JPH11316057A - Refrigerating/air conditioning apparatus - Google Patents
Refrigerating/air conditioning apparatusInfo
- Publication number
- JPH11316057A JPH11316057A JP12335998A JP12335998A JPH11316057A JP H11316057 A JPH11316057 A JP H11316057A JP 12335998 A JP12335998 A JP 12335998A JP 12335998 A JP12335998 A JP 12335998A JP H11316057 A JPH11316057 A JP H11316057A
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- air
- refrigeration
- heat exchanger
- conditioning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0293—Control issues related to the indoor fan, e.g. controlling speed
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/029—Control issues
- F25B2313/0294—Control issues related to the outdoor fan, e.g. controlling speed
Landscapes
- Air Conditioning Control Device (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷凍空調装置に関
するものであり、複数の種類の冷媒を使用を可能にし、
かつ凝縮器側の空気温度が高い時に冷凍空調能力の低下
をもたらす冷媒を用いた冷凍空調装置の能力確保と効率
改善に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating and air-conditioning system, and more particularly, to the use of a plurality of types of refrigerants.
Also, the present invention relates to securing the performance and improving the efficiency of a refrigeration air conditioner using a refrigerant that causes a decrease in the refrigeration air conditioning capacity when the air temperature on the condenser side is high.
【0002】[0002]
【従来の技術】従来、冷凍空調装置の冷媒としてはR2
2などのフロン系冷媒が使われてきた。しかしこの冷媒
はオゾン層破壊係数が0でないため、オゾン層破壊係数
が0であるHFC(ハイドロフルオロカーボン)系冷媒
での代替化が進められている。このHFC系冷媒の中で
は特に、2種または3種の混合冷媒であるR407C冷
媒(R32/R125/R134a、質量分率23/2
5/52wt%)やR410A冷媒(R32/R12
5、質量分率50/50wt%)が、有力候補となって
いる。2. Description of the Related Art Conventionally, R2 has been used as a refrigerant for refrigeration and air conditioning systems.
CFC-based refrigerants such as No. 2 have been used. However, since this refrigerant does not have an ozone depletion potential of 0, replacement with an HFC (hydrofluorocarbon) -based refrigerant having an ozone depletion potential of 0 is being promoted. Among these HFC-based refrigerants, in particular, R407C refrigerant (R32 / R125 / R134a, mass fraction 23/2), which is a mixture of two or three kinds, is used.
5/52 wt%) or R410A refrigerant (R32 / R12
5, mass fraction 50/50 wt%) is a promising candidate.
【0003】このうちR407C冷媒(R32/R12
5/R134a、質量分率23/25/52wt%)は
非共沸混合冷媒であるため、充填した時の各冷媒の質量
組成比と、冷凍空調装置を運転している時の各冷媒の質
量組成比とは、必ずしも一致しない。特にその冷媒回路
に液溜めがある場合などには、その質量組成比を保持し
た状態で液溜めに溜まることはほとんどなく、循環する
冷媒の質量組成比は異なってくる。このため、充填した
R407C冷媒(R32/R125/R134a)が組
成比23/25/52wt%で循環しているときの動作
圧力は、R22冷媒より若干上がる程度となるが、高沸
点冷媒のR134aがリッチとなる組成比で循環してい
るときの動作圧力は、R22冷媒より下がる場合があ
る。ところが動作圧力の変化によって生じる冷媒の物性
上の変化は、例えばR407C冷媒の臨界温度は86.
74℃であり、R22冷媒の96.15℃とほとんど変
わらない。このため、冷媒潜熱もR22冷媒とほとんど
変わらず、冷凍空調装置の冷媒としてR407C冷媒を
用いても、R22冷媒と同程度の空調能力を得ることが
できる。[0003] Among them, R407C refrigerant (R32 / R12
(5 / R134a, mass fraction 23/25/52 wt%) is a non-azeotropic mixed refrigerant, so the mass composition ratio of each refrigerant when charged and the mass of each refrigerant when the refrigeration / air-conditioning system is operating The composition ratio does not always match. In particular, when there is a liquid reservoir in the refrigerant circuit, the refrigerant is hardly accumulated in the liquid reservoir while maintaining the mass composition ratio, and the mass composition ratio of the circulating refrigerant differs. For this reason, when the filled R407C refrigerant (R32 / R125 / R134a) is circulating at a composition ratio of 23/25/52 wt%, the operating pressure is slightly higher than that of the R22 refrigerant, but the R134a of the high boiling point refrigerant has a higher R134a. The operating pressure when circulating at a rich composition ratio may be lower than that of the R22 refrigerant. However, the change in the physical properties of the refrigerant caused by the change in the operating pressure is, for example, the critical temperature of the R407C refrigerant is 86.
74 ° C., which is almost the same as 96.15 ° C. of the R22 refrigerant. Therefore, the latent heat of the refrigerant is almost the same as that of the R22 refrigerant, and even if the R407C refrigerant is used as the refrigerant of the refrigeration / air-conditioning apparatus, the same air conditioning capacity as that of the R22 refrigerant can be obtained.
【0004】一方、R410A冷媒(R32/R12
5、質量分率50/50wt%)は、動作圧力がR22
冷媒の1.6倍程度になり、R22冷媒やR32冷媒と
比較して潜熱が小さいR125冷媒を含むため、臨界温
度がR22冷媒の96.15℃に対して、R32にR1
25を混合したR410A冷媒は72.13℃と低くな
る。従って、凝縮温度や凝縮圧力が高い場合に、冷媒潜
熱がR22冷媒より小さくなり、冷凍空調能力が確保で
きなくなるという欠点がある。例えば、冷媒飽和温度6
0℃での冷媒潜熱は、R22冷媒が139.4kJ/k
g、R410A冷媒が109.2kJ/kgで、その比
は78.3%となる。この結果、冷凍空調装置にR41
0A冷媒を用いると、冷凍空調能力が低下し、かつ成績
係数COP(冷凍空調能力とそれを得るために費やされ
る圧縮動力との比)も低下する。例えば、蒸発温度10
℃、過冷却度5℃、過熱度10℃の場合、凝縮温度45
℃での成績係数は、R22冷媒では5.78、R410
A冷媒では5.37で、その比は92.9%である。こ
れに対し、同じ条件で、凝縮温度60℃での成績係数
は、R22冷媒では3.86、R410A冷媒では3.
34で、その比は86.5%となる。なお、このような
R410A冷媒を用いた冷凍装置については、特開平9
−145177号公報に掲載されたものがある。On the other hand, R410A refrigerant (R32 / R12
5, the mass fraction is 50/50 wt%) when the operating pressure is R22.
It is about 1.6 times that of the refrigerant and contains R125 refrigerant, which has a lower latent heat than the R22 refrigerant and the R32 refrigerant.
The R410A refrigerant mixed with 25 has a low temperature of 72.13 ° C. Therefore, when the condensing temperature and the condensing pressure are high, the latent heat of the refrigerant becomes smaller than that of the R22 refrigerant, and there is a disadvantage that the refrigeration and air conditioning capacity cannot be secured. For example, the refrigerant saturation temperature 6
The refrigerant latent heat at 0 ° C. is 139.4 kJ / k for R22 refrigerant.
g, R410A refrigerant is 109.2 kJ / kg, and the ratio is 78.3%. As a result, the refrigeration air conditioner
When the 0A refrigerant is used, the refrigeration / air-conditioning capacity is reduced, and the coefficient of performance COP (ratio between the refrigeration / air-conditioning capacity and the compression power consumed for obtaining the refrigeration / air-conditioning capacity) is also reduced. For example, an evaporation temperature of 10
℃, supercooling degree 5 ℃, superheating degree 10 ℃, condensation temperature 45
The coefficient of performance at ℃ is 5.78 for R22 refrigerant, R410
In the case of the refrigerant A, the ratio is 5.37, and the ratio is 92.9%. On the other hand, under the same conditions, the coefficient of performance at a condensation temperature of 60 ° C. is 3.86 for the R22 refrigerant and 3.86 for the R410A refrigerant.
At 34, the ratio becomes 86.5%. A refrigeration system using such R410A refrigerant is disclosed in
There is one disclosed in JP-A-145177.
【0005】[0005]
【発明が解決しようとする課題】以上のように、R12
5のような冷凍空調能力に悪影響を及ぼすような冷媒を
含む混合冷媒、例えばR410A冷媒を用いた冷凍空調
装置では、R410A冷媒の物性上、次のような問題が
ある。即ち、外気温度が例えば40℃以上の高温下で冷
房運転を行う時などには、凝縮温度や凝縮圧力が高くな
る。このため、冷媒潜熱が小さくなり、冷凍空調能力が
確保できず、なおかつ効率も低下する。特に空気調和機
における高外気温度での冷房運転は、空調負荷が大きく
冷房能力を増大させる必要があるのに、逆に冷房能力を
確保するのが困難となり、空気調和機として大きな問題
点となる。即ち、従来の冷凍空調装置では、冷媒として
R22冷媒を用いていたため、R22冷媒の冷媒物性に
適した装置となっている。そこでこの装置構成のままで
物性の異なる冷媒を使用しようとすると、冷凍空調能力
が下がるというような種々の問題が生じてくる。As described above, R12
In a refrigeration / air-conditioning apparatus using a mixed refrigerant containing a refrigerant that adversely affects the refrigeration / air-conditioning capacity such as R5, for example, the R410A refrigerant, there are the following problems due to the physical properties of the R410A refrigerant. That is, for example, when the cooling operation is performed at a high temperature of 40 ° C. or higher, the condensing temperature and the condensing pressure increase. For this reason, the latent heat of the refrigerant becomes small, and the refrigerating / air-conditioning ability cannot be secured, and the efficiency also decreases. In particular, in the cooling operation at a high outside air temperature in the air conditioner, the air conditioning load is large and the cooling capacity needs to be increased, but conversely, it is difficult to secure the cooling capacity, which is a major problem as the air conditioner. . That is, in the conventional refrigeration / air-conditioning apparatus, since the R22 refrigerant is used as the refrigerant, the apparatus is suitable for the refrigerant physical properties of the R22 refrigerant. Therefore, if it is attempted to use a refrigerant having different physical properties with this apparatus configuration, various problems such as a decrease in the refrigeration / air-conditioning capacity arise.
【0006】本発明はこうした点を鑑み、従来の装置構
成にそれほど変更を加えずに、冷媒に対して汎用性のあ
る冷凍空調装置を得ることを目的とする。特に、本発明
では、冷媒としてR22冷媒以外のR32とR125の
混合冷媒、例えばR410A冷媒などの冷媒物性の異な
る冷媒を用いても、冷凍空調能力を確保でき、かつ効率
も改善できる冷凍空調装置を得ることを目的とする。SUMMARY OF THE INVENTION In view of the foregoing, it is an object of the present invention to provide a refrigeration / air-conditioning apparatus which is versatile with respect to a refrigerant without changing the conventional apparatus configuration so much. In particular, in the present invention, a refrigeration / air-conditioning apparatus capable of securing refrigeration / air-conditioning capacity and improving efficiency even when a mixed refrigerant of R32 and R125 other than the R22 refrigerant, for example, a refrigerant having different physical properties such as R410A refrigerant is used as the refrigerant. The purpose is to gain.
【0007】[0007]
【課題を解決するための手段】本発明は、複数の種類の
冷媒を使用可能で、圧縮機、凝縮側熱交換器、絞り装
置、蒸発側熱交換器を接続し冷媒を循環させる冷媒回路
を有する冷凍空調装置において、前記冷媒回路の構成機
器の動作を変化させて冷凍空調能力を変化させる冷凍空
調能力変化手段と、前記冷媒回路の凝縮側における冷媒
の状態を検知する冷媒状態検知手段と、前記冷媒状態検
知手段にて検知した結果が予め設定された設定値を越え
たときに、前記冷媒の種類に応じて変化させた制御ゲイ
ンで演算した演算値を用いて前記冷凍空調能力変化手段
を制御する制御手段とを備えたものである。SUMMARY OF THE INVENTION The present invention provides a refrigerant circuit which can use a plurality of types of refrigerant, connects a compressor, a condensing-side heat exchanger, a throttle device, and an evaporating-side heat exchanger and circulates the refrigerant. A refrigeration / air-conditioning apparatus having a refrigeration / air-conditioning capability changing means for changing the operation of components of the refrigerant circuit to change the refrigeration / air-conditioning capability, and a refrigerant state detecting means for detecting a state of the refrigerant on the condensation side of the refrigerant circuit, When the result detected by the refrigerant state detection means exceeds a preset value, the refrigeration / air-conditioning capacity changing means uses a calculation value calculated with a control gain changed according to the type of the refrigerant. And control means for controlling.
【0008】また、本発明は、複数の種類の冷媒を使用
可能で、圧縮機、凝縮側熱交換器、絞り装置、蒸発側熱
交換器を接続し冷媒を循環させる冷媒回路を有する冷凍
空調装置において、前記冷媒回路の構成機器の動作を変
化させて冷凍空調能力を変化させる冷凍空調能力変化手
段と、前記冷媒回路の凝縮側における冷媒の状態を検知
する冷媒状態検知手段と、前記冷媒の種類に応じて設定
値を変化させ、前記冷媒状態検知手段にて検知した結果
が前記設定値を越えたときに、前記冷凍空調能力変化手
段を制御する制御手段とを備えたものである。Further, the present invention provides a refrigeration / air-conditioning apparatus which can use a plurality of types of refrigerants and has a refrigerant circuit for connecting a compressor, a condensing-side heat exchanger, a throttle device, and an evaporating-side heat exchanger to circulate the refrigerant. A refrigeration / air-conditioning capacity changing means for changing the operation of the components of the refrigerant circuit to change the refrigeration / air-conditioning capacity; a refrigerant state detecting means for detecting a state of the refrigerant on a condensation side of the refrigerant circuit; and a type of the refrigerant. And control means for controlling the refrigeration / air-conditioning capacity changing means when a result detected by the refrigerant state detecting means exceeds the set value.
【0009】また、本発明は、動作中の冷凍空調能力と
目標冷凍空調能力の差を検知する冷凍空調能力検知手段
を備え、制御手段で冷凍空調能力変化手段を制御する演
算値を演算する際、冷媒の種類に基づく第1制御ゲイン
と前記冷凍空調能力検知手段で検知した差に応じて変化
させた第2制御ゲインとを用いて演算することを特徴と
するものである。Further, the present invention comprises a refrigerating and air conditioning capacity detecting means for detecting a difference between the operating refrigerating and air conditioning capacity and a target refrigerating and air conditioning capacity, and the control means calculates a calculation value for controlling the refrigerating and air conditioning capacity changing means. The calculation is performed using the first control gain based on the type of the refrigerant and the second control gain changed according to the difference detected by the refrigeration / air-conditioning capacity detection means.
【0010】また、本発明の冷凍空調能力変化手段は、
冷媒回路を循環する冷媒の流量を変化させるものである
ことを特徴とするものである。Further, the refrigerating and air-conditioning capacity changing means of the present invention comprises:
It is characterized in that the flow rate of the refrigerant circulating in the refrigerant circuit is changed.
【0011】また、本発明の冷凍空調能力変化手段は、
蒸発側熱交換器での熱交換量を変化させるものであるこ
とを特徴とするものである。Further, the refrigeration / air-conditioning capacity changing means of the present invention comprises:
The amount of heat exchange in the evaporation-side heat exchanger is changed.
【0012】また、本発明の冷凍空調能力変化手段は、
絞り装置の開度を変化させるものであることを特徴とす
るものである。Further, the refrigerating and air-conditioning capacity changing means of the present invention comprises:
The opening degree of the expansion device is changed.
【0013】また、本発明の空調能力変化手段は、凝縮
側熱交換器での熱交換量を変化させるものであることを
特徴とするものである。Further, the air-conditioning capacity changing means of the present invention is characterized in that it changes the amount of heat exchange in the condensing-side heat exchanger.
【0014】また、本発明の凝縮側熱交換器は、冷媒回
路を循環する冷媒と外気以外の熱交換流体とを熱交換す
る構成であることを特徴とするものである。Further, the condensing-side heat exchanger of the present invention is characterized in that it is configured to exchange heat between the refrigerant circulating in the refrigerant circuit and a heat exchange fluid other than the outside air.
【0015】また、本発明は、複数の種類の冷媒を使用
可能で、圧縮機、凝縮側熱交換器、絞り装置、蒸発側熱
交換器を接続し冷媒を循環させる冷媒回路を有する冷凍
空調装置において、前記冷媒回路の凝縮側における冷媒
の状態を検知する冷媒状態検知手段と、外気以外の被熱
交換流体と前記凝縮側熱交換器を循環する冷媒とを熱交
換する構成の流路と、前記冷媒状態検知手段にて検知し
た結果に基づいて前記流路を流れる被熱交換流体の温度
または流量を制御する制御手段とを備えたものである。Further, the present invention provides a refrigeration / air-conditioning apparatus which can use a plurality of types of refrigerants and has a refrigerant circuit for connecting a compressor, a condensing-side heat exchanger, a throttle device, and an evaporating-side heat exchanger to circulate the refrigerant. In the, refrigerant state detection means for detecting the state of the refrigerant on the condensation side of the refrigerant circuit, and a flow path configured to exchange heat between the heat exchange fluid other than the outside air and the refrigerant circulating through the condensation side heat exchanger, Control means for controlling the temperature or flow rate of the heat exchange fluid flowing through the flow path based on the result detected by the refrigerant state detection means.
【0016】また、本発明の冷媒状態検知手段は、冷媒
の凝縮温度、または冷媒の凝縮圧力、または凝縮器側空
気温度を検知する手段であることを特徴とするものであ
る。Further, the refrigerant state detecting means of the present invention is a means for detecting the condensing temperature of the refrigerant, the condensing pressure of the refrigerant, or the air temperature on the condenser side.
【0017】また、本発明による冷凍空調装置は、R1
25を含む冷媒を用いたものである。Further, the refrigeration / air-conditioning apparatus according to the present invention has a R1
A refrigerant containing 25 is used.
【0018】また、本発明による冷凍空調装置は、冷房
運転と暖房運転を切換える冷媒流路切換弁を、冷媒回路
に設けたものである。Further, in the refrigeration / air-conditioning apparatus according to the present invention, a refrigerant flow switching valve for switching between a cooling operation and a heating operation is provided in the refrigerant circuit.
【0019】[0019]
【発明の実施の形態】実施の形態1.以下、本発明の実
施の形態1について説明する。本実施の形態では、冷凍
空調装置の一例として空気調和機について述べる。図1
は本実施の形態による空気調和機を示す冷媒回路図であ
る。本実施の形態では、冷媒として例えばR32とR1
25が50/50wt%の割合であるR410A冷媒を
用いる。図において、1は圧縮機、2は冷媒流路切換弁
で例えば四方弁、3は凝縮側熱交換器で例えば室外熱交
換器、4は絞り装置、5は蒸発側熱交換器で例えば室内
熱交換器で、これらの構成機器を接続して冷媒を循環さ
せて冷媒回路を構成している。図1は冷房運転の場合の
冷媒回路図を示しており、暖房運転では四方弁2の接続
を切換える。6は、凝縮器側の冷媒状態検知手段で、例
えば凝縮温度または凝縮温度に相当する値を検知する手
段で、具体的には凝縮側熱交換器となる室外熱交換器3
の冷媒配管温度を検出する凝縮温度検知装置である。ま
た、7は凝縮側送風機でこの場合は室外送風機、8は蒸
発側送風機でこの場合は室内送風機、15は吸込空気温
度検知装置、20は制御手段である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Hereinafter, Embodiment 1 of the present invention will be described. In the present embodiment, an air conditioner will be described as an example of a refrigeration / air-conditioning apparatus. FIG.
FIG. 2 is a refrigerant circuit diagram illustrating the air conditioner according to the present embodiment. In the present embodiment, for example, R32 and R1
R410A refrigerant having a ratio of 50/50 wt% is used. In the figure, 1 is a compressor, 2 is a refrigerant flow switching valve, for example, a four-way valve, 3 is a condensation side heat exchanger, for example, an outdoor heat exchanger, 4 is a throttle device, 5 is an evaporation side heat exchanger, for example, indoor heat exchanger. An exchanger connects these components to circulate the refrigerant to form a refrigerant circuit. FIG. 1 shows a refrigerant circuit diagram in the case of the cooling operation. In the heating operation, the connection of the four-way valve 2 is switched. Reference numeral 6 denotes a refrigerant state detecting means on the condenser side, for example, a means for detecting a condensing temperature or a value corresponding to the condensing temperature. Specifically, the outdoor heat exchanger 3 serving as a condensing side heat exchanger
This is a condensation temperature detection device that detects the temperature of the refrigerant pipe. Reference numeral 7 denotes a condensing-side blower, in this case an outdoor blower, 8 denotes an evaporating-side blower, in this case an indoor blower, 15 denotes a suction air temperature detecting device, and 20 denotes a control means.
【0020】制御手段20は、凝縮温度検知装置6で検
知した凝縮温度または凝縮温度に相当する値c1を入力
し、この値に基づく制御信号s1〜s4のいずれか1つ
または複数をそれぞれの冷凍空調能力変化手段に出力す
る。冷凍空調能力変化手段は、冷媒回路を構成する構成
機器の動作を変化させて冷凍空調能力を変化させるもの
である。本実施の形態は冷凍空調装置の一例として空気
調和機について説明したものであり、冷凍装置について
の記述を省き、空調能力についてのみ説明する。空調能
力変化手段としては、例えば以下の4つの手段が挙げら
れる。 1)蒸発側熱交換器での熱交換量を変化させる。これは
例えば室内送風機8の送風量を変化させると、室内熱交
換器5での熱交換効率を向上できる。 2)凝縮側熱交換器での熱交換量を変化させる。これは
例えば室外送風機7の送風量を変化させると、室外熱交
換器3での熱交換効率を向上できる。 3)冷媒回路を循環する冷媒の流量を変化させる。これ
は、例えば圧縮機1の回転数を増減すれば、冷媒流量を
変化させることができる。 4)絞り装置4の開度を変化させる。これは、例えば電
子式膨張弁などの開度を調整することによって変化でき
る。The control means 20 inputs the condensing temperature detected by the condensing temperature detecting device 6 or a value c1 corresponding to the condensing temperature, and outputs one or more of the control signals s1 to s4 based on this value to the respective refrigeration units. Output to the air conditioning capacity changing means. The refrigerating / air-conditioning capability changing means changes the refrigerating / air-conditioning capability by changing the operation of the components constituting the refrigerant circuit. In the present embodiment, an air conditioner has been described as an example of a refrigeration / air-conditioning apparatus, and the description of the refrigeration apparatus will be omitted, and only the air-conditioning capacity will be described. As the air conditioning capacity changing means, for example, the following four means can be mentioned. 1) Change the amount of heat exchange in the evaporator-side heat exchanger. For example, when the amount of air blown from the indoor blower 8 is changed, the heat exchange efficiency in the indoor heat exchanger 5 can be improved. 2) Change the amount of heat exchange in the condensation side heat exchanger. For example, when the amount of air blown from the outdoor blower 7 is changed, the heat exchange efficiency in the outdoor heat exchanger 3 can be improved. 3) The flow rate of the refrigerant circulating in the refrigerant circuit is changed. This is because, for example, if the rotational speed of the compressor 1 is increased or decreased, the flow rate of the refrigerant can be changed. 4) The opening degree of the expansion device 4 is changed. This can be changed, for example, by adjusting the opening of an electronic expansion valve or the like.
【0021】以下、図1のように構成した空気調和機の
動作について説明する。圧縮機1からの高温高圧ガスは
四方弁2を通り、室外熱交換器3で放熱すると同時に凝
縮液化する。さらに、冷媒は絞り装置4で減圧され、室
内熱交換器5で蒸発して、四方弁2を通り圧縮機1へ循
環する。このように、冷房運転では室外熱交換器3を凝
縮器,室内熱交換器5を蒸発器として動作させ、室外送
風機7と室内送風機8で室外または室内の空気を取り込
むことにより、室外または室内の空気と熱交換する。ま
た、冷房運転と暖房運転の冷媒流路の切換えは四方弁2
で行い、暖房運転時には室外熱交換器3を蒸発器として
動作させ、室内熱交換器5を凝縮器として動作させる。
冷房専用の空気調和機では四方弁2はなくてもよい。Hereinafter, the operation of the air conditioner configured as shown in FIG. 1 will be described. The high-temperature and high-pressure gas from the compressor 1 passes through the four-way valve 2 and radiates heat in the outdoor heat exchanger 3 while being condensed and liquefied. Further, the pressure of the refrigerant is reduced by the expansion device 4, evaporated by the indoor heat exchanger 5, and circulated to the compressor 1 through the four-way valve 2. As described above, in the cooling operation, the outdoor heat exchanger 3 is operated as a condenser and the indoor heat exchanger 5 is operated as an evaporator, and the outdoor or indoor air is taken in by the outdoor blower 7 and the indoor blower 8 so that the outdoor or indoor air is taken in. Exchange heat with air. Switching of the refrigerant flow path between the cooling operation and the heating operation is performed by a four-way valve 2.
During the heating operation, the outdoor heat exchanger 3 is operated as an evaporator, and the indoor heat exchanger 5 is operated as a condenser.
The four-way valve 2 may not be provided in an air conditioner dedicated to cooling.
【0022】図2は本実施の形態に係わる制御手段20
の制御手順を示すフローチャートである。ここでは、空
調能力変化手段は、例えば蒸発側熱交換器である室内熱
交換器5での熱交換量を変化させる手段であり、具体的
には室内送風機8の回転数を変化させている。これによ
り、室内熱交換器5での風量を変化させて熱交換効率を
向上できる。まず、ST11でこの空気調和機で使用し
ている冷媒の種類、例えばR22冷媒,R410A冷
媒,R410B冷媒などを入力する。ST12では、凝
縮温度検知装置6で室外熱交換器3の冷媒配管温度から
循環している冷媒の凝縮温度を検知し、この検知値は入
力信号c1として制御手段20に入力される。ST13
で、凝縮温度の結果である検知値が予め設定してある所
定の設定値、例えば60℃よりも高い凝縮温度であるか
どうか判断する。検知値が設定値以下の場合には、ST
18で通常の運転制御を行う。FIG. 2 shows a control means 20 according to this embodiment.
6 is a flowchart showing a control procedure of the first embodiment. Here, the air conditioning capacity changing unit is a unit that changes the amount of heat exchange in the indoor heat exchanger 5 that is, for example, the evaporation-side heat exchanger, and specifically changes the rotation speed of the indoor blower 8. Thereby, the heat exchange efficiency can be improved by changing the air volume in the indoor heat exchanger 5. First, in ST11, the type of refrigerant used in this air conditioner, for example, R22 refrigerant, R410A refrigerant, R410B refrigerant, etc., is input. In ST12, the condensing temperature of the circulating refrigerant is detected from the refrigerant pipe temperature of the outdoor heat exchanger 3 by the condensing temperature detector 6, and the detected value is input to the control means 20 as an input signal c1. ST13
Then, it is determined whether or not the detected value as a result of the condensation temperature is a predetermined set value, for example, a condensation temperature higher than 60 ° C. If the detected value is less than the set value, ST
At 18, normal operation control is performed.
【0023】ここで、冷媒としてR410A冷媒を用い
ているので、その冷媒物性上、冷房運転において、凝縮
器側空気温度即ち外気温度が高くなると、冷媒の凝縮温
度または凝縮圧力が上昇する。これにつれて冷媒潜熱は
低下し熱交換能力が低下する。ST13における設定値
は冷媒の熱交換能力低下を示す閾値であり、冷媒の凝縮
温度がこの設定値を越えたときに、冷媒の凝縮温度また
は凝縮圧力の上昇によって熱交換能力が低下したと判断
する。そして、空調能力を増加させるように制御を開始
する。凝縮温度が60℃でR410A冷媒の冷媒潜熱は
R22冷媒の80%程度になることに基づき、ここで
は、R410A冷媒の時の凝縮温度の設定値は60℃と
し、60℃以下の時には通常の運転制御を行うとする。
また、例えば冷媒潜熱がR22冷媒の90%になった時
の凝縮温度、即ち空調能力増加の制御開始となる凝縮温
度の設定値を60℃よりも低く設定すると、60℃に設
定した時に比べて空調能力の負荷に対する応答性がよく
なる。Here, since the R410A refrigerant is used as the refrigerant, when the air temperature on the condenser side, that is, the outside air temperature increases in the cooling operation, the condensation temperature or the condensation pressure of the refrigerant increases due to the physical properties of the refrigerant. With this, the latent heat of the refrigerant decreases and the heat exchange capacity decreases. The set value in ST13 is a threshold value indicating a decrease in the heat exchange capacity of the refrigerant. When the condensing temperature of the refrigerant exceeds the set value, it is determined that the heat exchange capacity has decreased due to an increase in the condensing temperature or the condensing pressure of the refrigerant. . Then, control is started to increase the air conditioning capacity. Based on the fact that the refrigerant latent heat of the R410A refrigerant is about 80% of that of the R22 refrigerant when the condensing temperature is 60 ° C, the set value of the condensing temperature for the R410A refrigerant is 60 ° C, and the normal operation is performed when the condensing temperature is 60 ° C or lower. Assume that control is performed.
Further, for example, when the condensing temperature when the refrigerant latent heat becomes 90% of the R22 refrigerant, that is, the set value of the condensing temperature at which the control of the increase in the air conditioning capacity is started is set lower than 60 ° C., compared with the case where it is set to 60 ° C. The responsiveness of the air conditioning capacity to the load is improved.
【0024】ST13の判断で検知値が設定値よりも高
い場合には、ST14〜ST17で、蒸発器となる室内
熱交換器5での風量を上げて熱交換能力を高め、空調能
力を増加させる。このとき、冷媒の種類に応じて室内熱
交換器5における風量の増加割合を変えて空調能力の増
加量を変える。例えば、ST14で、冷媒の種類に応じ
て室内送風機8の送風量の増加割合を表す能力制御係数
aを設定する。この能力制御係数aは冷媒の種類に対し
て予め表として記憶しておき、動作時に冷媒の種類から
風量増加割合を表す能力制御係数aの値を知る。例え
ば、従来のR22冷媒の場合の風量増加割合a1=1.
0に対して、R410A冷媒の場合は高凝縮温度時の冷
媒潜熱が小さいため、風量増加割合a2=1.2として
R22冷媒よりも大きくする。また、R410A冷媒よ
りR125の割合が多いR410B冷媒(R32/R1
25,45/55wt%)を用いる場合には、その風量
増加割合a3=1.25としてR410A冷媒よりも大
きくする。そして、ST15で空調能力変化手段である
室内熱交換器5での風量を式(1)で演算し、この演算
値になるように制御信号s1を出力して室内送風機8の
回転数を制御する。 N’=a・N ・・・(1) ここで、a :能力制御係数 N :現在の室内熱交換器5での風量 N’:空調能力を変化させるための室内熱交換器5での
風量 である。この能力制御係数aは、一般的な制御において
は、制御ゲインとして取り扱われており、現在の検知値
と目標とする制御値の関係を示すものである。本実施の
形態では冷媒としてR410A冷媒を用いているため、
ST14ではa=1.2が設定され、N’=1.2Nと
して室内熱交換器5での風量がN’、即ち2割増加する
ように室内送風機8の回転数を制御すると、これにつれ
てST17で室内熱交換器5での熱交換量が多くなり空
調能力が増加する。If the detected value is higher than the set value in the judgment of ST13, in ST14 to ST17, the amount of air in the indoor heat exchanger 5, which is an evaporator, is increased to increase the heat exchange capacity and increase the air conditioning capacity. . At this time, the increasing rate of the air flow in the indoor heat exchanger 5 is changed in accordance with the type of the refrigerant to change the increasing amount of the air conditioning capacity. For example, in ST14, the capacity control coefficient a indicating the rate of increase in the amount of air blown by the indoor blower 8 is set according to the type of the refrigerant. The capacity control coefficient a is stored in advance as a table with respect to the type of the refrigerant, and the value of the capacity control coefficient a indicating the rate of increase in the air flow is known from the type of the refrigerant during operation. For example, in the case of the conventional R22 refrigerant, the flow rate increase rate a1 = 1.
On the other hand, in the case of the R410A refrigerant, since the latent heat of the refrigerant at the time of the high condensation temperature is small, the flow rate increase rate a2 is set to a2 = 1.2, which is larger than that of the R22 refrigerant. In addition, R410B refrigerant (R32 / R1
(25, 45/55 wt%), the flow rate increase ratio a3 = 1.25 is set to be larger than that of the R410A refrigerant. Then, in ST15, the air volume in the indoor heat exchanger 5, which is the air-conditioning capacity changing means, is calculated by the equation (1), and the control signal s1 is output so that the calculated value is obtained, thereby controlling the rotation speed of the indoor blower 8. . N ′ = a · N (1) where a: capacity control coefficient N: current air volume in indoor heat exchanger 5 N ′: air volume in indoor heat exchanger 5 for changing air conditioning capacity It is. The capacity control coefficient a is treated as a control gain in general control, and indicates a relationship between a current detection value and a target control value. In the present embodiment, R410A refrigerant is used as the refrigerant,
In ST14, a = 1.2 is set. When N ′ = 1.2N, the number of rotations of the indoor blower 8 is controlled so that the air volume in the indoor heat exchanger 5 increases by N ′, that is, by 20%. As a result, the amount of heat exchange in the indoor heat exchanger 5 increases, and the air conditioning capacity increases.
【0025】このように、冷媒の種類の物性上、冷媒潜
熱が低下しても、室内熱交換器5での熱交換量をその低
下分に応じて増加することにより、冷房/暖房運転時の
空調能力を維持することができる。また、蒸発器となる
室内熱交換器5の熱交換量を増加することにより、凝縮
温度が低下し冷媒潜熱は大きくなるので、効率も向上さ
せることができる。なお、ST1での冷媒の種類の入力
は、空気調和機に冷媒を充填した時点で設定して制御手
段20で記憶しておき、以降はこの記憶した情報を用い
るように構成すると、制御の過程で毎回入力する必要は
なくなる。As described above, even if the latent heat of the refrigerant is reduced due to the physical properties of the type of the refrigerant, the amount of heat exchange in the indoor heat exchanger 5 is increased in accordance with the decrease, so that the cooling / heating operation can be performed. The air conditioning capacity can be maintained. Further, by increasing the heat exchange amount of the indoor heat exchanger 5 serving as an evaporator, the condensation temperature is reduced and the refrigerant latent heat is increased, so that the efficiency can be improved. The input of the type of the refrigerant in ST1 is set at the time when the air conditioner is filled with the refrigerant, and is stored in the control means 20. After that, the stored information is used so that the control process is performed. You do not have to enter it every time.
【0026】また、制御手段20を、別の空調能力変化
手段である、室外熱交換器3での熱交換量を変化させる
手段としてもよい。このときにも制御手段20の動作は
図2とほぼ同じである。ST13の判断で、凝縮温度検
知装置6が検知した凝縮温度が所定の設定値より高い場
合、ST14で室外送風機7の送風量増加割合を表す能
力制御係数aを設定する。この場合にも、冷媒の種類に
応じて室外熱交換器3での熱交換量の増加割合を変え
る。例えば、従来のR22冷媒の場合の能力制御係数a
として室外送風機7の風量増加割合a1=1.0に対し
て、R410A冷媒の場合は高凝縮温度時の冷媒潜熱が
小さいため、風量増加割合a2=1.2としてR22冷
媒よりも大きくする。また、R410A冷媒よりR12
5の割合が多いR410B冷媒(R32/R125,4
5/55wt%)を用いる場合には、その風量増加割合
a3=1.25としてR410A冷媒よりも大きくす
る。The control means 20 may be another means for changing the amount of heat exchange in the outdoor heat exchanger 3, which is another means for changing the air conditioning capacity. At this time, the operation of the control means 20 is almost the same as that of FIG. If the condensing temperature detected by the condensing temperature detecting device 6 is higher than a predetermined set value in ST13, a capacity control coefficient a indicating the rate of increase in the amount of air blown by the outdoor blower 7 is set in ST14. Also in this case, the increase rate of the heat exchange amount in the outdoor heat exchanger 3 is changed according to the type of the refrigerant. For example, the capacity control coefficient a for the conventional R22 refrigerant
In contrast, in the case of the R410A refrigerant, the latent heat of the refrigerant at a high condensing temperature is smaller than the air flow increase rate a1 of the outdoor blower 7 = 1.0, and therefore the air flow increase rate a2 = 1.2 is set to be larger than the R22 refrigerant. In addition, R410A refrigerant is more
R410B refrigerant (R32 / R125,4
(5/55 wt%), the flow rate increase ratio a3 = 1.25 is set to be larger than that of the R410A refrigerant.
【0027】そして、ST15で空調能力変化手段であ
る室外熱交換器3での熱交換量の目標とする制御値を演
算する。即ち、現在の風量の能力制御係数倍(a倍)を
演算し、ST16で風量がこの値になるように制御信号
s2を出力して室外送風機7の回転数を制御する。本実
施の形態ではR410A冷媒を用いているため、ST1
4ではa=1.2が設定され、N’=1.2Nとして室
外熱交換器3での風量がN’、即ち2割増加するように
室外送風機7の回転数を制御すると、これにつれてST
17で室外熱交換器3の熱交換量が増加して空調能力が
増加する。このように、冷媒の種類の物性上、冷媒潜熱
が低下しても、室外熱交換器3での熱交換量をその低下
分に応じて増加することにより、冷房/暖房運転時の空
調能力を維持することができる。また特に、凝縮器とな
る室外熱交換器3の熱交換能力を上げることにより、凝
縮温度が低下し冷媒潜熱は大きくなるので、効率も向上
させることができる。Then, in ST15, a target control value of the heat exchange amount in the outdoor heat exchanger 3, which is the air conditioning capacity changing means, is calculated. That is, the capacity control coefficient multiplication (a times) of the current air volume is calculated, and the control signal s2 is output so that the air volume becomes this value in ST16 to control the rotation speed of the outdoor blower 7. In this embodiment, since the R410A refrigerant is used, ST1
4, a = 1.2 is set, and when N ′ = 1.2N, the number of rotations of the outdoor blower 7 is controlled so that the air volume in the outdoor heat exchanger 3 increases by N ′, that is, by 20%.
At 17, the heat exchange amount of the outdoor heat exchanger 3 increases, and the air conditioning capacity increases. As described above, even if the latent heat of the refrigerant is reduced due to the physical properties of the type of the refrigerant, the amount of heat exchange in the outdoor heat exchanger 3 is increased in accordance with the decrease, so that the air-conditioning capacity during the cooling / heating operation is improved. Can be maintained. In particular, by increasing the heat exchange capacity of the outdoor heat exchanger 3 serving as a condenser, the condensing temperature is reduced and the latent heat of the refrigerant is increased, so that the efficiency can be improved.
【0028】また、制御手段20を、別の空調能力変化
手段である、圧縮機1の回転数を変化させる手段として
もよい。このときにも制御手段20の動作は図2とほぼ
同じである。ST13の判断で、凝縮温度検知装置6が
検知した凝縮温度が所定の設定値より高い場合、ST1
4で圧縮機1の回転数増加割合を表す能力制御係数aを
設定する。この場合にも、冷媒の種類に応じて圧縮機1
の回転数の増加割合を変える。例えば、従来のR22冷
媒の場合の能力制御係数aとして圧縮機1の回転数増加
割合a1=1.0に対して、R410A冷媒の場合は高
凝縮温度時の冷媒潜熱が小さいため、回転数増加割合a
2=1.2としてR22冷媒よりも大きくする。また、
R410A冷媒よりR125の割合が多いR410B冷
媒(R32/R125,45/55wt%)を用いる場
合には、その回転数増加割合a3=1.25としてR4
10A冷媒よりも大きくする。The control means 20 may be another means for changing the rotation speed of the compressor 1, which is another means for changing the air conditioning capacity. At this time, the operation of the control means 20 is almost the same as that of FIG. If the condensing temperature detected by the condensing temperature detecting device 6 is higher than a predetermined set value in the judgment of ST13, ST1
In step 4, a capacity control coefficient a indicating the rate of increase in the rotation speed of the compressor 1 is set. Also in this case, the compressor 1
Change the rate of increase in the number of revolutions. For example, as the capacity control coefficient a in the case of the conventional R22 refrigerant, the rotational speed increase ratio a1 of the compressor 1 is 1.0, whereas in the case of the R410A refrigerant, the refrigerant latent heat at a high condensing temperature is small. Ratio a
2 = 1.2, which is larger than the R22 refrigerant. Also,
When using the R410B refrigerant (R32 / R125, 45/55 wt%) having a higher ratio of R125 than the R410A refrigerant, the rotation speed increase ratio a3 = 1.25 and R4B
Make it larger than 10A refrigerant.
【0029】そして、ST15で空調能力変化手段であ
る圧縮機1の回転数の設定値を演算する。即ち、現在の
回転数の能力制御係数倍(a倍)を演算し、ST16で
回転数がこの値になるように制御信号s3を出力して圧
縮機1の回転数を制御する。本実施の形態ではR410
A冷媒を用いているため、ST14ではa=1.2が設
定され、N’=1.2Nとして圧縮機1の回転数が
N’、即ち2割増加するように制御すると、冷媒回路の
冷媒流量が増加し、これにつれてST17で空調能力が
増加する。このように、冷媒の種類の物性上、冷媒潜熱
が低下しても、圧縮機1の回転数をその低下分に応じて
増加することにより、冷媒回路を循環する冷媒の流量を
増加し、冷房/暖房運転時の空調能力を維持することが
できる。また、圧縮機1をその回転数が高いところで用
いるので、圧縮機効率の高いポイントで運転でき、空気
調和機としての効率も向上できる。Then, in ST15, a set value of the number of revolutions of the compressor 1, which is the air conditioning capacity changing means, is calculated. That is, a capacity control coefficient multiplication (a times) of the current rotational speed is calculated, and a control signal s3 is output so as to control the rotational speed of the compressor 1 so that the rotational speed becomes this value in ST16. In the present embodiment, R410
Since the refrigerant A is used, in ST14, a = 1.2 is set, and when the rotation speed of the compressor 1 is controlled to be N ', that is, N' = 1.2N, the refrigerant in the refrigerant circuit is increased by 20%. The flow rate increases, and in step ST17, the air conditioning capacity increases. Thus, even if the latent heat of the refrigerant is reduced due to the physical properties of the type of the refrigerant, the rotation speed of the compressor 1 is increased in accordance with the decrease, thereby increasing the flow rate of the refrigerant circulating in the refrigerant circuit, / The air conditioning capacity during the heating operation can be maintained. Further, since the compressor 1 is used in a place where the rotation speed is high, the compressor 1 can be operated at a point where the compressor efficiency is high, and the efficiency as an air conditioner can be improved.
【0030】また、制御手段20を、別の空調能力変化
手段である、絞り装置4の開度を調整する手段としても
よい。このときにも制御手段20の動作は図2とほぼ同
じである。絞り装置4の開度を調整する際、例えば絞り
装置4の開度を大きくして冷媒流量を増加することによ
り、空調能力を増加することができる。また、絞り装置
4の開度を小さくして、過冷却度を増加して動作圧力を
増加することにより、冷媒潜熱を増加して空調能力を増
加させることもできる。絞り装置4の開度大きくするか
小さくするかは、その時の運転状況によって可変にする
とよい。ST13の判断で、凝縮温度検知装置6が検知
した凝縮温度が所定の設定値より高い場合、ST14で
絞り装置4の開度調整量増加割合を表す能力制御係数a
を設定する。この場合にも、冷媒の種類に応じて絞り装
置4の開度増加割合または減少割合を変える。以下、絞
り装置4の開度を増加する場合について説明する。例え
ば、従来のR22冷媒の場合の能力制御係数aとして絞
り装置4の開度増加割合a1=1.0に対して、R41
0A冷媒の場合は高凝縮温度時の冷媒潜熱が小さいた
め、開度増加割合a2=1.2としてR22冷媒よりも
大きくする。また、R410A冷媒よりR125の割合
が多いR410B冷媒(R32/R125,45/55
wt%)を用いる場合には、その開度増加割合a3=
1.25としてR410A冷媒よりも大きくする。The control means 20 may be another means for adjusting the opening degree of the expansion device 4, which is another means for changing the air conditioning capacity. At this time, the operation of the control means 20 is almost the same as that of FIG. When adjusting the opening degree of the expansion device 4, for example, by increasing the opening degree of the expansion device 4 and increasing the flow rate of the refrigerant, the air conditioning capacity can be increased. Further, by reducing the opening degree of the expansion device 4 and increasing the supercooling degree to increase the operating pressure, the refrigerant latent heat can be increased to increase the air conditioning capacity. Whether to increase or decrease the opening degree of the expansion device 4 may be made variable depending on the driving situation at that time. If the condensing temperature detected by the condensing temperature detecting device 6 is higher than a predetermined set value in the determination in ST13, the capability control coefficient a indicating the opening adjustment amount increasing rate of the expansion device 4 in ST14.
Set. Also in this case, the rate of increase or decrease in the degree of opening of the expansion device 4 is changed according to the type of the refrigerant. Hereinafter, a case where the opening degree of the expansion device 4 is increased will be described. For example, as the capacity control coefficient a in the case of the conventional R22 refrigerant, for the opening degree increase rate a1 of the expansion device 4 = 1.0, R41
In the case of the 0A refrigerant, since the latent heat of the refrigerant at the time of the high condensation temperature is small, the opening degree increase ratio a2 = 1.2 is set to be larger than that of the R22 refrigerant. Also, R410B refrigerant (R32 / R125, 45/55) in which the ratio of R125 is higher than that of R410A refrigerant.
wt%), the opening increase ratio a3 =
1.25 is set to be larger than R410A refrigerant.
【0031】そして、ST15で空調能力変化手段であ
る絞り装置4の開度の設定値を演算する。即ち、現在の
開度の能力制御係数倍(a倍)を演算し、ST16で開
度がこの値になるように制御信号s4を出力して絞り装
置4の開度を制御する。本実施の形態ではR410A冷
媒を用いているため、ST14ではa=1.2が設定さ
れ、N’=1.2Nとして絞り装置4の開度がN’、即
ち2割増加するように制御すると、冷媒回路の冷媒流量
が増加し、これにつれてST17で空調能力が増加す
る。このように、冷媒の種類の物性上、冷媒潜熱が低下
しても、絞り装置4の開度をその低下分に応じて調整す
ることにより、冷房/暖房運転時の空調能力を維持する
ことができる。Then, in ST15, a set value of the opening degree of the expansion device 4, which is the air conditioning capacity changing means, is calculated. That is, the capacity control coefficient times (a times) of the current opening is calculated, and the control signal s4 is output so that the opening becomes this value in ST16 to control the opening of the expansion device 4. In this embodiment, since the R410A refrigerant is used, a = 1.2 is set in ST14, and control is performed so that the opening degree of the expansion device 4 is increased by N ′, that is, by 20% by setting N ′ = 1.2N. Then, the flow rate of the refrigerant in the refrigerant circuit increases, and accordingly, the air conditioning capacity increases in ST17. Thus, even if the latent heat of the refrigerant is reduced due to the physical properties of the type of the refrigerant, the air-conditioning capacity during the cooling / heating operation can be maintained by adjusting the opening of the expansion device 4 in accordance with the amount of the reduction. it can.
【0032】また、上記では、室内熱交換器5での風
量,室外熱交換器3での風量,圧縮機1の回転数,絞り
装置4の開度をそれぞれ増加させる場合について述べ
た。ところが冷媒の種類によっては、室内熱交換器5で
の風量,室外熱交換器3での風量,圧縮機1の回転数,
絞り装置4の開度をそれぞれ減少させて空調能力を調整
してもよい。ここでは、R22冷媒の場合にa=1.0
に設定しており、R22冷媒よりも冷媒潜熱の大きい冷
媒では、能力制御係数a<1.0として設定すればよ
い。このように、能力制御係数aに設定する数値だけ
で、簡単にかつ任意に冷媒の種類の物性を考慮して空調
能力を調整することができる。In the above description, the case where the air flow in the indoor heat exchanger 5, the air flow in the outdoor heat exchanger 3, the rotation speed of the compressor 1, and the opening of the expansion device 4 are increased. However, depending on the type of refrigerant, the amount of air in the indoor heat exchanger 5, the amount of air in the outdoor heat exchanger 3, the number of revolutions of the compressor 1,
The air conditioning capacity may be adjusted by decreasing the opening degree of the expansion device 4. Here, in the case of the R22 refrigerant, a = 1.0
For a refrigerant having a refrigerant latent heat greater than that of the R22 refrigerant, the capacity control coefficient a <1.0 may be set. As described above, the air conditioning capacity can be easily and arbitrarily adjusted in consideration of the physical properties of the type of the refrigerant only by the numerical value set for the capacity control coefficient a.
【0033】また、上記では、空調能力を変化させる制
御対象として、送風機7,8の送風量や圧縮機1の回転
数や絞り装置4の開度のいずれか1つを制御することに
よって、空調能力を制御するように構成したが、いずれ
か複数の制御対象に対して空調能力を制御し、総合して
大幅な空調能力の増大を図ってもよい。図1において制
御手段20は制御信号s1〜s4の全てに制御信号を送
るように構成しているが、これに限るものではなく、制
御信号s1〜s4のいずれか1つまたは複数の制御信号
を送ることが可能なように構成してあればよい。また、
ここで述べた制御手段20では吸込空気温度検知装置1
5の検知値を使っていないので、入力信号c4は特に必
要ない。In the above description, the air conditioning capacity is changed by controlling any one of the blowers 7 and 8, the rotation speed of the compressor 1, and the opening degree of the expansion device 4, thereby controlling the air conditioning. Although the capacity is controlled, the air conditioning capacity may be controlled for any of a plurality of control targets, and the air conditioning capacity may be significantly increased as a whole. In FIG. 1, the control means 20 is configured to send a control signal to all of the control signals s1 to s4. However, the present invention is not limited to this, and one or more control signals of the control signals s1 to s4 are transmitted. What is necessary is just to be comprised so that transmission is possible. Also,
In the control means 20 described here, the suction air temperature detecting device 1
Since the detection value of 5 is not used, the input signal c4 is not particularly necessary.
【0034】また、本実施の形態によれば、基本的な冷
媒回路を構成する機器は従来と同じものを流用でき、こ
れに凝縮温度または凝縮温度に相当する値を検知する凝
縮温度検知装置6と制御手段20を備え、凝縮温度検知
装置6の検知値を制御手段20に入力し、冷媒の種類と
検知値に応じて制御対象機器を制御する。このため、機
器仕様の大幅な変更がなく、冷媒の変更に容易にかつ安
価に対応できる。特に、一般に凝縮温度検知装置6であ
る温度センサは、圧力検知手段である圧力センサなどよ
り安価なため、従来、凝縮温度検知装置を備えていない
空気調和機でも大幅なコスト増がなく導入できる。Further, according to the present embodiment, the same equipment as that of the conventional one can be used as a device constituting a basic refrigerant circuit, and a condensing temperature detecting device 6 for detecting a condensing temperature or a value corresponding to the condensing temperature. And a control means 20 for inputting the detected value of the condensation temperature detecting device 6 to the control means 20, and controlling the equipment to be controlled in accordance with the type of the refrigerant and the detected value. For this reason, there is no significant change in the equipment specifications, and it is possible to easily and inexpensively respond to the change of the refrigerant. In particular, since the temperature sensor, which is generally the condensing temperature detecting device 6, is less expensive than the pressure sensor as the pressure detecting means, an air conditioner which does not conventionally include a condensing temperature detecting device can be introduced without significant cost increase.
【0035】利用する冷媒の種類は、地球環境保全の
点、扱いやすさ、エネルギー効率、価格などから選択さ
れるが、将来的に新しいものが導入される可能性も高
い。このため、冷媒に対して汎用性を持たせることによ
り、冷媒の変更に速やかに対応できる空気調和機を得る
ことができる。例えば、異なる物性の複数の種類の冷媒
を、その装置構成を変更することなく使用することがで
き、冷媒の変更や追加に際しては、制御手段で記憶して
いる制御ゲインを示す能力制御係数の表を変更または追
加するだけで対応できる。特に、能力制御係数aを冷媒
の種類で表として記憶しており、冷媒の種類の追加や係
数値の変更も容易である。なお、この表は、冷媒の種類
と能力制御係数が1対1に対応できればどのような順に
並んでいてもよい。冷媒としてここではR32とR12
5の混合冷媒を使用しており、オゾン層破壊係数の0が
ある冷媒を用い、その冷媒物性上、冷媒潜熱が低くなる
ことによる空調能力低下を防止できる。このため、地球
環境保全の点で好ましい空気調和機が得られる。The type of the refrigerant to be used is selected from the viewpoints of global environmental protection, ease of handling, energy efficiency, price, and the like, but there is a high possibility that a new refrigerant will be introduced in the future. For this reason, by giving the versatility to the refrigerant, it is possible to obtain an air conditioner that can quickly respond to the change of the refrigerant. For example, a plurality of types of refrigerants having different physical properties can be used without changing the device configuration. When changing or adding a refrigerant, a table of a capacity control coefficient indicating a control gain stored in the control unit is used. Can be dealt with simply by changing or adding. In particular, the capacity control coefficient a is stored as a table with the type of refrigerant, and it is easy to add the type of refrigerant and change the coefficient value. This table may be arranged in any order as long as the type of the refrigerant and the capacity control coefficient can correspond one-to-one. Here, R32 and R12 are used as refrigerants.
A refrigerant having a mixed refrigerant of 5 and having an ozone layer depletion potential of 0 is used. Due to the physical properties of the refrigerant, it is possible to prevent a decrease in air conditioning capacity due to a decrease in refrigerant latent heat. For this reason, an air conditioner that is preferable in terms of global environmental protection can be obtained.
【0036】また、上記では、室内熱交換器5,室外熱
交換器3での風量の制御を、室内送風機7,室外送風機
8の送風量を制御することにより行っているが、室内熱
交換器5,室外熱交換器3が自然対流式などの場合には
室内送風機7,室外送風機8がなくてもよい。この場合
には、例えばダクトの開口の制御によって室内熱交換器
5,室外熱交換器3での風量を制御できる。In the above description, the air flow in the indoor heat exchanger 5 and the outdoor heat exchanger 3 is controlled by controlling the air flow of the indoor blower 7 and the outdoor blower 8. 5. When the outdoor heat exchanger 3 is a natural convection type or the like, the indoor blower 7 and the outdoor blower 8 may not be provided. In this case, for example, the air flow in the indoor heat exchanger 5 and the outdoor heat exchanger 3 can be controlled by controlling the opening of the duct.
【0037】実施の形態2.以下、本発明の実施の形態
2について説明する。図3は本実施の形態による冷凍空
調装置として例えば空気調和機を示す冷媒回路図であ
る。図1と同一符号は同一または相当部分を示す。図3
は冷房運転の場合の冷媒回路図を示しており、暖房運転
では四方弁2の接続を切換える。9は、凝縮器側の冷媒
状態検知手段で、ここでは凝縮圧力または凝縮圧力に相
当する値を検知する手段であり、例えば凝縮器となる室
外熱交換器3に付随した凝縮圧力検知装置である。ま
た、21は制御手段である。Embodiment 2 Hereinafter, Embodiment 2 of the present invention will be described. FIG. 3 is a refrigerant circuit diagram illustrating, for example, an air conditioner as the refrigeration / air-conditioning apparatus according to the present embodiment. 1 denote the same or corresponding parts. FIG.
Shows a refrigerant circuit diagram in the case of the cooling operation, and switches the connection of the four-way valve 2 in the heating operation. Reference numeral 9 denotes a refrigerant state detecting means on the condenser side, which is a means for detecting a condensing pressure or a value corresponding to the condensing pressure, and is, for example, a condensing pressure detecting device attached to the outdoor heat exchanger 3 serving as a condenser. . Reference numeral 21 denotes control means.
【0038】制御手段21は、凝縮圧力検知装置9で検
知した凝縮圧力または凝縮圧力に相当する値C2を入力
し、この値に基づく制御信号s1〜s4のいずれか1つ
または複数をそれぞれの冷凍空調能力変化手段に出力す
る。また、冷凍空調能力変化手段は、冷媒回路を構成す
る構成機器の動作を変化させて冷凍空調能力を変化させ
るものである。本実施の形態は冷凍空調装置の一例とし
て空気調和機について説明したものであり、冷凍装置に
ついての記述を省き、空調能力についてのみ説明する。
空調能力変化手段としては、実施の形態1と同様であ
り、例えば、室内送風機8の送風量を変化させて、室内
熱交換器5での熱交換効率を向上させる。また、室外送
風機7の送風量を変化させて、室外熱交換器3での熱交
換効率を向上させる。また、圧縮機1の回転数を高くし
て冷媒流量を増加する。また、絞り装置4の開度を調整
する。The control means 21 inputs the condensing pressure detected by the condensing pressure detecting device 9 or a value C2 corresponding to the condensing pressure, and outputs one or more of the control signals s1 to s4 based on this value to the respective refrigeration. Output to the air conditioning capacity changing means. The refrigeration / air-conditioning capacity changing means changes the operation of the components constituting the refrigerant circuit to change the refrigeration / air-conditioning capacity. In the present embodiment, an air conditioner has been described as an example of a refrigeration / air-conditioning apparatus, and the description of the refrigeration apparatus will be omitted, and only the air-conditioning capacity will be described.
The air-conditioning capacity changing means is the same as that of the first embodiment. For example, the air-blowing amount of the indoor blower 8 is changed to improve the heat exchange efficiency in the indoor heat exchanger 5. Further, the amount of air blown by the outdoor blower 7 is changed to improve the heat exchange efficiency in the outdoor heat exchanger 3. In addition, the rotation speed of the compressor 1 is increased to increase the refrigerant flow rate. Further, the opening degree of the expansion device 4 is adjusted.
【0039】このような構成の空気調和機の動作は、実
施の形態1と同様であり、冷房運転では室外熱交換器3
を凝縮器,室内熱交換器5を蒸発器として動作させ、室
外送風機7と室内送風機8で室外または室内の空気を取
り込むことにより、室外または室内の空気と熱交換す
る。また、冷房運転と暖房運転の冷媒流れ方向の切換え
は四方弁2で行い、暖房運転時には室外熱交換器3を蒸
発器として動作させ、室内熱交換器5を凝縮器として動
作させる。冷房専用の空気調和機では四方弁2はなくて
もよい。The operation of the air conditioner having such a configuration is the same as that of the first embodiment.
Is operated as a condenser and the indoor heat exchanger 5 as an evaporator, and the outdoor blower 7 and the indoor blower 8 take in outdoor or indoor air to exchange heat with outdoor or indoor air. Switching of the refrigerant flow direction between the cooling operation and the heating operation is performed by the four-way valve 2. During the heating operation, the outdoor heat exchanger 3 is operated as an evaporator, and the indoor heat exchanger 5 is operated as a condenser. The four-way valve 2 may not be provided in an air conditioner dedicated to cooling.
【0040】制御手段21の制御手順は実施の形態1に
おける図2と同様である。ただし、本実施の形態では、
ST12で凝縮圧力検知装置9によって凝縮圧力を検知
し、この検知値が入力信号c2として制御手段21に入
力される。そして、ST13で、凝縮圧力の検知値が予
め設定してある所定の設定値、例えば3.5MPaより
大きい凝縮圧力であるかどうか判断する。検知値が設定
値以下の場合には、ST18で通常の運転制御を行う。The control procedure of the control means 21 is the same as that of the first embodiment shown in FIG. However, in this embodiment,
In ST12, the condensing pressure is detected by the condensing pressure detecting device 9, and the detected value is input to the control means 21 as an input signal c2. Then, in ST13, it is determined whether or not the detected value of the condensing pressure is a condensing pressure larger than a predetermined set value set in advance, for example, 3.5 MPa. If the detected value is equal to or less than the set value, normal operation control is performed in ST18.
【0041】ここで、冷媒としてR410Aを用いてい
るので、その冷媒物性上、冷房運転において、凝縮器側
空気温度即ち外気温度が高くなると、冷媒の凝縮温度ま
たは凝縮圧力が上昇する。これにつれて冷媒潜熱は低下
し熱交換能力が低下する。ST13における設定値は、
冷媒の凝縮温度または凝縮圧力の上昇によって熱交換能
力が低下したことに対し、空調能力を増加させるように
制御を開始する時の凝縮圧力である。凝縮圧力が3.5
MPaでR410Aの冷媒潜熱はR22冷媒の80%程
度になることに基づき、ここでは、R410A冷媒の時
の凝縮圧力の設定値は3.5MPaとし、3.5MPa
以下の時には通常の運転制御を行うとする。ただし、も
っと応答性のよい制御を行いたい場合には、冷媒潜熱が
R22冷媒の90%になった時の凝縮圧力を設定値とす
るなど、空調能力増加の制御開始となる凝縮圧力の設定
値を3.5MPaよりも低くしておくとよい。Here, since R410A is used as a refrigerant, when the air temperature on the condenser side, that is, the outside air temperature increases in the cooling operation, the condensation temperature or the condensation pressure of the refrigerant increases due to the physical properties of the refrigerant. With this, the latent heat of the refrigerant decreases and the heat exchange capacity decreases. The set value in ST13 is
This is the condensing pressure when control is started to increase the air-conditioning capacity in response to the decrease in the heat exchange capacity due to the increase in the condensing temperature or the condensing pressure of the refrigerant. The condensing pressure is 3.5
Based on the fact that the refrigerant latent heat of R410A is about 80% of the R22 refrigerant in MPa, the set value of the condensation pressure for the R410A refrigerant is 3.5 MPa and 3.5 MPa.
In the following cases, normal operation control is performed. However, if a more responsive control is desired, the set value of the condensing pressure at which the control of the increase in the air conditioning capacity is started, such as setting the condensing pressure when the refrigerant latent heat reaches 90% of the R22 refrigerant. Is preferably lower than 3.5 MPa.
【0042】ST13の判断で凝縮圧力の検知値が設定
値よりも大きい場合には、ST14〜ST17で冷媒の
種類に応じた能力制御係数aを設定して空調能力変化手
段に制御信号s1〜s4のいずれか1つまたは複数を出
力して制御する。If the detected value of the condensing pressure is larger than the set value in the judgment of ST13, a capacity control coefficient a corresponding to the type of the refrigerant is set in ST14 to ST17, and the control signals s1 to s4 are sent to the air conditioning capacity changing means. Is output and controlled.
【0043】空調能力変化手段としては、実施の形態1
と同様、蒸発側熱交換器での熱交換量を増加する,凝縮
側熱交換器での熱交換量を増加する,冷媒回路の冷媒の
流量を変化させる,絞り装置4の開度を変化させる,な
どである。ここでは例えば室内送風機8の送風量を増加
し、蒸発器となる室内熱交換器5での風量を増加して熱
交換能力を高め、空調能力を増加させる。As the air-conditioning capacity changing means, the first embodiment
Similarly to the above, the amount of heat exchange in the evaporation side heat exchanger is increased, the amount of heat exchange in the condensation side heat exchanger is increased, the flow rate of the refrigerant in the refrigerant circuit is changed, and the opening degree of the expansion device 4 is changed. , Etc. Here, for example, the amount of air blown by the indoor blower 8 is increased, and the amount of air blown by the indoor heat exchanger 5 serving as an evaporator is increased to increase the heat exchange capacity and increase the air conditioning capacity.
【0044】また、ST14における制御値の現在値に
対する増加割合を表す能力制御係数aも実施の形態1と
同様、冷媒の種類に応じて設定する。この時、冷媒の種
類の物性上、冷媒潜熱の低下量に基づいて設定するの
で、冷媒潜熱が低下する分を補うように空調能力を増加
できる。例えば従来のR22冷媒の場合に能力制御係数
aをa1=1.0とし、R410A冷媒の場合は高凝縮
圧力時の冷媒潜熱が小さいため、能力制御係数aをR2
2冷媒より大きくし(a2=1.2)、R410Aより
R125の割合が多いR410Bでは、能力制御係数a
をR410Aより大きくする(a3=1.25)。Further, the capacity control coefficient a indicating the rate of increase of the control value with respect to the current value in ST14 is set according to the type of the refrigerant similarly to the first embodiment. At this time, since the refrigerant is set based on the amount of decrease in the latent heat of the refrigerant due to the physical properties of the type of the refrigerant, the air conditioning capacity can be increased so as to compensate for the decrease in the latent heat of the refrigerant. For example, in the case of the conventional R22 refrigerant, the capacity control coefficient a is set to a1 = 1.0, and in the case of the R410A refrigerant, the refrigerant latent heat at the high condensing pressure is small.
In the case of R410B in which the ratio of R125 is larger than that of R410A, the capacity control coefficient a
Is larger than R410A (a3 = 1.25).
【0045】また、実施の形態1と同様に、凝縮圧力検
知装置9が所定の設定値より大きい凝縮圧力を検知した
場合、室外熱交換器3での風量を増加して熱交換能力を
高め、空調能力を増加してもよい。凝縮器となる室外熱
交換器3の熱交換能力を上げることにより、凝縮圧力が
低下し冷媒潜熱は大きくなるので、効率も向上させるこ
とができる。As in the first embodiment, when the condensing pressure detecting device 9 detects a condensing pressure higher than a predetermined set value, the air volume in the outdoor heat exchanger 3 is increased to increase the heat exchange capacity. The air conditioning capacity may be increased. By increasing the heat exchange capacity of the outdoor heat exchanger 3 serving as a condenser, the condensing pressure decreases and the latent heat of the refrigerant increases, so that the efficiency can be improved.
【0046】また、実施の形態1と同様に、凝縮圧力検
知装置9が所定の設定値より大きい凝縮圧力を検知した
場合、圧縮機1の回転数を高めて、冷媒流量を増加する
ことにより、空調能力を増加してもよい。As in the first embodiment, when the condensing pressure detecting device 9 detects a condensing pressure higher than a predetermined set value, the rotational speed of the compressor 1 is increased to increase the refrigerant flow rate. The air conditioning capacity may be increased.
【0047】また、実施の形態1と同様に、凝縮圧力検
知装置9が所定の設定値より大きい凝縮圧力を検知した
場合、絞り装置4の開度調整により、冷媒流量を増加す
る、または過冷却度を増加して動作圧力を増加すること
により、空調能力を増加してもよい。As in the first embodiment, when the condensing pressure detecting device 9 detects a condensing pressure higher than a predetermined set value, the opening degree of the expansion device 4 is adjusted to increase the refrigerant flow rate or supercool. By increasing the operating pressure by increasing the degree, the air conditioning capacity may be increased.
【0048】以上のように、本実施の形態による空気調
和機では、例えば外気温度が高くなった場合などの凝縮
圧力が上昇した時、冷媒物性上冷媒潜熱が小さくなるよ
うなR32とR125の混合冷媒を用いた場合でも、空
調能力が低下するのを防ぐことができる。また、従来か
ら凝縮圧力検知装置が装備されている空気調和機では、
コスト増がなく導入できる。また凝縮圧力検知装置を用
いているので、凝縮温度より精度よく状態を検知でき
る。加えて、制御手段21で冷媒の種類に応じた設定値
を持つだけで複数の冷媒の使用を可能としており、機器
仕様の大幅な変更がなく安価に新たな冷媒を導入でき
る。As described above, in the air conditioner according to the present embodiment, when the condensing pressure rises, for example, when the outside air temperature rises, the mixing of R32 and R125 reduces the refrigerant latent heat due to the physical properties of the refrigerant. Even when a refrigerant is used, it is possible to prevent a decrease in air conditioning capacity. In addition, in air conditioners conventionally equipped with a condensation pressure detection device,
Can be introduced without increasing costs. Further, since the condensing pressure detecting device is used, the state can be detected more accurately than the condensing temperature. In addition, a plurality of refrigerants can be used only by having a set value corresponding to the type of the refrigerant in the control means 21, and a new refrigerant can be introduced at a low cost without a significant change in the equipment specifications.
【0049】実施の形態3.以下、本発明の実施の形態
3について説明する。図4は本実施の形態3による冷凍
空調装置として例えば空気調和機を示す冷媒回路図であ
る。図1と同一符号は同一または相当部分を示す。これ
は冷房運転の場合の冷媒回路図を示しており、暖房運転
では四方弁2の接続を切換える。10は、凝縮器側の冷
媒状態検知手段で、本実施の形態では凝縮器側空気温度
または凝縮器側空気温度に相当する値を検知する手段で
ある。冷房運転の場合には室外熱交換器3が凝縮器とな
るため、ここでは例えば外気温度検知装置であり、具体
的には室外送風機7の吸込空気温度や室外熱交換器3に
設置した温度サーミスタの値で検知できる。また、22
は制御手段である。Embodiment 3 Hereinafter, Embodiment 3 of the present invention will be described. FIG. 4 is a refrigerant circuit diagram showing, for example, an air conditioner as a refrigeration / air-conditioning apparatus according to the third embodiment. 1 denote the same or corresponding parts. This shows a refrigerant circuit diagram in the case of the cooling operation, and switches the connection of the four-way valve 2 in the heating operation. Reference numeral 10 denotes a condenser-side refrigerant state detecting unit, which in the present embodiment detects a condenser-side air temperature or a value corresponding to the condenser-side air temperature. In the cooling operation, the outdoor heat exchanger 3 serves as a condenser. Therefore, the outdoor heat exchanger 3 is, for example, an outside air temperature detection device. Specifically, the temperature of the intake air of the outdoor blower 7 and the temperature thermistor installed in the outdoor heat exchanger 3 Can be detected by the value of. Also, 22
Is control means.
【0050】制御手段22は、外気温度検知装置10で
検知した外気温度または外気温度に相当する値C3を入
力し、この値に基づく制御信号s1〜s4のいずれか1
つまたは複数をそれぞれの空調能力変化手段に出力す
る。また、冷凍空調能力変化手段は、冷媒回路を構成す
る構成機器の動作を変化させて冷凍空調能力を変化させ
るものである。本実施の形態は冷凍空調装置の一例とし
て空気調和機について説明したものであり、冷凍装置に
ついての記述を省き、空調能力についてのみ説明する。
空調能力変化手段としては、実施の形態1と同様であ
り、例えば、室内送風機8の送風量を変化させて、室内
熱交換器5での熱交換効率を向上させる。また、室外送
風機7の送風量を変化させて、室外熱交換器3での熱交
換効率を向上させる。また、圧縮機1の回転数を高くし
て冷媒流量を増加する。また、絞り装置4の開度を調整
する。The control means 22 inputs the outside air temperature detected by the outside air temperature detecting device 10 or a value C3 corresponding to the outside air temperature, and any one of the control signals s1 to s4 based on this value.
One or a plurality of them are output to the respective air conditioning capacity changing means. The refrigeration / air-conditioning capacity changing means changes the operation of the components constituting the refrigerant circuit to change the refrigeration / air-conditioning capacity. In the present embodiment, an air conditioner has been described as an example of a refrigeration / air-conditioning apparatus, and the description of the refrigeration apparatus will be omitted, and only the air-conditioning capacity will be described.
The air-conditioning capacity changing means is the same as that of the first embodiment. For example, the air-blowing amount of the indoor blower 8 is changed to improve the heat exchange efficiency in the indoor heat exchanger 5. Further, the amount of air blown by the outdoor blower 7 is changed to improve the heat exchange efficiency in the outdoor heat exchanger 3. In addition, the rotation speed of the compressor 1 is increased to increase the refrigerant flow rate. Further, the opening degree of the expansion device 4 is adjusted.
【0051】このような構成の空気調和機の動作は、実
施の形態1と同様であり、冷房運転では室外熱交換器3
を凝縮器,室内熱交換器5を蒸発器として動作させ、室
外送風機7と室内送風機8で室外または室内の空気を取
り込むことにより、室外または室内の空気と熱交換す
る。また、冷房運転と暖房運転の冷媒流路の切換えは四
方弁2で行い、暖房運転時には室外熱交換器3を蒸発器
として動作させ、室内熱交換器5を凝縮器として動作さ
せる。冷房専用の空気調和機では四方弁2はなくてもよ
い。The operation of the air conditioner having such a configuration is the same as that of the first embodiment.
Is operated as a condenser and the indoor heat exchanger 5 as an evaporator, and the outdoor blower 7 and the indoor blower 8 take in outdoor or indoor air to exchange heat with outdoor or indoor air. Switching of the refrigerant flow path between the cooling operation and the heating operation is performed by the four-way valve 2. During the heating operation, the outdoor heat exchanger 3 is operated as an evaporator, and the indoor heat exchanger 5 is operated as a condenser. The four-way valve 2 may not be provided in an air conditioner dedicated to cooling.
【0052】制御手段22の制御手順は実施の形態1に
おける図2と同様である。ただし、本実施の形態では、
ST12で外気温度検知装置10によって外気温度を検
知し、この検知値が入力信号c3として制御手段22に
入力される。そして、ST13で、外気温度の検知値が
予め設定してある所定の設定値、例えば43℃より高い
外気温度であるかどうか判断する。検知値が設定値以下
の場合には、ST18で通常の運転制御を行う。The control procedure of the control means 22 is the same as that of the first embodiment shown in FIG. However, in this embodiment,
In ST12, the outside air temperature is detected by the outside air temperature detection device 10, and the detected value is input to the control means 22 as an input signal c3. Then, in ST13, it is determined whether or not the detected value of the outside air temperature is a predetermined set value, for example, an outside air temperature higher than 43 ° C. If the detected value is equal to or less than the set value, normal operation control is performed in ST18.
【0053】ここで、冷媒としてR410Aを用いてい
るので、その冷媒物性上、冷房運転において、凝縮器側
空気温度即ち外気温度が高くなると、冷媒の凝縮温度ま
たは凝縮圧力が上昇する。これにつれて冷媒潜熱は低下
し熱交換能力が低下する。ST13における設定値は、
冷媒の凝縮温度または凝縮圧力の上昇によって熱交換能
力が低下したことに対し、空調能力を増加させるように
制御を開始する時の凝縮器側空気温度である。凝縮器側
空気温度が43℃程度でR410Aの冷媒潜熱はR22
冷媒の80%程度になることに基づき、ここでは、R4
10A冷媒の時の凝縮器側空気温度の設定値は43℃と
し、43℃以下の時には通常の運転制御を行うとする。
ただし、もっと応答性のよい制御を行いたい場合には、
冷媒潜熱がR22冷媒の90%になった時の凝縮器側空
気温度を設定値とするなど、空調能力増加の制御開始と
なる凝縮器側空気温度の設定値を43℃よりも低くして
おくとよい。Here, since R410A is used as the refrigerant, when the air temperature on the condenser side, that is, the outside air temperature increases in the cooling operation, the condensation temperature or the condensation pressure of the refrigerant increases due to the physical properties of the refrigerant. With this, the latent heat of the refrigerant decreases and the heat exchange capacity decreases. The set value in ST13 is
This is the condenser-side air temperature when control is started to increase the air-conditioning capacity in response to the decrease in the heat exchange capacity due to the increase in the condensation temperature or the condensation pressure of the refrigerant. When the condenser side air temperature is about 43 ° C. and the refrigerant latent heat of R410A is R22
Based on the fact that it is about 80% of the refrigerant, here R4
The set value of the condenser-side air temperature at the time of 10A refrigerant is 43 ° C., and when the temperature is 43 ° C. or less, normal operation control is performed.
However, if you want more responsive control,
The condenser-side air temperature at which the control for increasing the air-conditioning capacity is started is set to be lower than 43 ° C., for example, by setting the condenser-side air temperature when the refrigerant latent heat becomes 90% of the R22 refrigerant as the set value. Good.
【0054】また、冷房運転時に、凝縮器側空気温度即
ち外気温度が高くなって外気温度検知装置10の検知値
が所定の設定値より高い場合には、ST14〜ST17
で冷媒の種類に応じた能力制御係数aを設定し、空調能
力変化手段に制御信号s1〜s4のいずれか1つまたは
複数を出力して制御する。During the cooling operation, when the condenser-side air temperature, that is, the outside air temperature increases and the detection value of the outside air temperature detecting device 10 is higher than a predetermined set value, ST14 to ST17.
Sets the capacity control coefficient a according to the type of the refrigerant, and outputs one or more of the control signals s1 to s4 to the air conditioning capacity changing means for control.
【0055】空調能力変化手段としては、実施の形態1
と同様、蒸発側熱交換器での熱交換量を増加する,凝縮
側熱交換器での熱交換量を増加する,冷媒回路の冷媒の
流量を変化させる,絞り装置4の開度を変化させる,な
どである。ここでは例えば室内送風機8の送風量を増加
し、蒸発器となる室内熱交換器5での風量を増加して熱
交換能力を高め、空調能力を増加させる。As the air-conditioning capacity changing means, the first embodiment
Similarly to the above, the amount of heat exchange in the evaporation side heat exchanger is increased, the amount of heat exchange in the condensation side heat exchanger is increased, the flow rate of the refrigerant in the refrigerant circuit is changed, and the opening degree of the expansion device 4 is changed. , Etc. Here, for example, the amount of air blown by the indoor blower 8 is increased, and the amount of air blown by the indoor heat exchanger 5 serving as an evaporator is increased to increase the heat exchange capacity and increase the air conditioning capacity.
【0056】また、ST14における制御値の現在値に
対する増加割合を表す能力制御係数aも実施の形態1と
同様、冷媒の種類に応じて設定する。この時、冷媒の種
類の物性上、冷媒潜熱の低下量に基づいて設定するの
で、冷媒潜熱が低下する分を補うように空調能力を増加
できる。例えば従来のR22冷媒の場合に能力制御係数
aをa1=1.0とし、R410A冷媒の場合は高外気
温度の時には凝縮温度が高くなり冷媒潜熱が小さいた
め、能力制御係数aをR22冷媒より大きくし(a2=
1.2)、R410AよりR125の割合が多いR41
0Bでは、能力制御係数aをR410Aより大きくする
(a3=1.25)。Also, the capacity control coefficient a indicating the rate of increase of the control value in ST14 with respect to the current value is set according to the type of refrigerant, as in the first embodiment. At this time, since the refrigerant is set based on the amount of decrease in the latent heat of the refrigerant due to the physical properties of the type of the refrigerant, the air conditioning capacity can be increased so as to compensate for the decrease in the latent heat of the refrigerant. For example, in the case of the conventional R22 refrigerant, the capacity control coefficient a is set to a1 = 1.0, and in the case of the R410A refrigerant, the condensing temperature is high and the refrigerant latent heat is small at a high outside air temperature, so that the capacity control coefficient a is larger than that of the R22 refrigerant. (A2 =
1.2), R41 having a higher proportion of R125 than R410A
At 0B, the capacity control coefficient a is made larger than R410A (a3 = 1.25).
【0057】また、実施の形態1と同様に、外気温度検
知装置10が所定の設定値より高い外気温度を検知した
場合、室外熱交換器3での風量を増加して熱交換能力を
高め、空調能力を増加してもよい。凝縮器となる室外熱
交換器3の熱交換能力を上げることにより、凝縮圧力が
低下し冷媒潜熱は大きくなるので、効率も向上させるこ
とができる。Further, similarly to the first embodiment, when the outside air temperature detecting device 10 detects an outside air temperature higher than a predetermined set value, the air flow in the outdoor heat exchanger 3 is increased to increase the heat exchange capacity. The air conditioning capacity may be increased. By increasing the heat exchange capacity of the outdoor heat exchanger 3 serving as a condenser, the condensing pressure decreases and the latent heat of the refrigerant increases, so that the efficiency can be improved.
【0058】また、実施の形態1と同様に、外気温度検
知装置10が所定の設定値より高い外気温度を検知した
場合、圧縮機1の回転数を高めて、冷媒流量を増加する
ことにより、空調能力を増加してもよい。As in the first embodiment, when the outside air temperature detecting device 10 detects an outside air temperature higher than a predetermined set value, the rotation speed of the compressor 1 is increased to increase the refrigerant flow rate. The air conditioning capacity may be increased.
【0059】また、実施の形態1と同様に、外気温度検
知装置10が所定の設定値より高い外気温度を検知した
場合、絞り装置4の開度調整により、冷媒流量を増加す
る、または過冷却度を増加して冷媒潜熱を増加すること
により、空調能力を増加してもよい。Further, similarly to the first embodiment, when the outside air temperature detecting device 10 detects an outside air temperature higher than a predetermined set value, the opening degree of the expansion device 4 is adjusted to increase the refrigerant flow rate or supercool. The air conditioning capacity may be increased by increasing the temperature and increasing the refrigerant latent heat.
【0060】以上のように、本実施の形態による空気調
和機では、例えば冷房運転にて凝縮器側空気温度が高く
なった場合などの凝縮圧力が上昇した時、冷媒物性上冷
媒潜熱が小さくなるようなR32とR125の混合冷媒
を用いた場合でも、空調能力が低下するのを防ぐことが
できる。また、従来から外気温度検知装置10が装備さ
れている空気調和機では、コスト増がなく導入できる。
また、外気温度検知装置10は圧力検知装置などより安
価であり、新たに導入する場合にも、安価である。加え
て、制御手段22で冷媒の種類に応じた設定値を持つだ
けで複数の種類の冷媒を使用可能としており、機器仕様
の大幅な変更がなく安価に新たな冷媒を導入できる。As described above, in the air conditioner according to the present embodiment, when the condensing pressure rises, for example, when the air temperature on the condenser side increases in the cooling operation, the refrigerant latent heat decreases due to the physical properties of the refrigerant. Even when such a refrigerant mixture of R32 and R125 is used, it is possible to prevent the air-conditioning capacity from decreasing. Further, an air conditioner equipped with the outside air temperature detecting device 10 can be introduced without increasing the cost.
Further, the outside air temperature detection device 10 is less expensive than a pressure detection device or the like, and is also inexpensive when newly introduced. In addition, a plurality of types of refrigerants can be used simply by having a set value corresponding to the type of refrigerant in the control means 22, and a new refrigerant can be introduced at a low cost without a significant change in equipment specifications.
【0061】なお、以上に述べた実施形態1〜実施の形
態3では主に冷房運転の場合について述べたが、四方弁
2で冷媒流路を切換えて室内熱交換器5を凝縮器、室外
熱交換器3を蒸発器とすれば、空気調和機の暖房運転に
おいても、冷房運転と同様の効果が得られる。Although the cooling operation is mainly described in the first to third embodiments, the indoor heat exchanger 5 is switched by the four-way valve 2 to switch the indoor heat exchanger 5 to the condenser and the outdoor heat. If the exchanger 3 is an evaporator, the same effect as the cooling operation can be obtained in the heating operation of the air conditioner.
【0062】また、実施の形態1〜実施の形態3のそれ
ぞれにおいて、室外熱交換器3は冷媒回路を循環する冷
媒と室外送風器7によって取り込まれる外気とを熱交換
する構成であるが、外気以外の熱交換流体と熱交換する
ように構成してもよい。例えば水やブラインなどの熱交
換流体と熱交換するように構成すれば、室外熱交換器3
において冷媒の動作状態が外気温度に影響されることが
ない。このため、冷媒の種類による冷媒物性上、冷媒潜
熱が低下するのをさらに防止でき、空調能力の低下を防
ぐことができる。In each of the first to third embodiments, the outdoor heat exchanger 3 is configured to exchange heat between the refrigerant circulating in the refrigerant circuit and the outside air taken in by the outdoor blower 7. It may be configured to exchange heat with another heat exchange fluid. For example, if it is configured to exchange heat with a heat exchange fluid such as water or brine, the outdoor heat exchanger 3
In this case, the operation state of the refrigerant is not affected by the outside air temperature. Therefore, it is possible to further prevent a decrease in the latent heat of the refrigerant due to the physical properties of the refrigerant depending on the type of the refrigerant, and to prevent a decrease in the air conditioning capacity.
【0063】実施の形態4.以下、本発明の実施の形態
4による冷凍空調装置として例えば空気調和機に係わる
制御手段について説明する。本実施の形態では実施の形
態1における図2に示した制御手順とは別の制御手順に
ついて説明する。本実施の形態は冷凍空調装置の一例と
して空気調和機について説明したものであり、冷凍装置
についての記述を省き、空調能力についてのみ説明す
る。なお本実施の形態における空気調和機の構成は、実
施の形態1〜実施の形態3のいずれでもよい。Embodiment 4 Hereinafter, control means relating to, for example, an air conditioner will be described as a refrigeration / air-conditioning apparatus according to Embodiment 4 of the present invention. In the present embodiment, a control procedure different from the control procedure shown in FIG. 2 in the first embodiment will be described. In the present embodiment, an air conditioner has been described as an example of a refrigeration / air-conditioning apparatus, and the description of the refrigeration apparatus will be omitted, and only the air-conditioning capacity will be described. The configuration of the air conditioner in the present embodiment may be any of Embodiments 1 to 3.
【0064】図5は本実施の形態に係わる制御手段の制
御手順を示すフローチャートである。ここで、空調能力
変化手段としては、実施の形態1〜実施の形態3と同様
であり、1)凝縮側熱交換器での熱交換量を変化させ
る、2)蒸発側熱交換器での熱交換量を変化させる、
3)冷媒回路を循環する冷媒の流量を変化させる、4)
絞り装置4の開度を変化させるなどである。これらを実
現するには、例えば、室内熱交換器5での風量を変化さ
せて熱交換効率を向上させる。また、室外熱交換器3で
の風量を変化させて熱交換効率を向上させる。また、圧
縮機1の回転数を高くして冷媒流量を増加する。また、
絞り装置4の開度を調整する。まず、ST21でこの空
気調和機で使用している冷媒の種類、例えばR22冷
媒,R410A冷媒,R410B冷媒などを入力する。
ST22では、冷媒の凝縮温度または凝縮圧力または凝
縮器側空気温度のいずれかを検知する。ST23で冷媒
の種類に応じて設定値bを設定する。この設定値bは冷
媒の種類に対して予め表として記憶しておき、動作時に
冷媒の種類から設定値bの値を知る。使用する冷媒の種
類によって、冷媒の凝縮温度または凝縮圧力または凝縮
器側空気温度などが大きくなると、その冷媒物性上、冷
媒潜熱が低下する場合がある。そこでこの設定値bより
も、冷媒の凝縮温度または凝縮圧力または外気温度など
の検知値がこの設定値bよりも大きくなったら、空調能
力を増加させるように空調能力変化手段を制御する。FIG. 5 is a flowchart showing a control procedure of the control means according to the present embodiment. Here, the air-conditioning capacity changing means is the same as in the first to third embodiments, and 1) changes the amount of heat exchange in the condensation-side heat exchanger. 2) Heats in the evaporation-side heat exchanger. Change the exchange amount,
3) changing the flow rate of the refrigerant circulating in the refrigerant circuit; 4)
For example, the opening degree of the expansion device 4 is changed. In order to realize these, for example, the air flow in the indoor heat exchanger 5 is changed to improve the heat exchange efficiency. Further, the heat exchange efficiency is improved by changing the air volume in the outdoor heat exchanger 3. In addition, the rotation speed of the compressor 1 is increased to increase the refrigerant flow rate. Also,
The opening degree of the expansion device 4 is adjusted. First, in ST21, the type of refrigerant used in this air conditioner, for example, R22 refrigerant, R410A refrigerant, R410B refrigerant, etc., is input.
In ST22, either the condensation temperature or the condensation pressure of the refrigerant or the condenser-side air temperature is detected. In ST23, the set value b is set according to the type of the refrigerant. The set value b is stored in advance as a table for the type of refrigerant, and the value of the set value b is known from the type of refrigerant during operation. Depending on the type of the refrigerant used, when the condensation temperature, the condensation pressure, the condenser-side air temperature, etc. of the refrigerant increase, the refrigerant latent heat may decrease due to the physical properties of the refrigerant. Therefore, when a detected value such as the condensing temperature or the condensing pressure of the refrigerant or the outside air temperature becomes larger than the set value b, the air conditioning capacity changing means is controlled so as to increase the air conditioning capacity.
【0065】例えば、凝縮温度を検知する凝縮温度検知
装置を備えた空気調和機の場合、凝縮温度の設定値bと
して、従来のR22冷媒の場合には設定値b1=65℃
とする。これに対して、R410A冷媒の場合は高凝縮
温度時の冷媒潜熱が小さいため、設定値b2=60℃と
して、R22冷媒よりも低い状態で空調能力を増加させ
るように設定する。また、R410A冷媒よりR125
の割合が多いR410B冷媒(R32/R125,45
/55wt%)を用いる場合には、その設定値b3=5
5℃としてR410A冷媒よりもさらに低い状態で空調
能力を増加させるように設定する。For example, in the case of an air conditioner equipped with a condensing temperature detecting device for detecting the condensing temperature, the set value b of the condensing temperature is set to b1 = 65 ° C. in the case of the conventional R22 refrigerant.
And On the other hand, in the case of the R410A refrigerant, since the latent heat of the refrigerant at the time of the high condensation temperature is small, the set value b2 is set to 60 ° C., and the air conditioning capacity is set to be increased at a lower level than the R22 refrigerant. In addition, R410A refrigerant gives R125
R410B refrigerant (R32 / R125, 45
/ 55 wt%), the set value b3 = 5
It is set to increase the air conditioning capacity at 5 ° C. in a state lower than that of the R410A refrigerant.
【0066】ST24では、ST22で検知した値が設
定値bより大きいかどうか判断する。検知値が設定値b
以下の場合には、ST28で通常の運転制御を行う。In ST24, it is determined whether or not the value detected in ST22 is larger than the set value b. Detection value is set value b
In the following cases, normal operation control is performed in ST28.
【0067】ST24の判断で検知値が設定値bよりも
高い場合には、ST25〜ST27で、空調能力変化手
段に制御信号を出力して空調能力を増加させる。このと
きの現在値(N)に対する制御値(N’)の増加割合
は、冷媒の種類によらず、一定である。例えば、ST2
5で空調能力変化手段に出力する制御値を式(2)で演
算し、ST26でこの値になるように制御信号を出力し
て制御対象機器を制御する。 N’=const.・N ・・・(2) ここで、const.:1以上の定数 N :現在の制御対象機器の動作を示す値 N’:空調能力を変化させるための制御対象機器の制御
値 であり、const.としては例えば1.1とする。本
実施の形態ではR410A冷媒を用いているため、例え
ば凝縮温度の場合にはST23ではb=60が設定さ
れ、検知した凝縮温度が60℃よりも高くなったら、空
調能力を増加するように制御する。ここではST25で
N’=1.1Nとして制御値が演算されるので、制御対
象機器の動作が1割程度増加する。これにつれてST2
7で空調能力が増加する。If it is determined in step ST24 that the detected value is higher than the set value b, a control signal is output to the air conditioning capacity changing means in steps ST25 to ST27 to increase the air conditioning capacity. At this time, the rate of increase of the control value (N ′) with respect to the current value (N) is constant regardless of the type of the refrigerant. For example, ST2
In step 5, the control value to be output to the air-conditioning capacity changing means is calculated by equation (2), and in ST26, a control signal is output so as to become this value and the control target device is controlled. N '= const. N (2) where const. N: a value indicating the current operation of the device to be controlled N ': a control value of the device to be controlled for changing the air-conditioning capacity, const. Is, for example, 1.1. In this embodiment, since the R410A refrigerant is used, for example, in the case of the condensing temperature, b = 60 is set in ST23, and if the detected condensing temperature becomes higher than 60 ° C., control is performed so as to increase the air conditioning capacity. I do. Here, the control value is calculated in ST25 with N ′ = 1.1N, so that the operation of the controlled device increases by about 10%. ST2
At 7, the air conditioning capacity increases.
【0068】即ち冷媒の種類に応じて、空調能力を増加
させる基準となる設定値を変え、例えばST25,ST
26で空調能力を1割程度増加する場合には、空調能力
の1割程度の低下を引き起こす時の凝縮温度または凝縮
圧力または凝縮器側空気温度を設定値として設定してお
けばよい。この空調能力の1割程度の低下を引き起こす
時の凝縮温度または凝縮圧力または凝縮器側空気温度
は、冷媒の種類に応じて異なるものである。即ち、空調
能力の増加に関与する設定値を冷媒の種類に応じて変化
させて、空調能力を変化させるように制御するのであ
る。このように制御することにより、冷媒の種類の物性
上、冷媒潜熱が低下しても、空調能力を増加することに
より、冷房/暖房運転時の空調能力を維持することがで
きる。That is, according to the type of the refrigerant, the set value serving as the reference for increasing the air conditioning capacity is changed.
When the air conditioning capacity is increased by about 10% in 26, the condensation temperature, the condensation pressure, or the condenser-side air temperature at which the air conditioning capacity is reduced by about 10% may be set as the set value. The condensing temperature, the condensing pressure, or the condenser-side air temperature at which the air conditioning capacity is reduced by about 10% differs depending on the type of the refrigerant. That is, control is performed so as to change the air conditioning capacity by changing the set value related to the increase in the air conditioning capacity in accordance with the type of the refrigerant. With such control, even if the latent heat of the refrigerant is reduced due to the physical properties of the type of the refrigerant, the air-conditioning capability is increased, so that the air-conditioning capability during the cooling / heating operation can be maintained.
【0069】凝縮温度と凝縮圧力の変化の傾向は互いに
関連があり、また、凝縮温度と凝縮側空気温度の変化の
傾向は互いに関連がある。このため、凝縮温度と凝縮圧
力と凝縮側空気温度のいずれか1つを検知してこの検知
値から凝縮側における冷媒状態を知ることができる。こ
のいずれを用いるかについては場合によるが、一般的に
いえば、圧力センサは温度センサよりも検知値の精度は
よいが高価である。また、凝縮温度検知装置の場合には
その室外熱交換器3内での設置位置で検知値が異なって
くるが、凝縮器側空気温度検知装置は冷媒運転の場合に
は外気温度であり、室外機の側面などに簡単に取り付け
られる。このような各検知装置の長所や短所から選択さ
れる。The tendency of the change of the condensing temperature and the condensing pressure is related to each other, and the tendency of the change of the condensing temperature and the temperature of the condensing side air are related to each other. Therefore, any one of the condensing temperature, the condensing pressure, and the condensing-side air temperature is detected, and the refrigerant state on the condensing side can be known from the detected value. Which one to use depends on the case, but generally speaking, the pressure sensor has higher accuracy of the detection value than the temperature sensor but is more expensive. Further, in the case of the condensing temperature detecting device, the detection value differs depending on the installation position in the outdoor heat exchanger 3, but the condenser side air temperature detecting device has the outside air temperature in the case of the refrigerant operation, and the It can be easily attached to the side of the machine. The choices are made from the advantages and disadvantages of each such detection device.
【0070】また、空調能力変化手段である制御対象機
器によっては、いくら大きな制御値を出力しても、この
制御値に追随して動作できず、限界を有するものもあ
る。このため、本実施の形態では、制御値の方を決めて
おき、この制御値で動作させるタイミングを冷媒の種類
に応じて異なるように設定しているので、応答性がよく
信頼性の高い空気調和機の制御を実現できる。また、さ
らに冷媒の種類に応じて制御ゲインを変化させ、制御値
を変化させてもよい。Further, depending on the device to be controlled as the air conditioning capacity changing means, even if a large control value is output, it cannot operate following the control value and has a limit. For this reason, in the present embodiment, the control value is determined in advance, and the timing for operating with this control value is set to be different depending on the type of the refrigerant, so that the air has high responsiveness and high reliability. Control of the harmony machine can be realized. Further, the control gain may be changed according to the type of the refrigerant to change the control value.
【0071】実施の形態5.以下、本発明の実施の形態
5による冷凍空調装置として例えば空気調和機に係わる
制御手段について説明する。本実施の形態は実施の形態
4と同様、制御手順についての実施の形態である。本実
施の形態は冷凍空調装置の一例として空気調和機につい
て説明したものであり、冷凍装置についての記述を省
き、空調能力についてのみ説明する。なお本実施の形態
における空気調和機の構成は、実施の形態1〜実施の形
態3のいずれでもよい。Embodiment 5 FIG. Hereinafter, control means relating to, for example, an air conditioner will be described as a refrigeration / air-conditioning apparatus according to Embodiment 5 of the present invention. This embodiment is an embodiment of a control procedure as in the fourth embodiment. In the present embodiment, an air conditioner has been described as an example of a refrigeration / air-conditioning apparatus, and the description of the refrigeration apparatus will be omitted, and only the air-conditioning capacity will be described. The configuration of the air conditioner in the present embodiment may be any of Embodiments 1 to 3.
【0072】本実施の形態では、空気調和機が空調能力
検知手段を備え、空調能力検知手段からの検知情報にも
基づいて空調能力を制御するものである。空調能力検知
手段は、例えば、図1,図3,図4に示す吸込空気温度
検知装置15である。この吸込空気温度検知装置15に
よって検知した室内熱交換器5での室内吸込空気温度T
sによって動作中の空調能力と目標空調能力の差を検知
し、より正確な制御を行う。In this embodiment, the air conditioner is provided with an air-conditioning capacity detecting means, and controls the air-conditioning capacity based on detection information from the air-conditioning capacity detecting means. The air conditioning capability detecting means is, for example, the suction air temperature detecting device 15 shown in FIGS. The indoor suction air temperature T in the indoor heat exchanger 5 detected by the suction air temperature detection device 15
The difference between the operating air-conditioning capacity and the target air-conditioning capacity is detected by s, and more accurate control is performed.
【0073】図6は本実施の形態に係わる制御手段の制
御手順を示すフローチャートである。ここで、空調能力
変化手段としては、実施の形態1〜実施の形態3と同様
であり、1)凝縮側熱交換器での熱交換量を変化させ
る、2)蒸発側熱交換器での熱交換量を変化させる、
3)冷媒回路を循環する冷媒の流量を変化させる、4)
絞り装置4の開度を変化させるなどである。これらを実
現するには、例えば、室内熱交換器5での風量を変化さ
せて熱交換効率を向上させる。また、室外熱交換器3で
の風量を変化させて熱交換効率を向上させる。また、圧
縮機1の回転数を高くして冷媒流量を増加する。また、
絞り装置4の開度を調整する。まず、ST31でこの空
気調和機で使用している冷媒の種類、例えばR22冷
媒,R410A冷媒,R410B冷媒などを入力する。
ST32では、吸込空気温度検知装置15によって、室
内熱交換器5での吸込空気温度Tsを検知する。FIG. 6 is a flowchart showing a control procedure of the control means according to the present embodiment. Here, the air-conditioning capacity changing means is the same as in the first to third embodiments, and 1) changes the amount of heat exchange in the condensation-side heat exchanger. 2) Heats in the evaporation-side heat exchanger. Change the exchange amount,
3) changing the flow rate of the refrigerant circulating in the refrigerant circuit; 4)
For example, the opening degree of the expansion device 4 is changed. In order to realize these, for example, the air flow in the indoor heat exchanger 5 is changed to improve the heat exchange efficiency. Further, the heat exchange efficiency is improved by changing the air volume in the outdoor heat exchanger 3. In addition, the rotation speed of the compressor 1 is increased to increase the refrigerant flow rate. Also,
The opening degree of the expansion device 4 is adjusted. First, in ST31, the type of refrigerant used in this air conditioner, for example, R22 refrigerant, R410A refrigerant, R410B refrigerant, etc., is input.
In ST32, the suction air temperature detector 15 detects the suction air temperature Ts in the indoor heat exchanger 5.
【0074】次に、ST33では吸込空気温度の検知値
Tsと設定温度Tの偏差ΔT=T−Tsを演算する。こ
の設定温度Tは、室内熱交換器5で利用者が設定してい
る温度である。ST34で、偏差ΔTに応じて制御対象
機器の動作増加割合である第1能力制御係数dを設定す
る。偏差ΔTが大きければ空調能力が不足しているので
第1能力制御係数d>1.0でその値を大きく設定し
て、空調能力を増加させる。また、偏差ΔTがなければ
空調能力は十分であるので、第1能力制御係数d=1.
0に設定して、空調能力を増減なく、現在の状態を継続
する。ここでは、第1能力制御係数dは偏差の値に対し
て予め表として記憶しておき、動作時に偏差ΔTから第
1能力制御係数dの値を知る。また第1能力制御係数d
をΔTの関数{f(ΔT)}とし、偏差から第1能力制
御係数dの値を演算してもよい。関数の一例として、d
=K・ΔT;K>1のように、比例する式としてもよ
い。Next, in ST33, a deviation ΔT = T−Ts between the detected value Ts of the intake air temperature and the set temperature T is calculated. This set temperature T is a temperature set by the user in the indoor heat exchanger 5. In ST34, a first capability control coefficient d, which is an operation increase rate of the controlled device, is set according to the deviation ΔT. If the deviation ΔT is large, the air-conditioning capacity is insufficient, so that the first capacity control coefficient d> 1.0 is set to a large value to increase the air-conditioning capacity. If there is no deviation ΔT, the air-conditioning capacity is sufficient, so that the first capacity control coefficient d = 1.
By setting to 0, the current state is maintained without increasing or decreasing the air conditioning capacity. Here, the first capability control coefficient d is stored in advance as a table with respect to the value of the deviation, and the value of the first capability control coefficient d is known from the deviation ΔT during operation. Also, the first capacity control coefficient d
Is a function of ΔT {f (ΔT)}, and the value of the first capacity control coefficient d may be calculated from the deviation. As an example of a function, d
= K · ΔT; K> 1 may be a proportional expression.
【0075】次に、ST35で冷媒の凝縮温度または凝
縮圧力または凝縮側空気温度のいずれかを検知する。S
T36で、冷媒の凝縮温度または凝縮圧力または凝縮側
空気温度などの検知値が予め設定してある所定の設定値
よりも大きいかどうか判断する。検知値が設定値以下の
場合には、第2能力制御係数e=1.0を制御対象機器
の動作増加割合として設定する(ST37)。Next, in ST35, either the condensation temperature, the condensation pressure, or the condensation-side air temperature of the refrigerant is detected. S
At T36, it is determined whether or not the detected value such as the condensation temperature or the condensation pressure of the refrigerant or the air temperature on the condensation side is larger than a predetermined value set in advance. If the detected value is equal to or smaller than the set value, the second capability control coefficient e = 1.0 is set as the operation increase rate of the controlled device (ST37).
【0076】ST36の判断で検知値が設定値よりも高
い場合には、ST38で冷媒の種類に応じた第2能力制
御係数eを設定する。この第2能力制御係数eは冷媒の
種類に対して予め表として記憶しておき、動作時に冷媒
の種類から第2能力制御係数eの値を知る。例えば、従
来のR22冷媒の場合の第2能力制御係数e1=1.0
に対して、R410A冷媒の場合は高凝縮温度時の冷媒
潜熱が小さいため、第2能力制御係数e2=1.2とし
てR22冷媒よりも大きくする。また、R410A冷媒
よりR125の割合が多いR410B冷媒(R32/R
125,45/55wt%)を用いる場合には、その第
2能力制御係数e3=1.25としてR410A冷媒よ
りも大きくする。If it is determined in ST36 that the detected value is higher than the set value, a second capacity control coefficient e corresponding to the type of refrigerant is set in ST38. The second capacity control coefficient e is stored in advance as a table for the type of refrigerant, and the value of the second capacity control coefficient e is known from the type of refrigerant during operation. For example, the second capacity control coefficient e1 = 1.0 in the case of the conventional R22 refrigerant
On the other hand, in the case of the R410A refrigerant, since the latent heat of the refrigerant at the time of the high condensation temperature is small, the second capacity control coefficient e2 = 1.2 is set to be larger than the R22 refrigerant. In addition, R410B refrigerant (R32 / R
(125, 45/55 wt%), the second capacity control coefficient e3 is set to e3 = 1.25, which is larger than that of the R410A refrigerant.
【0077】そして、ST39〜ST41で、空調能力
変化手段に制御信号を出力して空調能力を増加させる。
ST39で空調能力変化手段に対する制御値N’を式
(3)で演算し、この値になるように制御信号を出力し
て制御対象機器を制御する。 N’=d・e・N ・・・(3) ここで、 d :室内設定温度と室内吸込室内温度の偏差に応じた
第1能力制御係数 e :冷媒の種類に応じた第2能力制御係数 N :現在の制御対象機器の動作を示す値 N’:空調能力を変化させるための制御対象機器の制御
値 である。即ち制御値N’として現在値よりも(第1能力
制御係数d×第2能力制御係数e)だけ増加するように
空調能力変化手段に制御値を出力する(ST40)と、
これにつれてST41で空調能力が増加する。例えば、
室内吸込空気温度と室内設定温度との偏差△Tが5℃の
ときの能力制御係数dを1.2とし、冷媒としてR41
0Aを使用しており、外気温度が高くなって凝縮温度が
設定値より高くなり、冷媒の種類に応じた第2能力制御
係数eを1.2とした時、空調能力制御手段に出力する
制御値は、制御値N’=1.2×1.2×現在値N=
1.44×Nとなる。Then, in ST39 to ST41, a control signal is output to the air conditioning capacity changing means to increase the air conditioning capacity.
In ST39, the control value N 'for the air conditioning capacity changing means is calculated by the equation (3), and a control signal is output so as to be equal to this value to control the control target device. N ′ = d · e · N (3) where, d: a first capacity control coefficient corresponding to the difference between the indoor set temperature and the indoor suction indoor temperature e: a second capacity control coefficient corresponding to the type of the refrigerant N: a value indicating the current operation of the controlled device N ': a control value of the controlled device for changing the air conditioning capacity. That is, the control value is output to the air-conditioning capacity changing means so as to be increased from the current value by (first capacity control coefficient d × second capacity control coefficient e) as the control value N ′ (ST40).
As a result, the air conditioning capacity increases in ST41. For example,
When the deviation ΔT between the indoor suction air temperature and the indoor set temperature is 5 ° C., the capacity control coefficient d is 1.2, and R41 is used as the refrigerant.
0A is used, and when the outside air temperature increases and the condensing temperature becomes higher than the set value, and the second capacity control coefficient e according to the type of refrigerant is set to 1.2, the control to output to the air conditioning capacity control means. The value is: control value N ′ = 1.2 × 1.2 × current value N =
1.44 × N.
【0078】このように制御値N’は、冷媒の種類から
必要な空調能力増加割合と空調空間の空調達成状態から
必要な空調能力増加割合とで決定されて空調能力を増加
しようとするので、運転状況に的確に対応でき、また、
冷媒の種類の物性上、冷媒潜熱が低下しても、室内熱交
換器5での風量をその低下分に応じて増加することによ
り、冷房/暖房運転時の空調能力を維持することができ
る。また、冷媒の変更に容易にかつ安価に対応できる冷
凍空調装置を得ることができる。As described above, the control value N 'is determined by the required air conditioning capacity increase rate based on the type of refrigerant and the required air conditioning capacity increase rate based on the air conditioning achievement state of the air conditioning space. It can respond accurately to driving conditions,
Due to the physical properties of the type of the refrigerant, even if the latent heat of the refrigerant is reduced, the airflow capacity in the cooling / heating operation can be maintained by increasing the air volume in the indoor heat exchanger 5 in accordance with the decrease. Further, it is possible to obtain a refrigeration / air-conditioning apparatus that can easily and inexpensively respond to the change of the refrigerant.
【0079】また、本実施の形態では、ST36〜ST
38での冷媒の種類の基づく能力制御係数eの設定とし
て、実施の形態1で説明した制御方法と同様の制御方法
を使用したが、実施の形態4における制御方法を用いて
もよい。即ち、図5のST23〜ST25に示したよう
に冷媒の種類によって設定値を変化させ、凝縮側の冷媒
状態の検知値が設定値を越えたときに、予め設定してあ
る定数(const.)を用い、この定数と空調能力に
応じて変化させた第1能力制御係数dを用いて制御値を
演算するように構成してもよい。なお、本実施の形態で
用いた第1、第2能力制御係数d,eは、通常の制御に
おいて、制御ゲインとして取り扱っている。また、上記
では、室内設定温度と室内吸込空気温度との偏差を演算
することによって空調能力を検知しているが、これに凝
縮側空気温度である外気温度を検知してこの外気温度も
含めて空調能力を検知するように構成してもよい。Also, in the present embodiment, ST 36 to ST 36
As the setting of the capacity control coefficient e based on the type of the refrigerant in 38, the same control method as the control method described in the first embodiment is used, but the control method in the fourth embodiment may be used. That is, as shown in ST23 to ST25 in FIG. 5, the set value is changed according to the type of the refrigerant, and when the detected value of the refrigerant state on the condensation side exceeds the set value, a preset constant (const.). And the control value may be calculated using the constant and the first capacity control coefficient d changed according to the air conditioning capacity. The first and second capability control coefficients d and e used in the present embodiment are treated as control gains in normal control. Further, in the above description, the air conditioning capacity is detected by calculating the deviation between the indoor set temperature and the indoor intake air temperature. However, the outside air temperature which is the condensing side air temperature is detected, and this air temperature is included. It may be configured to detect the air conditioning capacity.
【0080】実施の形態6.以下、本発明の実施の形態
6について説明する。本実施の形態は冷凍空調装置の一
例として空気調和機について説明したものであり、冷凍
装置についての記述を省き、空調能力についてのみ説明
する。図7は本実施の形態による空気調和機を示す冷媒
回路図である。図1,図3,図4と同一符号は同一また
は相当部分を示す。図7では冷房運転の場合の冷媒回路
図を示しており、暖房運転では四方弁2の接続を切換え
る。この冷媒回路を循環する冷媒は、例えばR32とR
125の混合冷媒であるR410Aを用いる。図におい
て、11は被熱交換流体の流れ方向、12は被熱交換流
体の温度または流量制御装置であり、ここでは流量制御
装置とする。また、13は被熱交換流体で、例えば20
℃程度の市水である。流量制御装置12は例えばポンプ
の回転数を制御することにより被熱交換流体13の流量
制御を行う。23は制御手段で、冷媒回路を循環する冷
媒の運転状態に基づいて流量制御装置12を制御する。Embodiment 6 FIG. Hereinafter, Embodiment 6 of the present invention will be described. In the present embodiment, an air conditioner has been described as an example of a refrigeration / air-conditioning apparatus, and the description of the refrigeration apparatus will be omitted, and only the air-conditioning capacity will be described. FIG. 7 is a refrigerant circuit diagram illustrating the air conditioner according to the present embodiment. 1, 3 and 4 indicate the same or corresponding parts. FIG. 7 shows a refrigerant circuit diagram in the case of the cooling operation. In the heating operation, the connection of the four-way valve 2 is switched. The refrigerant circulating in this refrigerant circuit is, for example, R32 and R
125 mixed refrigerant R410A is used. In the figure, 11 is the flow direction of the heat exchange fluid, and 12 is the temperature or flow rate control device of the heat exchange fluid. Reference numeral 13 denotes a heat exchange fluid, for example, 20.
It is city water of about ° C. The flow control device 12 controls the flow rate of the heat exchange fluid 13 by controlling, for example, the rotation speed of a pump. 23 is a control means for controlling the flow control device 12 based on the operating state of the refrigerant circulating in the refrigerant circuit.
【0081】以下、図7のように構成した空気調和機の
動作について説明する。被熱交換流体13は、その流量
を流量制御装置12で制御されて、流れ方向11に流れ
ている。一方、圧縮機1からの高温高圧ガスは四方弁2
を通り、室外熱交換器3では外気以外の被熱交換流体1
3と熱交換して放熱すると同時に凝縮液化する。さら
に、冷媒は絞り装置4で減圧され、室内熱交換器5で蒸
発して、四方弁2を通り圧縮機1へ循環する。このよう
に、冷房運転では室外熱交換器3を凝縮器,室内熱交換
器5を蒸発器として動作させ、室外熱交換器3では空気
以外の被熱交換流体と熱交換するように構成し、室内熱
交換器5では室内送風機8で室内の空気を取り込むこと
により室内の空気と熱交換する。また、冷房運転と暖房
運転の冷媒流路の切換えは四方弁2で行い、暖房運転時
には室外熱交換器3を蒸発器として動作させ、室内熱交
換器5を凝縮器として動作させる。冷房専用の空気調和
機では四方弁2はなくてもよい。Hereinafter, the operation of the air conditioner configured as shown in FIG. 7 will be described. The heat exchange fluid 13 flows in the flow direction 11 with its flow rate controlled by the flow control device 12. On the other hand, the high-temperature and high-pressure gas from the compressor 1 is supplied to the four-way valve 2.
, The heat exchange fluid 1 other than the outside air in the outdoor heat exchanger 3
3. Heat exchange with 3 to release heat and condensate and liquefy. Further, the pressure of the refrigerant is reduced by the expansion device 4, evaporated by the indoor heat exchanger 5, and circulated to the compressor 1 through the four-way valve 2. Thus, in the cooling operation, the outdoor heat exchanger 3 is operated as a condenser and the indoor heat exchanger 5 is operated as an evaporator, and the outdoor heat exchanger 3 is configured to exchange heat with a heat exchange fluid other than air. In the indoor heat exchanger 5, the indoor blower 8 takes in the indoor air to exchange heat with the indoor air. Switching of the refrigerant flow path between the cooling operation and the heating operation is performed by the four-way valve 2. During the heating operation, the outdoor heat exchanger 3 is operated as an evaporator, and the indoor heat exchanger 5 is operated as a condenser. The four-way valve 2 may not be provided in an air conditioner dedicated to cooling.
【0082】このように、凝縮側熱交換器である室外熱
交換器3では、外気ではなく被熱交換流体13と熱交換
するように構成している。冷房運転時に、室外熱交換器
3の被熱交換流体13は外気と熱交換しないため、外気
温度が高くなった場合でも、被熱交換流体13の温度は
外気温度の影響を受けないので上昇しない。As described above, the outdoor heat exchanger 3, which is the condensation side heat exchanger, is configured to exchange heat with the heat exchange fluid 13 instead of the outside air. During the cooling operation, the heat exchange fluid 13 of the outdoor heat exchanger 3 does not exchange heat with the outside air. Therefore, even when the outside air temperature increases, the temperature of the heat exchange fluid 13 does not increase because it is not affected by the outside air temperature. .
【0083】本実施の形態における制御手段23は、凝
縮温度検知装置6で検知した冷媒の凝縮温度c1や凝縮
圧力検知装置9で検知した冷媒の凝縮圧力c2や外気温
度検知装置10で検知した外気温度c3のいずれか1つ
または複数を入力して、この検知値c1,c2,c3に
応じて被熱交換流体13の流量を制御する制御信号S5
を流量制御装置12に出力する。In the present embodiment, the control means 23 controls the condensing temperature c1 of the refrigerant detected by the condensing temperature detecting device 6, the condensing pressure c2 of the refrigerant detected by the condensing pressure detecting device 9, and the outside air detected by the outside air temperature detecting device 10. A control signal S5 for inputting one or more of the temperatures c3 and controlling the flow rate of the heat exchange fluid 13 in accordance with the detected values c1, c2, c3.
Is output to the flow controller 12.
【0084】従って、例えば凝縮圧力検知装置9で検知
した凝縮圧力検知値c2により、被熱交換流体13の流
量を制御して凝縮圧力を調整すれば、外気温度が高くな
った場合でも、凝縮熱交換量を十分に確保することがで
きる。即ち、R32とR125の混合冷媒を用いた空気
調和機において、例えば冷房運転にて外気温度が高くな
った場合、外気と熱交換する構成の室外熱交換器では凝
縮温度が上昇しその冷媒物性上冷媒潜熱が小さくなるた
め、空調能力が低下してしまうが、本実施の形態では空
調能力の低下をするのを防ぐことができる。特に熱交換
流体13として、井戸水などのあまり温度変化のない流
体を用いると、空調能力の低下を低減できる。また、凝
縮温度検知装置6で検知した凝縮温度検知値c1によ
り、被熱交換流体13の温度または流量を制御して凝縮
温度を調整しても、同様の効果を得ることができる。Therefore, if the condensing pressure is adjusted by controlling the flow rate of the heat exchange fluid 13 based on the condensing pressure detection value c2 detected by the condensing pressure detecting device 9, for example, even if the outside air temperature becomes high, A sufficient exchange amount can be secured. That is, in an air conditioner using a mixed refrigerant of R32 and R125, for example, when the outside air temperature becomes high in the cooling operation, the outdoor heat exchanger configured to exchange heat with the outside air increases the condensing temperature to increase the physical properties of the refrigerant. Since the latent heat of the refrigerant is reduced, the air conditioning capacity is reduced. However, in the present embodiment, it is possible to prevent the air conditioning capacity from being reduced. In particular, when a fluid that does not change much in temperature, such as well water, is used as the heat exchange fluid 13, a decrease in the air conditioning capacity can be reduced. Further, the same effect can be obtained even if the condensation temperature is adjusted by controlling the temperature or the flow rate of the heat exchange fluid 13 based on the condensation temperature detection value c1 detected by the condensation temperature detection device 6.
【0085】また、凝縮温度や凝縮圧力のかわりに外気
温度検知装置10からの検知値c3により、被熱交換流
体の温度と流量の少なくともどちらかを制御すれば、外
気温度が高くなった場合でも、凝縮熱交換量を十分に確
保することができる。なお、被熱交換流体の温度を制御
するには、被熱交換流体を別の冷却装置(図示せず)に
よって冷却すれば制御できる。Further, if at least one of the temperature and the flow rate of the fluid to be heat-exchanged is controlled by the detection value c3 from the outside air temperature detection device 10 instead of the condensation temperature and the condensation pressure, even if the outside air temperature becomes high. In addition, a sufficient amount of heat exchange for condensation can be secured. The temperature of the heat exchange fluid can be controlled by cooling the heat exchange fluid by another cooling device (not shown).
【0086】以上のように本実施の形態では、R32と
R125の混合冷媒、例えばR410A冷媒やR410
B冷媒などを用いた空気調和機において、冷房運転にお
いて外気温度が高くなった場合、これの影響によって凝
縮温度が上昇することはなく、その冷媒物性上冷媒潜熱
が小さくなり空調能力が低下するのを防ぐことができ
る。As described above, in this embodiment, a mixed refrigerant of R32 and R125, for example, R410A refrigerant and R410A refrigerant
In an air conditioner using refrigerant B, if the outside air temperature increases during cooling operation, the condensation temperature does not rise due to this effect, and the refrigerant latent heat decreases due to its physical properties and the air conditioning capacity decreases. Can be prevented.
【0087】また、被熱交換流体の温度または流量を制
御するのに加え、検知装置6,9,10による検知値が
所定の設定値より大きくなったのを検知したとき、冷媒
の種類に応じて室内熱交換器5での風量の増加割合を定
める。そして、この増加割合に基づいて風量を制御し、
蒸発器となる室内熱交換器5の熱交換能力を上げて、空
調能力を変化させてもよい。In addition to controlling the temperature or the flow rate of the fluid to be heat-exchanged, when it is detected that the detection value by the detectors 6, 9, 10 has become larger than a predetermined set value, it is determined according to the type of refrigerant. Thus, the increase rate of the air volume in the indoor heat exchanger 5 is determined. And the air volume is controlled based on this increase rate,
The air exchange capacity may be changed by increasing the heat exchange capacity of the indoor heat exchanger 5 serving as an evaporator.
【0088】また、被熱交換流体の温度または流量を制
御するのに加え、検知装置6,9,10による検知値が
所定の設定値より大きくなったのを検知したとき、冷媒
の種類に応じて圧縮機1の回転数の増加割合を定める。
そして、この増加割合に基づいて回転数を制御し、冷媒
回路を循環する冷媒流量を増加することにより、空調能
力を変化させてもよい。In addition to controlling the temperature or the flow rate of the fluid to be heat-exchanged, when it is detected that the detection value by the detectors 6, 9, and 10 has become larger than a predetermined set value, it is determined according to the type of the refrigerant. Thus, the increase rate of the rotation speed of the compressor 1 is determined.
Then, the air conditioning capacity may be changed by controlling the rotation speed based on the increase rate and increasing the flow rate of the refrigerant circulating in the refrigerant circuit.
【0089】また、被熱交換流体の温度または流量を制
御するのに加え、検知装置6,9,10による検知値が
所定の設定値より大きくなったのを検知したとき、冷媒
の種類に応じて絞り装置4の開度調整割合を定める。そ
して、この開度調整割合に基づいて絞り装置4の開度を
制御し、冷媒回路を循環する冷媒流量を増加する、また
は動作圧力を高めることにより、空調能力を変化させて
もよい。In addition to controlling the temperature or flow rate of the fluid to be heat-exchanged, when it is detected that the values detected by the detectors 6, 9, and 10 have become larger than a predetermined set value, the type of the refrigerant depends on the type of refrigerant. Thus, the opening adjustment ratio of the expansion device 4 is determined. Then, the air-conditioning capacity may be changed by controlling the opening degree of the expansion device 4 based on this opening degree adjustment ratio and increasing the flow rate of the refrigerant circulating in the refrigerant circuit or increasing the operating pressure.
【0090】なお、図7では、凝縮温度検知手段6、凝
縮圧力検知手段9、外気温度検知手段10のすべてを備
えた空気調和機としているが、いずれか1つまたは複数
を備えて、冷媒の運転状態を検知すればよい。In FIG. 7, the air conditioner is provided with all of the condensing temperature detecting means 6, the condensing pressure detecting means 9, and the outside air temperature detecting means 10. The operating state may be detected.
【0091】また、被熱交換流体13としては、ブライ
ンや他の冷媒を用いてもよい。また、この場合の室外熱
交換器3は、例えば二重管式、満液式、シェルアンドチ
ューブ式、プレート式などを用いることができる。As the heat exchange fluid 13, brine or another refrigerant may be used. In this case, the outdoor heat exchanger 3 may be of, for example, a double tube type, a liquid full type, a shell and tube type, a plate type, or the like.
【0092】さらに、以上実施の形態1〜実施の形態6
に述べた効果は、HFC系冷媒の冷凍機油として、ハー
ドアルキルベンゼン系などの冷媒との溶解度が低い油を
用いたとしても、同様の効果が得られる。また、凝縮圧
力検知装置9は、圧縮機1の吐出圧力を検知してこれを
用いても、同様の効果が得られる。Further, the first to sixth embodiments have been described.
The same effect can be obtained even if an oil having low solubility with a refrigerant such as a hard alkylbenzene is used as the refrigerating machine oil of the HFC refrigerant. The same effect can be obtained even if the condensation pressure detecting device 9 detects and uses the discharge pressure of the compressor 1.
【0093】また、実施の形態1〜実施の形態6のそれ
ぞれにおいて、図8に示すように室内熱交換器5に空気
以外の被熱交換流体13と熱交換する形態の熱交換器1
4を設け、この熱交換器14を介して、例えば水を矢印
11の方向に流すように構成してもよい。そして、室内
熱交換器5で空気と熱交換してもよい。この場合、空調
能力の増加は、被熱交換流体13の流量増加や室内送風
機8の送風量増加によっても実現できる。なお、図8で
は制御手段などは図示せず、省略している。In each of the first to sixth embodiments, as shown in FIG. 8, the indoor heat exchanger 5 is configured to exchange heat with the heat exchange fluid 13 other than air.
4 may be provided so that, for example, water flows in the direction of the arrow 11 through the heat exchanger 14. Then, the indoor heat exchanger 5 may exchange heat with air. In this case, an increase in the air conditioning capacity can also be realized by an increase in the flow rate of the heat exchange fluid 13 and an increase in the amount of air blown by the indoor blower 8. In FIG. 8, control means and the like are not shown and are omitted.
【0094】また、実施の形態1〜実施の形態6におい
て、室外熱交換器3や室内熱交換器5や圧縮機1を複数
台有するマルチ型空気調和機でも同様の効果が得られ
る。Further, in the first to sixth embodiments, the same effect can be obtained also in a multi-type air conditioner having a plurality of outdoor heat exchangers 3, indoor heat exchangers 5, and compressors 1.
【0095】なお、実施の形態1〜実施の形態6に述べ
た効果は、R744冷媒といった自然冷媒や炭化水素系
冷媒など、臨界温度が低い冷媒においても、同様の効果
が得られ、単一冷媒または混合冷媒に限るものではな
い。また、各種冷媒の中で、R125冷媒のように臨界
温度が低く高凝縮温度時の冷媒潜熱が小さくなる冷媒を
含む混合冷媒または単一冷媒に対して効果がある。The effects described in the first to sixth embodiments can be obtained with a refrigerant having a low critical temperature, such as a natural refrigerant such as R744 refrigerant or a hydrocarbon-based refrigerant. Or, it is not limited to the mixed refrigerant. Further, among various refrigerants, the present invention is effective for a mixed refrigerant or a single refrigerant including a refrigerant having a low critical temperature and a low refrigerant latent heat at a high condensation temperature, such as the R125 refrigerant.
【0096】また、実施の形態1〜実施の形態6に述べ
た効果は、冷房・暖房を行う空気調和機を例として述べ
たが、冷却を行う冷凍装置においても、同様の効果が得
られる。すなわち空気調和機での冷房運転において、蒸
発器として動作する室内熱交換器を冷却器として動作さ
せればよい。この場合には、実施の形態1〜実施の形態
6のいずれかにおける空調能力変化手段は冷凍能力変化
手段に対応し、空調能力検知手段は冷凍能力検知手段に
対応することになる。Although the effects described in the first to sixth embodiments have been described by taking an air conditioner for cooling and heating as an example, a similar effect can be obtained in a refrigerating apparatus for cooling. That is, in the cooling operation of the air conditioner, the indoor heat exchanger operating as the evaporator may be operated as the cooler. In this case, the air conditioning capacity changing means in any of the first to sixth embodiments corresponds to the refrigeration capacity changing means, and the air conditioning capacity detecting means corresponds to the refrigeration capacity detecting means.
【0097】また、実施の形態1〜実施の形態6に述べ
た効果は、既設のR22等を用いた冷凍空調装置におい
て、冷媒だけをオゾン層を破壊しない冷媒に交換して動
作させる、すなわち既存設備のリプレース対応において
も、より一層の効果が得られる。すなわち、既設の冷凍
空調装置において、従来の冷媒を単にオゾン層を破壊し
ない冷媒に交換しただけでは、能力や信頼性などの観点
から動作させることはできないが、本発明による冷凍空
調装置では、既存設備や既設配管をそのまま用いること
ができ、安価にかつ素早く冷媒の代替化を進めることが
できる。また、将来、新たな冷媒を導入する際にも、設
備の更新をせずに実施の形態1〜実施の形態6に述べた
各種の制御係数を新たな冷媒に対応して設定してやれば
よい。Further, the effects described in the first to sixth embodiments are the same as those of the conventional refrigeration and air-conditioning system using R22 or the like, in which only the refrigerant is replaced with a refrigerant that does not destroy the ozone layer and is operated. Further effects can be obtained even in replacement of equipment. That is, in the existing refrigeration / air-conditioning apparatus, simply replacing the conventional refrigerant with a refrigerant that does not destroy the ozone layer cannot be operated from the viewpoints of performance, reliability, and the like. The equipment and the existing piping can be used as they are, and the replacement of the refrigerant can be quickly and inexpensively promoted. Further, when a new refrigerant is introduced in the future, the various control coefficients described in the first to sixth embodiments may be set in accordance with the new refrigerant without updating the equipment.
【0098】[0098]
【発明の効果】以上のように、本発明によれば、複数の
種類の冷媒を使用可能で、圧縮機、凝縮側熱交換器、絞
り装置、蒸発側熱交換器を接続し冷媒を循環させる冷媒
回路を有する冷凍空調装置において、前記冷媒回路の構
成機器の動作を変化させて冷凍空調能力を変化させる冷
凍空調能力変化手段と、前記冷媒回路の凝縮側における
冷媒の状態を検知する冷媒状態検知手段と、前記冷媒状
態検知手段にて検知した結果が予め設定された設定値を
越えたときに、前記冷媒の種類に応じて変化させた制御
ゲインで演算した演算値を用いて前記冷凍空調能力変化
手段を制御する制御手段とを備えたことにより、異なる
物性の冷媒に対応でき、冷媒の物性に起因する冷凍空調
能力の低下を防止でき、なおかつ安価に実現でき、加え
て効率も向上できる冷凍空調装置を得ることができる。As described above, according to the present invention, a plurality of types of refrigerants can be used, and a compressor, a condensing-side heat exchanger, a throttle device, and an evaporating-side heat exchanger are connected to circulate the refrigerant. In a refrigeration / air-conditioning apparatus having a refrigerant circuit, a refrigeration / air-conditioning capacity changing means for changing an operation of components of the refrigerant circuit to change a refrigeration / air-conditioning capacity, and a refrigerant state detection for detecting a state of a refrigerant on a condensation side of the refrigerant circuit. Means, and when the result detected by the refrigerant state detection means exceeds a preset value, the refrigeration air-conditioning capacity is calculated using a calculation value calculated with a control gain changed according to the type of the refrigerant. By providing control means for controlling the change means, it is possible to cope with refrigerants having different physical properties, prevent a decrease in refrigeration air-conditioning capacity due to physical properties of the refrigerants, and realize at a low cost, and also improve efficiency. It is possible to obtain a refrigeration air conditioning system.
【0099】また、本発明によれば、複数の種類の冷媒
を使用可能で、圧縮機、凝縮側熱交換器、絞り装置、蒸
発側熱交換器を接続し冷媒を循環させる冷媒回路を有す
る冷凍空調装置において、前記冷媒回路の構成機器の動
作を変化させて冷凍空調能力を変化させる冷凍空調能力
変化手段と、前記冷媒回路の凝縮側における冷媒の状態
を検知する冷媒状態検知手段と、前記冷媒の種類に応じ
て設定値を変化させ、前記冷媒状態検知手段にて検知し
た結果が前記設定値を越えたときに、前記冷凍空調能力
変化手段を制御する制御手段とを備えたことにより、異
なる物性の冷媒に応答性よく対応でき、冷媒の物性に起
因する冷凍空調能力の低下を防止でき、なおかつ安価に
実現でき、加えて効率も向上できる冷凍空調装置を得る
ことができる。According to the present invention, a plurality of types of refrigerants can be used, and a refrigeration circuit having a refrigerant circuit for circulating the refrigerant by connecting a compressor, a condensing-side heat exchanger, a throttling device, and an evaporating-side heat exchanger. In the air conditioner, a refrigeration / air-conditioning capability changing unit that changes a refrigeration / air-conditioning capability by changing an operation of components of the refrigerant circuit, a refrigerant state detecting unit that detects a state of a refrigerant on a condensation side of the refrigerant circuit, And a control means for controlling the refrigeration / air-conditioning capacity changing means when the result detected by the refrigerant state detecting means exceeds the set value. A refrigeration / air-conditioning apparatus that can respond to a refrigerant having physical properties with good responsiveness, can prevent a decrease in refrigeration / air-conditioning capacity due to the physical properties of the refrigerant, can be realized at low cost, and can also improve efficiency.
【0100】また、本発明によれば、動作中の冷凍空調
能力と目標冷凍空調能力の差を検知する冷凍空調能力検
知手段を備え、制御手段で冷凍空調能力変化手段を制御
する演算値を演算する際、冷媒の種類に基づく第1制御
ゲインと前記冷凍空調能力検知手段で検知した差に応じ
て変化させた第2制御ゲインとを用いて演算することを
特徴とするので、異なる物性の冷媒に対応でき、冷媒の
物性に起因する冷凍空調能力の低下を防止でき、なおか
つ安価に実現でき、加えて効率も向上できる冷凍空調装
置を得ることができる。Further, according to the present invention, there is provided refrigeration / air-conditioning capacity detection means for detecting a difference between the refrigeration / air-conditioning capacity during operation and the target refrigeration / air-conditioning capacity, and the control means calculates a calculation value for controlling the refrigeration / air-conditioning capacity change means. In this case, the calculation is performed using the first control gain based on the type of the refrigerant and the second control gain changed according to the difference detected by the refrigeration / air-conditioning ability detection means. Thus, it is possible to obtain a refrigeration / air-conditioning apparatus which can prevent a decrease in the refrigeration / air-conditioning capacity due to the physical properties of the refrigerant, can be realized at low cost, and can also improve the efficiency.
【0101】また、本発明によれば、冷凍空調能力変化
手段を、冷媒回路を循環する冷媒の流量を変化させるも
のとしたので、異なる物性の冷媒に対応でき、冷媒の物
性に起因する冷凍空調能力の低下を防止でき、なおかつ
安価に実現でき、加えて効率も向上できる冷凍空調装置
を得ることができる。Further, according to the present invention, since the refrigerating and air conditioning capacity changing means changes the flow rate of the refrigerant circulating in the refrigerant circuit, the refrigerating and air conditioning capacity changing means can cope with refrigerants having different physical properties. It is possible to obtain a refrigeration / air-conditioning apparatus that can prevent a decrease in capacity, can be realized at low cost, and can also improve efficiency.
【0102】また、本発明によれば、冷凍空調能力変化
手段は、蒸発側熱交換器での熱交換量を変化させるもの
としたので、異なる物性の冷媒に対応でき、冷媒の物性
に起因する冷凍空調能力の低下を防止でき、なおかつ安
価に実現でき、加えて効率も向上できる冷凍空調装置を
得ることができる。Further, according to the present invention, since the refrigerating and air-conditioning capacity changing means changes the amount of heat exchange in the evaporating heat exchanger, it can cope with refrigerants having different physical properties, resulting from the physical properties of the refrigerant. It is possible to obtain a refrigeration / air-conditioning apparatus that can prevent a decrease in refrigeration / air-conditioning capacity, can be realized at low cost, and can also improve efficiency.
【0103】また、本発明によれば、冷凍空調能力変化
手段を、絞り装置の開度を変化させるものとしたので、
異なる物性の冷媒に対応でき、冷媒の物性に起因する冷
凍空調能力の低下を防止でき、なおかつ安価に実現で
き、加えて効率も向上できる冷凍空調装置を得ることが
できる。Further, according to the present invention, the refrigeration / air-conditioning capacity changing means changes the opening of the expansion device.
A refrigeration / air-conditioning apparatus capable of coping with refrigerants having different physical properties, preventing a decrease in refrigeration / air-conditioning capacity due to the physical properties of the refrigerant, realizing at low cost, and improving the efficiency can be obtained.
【0104】また、本発明によれば、空調能力変化手段
を、凝縮側熱交換器での熱交換量を変化させるものとし
たので、異なる物性の冷媒に対応でき、冷媒の物性に起
因する冷凍空調能力の低下を防止でき、なおかつ安価に
実現でき、加えて効率も向上できる冷凍空調装置を得る
ことができる。Further, according to the present invention, since the air conditioning capacity changing means changes the amount of heat exchange in the condensing-side heat exchanger, it is possible to cope with refrigerants having different physical properties, It is possible to obtain a refrigeration air conditioner that can prevent a decrease in air conditioning capacity, can be realized at low cost, and can also improve efficiency.
【0105】また、本発明によれば、凝縮側熱交換器
を、冷媒回路を循環する冷媒と外気以外の熱交換流体と
を熱交換する構成としたので、外気温度の影響を低減し
て冷凍空調能力低下を防止でき、効率も向上できる冷凍
空調装置を得ることができる。Further, according to the present invention, the condensing-side heat exchanger is configured to exchange heat between the refrigerant circulating in the refrigerant circuit and a heat exchange fluid other than the outside air. It is possible to obtain a refrigeration / air-conditioning apparatus that can prevent a decrease in the air-conditioning capacity and can improve the efficiency.
【0106】また、本発明によれば、複数の種類の冷媒
を使用可能で、圧縮機、凝縮側熱交換器、絞り装置、蒸
発側熱交換器を接続し冷媒を循環させる冷媒回路を有す
る冷凍空調装置において、前記冷媒回路の凝縮側におけ
る冷媒の状態を検知する冷媒状態検知手段と、外気以外
の被熱交換流体と前記凝縮側熱交換器を循環する冷媒と
を熱交換する構成の流路と、前記冷媒状態検知手段にて
検知した結果に基づいて前記流路を流れる被熱交換流体
の温度または流量を制御する制御手段とを備えたことに
より、変動の大きい外気温度による影響を低減して冷凍
空調能力低下を防止でき、かつ効率も向上できる冷凍空
調装置を得ることができる。According to the present invention, a plurality of types of refrigerants can be used, and a refrigeration circuit having a refrigerant circuit for connecting a compressor, a condensing-side heat exchanger, a throttling device, and an evaporating-side heat exchanger and circulating the refrigerant is provided. In an air conditioner, a refrigerant state detecting means for detecting a state of a refrigerant on a condensation side of the refrigerant circuit, and a flow path configured to exchange heat between a heat exchanged fluid other than outside air and a refrigerant circulating in the condensation side heat exchanger. And control means for controlling the temperature or the flow rate of the heat exchange fluid flowing through the flow path based on the result detected by the refrigerant state detection means, thereby reducing the influence of a large fluctuation of the outside air temperature. Thus, it is possible to obtain a refrigeration / air-conditioning apparatus capable of preventing a decrease in refrigeration / air-conditioning capacity and improving efficiency.
【0107】また、本発明によれば、冷媒状態検知手段
を、冷媒の凝縮温度、または冷媒の凝縮圧力、または凝
縮器側空気温度を検知する手段としたので、異なる物性
の冷媒に対応でき、冷媒の物性に起因する冷凍空調能力
の低下を防止でき、なおかつ安価に実現でき、加えて効
率も向上できる冷凍空調装置を得ることができる。Further, according to the present invention, since the refrigerant state detecting means is a means for detecting the condensing temperature of the refrigerant, the condensing pressure of the refrigerant, or the air temperature on the condenser side, it is possible to cope with refrigerants having different physical properties. It is possible to obtain a refrigeration / air-conditioning apparatus that can prevent a decrease in the refrigeration / air-conditioning capacity due to the physical properties of the refrigerant, can be realized at low cost, and can also improve the efficiency.
【0108】また、本発明によればR125を含む冷媒
を用いたことにより、凝縮側空気温度が高いときに冷媒
潜熱が小さくなることによる冷凍空調能力の低下を効果
的に防止できる冷凍空調装置を得ることができる。Further, according to the present invention, by using a refrigerant containing R125, there is provided a refrigeration / air-conditioning apparatus capable of effectively preventing a decrease in refrigeration / air-conditioning capacity due to a decrease in refrigerant latent heat when the condensing side air temperature is high. Obtainable.
【0109】また、本発明によれば、冷房運転と暖房運
転を切換える冷媒流路切換弁を、冷媒回路に設けたこと
により、冷却・加熱または冷房.暖房の両機能を有する
装置において、異なる物性の冷媒に対応でき、冷媒の物
性に起因する冷凍空調能力の低下を防止でき、なおかつ
安価に実現でき、加えて効率も向上できる冷凍空調装置
を得ることができる。Further, according to the present invention, a cooling / heating or cooling / cooling system is provided by providing a refrigerant flow switching valve for switching between cooling operation and heating operation in the refrigerant circuit. To obtain a refrigeration air-conditioning apparatus that can cope with refrigerants having different physical properties, prevent a decrease in refrigeration air-conditioning capacity due to the physical properties of the refrigerant, can be realized at low cost, and can also improve efficiency in a device having both functions of heating. Can be.
【図1】 本発明の実施の形態1による冷凍空調装置を
示す冷媒回路図である。FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration / air-conditioning apparatus according to Embodiment 1 of the present invention.
【図2】 実施の形態1に係わる制御手段の制御手順を
示すフローチャートである。FIG. 2 is a flowchart showing a control procedure of a control unit according to the first embodiment.
【図3】 本発明の実施の形態2による冷凍空調装置を
示す冷媒回路図である。FIG. 3 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 2 of the present invention.
【図4】 本発明の実施の形態3による冷凍空調装置を
示す冷媒回路図である。FIG. 4 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 3 of the present invention.
【図5】 本発明の実施の形態4に係わる制御手段の制
御手順を示すフローチャートである。FIG. 5 is a flowchart showing a control procedure of a control unit according to Embodiment 4 of the present invention.
【図6】 本発明の実施の形態5に係わる制御手段の制
御手順を示すフローチャートである。FIG. 6 is a flowchart showing a control procedure of a control unit according to Embodiment 5 of the present invention.
【図7】 本発明の実施の形態6による冷凍空調装置を
示す冷媒回路図である。FIG. 7 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiment 6 of the present invention.
【図8】 本発明の実施の形態1〜6に係わる冷凍空調
装置を示す冷媒回路図である。FIG. 8 is a refrigerant circuit diagram showing a refrigeration / air-conditioning apparatus according to Embodiments 1 to 6 of the present invention.
1 圧縮機、2 冷媒流路切換弁、3 凝縮側熱交換
器、4 絞り装置、5蒸発側熱交換器、6 冷媒状態検
知手段(凝縮温度検知手段)、7 凝縮側送風機、8
蒸発側送風機、9 冷媒状態検知手段(凝縮圧力検知手
段)、10 冷媒状態検知手段(凝縮器側空気温度検知
手段)、11 流れ方向、12 流量制御手段、13
被熱交換流体、14 熱交換器、15 冷凍空調能力検
知手段(吸込空気温度検知手段)、20,21,22,
23 制御手段。DESCRIPTION OF SYMBOLS 1 Compressor, 2 refrigerant flow switching valve, 3 condensation side heat exchanger, 4 expansion device, 5 evaporation side heat exchanger, 6 refrigerant state detection means (condensation temperature detection means), 7 condensation side blower, 8
Evaporation side blower, 9 Refrigerant state detecting means (condensing pressure detecting means), 10 Refrigerant state detecting means (Condenser side air temperature detecting means), 11 Flow direction, 12 Flow control means, 13
Fluid to be heat-exchanged, 14 heat exchanger, 15 refrigeration air-conditioning capacity detection means (suction air temperature detection means), 20, 21, 22, 22
23 control means.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 牧野 浩招 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 平岡 宗 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Kosuke Makino 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Inside Mitsubishi Electric Corporation (72) Inventor Mune Hiraoka 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation
Claims (12)
機、凝縮側熱交換器、絞り装置、蒸発側熱交換器を接続
し冷媒を循環させる冷媒回路を有する冷凍空調装置にお
いて、前記冷媒回路の構成機器の動作を変化させて冷凍
空調能力を変化させる冷凍空調能力変化手段と、前記冷
媒回路の凝縮側における冷媒の状態を検知する冷媒状態
検知手段と、前記冷媒状態検知手段にて検知した結果が
予め設定された設定値を越えたときに、前記冷媒の種類
に応じて変化させた制御ゲインで演算した演算値を用い
て前記冷凍空調能力変化手段を制御する制御手段とを備
えたことを特徴とする冷凍空調装置。1. A refrigeration and air-conditioning system having a refrigerant circuit that can use a plurality of types of refrigerant and connects a compressor, a condensation-side heat exchanger, a throttling device, and an evaporation-side heat exchanger to circulate the refrigerant. Refrigeration / air-conditioning capacity changing means for changing the operation of the components of the circuit to change the refrigeration / air-conditioning capacity; refrigerant state detection means for detecting the state of the refrigerant on the condensation side of the refrigerant circuit; and detection by the refrigerant state detection means Control means for controlling the refrigeration / air-conditioning capacity changing means using a calculation value calculated with a control gain changed according to the type of the refrigerant when a result of the calculation exceeds a preset value. A refrigeration / air-conditioning apparatus characterized by the above-mentioned.
機、凝縮側熱交換器、絞り装置、蒸発側熱交換器を接続
し冷媒を循環させる冷媒回路を有する冷凍空調装置にお
いて、前記冷媒回路の構成機器の動作を変化させて冷凍
空調能力を変化させる冷凍空調能力変化手段と、前記冷
媒回路の凝縮側における冷媒の状態を検知する冷媒状態
検知手段と、前記冷媒の種類に応じて設定値を変化さ
せ、前記冷媒状態検知手段にて検知した結果が前記設定
値を越えたときに、前記冷凍空調能力変化手段を制御す
る制御手段とを備えたことを特徴とする冷凍空調装置。2. A refrigeration and air-conditioning system having a refrigerant circuit that can use a plurality of types of refrigerant and connects a compressor, a condensation-side heat exchanger, a throttle device, and an evaporation-side heat exchanger to circulate the refrigerant. Refrigeration / air-conditioning capacity changing means for changing the operation of the components of the circuit to change the refrigeration / air-conditioning capacity; refrigerant state detecting means for detecting the state of the refrigerant on the condensation side of the refrigerant circuit; and setting according to the type of the refrigerant. A refrigerating and air-conditioning apparatus, comprising: a controller for changing the value and controlling the refrigerating and air-conditioning capacity changing means when a result detected by the refrigerant state detecting means exceeds the set value.
力の差を検知する冷凍空調能力検知手段を備え、制御手
段で冷凍空調能力変化手段を制御する演算値を演算する
際、冷媒の種類に基づく第1制御ゲインと前記冷凍空調
能力検知手段で検知した差に応じて変化させた第2制御
ゲインとを用いて演算することを特徴とする請求項1ま
たは請求項2記載の冷凍空調装置。3. A refrigeration / air-conditioning capacity detecting means for detecting a difference between a refrigeration / air-conditioning capacity during operation and a target refrigeration / air-conditioning capacity. 3. The refrigeration / air-conditioning apparatus according to claim 1, wherein the calculation is performed using a first control gain based on the first control gain and a second control gain changed in accordance with a difference detected by the refrigeration / air-conditioning ability detection means. .
環する冷媒の流量を変化させるものであることを特徴と
する請求項1ないし請求項3のいずれか1項に記載の冷
凍空調装置。4. The refrigeration / air-conditioning apparatus according to claim 1, wherein the refrigeration / air-conditioning capacity changing means changes a flow rate of the refrigerant circulating in the refrigerant circuit.
器での熱交換量を変化させるものであることを特徴とす
る請求項1ないし請求項3のいずれか1項に記載の冷凍
空調装置。5. The refrigeration / air-conditioning apparatus according to claim 1, wherein the refrigeration / air-conditioning capacity changing means changes the amount of heat exchange in the evaporation-side heat exchanger. apparatus.
度を変化させるものであることを特徴とする請求項1な
いし請求項3のいずれか1項に記載の冷凍空調装置。6. The refrigeration / air-conditioning apparatus according to claim 1, wherein the refrigeration / air-conditioning capacity changing means changes an opening of the expansion device.
の熱交換量を変化させるものであることを特徴とする請
求項1ないし請求項3のいずれか1項に記載の冷凍空調
装置。7. The refrigeration / air-conditioning apparatus according to claim 1, wherein the air-conditioning capacity changing means changes the amount of heat exchange in the condensation-side heat exchanger. .
冷媒と外気以外の熱交換流体とを熱交換する構成である
ことを特徴とする請求項1ないし請求項7のいずれか1
項に記載の冷凍空調装置。8. The condensing-side heat exchanger is configured to exchange heat between the refrigerant circulating in the refrigerant circuit and a heat exchange fluid other than the outside air.
A refrigeration / air-conditioning apparatus according to the item.
機、凝縮側熱交換器、絞り装置、蒸発側熱交換器を接続
し冷媒を循環させる冷媒回路を有する冷凍空調装置にお
いて、前記冷媒回路の凝縮側における冷媒の状態を検知
する冷媒状態検知手段と、外気以外の被熱交換流体と前
記凝縮側熱交換器を循環する冷媒とを熱交換する構成の
流路と、前記冷媒状態検知手段にて検知した結果に基づ
いて前記流路を流れる被熱交換流体の温度または流量を
制御する制御手段とを備えたことを特徴とする冷凍空調
装置。9. A refrigerating and air-conditioning apparatus having a refrigerant circuit that can use a plurality of types of refrigerant and connects a compressor, a condensation-side heat exchanger, a throttle device, and an evaporation-side heat exchanger to circulate the refrigerant. Refrigerant state detection means for detecting the state of the refrigerant on the condensing side of the circuit; a flow path configured to exchange heat between the heat exchanged fluid other than the outside air and the refrigerant circulating through the condensing side heat exchanger; and the refrigerant state detection Control means for controlling the temperature or flow rate of the heat exchange fluid flowing through the flow path based on the result detected by the means.
度、または冷媒の凝縮圧力、または凝縮器側空気温度を
検知する手段であることを特徴とする請求項1ないし請
求項9のいずれか1項に記載の冷凍空調装置。10. The refrigerant state detecting means is means for detecting the condensing temperature of the refrigerant, the condensing pressure of the refrigerant, or the air temperature on the condenser side. A refrigeration / air-conditioning apparatus according to the item.
徴とする請求項1ないし請求項10のいずれか1項に記
載の冷凍空調装置。11. The refrigeration / air-conditioning apparatus according to claim 1, wherein a refrigerant containing R125 is used.
路切換弁を、冷媒回路に設けたことを特徴とする請求項
1ないし請求項11のいずれか1項に記載の冷凍空調装
置。12. The refrigeration / air-conditioning apparatus according to claim 1, wherein a refrigerant flow switching valve for switching between a cooling operation and a heating operation is provided in the refrigerant circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12335998A JPH11316057A (en) | 1998-05-06 | 1998-05-06 | Refrigerating/air conditioning apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12335998A JPH11316057A (en) | 1998-05-06 | 1998-05-06 | Refrigerating/air conditioning apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11316057A true JPH11316057A (en) | 1999-11-16 |
Family
ID=14858639
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12335998A Pending JPH11316057A (en) | 1998-05-06 | 1998-05-06 | Refrigerating/air conditioning apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11316057A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024371A (en) * | 2005-07-14 | 2007-02-01 | Sharp Corp | Air conditioner |
WO2008032559A1 (en) * | 2006-09-11 | 2008-03-20 | Daikin Industries, Ltd. | Air conditioner |
WO2013046245A1 (en) * | 2011-09-26 | 2013-04-04 | 三菱電機株式会社 | Vehicle air-conditioning apparatus renewing method, and vehicle air-conditioning apparatus |
WO2015174054A1 (en) | 2014-05-12 | 2015-11-19 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device |
WO2017138129A1 (en) * | 2016-02-10 | 2017-08-17 | 三菱電機株式会社 | Air conditioning device |
JP2017141998A (en) * | 2016-02-08 | 2017-08-17 | 日立ジョンソンコントロールズ空調株式会社 | Unit mechanism for air conditioner and air conditioner including the same |
-
1998
- 1998-05-06 JP JP12335998A patent/JPH11316057A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007024371A (en) * | 2005-07-14 | 2007-02-01 | Sharp Corp | Air conditioner |
JP4587895B2 (en) * | 2005-07-14 | 2010-11-24 | シャープ株式会社 | Air conditioner |
WO2008032559A1 (en) * | 2006-09-11 | 2008-03-20 | Daikin Industries, Ltd. | Air conditioner |
JP2008064439A (en) * | 2006-09-11 | 2008-03-21 | Daikin Ind Ltd | Air conditioner |
EP2068098A1 (en) * | 2006-09-11 | 2009-06-10 | Daikin Industries, Ltd. | Air conditioner |
EP2068098A4 (en) * | 2006-09-11 | 2012-10-31 | Daikin Ind Ltd | Air conditioner |
WO2013046245A1 (en) * | 2011-09-26 | 2013-04-04 | 三菱電機株式会社 | Vehicle air-conditioning apparatus renewing method, and vehicle air-conditioning apparatus |
CN103826888A (en) * | 2011-09-26 | 2014-05-28 | 三菱电机株式会社 | Vehicle air-conditioning apparatus renewing method, and vehicle air-conditioning apparatus |
JPWO2013046245A1 (en) * | 2011-09-26 | 2015-03-26 | 三菱電機株式会社 | Method of updating vehicle air conditioner and vehicle air conditioner |
EP2762337A4 (en) * | 2011-09-26 | 2015-12-30 | Mitsubishi Electric Corp | Vehicle air-conditioning apparatus renewing method, and vehicle air-conditioning apparatus |
CN103826888B (en) * | 2011-09-26 | 2016-04-27 | 三菱电机株式会社 | The update method of air conditioner for motor vehicle and air conditioner for motor vehicle |
WO2015174054A1 (en) | 2014-05-12 | 2015-11-19 | パナソニックIpマネジメント株式会社 | Refrigeration cycle device |
US10591188B2 (en) | 2014-05-12 | 2020-03-17 | Panasonic Intellectual Property Management Co., Ltd. | Refrigeration cycle device using working fluid containing 1,1,2-trifluoroethylene (R1123) and difluoromethane (R32) |
JP2017141998A (en) * | 2016-02-08 | 2017-08-17 | 日立ジョンソンコントロールズ空調株式会社 | Unit mechanism for air conditioner and air conditioner including the same |
WO2017138129A1 (en) * | 2016-02-10 | 2017-08-17 | 三菱電機株式会社 | Air conditioning device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5511983B2 (en) | Air conditioning and hot water supply complex system | |
JP4767199B2 (en) | Air conditioning system operation control method and air conditioning system | |
CA2530895C (en) | Air-conditioning system with multiple indoor and outdoor units and control system therefore | |
JP2001221526A (en) | Refrigerative air conditioner | |
AU2002332260B2 (en) | Air conditioner | |
JP5908183B1 (en) | Air conditioner | |
JP6594599B1 (en) | Air conditioner | |
JP6479181B2 (en) | Air conditioner | |
US10539343B2 (en) | Heat source side unit and air-conditioning apparatus | |
GB2508725A (en) | Air conditioner | |
JP2006250479A (en) | Air conditioner | |
JP2011196684A (en) | Heat pump device and outdoor unit of the heat pump device | |
US20210063042A1 (en) | Air conditioner and control method thereof | |
JP6758506B2 (en) | Air conditioner | |
JP2948105B2 (en) | Refrigeration air conditioner using non-azeotropic mixed refrigerant | |
JPH11316057A (en) | Refrigerating/air conditioning apparatus | |
JP2000283568A (en) | Refrigerating device and control method therefor | |
WO2016002021A1 (en) | Air conditioning device | |
JP2010159967A (en) | Heat pump device and outdoor unit for the heat pump device | |
JP2011058749A (en) | Air conditioner | |
JP2013053849A (en) | Heat pump device, and outdoor unit thereof | |
JP2883535B2 (en) | Refrigeration equipment | |
WO2020065766A1 (en) | Air conditioning device | |
KR100639488B1 (en) | Air conditional and overload controlling method the same | |
JP2883536B2 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Effective date: 20040621 Free format text: JAPANESE INTERMEDIATE CODE: A7421 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051220 |
|
A02 | Decision of refusal |
Effective date: 20060606 Free format text: JAPANESE INTERMEDIATE CODE: A02 |