is interrupted. 第二の、能動的熱交換段階(3)で熱が液体と空気の間でエネルギーの流入によって交換される方法において、液体が第一の熱交換段階(2)を貫流することを阻止する工程が、液体が第一の熱交換段階(2)を迂回するようにし、その結果それにもかかわらず液体が第二の熱交換段階(3)を貫流し得ることを特徴とする、請求項1又は2にいずれか一項に記載の方法。   In a second, method in which heat is exchanged between the liquid and air in the active heat exchange stage (3) by inflow of energy, the liquid is prevented from flowing through the first heat exchange stage (2). Wherein the liquid bypasses the first heat exchange stage (2), so that the liquid can nevertheless flow through the second heat exchange stage (3). 2. The method according to any one of 2.
JP2014527593A 2011-08-31 2012-08-23 Operation method of gas-liquid heat exchanger Ceased JP2014529054A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH01423/11 2011-08-31
CH01423/11A CH705453B1 (en) 2011-08-31 2011-08-31 Method of operating a liquid-to-air heat exchange device.
PCT/EP2012/066409 WO2013030080A2 (en) 2011-08-31 2012-08-23 Method for operating a liquid-to-air heat exchanging device

Publications (2)

Publication Number Publication Date
JP2014529054A true JP2014529054A (en) 2014-10-30
JP2014529054A5 JP2014529054A5 (en) 2015-08-13

Family

ID=46845710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014527593A Ceased JP2014529054A (en) 2011-08-31 2012-08-23 Operation method of gas-liquid heat exchanger

Country Status (10)

Country Link
US (1) US20140216710A1 (en)
EP (1) EP2751494B1 (en)
JP (1) JP2014529054A (en)
KR (1) KR20140059215A (en)
CN (1) CN103765121B (en)
BR (1) BR112014004693A2 (en)
CH (1) CH705453B1 (en)
ES (1) ES2565815T3 (en)
RU (1) RU2014112116A (en)
WO (1) WO2013030080A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026349B1 (en) * 2014-09-30 2018-01-12 Valeo Systemes Thermiques HEAT EXCHANGER OF AN AIR CONDITIONING AND HEATING DEVICE IN PARTICULAR OF A MOTOR VEHICLE
CN111939421A (en) * 2020-07-24 2020-11-17 天津怡和嘉业医疗科技有限公司 Ventilation therapy device
CN114383285B (en) * 2021-12-06 2023-10-20 青岛海尔空调器有限总公司 Method and device for controlling air conditioner, air conditioner and storage medium
US20240045394A1 (en) * 2022-08-03 2024-02-08 Baltimore Aircoil Company, Inc. Drift detection apparatus, system, and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508766A2 (en) * 1991-04-09 1992-10-14 Halton Oy Method of regulating an air-conditioning plant and an air-conditioning plant according to the method
JPH06307679A (en) * 1993-04-27 1994-11-01 Matsushita Electric Ind Co Ltd Radiational cooling apparatus
JPH1163561A (en) * 1997-08-08 1999-03-05 Hitachi Plant Eng & Constr Co Ltd Refrigerant natural circulation heat exchange system
JP2001336804A (en) * 2000-05-31 2001-12-07 Daikin Ind Ltd Air conditioning equipment
JP2003130430A (en) * 2001-10-29 2003-05-08 Mitsubishi Electric Corp Air conditioner and its control method
US20030188538A1 (en) * 2002-04-04 2003-10-09 International Business Machines Corporation Two stage cooling system employing thermoelectric modules
JP2004156854A (en) * 2002-11-07 2004-06-03 Sharp Corp Air conditioner and its control method
JP2005178405A (en) * 2003-12-16 2005-07-07 Zexel Valeo Climate Control Corp Air conditioner
GB2461365A (en) * 2008-07-03 2010-01-06 Stephen Patrick Lester Heat pump control based on a determined dew point
JP2014505229A (en) * 2011-02-14 2014-02-27 メンタス ホールディング エージー Indoor air conditioner provided with gas-liquid heat exchanger having Peltier element

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4006500A1 (en) * 1990-03-02 1991-09-05 Bayerische Motoren Werke Ag Vehicular side-window demister including warm air distributor - generates thermally insulating boundary layer to rearward of arrays of horizontal nozzles on side-door pillars
US6470697B2 (en) * 2000-04-27 2002-10-29 Denso Corporation Air-conditioning system for vehicles
KR20040017920A (en) * 2002-08-22 2004-03-02 엘지전자 주식회사 Condensate drainage of heat exchanger
JP3709482B2 (en) * 2004-03-31 2005-10-26 ダイキン工業株式会社 Air conditioning system
CN101044358B (en) * 2004-07-21 2010-04-14 欧文斯科宁知识产权资产有限公司 Insulation system with condensate wicking for vertical applications
US7574871B2 (en) * 2004-10-27 2009-08-18 Research Products Corporation Systems and methods for whole-house dehumidification based on dew point measurements
CN2844754Y (en) * 2005-12-19 2006-12-06 上海约顿机房设备有限公司 Air conditioner with temperature and humidity adjusting precisively
US8301335B2 (en) * 2008-05-28 2012-10-30 Chrysler Group Llc Efficient AC operation using dew-point temperature
US8297069B2 (en) * 2009-03-19 2012-10-30 Vette Corporation Modular scalable coolant distribution unit
JP5296655B2 (en) * 2009-10-23 2013-09-25 株式会社日立ハイテクノロジーズ Gas temperature and humidity control method and gas supply device
US20110259573A1 (en) * 2010-04-26 2011-10-27 Gac Corporation Cooling system
US7905096B1 (en) * 2010-05-26 2011-03-15 International Business Machines Corporation Dehumidifying and re-humidifying air cooling for an electronics rack
US20120090808A1 (en) * 2010-10-18 2012-04-19 Alcatel-Lucent Usa, Incorporated Liquid cooling of remote or off-grid electronic enclosures
JP2013088031A (en) * 2011-10-18 2013-05-13 Hitachi Plant Technologies Ltd Cooling system, and method for controlling the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0508766A2 (en) * 1991-04-09 1992-10-14 Halton Oy Method of regulating an air-conditioning plant and an air-conditioning plant according to the method
JPH06307679A (en) * 1993-04-27 1994-11-01 Matsushita Electric Ind Co Ltd Radiational cooling apparatus
JPH1163561A (en) * 1997-08-08 1999-03-05 Hitachi Plant Eng & Constr Co Ltd Refrigerant natural circulation heat exchange system
JP2001336804A (en) * 2000-05-31 2001-12-07 Daikin Ind Ltd Air conditioning equipment
JP2003130430A (en) * 2001-10-29 2003-05-08 Mitsubishi Electric Corp Air conditioner and its control method
US20030188538A1 (en) * 2002-04-04 2003-10-09 International Business Machines Corporation Two stage cooling system employing thermoelectric modules
JP2004156854A (en) * 2002-11-07 2004-06-03 Sharp Corp Air conditioner and its control method
JP2005178405A (en) * 2003-12-16 2005-07-07 Zexel Valeo Climate Control Corp Air conditioner
GB2461365A (en) * 2008-07-03 2010-01-06 Stephen Patrick Lester Heat pump control based on a determined dew point
JP2014505229A (en) * 2011-02-14 2014-02-27 メンタス ホールディング エージー Indoor air conditioner provided with gas-liquid heat exchanger having Peltier element

Also Published As

Publication number Publication date
KR20140059215A (en) 2014-05-15
CH705453B1 (en) 2015-06-30
BR112014004693A2 (en) 2017-03-28
ES2565815T3 (en) 2016-04-07
US20140216710A1 (en) 2014-08-07
CN103765121B (en) 2016-07-06
RU2014112116A (en) 2015-10-10
WO2013030080A2 (en) 2013-03-07
CH705453A1 (en) 2013-03-15
EP2751494A2 (en) 2014-07-09
CN103765121A (en) 2014-04-30
EP2751494B1 (en) 2015-12-30
WO2013030080A3 (en) 2013-06-06

Similar Documents

Publication Publication Date Title
JP2018531360A6 (en) Method for controlling a vapor compression system in flooded conditions
JP2018531360A (en) Method for controlling a vapor compression system in flooded conditions
CN104704303B (en) Heat pump assembly
JP6682301B2 (en) Vapor compression refrigerator and control method thereof
CN102560990A (en) Tumble drier with ambient temperature sensor
JP2014529054A (en) Operation method of gas-liquid heat exchanger
JP6663908B2 (en) Fluid heating and / or cooling system and related methods
RU2560343C2 (en) Laundry device with heat pump and method of controlling device
US11674695B2 (en) Hot water supply apparatus
US9328931B2 (en) Heating and/or cooling system for maintaining an environment at a desired temperature
JP5500161B2 (en) Refrigeration cycle equipment
CN106288224A (en) The antifrost heat recovery system of new wind outside a kind of preheating chamber
KR101712601B1 (en) Hybrid Colling Tower Having Heat Exchanger For Waste heat Collection
CN106403201B (en) The control method and air conditioner of the fresh air machine heat exchanger hydrops of air conditioner
JP2010012427A (en) Compressed-air dehumidifier
US20210278098A1 (en) Heat Pump Interface
JP4700371B2 (en) Defrosting method for heating tower
CN104676962B (en) Cold and hot cogeneration heat pump equipment
CN204202266U (en) The defrost control device of water heater funnel
KR101926642B1 (en) Method for calculation of heating value and efficiency of heat pump system using geothermal heat energy
JP2016052610A (en) Compressed-air dehumidifying apparatus
CN204007064U (en) For the condenser defrosting device of triple exchange type freeze dryers
DK2505927T3 (en) Method of operating a heat pump with an air-saline heat exchanger in a saline circuit
EP3761026A1 (en) Gas humidity reduction apparatus and method of using the same
JP3632502B2 (en) Heat pump bath water heater

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160627

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20161129