WO2004109199A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2004109199A1
WO2004109199A1 PCT/JP2004/007490 JP2004007490W WO2004109199A1 WO 2004109199 A1 WO2004109199 A1 WO 2004109199A1 JP 2004007490 W JP2004007490 W JP 2004007490W WO 2004109199 A1 WO2004109199 A1 WO 2004109199A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
pressure
low
compressor
air conditioner
Prior art date
Application number
PCT/JP2004/007490
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromune Matsuoka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2004245797A priority Critical patent/AU2004245797B2/en
Priority to EP04745455A priority patent/EP1632732B1/en
Priority to US10/523,780 priority patent/US20060000224A1/en
Priority to ES04745455T priority patent/ES2380331T3/en
Priority to AT04745455T priority patent/ATE541167T1/en
Publication of WO2004109199A1 publication Critical patent/WO2004109199A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0313Pressure sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0315Temperature sensors near the outdoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/21Reduction of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Definitions

  • the present invention relates to an air conditioner, particularly to an air conditioner having a plurality of use units.
  • An air conditioner used for air conditioning of such a building or the like has a plurality of usage units, so the operating load fluctuates greatly and the amount of circulating refrigerant in the refrigerant circuit fluctuates. And the amount of surplus refrigerant increases and decreases in the refrigerant circuit.
  • This surplus refrigerant may be stored as a liquid refrigerant in an accumulator connected to the suction side of the compressor.
  • R407C is a non-azeotropic mixed refrigerant, so the evaporation process in the refrigeration cycle process, that is, the evaporation process of the refrigerant in the use side heat exchanger of the utilization unit ( During the cooling process (during cooling operation) and during the evaporation process of the refrigerant in the heat source side heat exchanger of the heat source unit (during heating operation), the composition of the refrigerant changes, and the gas phase in the accumulator is rich in R32, a low boiling point component. In the liquid phase in the accumulator, the high boiling point component R134a becomes rich. As a result, the refrigerant rich in R32 is sucked into the compressor and circulates in the refrigerant circuit, and the original performance of the R407C may not be obtained as the whole air conditioner.
  • Patent Document 1 JP-A-8-35725
  • Patent Document 2 JP-A-10-220880
  • Patent Document 3 JP-A-10-332211
  • Patent Document 4 JP-A-11-173698
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2001-183020
  • the maximum value of the operating pressure of the refrigerant flowing in the refrigerant circuit (with respect to the standard operating pressure) is higher than when R407C is used. In many cases, the pressure will be about IMPa higher. Hereinafter, the maximum working pressure will be higher.) Accordingly, the pressure resistance of the components that make up the refrigerant circuit must be increased.
  • a refrigerant circuit portion (hereinafter, referred to as a high pressure refrigerant) flows.
  • An object of the present invention is to use a refrigerant having a saturation pressure characteristic higher than that of R407C in an air conditioner having a plurality of utilization units, so that even if the maximum operating pressure of the refrigerant circuit is high, the refrigerant circuit is An object of the present invention is to suppress an increase in the cost of the components that make up the system.
  • An air conditioner is an air conditioner including a plurality of use units, and includes a vapor compression type refrigerant circuit and an accumulator.
  • the refrigerant circuit consists of a high-pressure section composed of parts that can flow high-pressure refrigerant with a maximum operating pressure of 3.3 MPa or more, and a low-pressure refrigerant with a maximum operating pressure of less than 3.3 MPa. And a low-pressure section configured by connecting flowable components.
  • the accumulator is one of the components constituting the low-pressure section, and can store the refrigerant circulating in the refrigerant circuit as a liquid refrigerant.
  • the refrigerant flowing through the low-pressure section and the high-pressure section is a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single refrigerant.
  • the standard working pressure of the high pressure section is about 2. OMPa.
  • the maximum operating pressure in the high-pressure section is a standard operating pressure, which is about IMPa higher than OMPa. It is often 3MPa.
  • the components that make up the high-pressure section have a pressure resistance that can withstand 3.3 MPa! /
  • an air conditioner that is effective in the present invention uses a pseudo-azeotropic mixed refrigerant or a common azeotropic mixed refrigerant as a refrigerant having a saturation pressure characteristic higher than R407C.
  • an accumulator that can store excess refrigerant that increases or decreases due to fluctuations in the operating load of multiple utilization units is installed in the low-pressure section with a maximum operating pressure of less than 3.3 MPa. This eliminates the need for a receiver in the high-pressure section, and eliminates the need for components such as bypass pipes for preventing a change in refrigerant composition as in the case of using a non-azeotropic refrigerant mixture.
  • An air conditioner includes a compressor, a heat source side heat exchange, an expansion mechanism, a plurality of use side heat exchanges, a cutting structure, and an accumulator.
  • the compressor compresses the low-pressure gas refrigerant and discharges the high-pressure gas refrigerant.
  • the heat source side heat exchanger can function as an evaporator and a condenser.
  • the plurality of utilization side heat exchangers are connected in parallel with each other and can function as a condenser and an evaporator.
  • the expansion mechanism is connected between the use side heat exchange ⁇ and the heat source side heat exchange ⁇ .
  • the gas side of the heat source side heat exchanger is connected to the discharge side of the compressor, and the suction side of the compressor is connected to the gas side of the utilization side heat exchanger to draw the low-pressure gas refrigerant into the compressor.
  • the state and the gas side of the heat source side heat exchanger are connected to the suction side of the compressor, and the discharge side of the compressor is connected to the gas side of the use side heat exchanger, so that high-pressure gas refrigerant is connected to the use side heat exchanger. It is possible to switch between the flowing state.
  • the accumulator is connected between the cutting structure and the suction side of the compressor, and can store low-pressure refrigerant as liquid refrigerant.
  • the low-pressure section including the accumulator and configured by connecting the cutting mechanism and the suction side of the compressor can flow only a low-pressure refrigerant having a maximum operating pressure of less than 3.3 MPa.
  • the high-pressure section which is connected to the compressor, heat source-side heat exchanger, multiple use-side heat exchangers, and switching mechanism, has a maximum operating pressure of 3.3 MPa or higher. It is possible to flow a refrigerant.
  • the refrigerant flowing through the low-pressure section and the high-pressure section is a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single refrigerant having a saturation pressure characteristic higher than that of R407C.
  • the standard working pressure of the high pressure section is about 2. OMPa. Therefore, air conditioning equipment that uses R407C as the working refrigerant In most cases, the maximum working pressure of the high pressure section is 3.0-3.3 MPa, which is about IMPA higher than the standard working pressure of 2. OMPa. For this reason, in the air conditioner using R407C as the working refrigerant, the components that make up the high-pressure section have a pressure resistance that can withstand 3.3 MPa! /
  • an air conditioner that is effective in the present invention uses a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single azeotropic mixed refrigerant as a refrigerant having a saturation pressure characteristic higher than R407C.
  • an accumulator capable of storing excess refrigerant that increases or decreases due to fluctuations in the operating load of the multiple use-side heat exchangers is installed in the low-pressure section with a maximum operating pressure of less than 3.3 MPa. Therefore, a receiver is not required in the high-pressure section, and components such as a bypass tube for preventing a change in the composition of the refrigerant as in the case of using a non-azeotropic mixed refrigerant are unnecessary.
  • the air conditioner according to the third invention is the air conditioner according to the second invention, further comprising: a heat source side temperature detector, a use side temperature detector, and a high pressure detector. ing.
  • the heat source side temperature detector detects a refrigerant temperature on the liquid side of the heat source side heat exchanger.
  • the use-side temperature detector detects the refrigerant temperature on the liquid side of each use-side heat exchanger.
  • the high pressure detector detects the refrigerant pressure on the discharge side of the compressor. Then, the air conditioner uses the heat source side temperature detector, the use side temperature detector, and the cooling Based on medium temperature and refrigerant pressure!
  • the degree of opening of the expansion mechanism is adjusted so that the liquid refrigerant on the liquid side of the heat source side heat exchanger is in a predetermined supercooled state.
  • the opening degree of the expansion mechanism is adjusted so that the liquid refrigerant on the liquid side of the use-side heat exchange becomes a predetermined supercooled state.
  • the condensed refrigerant when the heat-source-side heat exchanger functions as a condenser, such as during cooling operation, the condensed refrigerant is placed in a predetermined supercooled state to increase or decrease according to the operating load. Surplus refrigerant can be reliably stored in the accumulator.
  • the use-side heat exchanger functions as a condenser, such as during a heating operation, by setting the condensed refrigerant to a predetermined supercooled state, surplus refrigerant that increases or decreases according to the operating load can be reliably reduced. It can be stored in the accumulator.
  • An air conditioner according to a fourth invention is the air conditioner according to any one of the first to third inventions, wherein the refrigerant flowing through the low-pressure section and the high-pressure section includes R32.
  • the air conditioning capacity can be improved.
  • An air conditioner according to a fifth invention is the air conditioner according to any of the first to third inventions, wherein the refrigerant flowing through the low-pressure section and the high-pressure section is R410A.
  • FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner as one embodiment of the present invention.
  • FIG. 2 is a Mollier chart showing a refrigeration cycle of the air conditioner.
  • FIG. 3 is a diagram showing the relationship between operating pressure and wall thickness.
  • FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner 1 as one embodiment of the present invention.
  • the air conditioner 1 is, for example, a device used for cooling and heating a building or the like, and includes a heat source unit. 2 and a plurality of (two in this embodiment) use units 5 connected in parallel with the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe for connecting the heat source unit 2 and the use unit 5 And 7.
  • the air conditioner 1 uses R410A (R32: 50 wt%, R125: 50 wt%), which is a pseudo-azeotropic mixed refrigerant having a saturation pressure characteristic higher than that of R407C, as a working refrigerant.
  • R410A contains more R32 with high heat transfer capacity than R407C, and the air conditioning capacity of the air conditioner 1 is improved.
  • the usage unit 5 mainly includes a usage-side expansion valve 51, a usage-side heat exchanger 52, and a pipe connecting these components.
  • the use-side expansion valve 51 is an electric expansion valve connected to the liquid side of the use-side heat exchanger 52 for adjusting the refrigerant pressure / controlling the refrigerant flow rate in the present embodiment.
  • the use-side heat exchanger 52 functions as a refrigerant evaporator during cooling operation to cool indoor air, and functions as a refrigerant condenser to heat indoor air during heating operation. It is an exchanger. Further, the use side heat exchanger 52 is provided with a use side temperature detector 53 for detecting a refrigerant temperature. In the present embodiment, the use-side temperature detector 53 is a thermistor arranged on the liquid side of the use-side heat exchange 52.
  • the heat source unit 2 mainly includes a compressor 21, a four-way switching valve 22, a heat source side heat exchange 23, a heat source side expansion valve 24, an accumulator 25, a liquid side gate valve 26, and a gas side gate. It is composed of a valve 27 and a pipe connecting these.
  • the compressor 21 is a variable displacement compressor that compresses a low-pressure gas refrigerant and discharges a high-pressure gas refrigerant.
  • a high-pressure pressure detector 28 including a pressure sensor for detecting the pressure of the high-pressure gas refrigerant is provided on the discharge side of the compressor 21, a high-pressure pressure detector 28 including a pressure sensor for detecting the pressure of the high-pressure gas refrigerant is provided.
  • the four-way switching valve 22 is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the discharge side of the compressor 21 and the heat source side heat exchanger 2 3 And the suction side of the compressor 21 (specifically, the accumulator 25) and the gas refrigerant communication pipe 7 side (see the solid line of the four-way switching valve 22 in FIG. 1).
  • the heat source side heat exchanger 23 functions as a condenser for the refrigerant using the outdoor air or water as a heat source during the cooling operation, and as a refrigerant evaporator using the outdoor air or water as the heat source during the heating operation.
  • the heat source side heat exchanger is provided with a heat source side temperature detector 29 for detecting a refrigerant temperature.
  • the heat source side temperature detector 29 is a thermistor arranged on the liquid side of the heat source side heat exchange 23.
  • the heat-source-side expansion valve 24 is connected to the liquid side of the heat-source-side heat exchanger 23, and in this embodiment, adjusts the refrigerant flow rate between the heat-source-side heat exchanger 23 and the use-side heat exchanger 52. It is an electric expansion valve for performing such operations.
  • the accumulator 25 is connected between the four-way switching valve 22 and the compressor 21, and is a container for storing low-pressure refrigerant and excess refrigerant sucked into the compressor 21.
  • the liquid-side gate valve 26 and the gas-side gate valve 27 are connected to the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7, respectively.
  • the liquid refrigerant communication pipe 6 connects between the liquid side of the use side heat exchange 52 of the use unit 5 and the liquid side of the heat source side heat exchange 23 of the heat source unit 2.
  • the gas refrigerant communication pipe 7 connects between the gas side of the use side heat exchanger 52 of the use unit 5 and the four-way switching valve 22 of the heat source unit 2.
  • the refrigerant circuit to which the gas-side gate valve 27 is sequentially connected is referred to as the refrigerant circuit 10 of the air conditioner 1.
  • FIG. 2 is a Mollier chart showing a refrigeration cycle of the air conditioner 1.
  • the four-way switching valve 22 is in the state shown by the solid line in FIG.
  • the discharge side is connected to the gas side of the heat source side heat exchanger 23, and the suction side of the compressor 21 is connected to the gas side of the use side heat exchanger 52. Also liquid
  • the side gate valve 26 and the gas side gate valve 27 are opened, and the use side expansion valve 51 is fully opened.
  • the opening of the heat source side expansion valve 24 can be adjusted by supercooling control of the high pressure detector 28 and the heat source side temperature detector 29. More specifically, the temperature difference between the saturation temperature corresponding to the pressure value of the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the temperature value of the high-pressure liquid refrigerant detected by the heat source-side temperature detector 29 Based on this, the degree of subcooling of the high-pressure liquid refrigerant is calculated, and the degree of opening of the heat-source-side expansion valve 24 can be adjusted so that the degree of subcooling becomes a predetermined value.
  • the high-pressure gas refrigerant is compressed.
  • the high-pressure gas refrigerant is sent to the heat-source-side heat exchanger 23 via the four-way switching valve 22, and is condensed by performing heat exchange with outdoor air or water as a heat source, and is condensed at the pressure Pd.
  • the gas-liquid two-phase refrigerant sent to the usage unit 5 passes through the usage-side expansion valve 51, exchanges heat with the indoor air in the usage-side heat exchanger 52, evaporates, and returns to the low-pressure gas.
  • the low-pressure gas refrigerant flows into the accumulator 25 via the gas refrigerant communication pipe 7, the gas-side gate valve 27, and the four-way switching valve 22. Then, the low-pressure gas refrigerant flowing into the accumulator 25 is sucked into the compressor 21 again.
  • the state of the point C is set by the supercooling control of the heat-source-side expansion valve 24. Since the degree of subcooling ATc of the high-pressure liquid refrigerant is maintained at a constant level, even if the operating load of the usage unit 5 fluctuates and the amount of circulating refrigerant changes, the state is as shown in the refrigeration cycle shown in Fig. 2. The change is maintained, and the excess refrigerant is accumulated in the accumulator 25.Also, when the low-pressure liquid refrigerant flows into the accumulator 25 together with the low-pressure gas refrigerant from the use-side heat exchanger 52, or when the excess refrigerant is accumulated in the accumulator 25.
  • the four-way switching valve 22 is in the state shown by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the use side heat exchanger 52, and the suction side of the compressor 21 is heated.
  • the source side heat exchange 23 is connected to the gas side.
  • the liquid-side gate valve 26 and the gas-side gate valve 27 are opened, and the heat-source-side expansion valve 24 is fully opened.
  • the use-side expansion valve 51 is in a state in which the opening degree can be adjusted by supercooling control of the high-pressure pressure detector 28 and the use-side temperature detector 53.
  • the temperature difference between the saturation temperature corresponding to the pressure value of the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the temperature value of the high-pressure liquid refrigerant detected by the use-side temperature detector 53 is calculated.
  • the degree of supercooling of the high-pressure liquid refrigerant is calculated based on this, and the degree of opening of the usage-side expansion valve 51 can be adjusted so that the degree of subcooling becomes a predetermined value.
  • the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. It is sent to the use unit 5 via the valve 27 and the gas refrigerant communication pipe 7.
  • the high-pressure gas refrigerant sent to the use unit 5 is condensed by exchanging heat with room air in the use-side heat exchanger 52, and is slightly lower than the saturation temperature of the high-pressure gas refrigerant! It is cooled down.
  • the degree of supercooling of the high-pressure liquid refrigerant in the state at the point C is determined by the use-side expansion valve 51 Is kept constant by the supercooling control.
  • the condensed liquid refrigerant is reduced in pressure according to the degree of opening of the use-side expansion valve 51 to become a low-pressure gas-liquid two-phase refrigerant, passes through the liquid refrigerant communication pipe 6 and the liquid-side gate valve 26, and passes through the heat source unit 2.
  • the gas-liquid two-phase refrigerant sent to the heat source unit 2 passes through the heat source side expansion valve 24 and then evaporates by performing heat exchange with outdoor air or water as a heat source in the heat source side heat exchanger 23.
  • the gas refrigerant again becomes a low-pressure gas refrigerant and flows into the accumulator 25 via the four-way switching valve 22.
  • the low-pressure gas refrigerant flowing into the accumulator 25 is sucked into the compressor 21 again.
  • the flow of the refrigerant is opposite to that during the cooling operation, and the difference is that the supercooling control is performed by the use-side expansion valve 51. Is similar to the state change of the refrigeration cycle shown in FIG.
  • the refrigerant circuit 10 includes only the high-pressure part 10a, which is a refrigerant circuit part through which the high-pressure refrigerant flows, and the low-pressure refrigerant. And a low-pressure section 10b, which is a refrigerant circuit section. Specifically, the low-pressure section 10b is a section where the four-way switching valve 22 including the accumulator 25 and the suction side of the compressor 21 are connected, and the high-pressure section 10a is connected to the low-pressure section 10b of the refrigerant circuit 10. Excluded parts.
  • the components constituting the high-pressure section 10a (specifically, the compressor 21, the four-way switching valve 22, the heat source side heat exchanger 23, the heat source side expansion valve 24, the liquid side gate valve 26, and the gas side gate valve 27,
  • the use-side expansion valve 51, use-side heat exchanger 52) and piping should take into account the allowance of about IMPa with respect to the standard working pressure (about 3. OMPa) of the high-pressure refrigerant described above. It is designed to be able to flow high-pressure refrigerant at the maximum operating pressure (about 4MPa).
  • the components specifically, the accumulator 25 and the piping constituting the low-pressure section 10b have a margin of about IMPa with respect to the standard operating pressure of the low-pressure refrigerant (about 0.9 MPa). Considering this, it is designed to be able to flow a low-pressure refrigerant at the maximum working pressure (about 2 MPa)!
  • the air conditioner 1 of the present embodiment has the following features.
  • R410A is used as a refrigerant having a saturation pressure characteristic higher than that of R407C, and a plurality of usage units 5 are operated in the low pressure section 10b having a maximum operating pressure of less than 3.3 MPa. Since the accumulator 25 capable of storing the surplus refrigerant that increases and decreases due to the fluctuation of the load is provided, it is not necessary to provide a receiver in the high-pressure section 10a.
  • the use of a refrigerant having a saturation pressure characteristic higher than that of R407C increases the cost of components constituting the refrigerant circuit even when the maximum operating pressure of the refrigerant circuit is increased. It is possible to suppress.
  • the effect of suppressing this increase in cost is that when the maximum operating pressure of the refrigerant circuit is increased by using R410A as the working refrigerant, the case where the accumulator 25 is provided in the low-pressure section 10b as in the present embodiment is considered. This will be described by comparing with a conventional case where a receiver (not shown) is provided in the high-voltage unit 10a.
  • schedule 20 (wall thickness 6. 4mm) or schedule 30 (wall thickness 7.8mm) may be selected. Then, as shown in the relationship diagram between the working pressure and the wall thickness in FIG. 3, the material of schedule 20 can be used up to the working pressure of 3.3 MPa, and the material of schedule 30 can be used at 4.3 MPa. It is possible to use up to.
  • the maximum operating pressure of the accumulator 25 is about 2. OMPa (the maximum operating pressure of the low-pressure section 10b), even the material of schedule 20 has a sufficient pressure resistance and can be selected. .
  • the maximum working pressure of the receiver is about 4.OMPa (maximum working pressure of the high-pressure section 10a), so the material of schedule 20 cannot be used, and the force is about 7. Even though a wall thickness of 4mm is enough, you must select a material for schedule 30.
  • R407C when used as the working refrigerant of the air conditioner, since the maximum working pressure of the high-pressure section is 3.0-3.3 MPa, it is possible to use the material of schedule 20.
  • a refrigerant having a saturation pressure characteristic higher than that of R407C such as R410A is used as in this embodiment, a receiver is used as a container for storing excess refrigerant. If used, the wall thickness will increase significantly, and the cost of the components constituting the refrigerant circuit will increase unnecessarily.
  • R410A is a pseudo-azeotropic mixed refrigerant
  • the composition of the refrigerant is prevented from changing as in the case of using a non-azeotropic mixed refrigerant such as R407C. This eliminates the need for components such as bypass pipes, thereby making it possible to suppress an increase in the cost of components constituting the refrigerant circuit.
  • the temperature difference between the pressure value of the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the temperature value of the high-pressure liquid refrigerant detected by the heat source side temperature detector 29 is determined.
  • the degree of supercooling of the high-pressure liquid refrigerant is calculated based on the above equation, and the degree of opening of the heat source side expansion valve 24 can be adjusted so that the degree of subcooling becomes a predetermined value. As a result, the surplus refrigerant that increases and decreases can be reliably stored in the accumulator 25.
  • the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the high-pressure liquid refrigerant detected by the use-side temperature detector 53 have a high-pressure difference based on the temperature difference.
  • the degree of supercooling of the liquid refrigerant is calculated, and the degree of opening of the usage side expansion valve 51 can be adjusted so that the degree of supercooling becomes a predetermined value. Can be reliably stored in the accumulator 25.
  • the air-conditioning apparatus of the embodiment has a refrigerant circuit capable of cooling and heating operations, but is not limited to this, and is a cooling-only or heating-only refrigerant circuit without a four-way switching valve.
  • the present invention may be applied to an air conditioner having
  • R410A which is one of the pseudo-azeotropic mixed refrigerants
  • R32 R125 such as R410B (R32: 45 wt%, R125: 55 wt%), etc.
  • a pseudo-azeotropic mixed refrigerant having a composition ratio different from that of R410A, a single refrigerant such as R32, or another pseudo-azeotropic mixed refrigerant or another azeotropic mixed refrigerant may be employed.
  • the maximum operating pressure of the refrigerant circuit can be increased by using a refrigerant having a saturation pressure characteristic higher than that of R407C in an air conditioner having a plurality of usage units.

Abstract

In an air conditioner with utilization units, an increase in cost of components constituting a refrigerant circuit is restricted even when the maximum use pressure of the refrigerant circuit is raised. An air conditioner (1) has utilization units (5), a steam compression-type refrigerant circuit (10), and an accumulator (25). The refrigerant circuit (10) has a high-pressure portion (10a) and a low-pressure portion (10b). The high-pressure portion (10a) is constructed by connecting components through which a high-pressure refrigerant with the maximum use pressure of not less than 3.3 MPa can be passed. The low-pressure portion (10b) is constructed by connecting components through which only a low-pressure refrigerant with the maximum use pressure of less than 3.3 MPa can be passed. The accumulator (25) is one of the components constituting the low-pressure portion (10b) and capable of storing, as a liquid refrigerant, a refrigerant circulating in the refrigerant circuit (10). The refrigerant flowing in the low-pressure portion (10b) and the high-pressure portion (10a) is R410A.

Description

空気調和装置  Air conditioner
技術分野  Technical field
[0001] 本発明は、空気調和装置、特に、複数の利用ユニットを備えた空気調和装置に関 する。  The present invention relates to an air conditioner, particularly to an air conditioner having a plurality of use units.
背景技術  Background art
[0002] ビル等の空気調和に使用される空気調和装置においては、環境問題の観点から、 R22の代わりに HFC系冷媒の一つである R407Cが作動冷媒として使用されたもの に更新されるようになってきて 、る。  [0002] In an air conditioner used for air conditioning of buildings and the like, from the viewpoint of environmental issues, it is assumed that instead of R22, R407C, one of the HFC-based refrigerants, is replaced with a refrigerant used as a working refrigerant. Become, become.
このようなビル等の空気調和に使用される空気調和装置では、複数の利用ユニット を備えている関係上、運転負荷の変動が大きぐこれに伴い、冷媒回路内における 冷媒循環量が変動することになり、冷媒回路内において余剰冷媒の増減が生じる。 この余剰冷媒は、圧縮機の吸入側に接続されたアキュムレータに液冷媒として溜め られることがある。  An air conditioner used for air conditioning of such a building or the like has a plurality of usage units, so the operating load fluctuates greatly and the amount of circulating refrigerant in the refrigerant circuit fluctuates. And the amount of surplus refrigerant increases and decreases in the refrigerant circuit. This surplus refrigerant may be stored as a liquid refrigerant in an accumulator connected to the suction side of the compressor.
しかし、余剰冷媒をアキュムレータに溜めるようにすると、 R407Cは、非共沸混合冷 媒であることから、冷凍サイクル過程における蒸発過程、すなわち、利用ユニットの利 用側熱交換器における冷媒の蒸発過程 (冷房運転時)や、熱源ユニットの熱源側熱 交換器における冷媒の蒸発過程 (暖房運転時)において、冷媒の組成変化を生じさ せてしまい、アキュムレータ内のガス相では低沸点成分の R32がリッチな状態となり、 アキュムレータ内の液相では高沸点成分の R134aがリッチな状態となる。このため、 R32がリッチな冷媒が圧縮機に吸入されて冷媒回路内を循環することになり、空気調 和装置全体としては、 R407C本来の性能が得られなくなるおそれがある。  However, if the surplus refrigerant is stored in the accumulator, R407C is a non-azeotropic mixed refrigerant, so the evaporation process in the refrigeration cycle process, that is, the evaporation process of the refrigerant in the use side heat exchanger of the utilization unit ( During the cooling process (during cooling operation) and during the evaporation process of the refrigerant in the heat source side heat exchanger of the heat source unit (during heating operation), the composition of the refrigerant changes, and the gas phase in the accumulator is rich in R32, a low boiling point component. In the liquid phase in the accumulator, the high boiling point component R134a becomes rich. As a result, the refrigerant rich in R32 is sucked into the compressor and circulates in the refrigerant circuit, and the original performance of the R407C may not be obtained as the whole air conditioner.
これに対して、従来力もアキュムレータと高圧の液冷媒が流れる冷媒配管とをバイ パス管で接続して、冷媒の組成変化を抑えることや、冷媒の組成を検出して組成変 化に応じて最適な運転制御をすることが行われている(例えば、特許文献 1、 2、 3、 4 参照。 ) oまた、余剰冷媒を高圧の液冷媒が流れる冷媒配管に接続されたレシーバ に溜めるようにして、蒸発過程に伴う冷媒の組成変化を抑えるようにした空気調和装 置もある (例えば、特許文献 5参照。 )0 On the other hand, in the past, the accumulator and the refrigerant pipe through which the high-pressure liquid refrigerant flows were connected by a bypass pipe to suppress the change in the composition of the refrigerant, or to detect the refrigerant composition and optimize it in response to the composition change. (See, for example, Patent Documents 1, 2, 3, and 4.) o In addition, surplus refrigerant is stored in a receiver connected to a refrigerant pipe through which high-pressure liquid refrigerant flows. Air conditioning equipment that suppresses the change in refrigerant composition during the evaporation process Some location (e.g., see Patent Document 5.) 0
特許文献 1:特開平 8 - 35725号公報 Patent Document 1: JP-A-8-35725
特許文献 2:特開平 10— 220880号公報 Patent Document 2: JP-A-10-220880
特許文献 3 :特開平 10— 332211号公報 Patent Document 3: JP-A-10-332211
特許文献 4:特開平 11-173698号公報 Patent Document 4: JP-A-11-173698
特許文献 5:特開 2001— 183020号公報 Patent Document 5: Japanese Patent Application Laid-Open No. 2001-183020
発明の開示 Disclosure of the invention
上記前者の R407Cを使用した空気調和装置のように、アキュムレータと高圧の液 冷媒が流れる冷媒配管とをバイパス管で接続する場合には、冷媒回路の構成や運 転制御が複雑になるという問題がある。  When the accumulator and the refrigerant pipe through which the high-pressure liquid refrigerant flows are connected by a bypass pipe as in the former air conditioner using R407C, there is a problem that the configuration and operation control of the refrigerant circuit become complicated. is there.
一方、上記後者の R407Cを使用した空気調和装置のように、アキュムレータの代 わりに、高圧の液冷媒が流れる冷媒配管にレシーバを接続する場合には、前者に比 ベて、冷媒回路の構成や運転制御が複雑にならず、その点では優れたものである。 しかし、最近では、ビル等の空気調和に使用される空気調和装置の分野において も、空調能力の向上や機器の小型化のために、 R407Cよりも高圧の飽和圧力特性 を有する冷媒 (例えば、 R410Aや HC系冷媒)を使用したものが開発あるいは製品 化され始めている。しかし、 R407Cよりも高圧の飽和圧力特性を有する冷媒を使用 する場合には、 R407Cを使用する場合に比べて、冷媒回路内を流れる冷媒の使用 圧力の最大値 (標準的な使用圧力に対して約 IMPa高い圧力とする場合が多い、以 下、最高使用圧力とする)が高くなるため、それに伴って、冷媒回路を構成する部品 の耐圧強度を増カロさせなければならない。特に、ビル等の空気調和装置は、ルーム エアコン等の比較的小型の空気調和装置に比べて、冷媒回路を構成する部品のサ ィズが大きいため、高圧の冷媒が流れる冷媒回路部分 (以下、高圧部とする)の最高 使用圧力が高くなると、これに伴って、冷媒回路を構成する部品の耐圧強度を増加 させなければならなくなり、コストの増加が大きくなる傾向が強い。このため、上記のよ うな高圧部を構成する部品の一つであるレシーバを備えた空気調和装置では、レシ ーバの耐圧強度を増カロさせるために、肉厚を大きくしなければならなくなり、コストが 増加することになる。 本発明の課題は、複数の利用ユニットを備えた空気調和装置において、 R407Cよ りも高圧の飽和圧力特性を有する冷媒を使用することにより、冷媒回路の最高使用 圧力が高くなつても、冷媒回路を構成する部品のコストが増加するのを抑えることに ある。 On the other hand, when a receiver is connected to a refrigerant pipe through which high-pressure liquid refrigerant flows instead of an accumulator, as in the latter air conditioner using R407C, the structure and operation of the refrigerant circuit are higher than the former. The control is not complicated and is excellent in that respect. However, recently, in the field of air conditioners used for air conditioning in buildings and the like, refrigerants with higher saturation pressure characteristics than R407C (for example, R410A) have been used to improve air conditioning capacity and downsize equipment. And HC-based refrigerants) have begun to be developed or commercialized. However, when a refrigerant having a saturation pressure characteristic higher than that of R407C is used, the maximum value of the operating pressure of the refrigerant flowing in the refrigerant circuit (with respect to the standard operating pressure) is higher than when R407C is used. In many cases, the pressure will be about IMPa higher. Hereinafter, the maximum working pressure will be higher.) Accordingly, the pressure resistance of the components that make up the refrigerant circuit must be increased. In particular, since air conditioners in buildings and the like have a larger size of components constituting the refrigerant circuit than relatively small air conditioners such as room air conditioners, a refrigerant circuit portion (hereinafter, referred to as a high pressure refrigerant) flows. When the maximum working pressure of the high pressure section increases, the pressure resistance of the components constituting the refrigerant circuit must be increased, and the cost tends to increase. For this reason, in an air conditioner provided with a receiver which is one of the components constituting the high-pressure section as described above, the thickness must be increased in order to increase the pressure resistance of the receiver. Costs will increase. An object of the present invention is to use a refrigerant having a saturation pressure characteristic higher than that of R407C in an air conditioner having a plurality of utilization units, so that even if the maximum operating pressure of the refrigerant circuit is high, the refrigerant circuit is An object of the present invention is to suppress an increase in the cost of the components that make up the system.
第 1の発明にかかる空気調和装置は、複数の利用ユニットを備えた空気調和装置 であって、蒸気圧縮式の冷媒回路とアキュムレータとを備えている。冷媒回路は、最 高使用圧力が 3. 3MPa以上の高圧の冷媒を流すことが可能な部品が接続されて構 成される高圧部と、最高使用圧力が 3. 3MPa未満の低圧の冷媒のみを流すことが 可能な部品が接続されて構成される低圧部とを有している。アキュムレータは、低圧 部を構成する部品の一つであり、冷媒回路内を循環する冷媒を液冷媒として溜める ことが可能である。そして、低圧部及び高圧部を流れる冷媒は、擬似共沸混合冷媒、 共沸混合冷媒又は単一冷媒である。  An air conditioner according to a first aspect of the present invention is an air conditioner including a plurality of use units, and includes a vapor compression type refrigerant circuit and an accumulator. The refrigerant circuit consists of a high-pressure section composed of parts that can flow high-pressure refrigerant with a maximum operating pressure of 3.3 MPa or more, and a low-pressure refrigerant with a maximum operating pressure of less than 3.3 MPa. And a low-pressure section configured by connecting flowable components. The accumulator is one of the components constituting the low-pressure section, and can store the refrigerant circulating in the refrigerant circuit as a liquid refrigerant. The refrigerant flowing through the low-pressure section and the high-pressure section is a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single refrigerant.
空気調和装置の作動冷媒として R407Cを使用する場合、高圧部の標準的な使用 圧力は約 2. OMPaとなる。このため、 R407Cを作動冷媒として使用する空気調和装 置においては、高圧部の最高使用圧力は、標準的な使用圧力である 2. OMPaに対 して約 IMPa高い圧力である 3. 0-3. 3MPaとする場合が多い。このため、作動冷 媒として R407Cを使用している空気調和装置では、高圧部を構成する部品は、 3. 3 MPaに耐えうる耐圧強度を有して!/、ればよ!/、。  When R407C is used as the working refrigerant of the air conditioner, the standard working pressure of the high pressure section is about 2. OMPa. For this reason, in an air conditioner that uses R407C as the working refrigerant, the maximum operating pressure in the high-pressure section is a standard operating pressure, which is about IMPa higher than OMPa. It is often 3MPa. For this reason, in the air conditioner using R407C as the working refrigerant, the components that make up the high-pressure section have a pressure resistance that can withstand 3.3 MPa! /
一方、 R407Cよりも高圧の飽和圧力特性を有する冷媒を使用すると、高圧部の最 高使用圧力が 3. 3MPaを超えてしまうために、高圧部を構成する部品は、 3. 3MPa 以上の圧力に耐えうる耐圧強度を有しなければならない。特に、容器'配管類につい ては、高圧部の最高使用圧力から算出される最適な肉厚を有する素材を製造してカロ ェするのではなぐ通常、 JIS等の規格品の中力 最高使用圧力の条件を満足する 肉厚の素材を選択してカ卩ェしている。このため、 R407Cよりも高圧の飽和圧力特性 を有する冷媒を使用することにより、大幅な肉厚増加が生じることになつてしまい、冷 媒回路を構成する部品のコストの増加が必要以上に大きくなつてしまう。  On the other hand, if a refrigerant having a saturation pressure characteristic higher than that of R407C is used, the maximum operating pressure of the high pressure section will exceed 3.3 MPa. It must have withstand pressure resistance. In particular, for containers and piping, instead of producing a material with the optimum thickness calculated from the maximum operating pressure of the high-pressure section and caulking, the standard operating pressure of standard products such as JIS, etc. A thick material that satisfies the above conditions is selected. For this reason, the use of a refrigerant having a saturation pressure characteristic higher than that of R407C results in a significant increase in the wall thickness, and the cost of the components constituting the refrigerant circuit increases unnecessarily. Would.
本発明に力かる空気調和装置では、このような不必要なコストの増加を抑えるため に、 R407Cよりも高圧の飽和圧力特性を有する冷媒として、擬似共沸混合冷媒、共 沸混合冷媒又は単一冷媒を採用するとともに、最高使用圧力が 3. 3MPa未満の低 圧部に、複数の利用ユニットの運転負荷の変動により増減する余剰冷媒を溜めること が可能なアキュムレータを設置しているため、高圧部にレシーバが不要となり、かつ、 非共沸混合冷媒を使用する場合のような冷媒の組成変化を防ぐためのバイパス管等 の部品が不要となる。 In order to suppress such an unnecessary increase in cost, an air conditioner that is effective in the present invention uses a pseudo-azeotropic mixed refrigerant or a common azeotropic mixed refrigerant as a refrigerant having a saturation pressure characteristic higher than R407C. In addition to using a boiling mixed refrigerant or a single refrigerant, an accumulator that can store excess refrigerant that increases or decreases due to fluctuations in the operating load of multiple utilization units is installed in the low-pressure section with a maximum operating pressure of less than 3.3 MPa. This eliminates the need for a receiver in the high-pressure section, and eliminates the need for components such as bypass pipes for preventing a change in refrigerant composition as in the case of using a non-azeotropic refrigerant mixture.
これにより、 R407Cよりも高圧の飽和圧力特性を有する冷媒を使用することにより、 冷媒回路の最高使用圧力が高くなつても、冷媒回路を構成する部品のコストが増加 するのを抑えることができる。  As a result, by using a refrigerant having a saturation pressure characteristic higher than that of R407C, even if the maximum operating pressure of the refrigerant circuit is increased, it is possible to suppress an increase in the cost of components constituting the refrigerant circuit.
第 2の発明にかかる空気調和装置は、圧縮機と、熱源側熱交翻と、膨張機構と、 複数の利用側熱交^^と、切 構と、アキュムレータとを備えている。圧縮機は、 低圧のガス冷媒を圧縮して高圧のガス冷媒を吐出する。熱源側熱交換器は、蒸発器 及び凝縮器として機能することが可能である。複数の利用側熱交 は、互いが並 列に接続され、凝縮器及び蒸発器として機能することが可能である。膨張機構は、利 用側熱交^^と熱源側熱交^^との間に接続されている。切 構は、熱源側熱 交換器のガス側を圧縮機の吐出側に接続するとともに圧縮機の吸入側を利用側熱 交換器のガス側に接続して低圧のガス冷媒を圧縮機に吸入させる状態と、熱源側熱 交換器のガス側を圧縮機の吸入側に接続するとともに圧縮機の吐出側を利用側熱 交換器のガス側に接続して高圧のガス冷媒を利用側熱交換器に流す状態とを切り 換え可能である。アキュムレータは、切 構と圧縮機の吸入側との間に接続され、 低圧の冷媒を液冷媒として溜めることが可能である。アキュムレータを含み、切 « 構と圧縮機の吸入側とが接続されて構成される低圧部は、最高使用圧力が 3. 3MP a未満の低圧の冷媒のみを流すことが可能である。低圧部を除く部分であり、圧縮機 、熱源側熱交換器、複数の利用側熱交換器、及び切換機構が接続されて構成され る高圧部は、最高使用圧力が 3. 3MPa以上の高圧の冷媒を流すことが可能である。 そして、低圧部及び高圧部を流れる冷媒は、 R407Cよりも高圧の飽和圧力特性を有 する擬似共沸混合冷媒、共沸混合冷媒又は単一冷媒である。  An air conditioner according to a second invention includes a compressor, a heat source side heat exchange, an expansion mechanism, a plurality of use side heat exchanges, a cutting structure, and an accumulator. The compressor compresses the low-pressure gas refrigerant and discharges the high-pressure gas refrigerant. The heat source side heat exchanger can function as an evaporator and a condenser. The plurality of utilization side heat exchangers are connected in parallel with each other and can function as a condenser and an evaporator. The expansion mechanism is connected between the use side heat exchange ^^ and the heat source side heat exchange ^^. In the cutting system, the gas side of the heat source side heat exchanger is connected to the discharge side of the compressor, and the suction side of the compressor is connected to the gas side of the utilization side heat exchanger to draw the low-pressure gas refrigerant into the compressor. The state and the gas side of the heat source side heat exchanger are connected to the suction side of the compressor, and the discharge side of the compressor is connected to the gas side of the use side heat exchanger, so that high-pressure gas refrigerant is connected to the use side heat exchanger. It is possible to switch between the flowing state. The accumulator is connected between the cutting structure and the suction side of the compressor, and can store low-pressure refrigerant as liquid refrigerant. The low-pressure section including the accumulator and configured by connecting the cutting mechanism and the suction side of the compressor can flow only a low-pressure refrigerant having a maximum operating pressure of less than 3.3 MPa. Excluding the low-pressure section, the high-pressure section, which is connected to the compressor, heat source-side heat exchanger, multiple use-side heat exchangers, and switching mechanism, has a maximum operating pressure of 3.3 MPa or higher. It is possible to flow a refrigerant. The refrigerant flowing through the low-pressure section and the high-pressure section is a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single refrigerant having a saturation pressure characteristic higher than that of R407C.
空気調和装置の作動冷媒として R407Cを使用する場合、高圧部の標準的な使用 圧力は約 2. OMPaとなる。このため、 R407Cを作動冷媒として使用する空気調和装 置においては、高圧部の最高使用圧力は、標準的な使用圧力である 2. OMPaに対 して約 IMPa高い圧力である 3. 0-3. 3MPaとする場合が多い。このため、作動冷 媒として R407Cを使用している空気調和装置では、高圧部を構成する部品は、 3. 3 MPaに耐えうる耐圧強度を有して!/、ればよ!/、。 When using R407C as the working refrigerant for the air conditioner, the standard working pressure of the high pressure section is about 2. OMPa. Therefore, air conditioning equipment that uses R407C as the working refrigerant In most cases, the maximum working pressure of the high pressure section is 3.0-3.3 MPa, which is about IMPA higher than the standard working pressure of 2. OMPa. For this reason, in the air conditioner using R407C as the working refrigerant, the components that make up the high-pressure section have a pressure resistance that can withstand 3.3 MPa! /
一方、 R407Cよりも高圧の飽和圧力特性を有する冷媒を使用すると、高圧部の最 高使用圧力が 3. 3MPaを超えてしまうために、高圧部を構成する部品は、 3. 3MPa 以上の圧力に耐えうる耐圧強度を有しなければならない。特に、容器'配管類につい ては、高圧部の最高使用圧力から算出される最適な肉厚を有する素材を製造してカロ ェするのではなぐ通常、 JIS等の規格品の中力 最高使用圧力の条件を満足する 肉厚の素材を選択してカ卩ェしている。このため、 R407Cよりも高圧の飽和圧力特性 を有する冷媒を使用することにより、大幅な肉厚増加が生じることになつてしまい、冷 媒回路を構成する部品のコストの増加が必要以上に大きくなつてしまう。  On the other hand, if a refrigerant having a saturation pressure characteristic higher than that of R407C is used, the maximum operating pressure of the high pressure section will exceed 3.3 MPa. It must have withstand pressure resistance. In particular, for containers and piping, instead of producing a material with the optimum thickness calculated from the maximum operating pressure of the high-pressure section and caulking, the standard operating pressure of standard products such as JIS, etc. A thick material that satisfies the above conditions is selected. For this reason, the use of a refrigerant having a saturation pressure characteristic higher than that of R407C results in a significant increase in the wall thickness, and the cost of the components constituting the refrigerant circuit increases unnecessarily. Would.
本発明に力かる空気調和装置では、このような不必要なコストの増加を抑えるため に、 R407Cよりも高圧の飽和圧力特性を有する冷媒として、擬似共沸混合冷媒、共 沸混合冷媒又は単一冷媒を採用するとともに、最高使用圧力が 3. 3MPa未満の低 圧部に、複数の利用側熱交換器の運転負荷の変動により増減する余剰冷媒を溜め ることが可能なアキュムレータを設置して 、るため、高圧部にレシーバが不要となり、 かつ、非共沸混合冷媒を使用する場合のような冷媒の組成変化を防ぐためのバイパ ス管等の部品が不要となる。  In order to suppress such an unnecessary increase in cost, an air conditioner that is effective in the present invention uses a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single azeotropic mixed refrigerant as a refrigerant having a saturation pressure characteristic higher than R407C. In addition to the use of refrigerant, an accumulator capable of storing excess refrigerant that increases or decreases due to fluctuations in the operating load of the multiple use-side heat exchangers is installed in the low-pressure section with a maximum operating pressure of less than 3.3 MPa. Therefore, a receiver is not required in the high-pressure section, and components such as a bypass tube for preventing a change in the composition of the refrigerant as in the case of using a non-azeotropic mixed refrigerant are unnecessary.
これにより、 R407Cよりも高圧の飽和圧力特性を有する冷媒を使用することにより、 冷媒回路の最高使用圧力が高くなつても、冷媒回路を構成する部品のコストが増加 するのを抑えることができる。  As a result, by using a refrigerant having a saturation pressure characteristic higher than that of R407C, even if the maximum operating pressure of the refrigerant circuit is increased, it is possible to suppress an increase in the cost of components constituting the refrigerant circuit.
第 3の発明に力かる空気調和装置は、第 2の発明に力かる空気調和装置にお!、て 、熱源側温度検出器と、利用側温度検出器と、高圧圧力検出器とをさらに備えてい る。熱源側温度検出器は、熱源側熱交換器の液側における冷媒温度を検出する。 利用側温度検出器は、各利用側熱交換器の液側における冷媒温度を検出する。高 圧圧力検出器は、圧縮機の吐出側の冷媒圧力を検出する。そして、空気調和装置 は、熱源側温度検出器、利用側温度検出器、及び高圧圧力検出器で検出される冷 媒温度及び冷媒圧力の値に基づ!/ヽて、熱源側熱交換器が凝縮器として機能する際 には、熱源側熱交換器の液側における液冷媒が所定の過冷却状態になるように膨 張機構の開度を調節し、利用側熱交^^が凝縮器として機能する際には、利用側熱 交^^の液側における液冷媒が所定の過冷却状態になるように膨張機構の開度を 調節する。 The air conditioner according to the third invention is the air conditioner according to the second invention, further comprising: a heat source side temperature detector, a use side temperature detector, and a high pressure detector. ing. The heat source side temperature detector detects a refrigerant temperature on the liquid side of the heat source side heat exchanger. The use-side temperature detector detects the refrigerant temperature on the liquid side of each use-side heat exchanger. The high pressure detector detects the refrigerant pressure on the discharge side of the compressor. Then, the air conditioner uses the heat source side temperature detector, the use side temperature detector, and the cooling Based on medium temperature and refrigerant pressure! When the heat source side heat exchanger functions as a condenser, the degree of opening of the expansion mechanism is adjusted so that the liquid refrigerant on the liquid side of the heat source side heat exchanger is in a predetermined supercooled state. When the use-side heat exchange functions as a condenser, the opening degree of the expansion mechanism is adjusted so that the liquid refrigerant on the liquid side of the use-side heat exchange becomes a predetermined supercooled state.
この空気調和装置では、冷房運転時のように、熱源側熱交換器が凝縮器として機 能する際には、凝縮された冷媒を所定の過冷却状態にすることによって、運転負荷 に応じて増減する余剰冷媒を確実にアキュムレータに溜めておくことができる。また、 暖房運転時のように、利用側熱交換器が凝縮器として機能する際においても、凝縮 された冷媒を所定の過冷却状態にすることによって運転負荷に応じて増減する余剰 冷媒を確実にアキュムレータに溜めておくことができる。  In this air conditioner, when the heat-source-side heat exchanger functions as a condenser, such as during cooling operation, the condensed refrigerant is placed in a predetermined supercooled state to increase or decrease according to the operating load. Surplus refrigerant can be reliably stored in the accumulator. In addition, even when the use-side heat exchanger functions as a condenser, such as during a heating operation, by setting the condensed refrigerant to a predetermined supercooled state, surplus refrigerant that increases or decreases according to the operating load can be reliably reduced. It can be stored in the accumulator.
第 4の発明にかかる空気調和装置は、第 1一第 3の発明のいずれかにかかる空気 調和装置において、低圧部及び高圧部を流れる冷媒は、 R32を含んでいる。  An air conditioner according to a fourth invention is the air conditioner according to any one of the first to third inventions, wherein the refrigerant flowing through the low-pressure section and the high-pressure section includes R32.
この空気調和装置では、熱搬送能力の高 、R32を含む冷媒を使用して 、るため、 空調能力を向上させることができる。  In this air conditioner, since the refrigerant having high heat transfer capacity and using R32 is used, the air conditioning capacity can be improved.
第 5の発明にかかる空気調和装置は、第 1一第 3の発明のいずれかにかかる空気 調和装置において、低圧部及び高圧部を流れる冷媒は、 R410Aである。  An air conditioner according to a fifth invention is the air conditioner according to any of the first to third inventions, wherein the refrigerant flowing through the low-pressure section and the high-pressure section is R410A.
この空気調和装置では、 R410Aを使用しているため、 R407Cよりも空調能力を向 上させることができる。  Since this air conditioner uses R410A, the air conditioning capacity can be improved more than R407C.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
[0004] [図 1]本発明の一実施形態としての空気調和装置の概略冷媒回路図である。 FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner as one embodiment of the present invention.
[図 2]空気調和装置の冷凍サイクルを示すモリエル線図である。  FIG. 2 is a Mollier chart showing a refrigeration cycle of the air conditioner.
[図 3]使用圧力と肉厚との関係図である。  FIG. 3 is a diagram showing the relationship between operating pressure and wall thickness.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0005] 以下、本発明の空気調和装置の実施形態について、図面に基づいて説明する。 Hereinafter, embodiments of the air conditioner of the present invention will be described with reference to the drawings.
(1)空気調和装置の全体構成  (1) Overall configuration of the air conditioner
図 1は、本発明の一実施形態としての空気調和装置 1の概略冷媒回路図である。 空気調和装置 1は、例えば、ビル等の冷暖房に使用される装置であり、熱源ユニット 2と、それに並列に接続された複数台 (本実施形態では、 2台)の利用ユニット 5と、熱 源ユニット 2と利用ユニット 5とを接続するための液冷媒連絡配管 6及びガス冷媒連絡 配管 7とを備えている。 FIG. 1 is a schematic refrigerant circuit diagram of an air conditioner 1 as one embodiment of the present invention. The air conditioner 1 is, for example, a device used for cooling and heating a building or the like, and includes a heat source unit. 2 and a plurality of (two in this embodiment) use units 5 connected in parallel with the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe for connecting the heat source unit 2 and the use unit 5 And 7.
空気調和装置 1は、本実施形態において、 R407Cよりも高圧の飽和圧力特性を有 する擬似共沸混合冷媒である R410A (R32: 50wt%、 R125: 50wt%)を作動冷媒 として使用している。 R410Aは、熱搬送能力の高い R32を R407Cよりも多く含んで おり、空気調和装置 1の空調能力が向上している。  In this embodiment, the air conditioner 1 uses R410A (R32: 50 wt%, R125: 50 wt%), which is a pseudo-azeotropic mixed refrigerant having a saturation pressure characteristic higher than that of R407C, as a working refrigerant. R410A contains more R32 with high heat transfer capacity than R407C, and the air conditioning capacity of the air conditioner 1 is improved.
(2)利用ユニットの構成  (2) Usage unit configuration
利用ユニット 5は、主に、利用側膨張弁 51と、利用側熱交換器 52と、これらを接続 する配管とから構成されて!ヽる。  The usage unit 5 mainly includes a usage-side expansion valve 51, a usage-side heat exchanger 52, and a pipe connecting these components.
利用側膨張弁 51は、本実施形態において、冷媒圧力の調節ゃ冷媒流量の調節等 を行うために、利用側熱交換器 52の液側に接続された電動膨張弁である。  The use-side expansion valve 51 is an electric expansion valve connected to the liquid side of the use-side heat exchanger 52 for adjusting the refrigerant pressure / controlling the refrigerant flow rate in the present embodiment.
利用側熱交換器 52は、本実施形態において、冷房運転時には冷媒の蒸発器とし て機能して室内の空気を冷却し、暖房運転時には冷媒の凝縮器として機能して室内 の空気を加熱する熱交換器である。また、利用側熱交換器 52には、冷媒温度を検出 する利用側温度検出器 53が設けられている。本実施形態において、利用側温度検 出器 53は、利用側熱交翻52の液側に配置されたサーミスタである。  In the present embodiment, the use-side heat exchanger 52 functions as a refrigerant evaporator during cooling operation to cool indoor air, and functions as a refrigerant condenser to heat indoor air during heating operation. It is an exchanger. Further, the use side heat exchanger 52 is provided with a use side temperature detector 53 for detecting a refrigerant temperature. In the present embodiment, the use-side temperature detector 53 is a thermistor arranged on the liquid side of the use-side heat exchange 52.
(3)熱源ユニットの構成  (3) Configuration of heat source unit
熱源ユニット 2は、主に、圧縮機 21と、四路切換弁 22と、熱源側熱交翻 23と、熱 源側膨張弁 24と、アキュムレータ 25と、液側仕切弁 26と、ガス側仕切弁 27と、これら を接続する配管とから構成されて 、る。  The heat source unit 2 mainly includes a compressor 21, a four-way switching valve 22, a heat source side heat exchange 23, a heat source side expansion valve 24, an accumulator 25, a liquid side gate valve 26, and a gas side gate. It is composed of a valve 27 and a pipe connecting these.
圧縮機 21は、本実施形態において、低圧のガス冷媒を圧縮して高圧のガス冷媒を 吐出する容量可変式の圧縮機である。また、圧縮機 21の吐出側には、高圧のガス冷 媒の圧力を検出する圧力センサからなる高圧圧力検出器 28が設けられている。 四路切換弁 22は、冷房運転と暖房運転との切り換え時に、冷媒の流れの方向を切 り換えるための弁であり、冷房運転時には、圧縮機 21の吐出側と熱源側熱交換器 2 3のガス側とを接続するとともに圧縮機 21の吸入側(具体的には、アキュムレータ 25) とガス冷媒連絡配管 7側とを接続し (図 1の四路切換弁 22の実線を参照)、暖房運転 時には、圧縮機 21の吐出側とガス冷媒連絡配管 7側とを接続するとともに圧縮機 21 の吸入側と熱源側熱交 23のガス側とを接続することが可能である(図 1の四路 切換弁 22の破線を参照)。 In the present embodiment, the compressor 21 is a variable displacement compressor that compresses a low-pressure gas refrigerant and discharges a high-pressure gas refrigerant. On the discharge side of the compressor 21, a high-pressure pressure detector 28 including a pressure sensor for detecting the pressure of the high-pressure gas refrigerant is provided. The four-way switching valve 22 is a valve for switching the direction of the refrigerant flow when switching between the cooling operation and the heating operation. During the cooling operation, the discharge side of the compressor 21 and the heat source side heat exchanger 2 3 And the suction side of the compressor 21 (specifically, the accumulator 25) and the gas refrigerant communication pipe 7 side (see the solid line of the four-way switching valve 22 in FIG. 1). operation In some cases, it is possible to connect the discharge side of the compressor 21 and the gas refrigerant communication pipe 7 side and to connect the suction side of the compressor 21 and the gas side of the heat source side heat exchange 23 (four-way in FIG. 1). (See dashed line for switching valve 22).
熱源側熱交換器 23は、本実施形態において、冷房運転時には室外空気や水を熱 源とする冷媒の凝縮器として機能し、暖房運転時には室外空気や水を熱源とする冷 媒の蒸発器として機能する熱交^^である。また、熱源側熱交 には、冷媒温 度を検出する熱源側温度検出器 29が設けられている。本実施形態において、熱源 側温度検出器 29は、熱源側熱交翻23の液側に配置されたサーミスタである。 熱源側膨張弁 24は、熱源側熱交換器 23の液側に接続されており、本実施形態に おいて、熱源側熱交換器 23と利用側熱交換器 52との間の冷媒流量の調節等を行う ための電動膨張弁である。  In the present embodiment, the heat source side heat exchanger 23 functions as a condenser for the refrigerant using the outdoor air or water as a heat source during the cooling operation, and as a refrigerant evaporator using the outdoor air or water as the heat source during the heating operation. A functioning heat exchange ^^. The heat source side heat exchanger is provided with a heat source side temperature detector 29 for detecting a refrigerant temperature. In the present embodiment, the heat source side temperature detector 29 is a thermistor arranged on the liquid side of the heat source side heat exchange 23. The heat-source-side expansion valve 24 is connected to the liquid side of the heat-source-side heat exchanger 23, and in this embodiment, adjusts the refrigerant flow rate between the heat-source-side heat exchanger 23 and the use-side heat exchanger 52. It is an electric expansion valve for performing such operations.
アキュムレータ 25は、四路切換弁 22と圧縮機 21との間に接続されており、圧縮機 2 1に吸入される低圧の冷媒及び余剰冷媒を溜めるための容器である。  The accumulator 25 is connected between the four-way switching valve 22 and the compressor 21, and is a container for storing low-pressure refrigerant and excess refrigerant sucked into the compressor 21.
液側仕切弁 26及びガス側仕切弁 27は、それぞれ、液冷媒連絡配管 6及びガス冷 媒連絡配管 7に接続されている。液冷媒連絡配管 6は、利用ユニット 5の利用側熱交 翻 52の液側と熱源ユニット 2の熱源側熱交翻 23の液側との間を接続している。 ガス冷媒連絡配管 7は、利用ユニット 5の利用側熱交換器 52のガス側と熱源ユニット 2の四路切換弁 22との間を接続している。  The liquid-side gate valve 26 and the gas-side gate valve 27 are connected to the liquid refrigerant communication pipe 6 and the gas refrigerant communication pipe 7, respectively. The liquid refrigerant communication pipe 6 connects between the liquid side of the use side heat exchange 52 of the use unit 5 and the liquid side of the heat source side heat exchange 23 of the heat source unit 2. The gas refrigerant communication pipe 7 connects between the gas side of the use side heat exchanger 52 of the use unit 5 and the four-way switching valve 22 of the heat source unit 2.
上記に説明した利用側膨張弁 51、利用側熱交換器 52、圧縮機 21、四路切換弁 2 2、熱源側熱交換器 23、熱源側膨張弁 24、アキュムレータ 25、液側仕切弁 26及び ガス側仕切弁 27が順次接続された冷媒回路を空気調和装置 1の冷媒回路 10とする  The use-side expansion valve 51, use-side heat exchanger 52, compressor 21, four-way switching valve 22, heat-source-side heat exchanger 23, heat-source-side expansion valve 24, accumulator 25, liquid-side gate valve 26, The refrigerant circuit to which the gas-side gate valve 27 is sequentially connected is referred to as the refrigerant circuit 10 of the air conditioner 1.
(3)空気調和装置の動作 (3) Operation of air conditioner
次に、空気調和装置 1の標準的な使用条件における運転動作について、図 1及び 図 2を用いて説明する。ここで、図 2は、空気調和装置 1の冷凍サイクルを示すモリエ ル線図である。  Next, the operation of the air conditioner 1 under standard use conditions will be described with reference to FIGS. Here, FIG. 2 is a Mollier chart showing a refrigeration cycle of the air conditioner 1.
<冷房運転時 >  <During cooling operation>
冷房運転時は、四路切換弁 22が図 1の実線で示される状態、すなわち、圧縮機 21 の吐出側が熱源側熱交換器 23のガス側に接続され、かつ、圧縮機 21の吸入側が利 用側熱交^^ 52のガス側に接続された状態となっている。また、液 During the cooling operation, the four-way switching valve 22 is in the state shown by the solid line in FIG. The discharge side is connected to the gas side of the heat source side heat exchanger 23, and the suction side of the compressor 21 is connected to the gas side of the use side heat exchanger 52. Also liquid
側仕切弁 26、ガス側仕切弁 27は開にされ、利用側膨張弁 51は全開状態にされて いる。熱源側膨張弁 24は、高圧圧力検出器 28と熱源側温度検出器 29との過冷却 制御により開度調節できる状態にある。より具体的には、高圧圧力検出器 28によって 検出される高圧のガス冷媒の圧力値に対応する飽和温度と熱源側温度検出器 29に よって検出される高圧の液冷媒の温度値との温度差に基づいて、高圧の液冷媒の 過冷却度を算出して、過冷却度が所定の値になるように、熱源側膨張弁 24の開度を 調節することができるようになって ヽる。 The side gate valve 26 and the gas side gate valve 27 are opened, and the use side expansion valve 51 is fully opened. The opening of the heat source side expansion valve 24 can be adjusted by supercooling control of the high pressure detector 28 and the heat source side temperature detector 29. More specifically, the temperature difference between the saturation temperature corresponding to the pressure value of the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the temperature value of the high-pressure liquid refrigerant detected by the heat source-side temperature detector 29 Based on this, the degree of subcooling of the high-pressure liquid refrigerant is calculated, and the degree of opening of the heat-source-side expansion valve 24 can be adjusted so that the degree of subcooling becomes a predetermined value.
この冷媒回路 10の状態で、圧縮機 21を起動すると、低圧のガス冷媒 (圧力 Ps=約 0. 9MPa、温度 Ts=約 15°C)は、圧縮機 21に吸入されて圧縮されて高圧のガス冷 媒 (圧力 Pd=約 3. OMPa、温度 Td=約 70°C)となる(図 2の点 A及び点 B参照)。そ の後、高圧のガス冷媒は、四路切換弁 22を経由して熱源側熱交換器 23に送られて 、熱源となる室外空気又は水と熱交換を行って凝縮されて、圧力 Pdにおける飽和温 度 Tsat (温度約 50°C)よりも少し低!、温度 Tc (温度約 45°C)まで冷却される(図 2の 点 C参照)。ここで、点 Cの状態における高圧の液冷媒の過冷却度 ATc (すなわち、 Tsat— Tc)は、熱源側膨張弁 24の過冷却制御により一定 (ここでは、 ATc=約 5°C) に保たれている。  When the compressor 21 is started in the state of the refrigerant circuit 10, the low-pressure gas refrigerant (pressure Ps = approximately 0.9 MPa, temperature Ts = approximately 15 ° C) is sucked into the compressor 21 to be compressed, and the high-pressure gas refrigerant is compressed. Gas refrigerant (pressure Pd = about 3. OMPa, temperature Td = about 70 ° C) (see points A and B in Fig. 2). Thereafter, the high-pressure gas refrigerant is sent to the heat-source-side heat exchanger 23 via the four-way switching valve 22, and is condensed by performing heat exchange with outdoor air or water as a heat source, and is condensed at the pressure Pd. Slightly lower than the saturation temperature Tsat (temperature about 50 ° C) !, it is cooled to temperature Tc (temperature about 45 ° C) (see point C in Fig. 2). Here, the degree of supercooling ATc of the high-pressure liquid refrigerant in the state at the point C (that is, Tsat-Tc) is kept constant (here, ATc = about 5 ° C) by the supercooling control of the heat source side expansion valve 24. I'm dripping.
そして、この凝縮した液冷媒は、熱源側膨張弁 24の開度に応じて減圧されて低圧 の気液二相の冷媒 (圧力 Ps =約 0. 9MPa、温度 TD =約 3°C)となり(図 2の点 D参 照)、液側仕切弁 26及び液冷媒連絡配管 6を経由して、利用ユニット 5に送られる。 利用ユニット 5に送られた気液二相の冷媒は、利用側膨張弁 51を経由した後、利 用側熱交換器 52で室内空気と熱交換を行って蒸発されて、再び、低圧のガス冷媒( 圧力 Ps=約 0. 9MPa、温度 Ts=約 15°C)となる(図 2の点 A参照)。この低圧のガス 冷媒は、ガス冷媒連絡配管 7、ガス側仕切弁 27及び四路切換弁 22を経由して、アキ ュムレータ 25に流入する。そして、アキュムレータ 25に流入した低圧のガス冷媒は、 再び、圧縮機 21に吸入される。  Then, the condensed liquid refrigerant is reduced in pressure according to the opening of the heat source side expansion valve 24 to become a low-pressure gas-liquid two-phase refrigerant (pressure Ps = about 0.9 MPa, temperature TD = about 3 ° C.) It is sent to the user unit 5 via the liquid side gate valve 26 and the liquid refrigerant communication pipe 6 (see point D in FIG. 2). The gas-liquid two-phase refrigerant sent to the usage unit 5 passes through the usage-side expansion valve 51, exchanges heat with the indoor air in the usage-side heat exchanger 52, evaporates, and returns to the low-pressure gas. Refrigerant (pressure Ps = about 0.9MPa, temperature Ts = about 15 ° C) (see point A in Fig. 2). The low-pressure gas refrigerant flows into the accumulator 25 via the gas refrigerant communication pipe 7, the gas-side gate valve 27, and the four-way switching valve 22. Then, the low-pressure gas refrigerant flowing into the accumulator 25 is sucked into the compressor 21 again.
尚、上記に説明したように、熱源側膨張弁 24の過冷却制御により、点 Cの状態にお ける高圧の液冷媒の過冷却度 ATcが一定に保たれているため、利用ユニット 5の運 転負荷が変動して冷媒循環量が変化する場合でも、図 2に示される冷凍サイクルの 通りの状態変化が保たれて、余剰冷媒がアキュムレータ 25に溜まるようになつている また、利用側熱交換器 52から低圧のガス冷媒とともに低圧の液冷媒がアキュムレ ータ 25に流入する場合やアキュムレータ 25に余剰冷媒が溜まっている場合には、ァ キュムレータ 25内で低圧のガス冷媒と液冷媒との気液分離が行われて、低圧のガス 冷媒のみが圧縮機 21に吸入される。このとき、本実施形態においては、作動冷媒と して擬似共沸混合冷媒の一つである R410Aを使用しているため、アキュムレータ 25 内における気液分離によって、圧縮機 21に吸入される低圧のガス冷媒の冷媒組成と アキュムレータ 25に溜まる液冷媒の冷媒組成とが一定に保たれている。 As described above, the state of the point C is set by the supercooling control of the heat-source-side expansion valve 24. Since the degree of subcooling ATc of the high-pressure liquid refrigerant is maintained at a constant level, even if the operating load of the usage unit 5 fluctuates and the amount of circulating refrigerant changes, the state is as shown in the refrigeration cycle shown in Fig. 2. The change is maintained, and the excess refrigerant is accumulated in the accumulator 25.Also, when the low-pressure liquid refrigerant flows into the accumulator 25 together with the low-pressure gas refrigerant from the use-side heat exchanger 52, or when the excess refrigerant is accumulated in the accumulator 25. When the refrigerant is accumulated, gas-liquid separation of the low-pressure gas refrigerant and the liquid refrigerant is performed in the accumulator 25, and only the low-pressure gas refrigerant is sucked into the compressor 21. At this time, in this embodiment, R410A, which is one of the pseudo-azeotropic mixed refrigerants, is used as the working refrigerant, and therefore, the low-pressure low-pressure suctioned into the compressor 21 is performed by the gas-liquid separation in the accumulator 25. The refrigerant composition of the gas refrigerant and the refrigerant composition of the liquid refrigerant accumulated in the accumulator 25 are kept constant.
<暖房運転時 >  <During heating operation>
暖房運転時は、四路切換弁 22が図 1の破線で示される状態、すなわち、圧縮機 21 の吐出側が利用側熱交換器 52のガス側に接続され、かつ、圧縮機 21の吸入側が熱 源側熱交 23のガス側に接続された状態となっている。また、液側仕切弁 26、ガ ス側仕切弁 27は開にされ、熱源側膨張弁 24は全開状態にされている。利用側膨張 弁 51は、高圧圧力検出器 28と利用側温度検出器 53との過冷却制御により開度調 節できる状態にある。より具体的には、高圧圧力検出器 28によって検出される高圧 のガス冷媒の圧力値に対応する飽和温度と利用側温度検出器 53によって検出され る高圧の液冷媒の温度値との温度差に基づいて、高圧の液冷媒の過冷却度を算出 して、過冷却度が所定の値になるように、利用側膨張弁 51の開度を調節することが できるようになつている。  During the heating operation, the four-way switching valve 22 is in the state shown by the broken line in FIG. 1, that is, the discharge side of the compressor 21 is connected to the gas side of the use side heat exchanger 52, and the suction side of the compressor 21 is heated. The source side heat exchange 23 is connected to the gas side. Further, the liquid-side gate valve 26 and the gas-side gate valve 27 are opened, and the heat-source-side expansion valve 24 is fully opened. The use-side expansion valve 51 is in a state in which the opening degree can be adjusted by supercooling control of the high-pressure pressure detector 28 and the use-side temperature detector 53. More specifically, the temperature difference between the saturation temperature corresponding to the pressure value of the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the temperature value of the high-pressure liquid refrigerant detected by the use-side temperature detector 53 is calculated. The degree of supercooling of the high-pressure liquid refrigerant is calculated based on this, and the degree of opening of the usage-side expansion valve 51 can be adjusted so that the degree of subcooling becomes a predetermined value.
この冷媒回路 10の状態で、圧縮機 21を起動すると、低圧のガス冷媒は、圧縮機 2 1に吸入されて圧縮されて高圧のガス冷媒となった後、四路切換弁 22、ガス側仕切 弁 27及びガス冷媒連絡配管 7を経由して、利用ユニット 5に送られる。そして、利用ュ ニット 5に送られた高圧のガス冷媒は、利用側熱交換器 52において、室内空気と熱 交換を行って凝縮されて、高圧のガス冷媒の飽和温度よりも少し低!ヽ温度まで冷却 される。ここで、点 Cの状態における高圧の液冷媒の過冷却度は、利用側膨張弁 51 の過冷却制御により一定に保たれている。この凝縮した液冷媒は、利用側膨張弁 51 の開度に応じて減圧されて低圧の気液二相の冷媒となり、液冷媒連絡配管 6及び液 側仕切弁 26を経由して、熱源ユニット 2に送られる。そして、熱源ユニット 2に送られ た気液二相の冷媒は、熱源側膨張弁 24を経由した後、熱源側熱交換器 23で熱源と なる室外空気又は水と熱交換を行って蒸発されて、再び、低圧のガス冷媒となり、四 路切換弁 22を経由して、アキュムレータ 25に流入する。そして、アキュムレータ 25に 流入した低圧のガス冷媒は、再び、圧縮機 21に吸入される。 When the compressor 21 is started in the state of the refrigerant circuit 10, the low-pressure gas refrigerant is sucked into the compressor 21 and compressed to become a high-pressure gas refrigerant. It is sent to the use unit 5 via the valve 27 and the gas refrigerant communication pipe 7. The high-pressure gas refrigerant sent to the use unit 5 is condensed by exchanging heat with room air in the use-side heat exchanger 52, and is slightly lower than the saturation temperature of the high-pressure gas refrigerant! It is cooled down. Here, the degree of supercooling of the high-pressure liquid refrigerant in the state at the point C is determined by the use-side expansion valve 51 Is kept constant by the supercooling control. The condensed liquid refrigerant is reduced in pressure according to the degree of opening of the use-side expansion valve 51 to become a low-pressure gas-liquid two-phase refrigerant, passes through the liquid refrigerant communication pipe 6 and the liquid-side gate valve 26, and passes through the heat source unit 2. Sent to Then, the gas-liquid two-phase refrigerant sent to the heat source unit 2 passes through the heat source side expansion valve 24 and then evaporates by performing heat exchange with outdoor air or water as a heat source in the heat source side heat exchanger 23. Then, the gas refrigerant again becomes a low-pressure gas refrigerant and flows into the accumulator 25 via the four-way switching valve 22. Then, the low-pressure gas refrigerant flowing into the accumulator 25 is sucked into the compressor 21 again.
このように、暖房運転時においては、冷房運転時の冷媒の流れと逆の流れになって おり、また、過冷却制御を利用側膨張弁 51で行っている点は異なるが、冷媒の状態 変化は、図 2に示される冷凍サイクルの状態変化と同様である。  As described above, during the heating operation, the flow of the refrigerant is opposite to that during the cooling operation, and the difference is that the supercooling control is performed by the use-side expansion valve 51. Is similar to the state change of the refrigeration cycle shown in FIG.
(4)冷媒回路を構成する部品の設計圧力  (4) Design pressure of parts that make up the refrigerant circuit
上記の空気調和装置 1の冷房運転時及び暖房運転時の動作の説明から解るように 、冷媒回路 10は、高圧の冷媒が流れる冷媒回路部分である高圧部 10aと、低圧の冷 媒のみが流れる冷媒回路部分である低圧部 10bとから構成されている。具体的には 、低圧部 10bは、アキュムレータ 25を含む四路切換弁 22と圧縮機 21の吸入側とが 接続された部分であり、高圧部 10aは、冷媒回路 10のうち、低圧部 10bを除く部分で ある。  As can be understood from the description of the operation of the air conditioner 1 during the cooling operation and the heating operation, the refrigerant circuit 10 includes only the high-pressure part 10a, which is a refrigerant circuit part through which the high-pressure refrigerant flows, and the low-pressure refrigerant. And a low-pressure section 10b, which is a refrigerant circuit section. Specifically, the low-pressure section 10b is a section where the four-way switching valve 22 including the accumulator 25 and the suction side of the compressor 21 are connected, and the high-pressure section 10a is connected to the low-pressure section 10b of the refrigerant circuit 10. Excluded parts.
ここで、高圧部 10aを構成する部品 (具体的には、圧縮機 21、四路切換弁 22、熱 源側熱交換器 23、熱源側膨張弁 24、液側仕切弁 26、ガス側仕切弁 27、利用側膨 張弁 51及び利用側熱交換器 52)及び配管は、上記の高圧の冷媒の標準的な使用 圧力(約 3. OMPa)に対して、約 IMPaの余裕を考慮して、最高使用圧力(約 4MPa )の高圧の冷媒を流すことが可能となるように設計されている。また、低圧部 10bを構 成する部品(具体的には、アキュムレータ 25)及び配管は、上記の低圧の冷媒の標 準的な使用圧力(約 0. 9MPa)に対して、約 IMPaの余裕を考慮して、最高使用圧 力(約 2MPa)の低圧の冷媒を流すことが可能となるように設計されて!、る。  Here, the components constituting the high-pressure section 10a (specifically, the compressor 21, the four-way switching valve 22, the heat source side heat exchanger 23, the heat source side expansion valve 24, the liquid side gate valve 26, and the gas side gate valve 27, The use-side expansion valve 51, use-side heat exchanger 52) and piping should take into account the allowance of about IMPa with respect to the standard working pressure (about 3. OMPa) of the high-pressure refrigerant described above. It is designed to be able to flow high-pressure refrigerant at the maximum operating pressure (about 4MPa). In addition, the components (specifically, the accumulator 25) and the piping constituting the low-pressure section 10b have a margin of about IMPa with respect to the standard operating pressure of the low-pressure refrigerant (about 0.9 MPa). Considering this, it is designed to be able to flow a low-pressure refrigerant at the maximum working pressure (about 2 MPa)!
(5)空気調和装置の特徴  (5) Features of air conditioners
本実施形態の空気調和装置 1には、以下のような特徴がある。  The air conditioner 1 of the present embodiment has the following features.
(A) 本実施形態の空気調和装置 1では、 R407Cよりも高圧の飽和圧力特性を有する冷 媒として R410Aを使用するとともに、最高使用圧力が 3. 3MPa未満の低圧部 10b に、複数の利用ユニット 5の運転負荷の変動により増減する余剰冷媒を溜めることが 可能なアキュムレータ 25を設置しているため、高圧部 10aにレシーバを設ける必要が なくなっている。 (A) In the air conditioner 1 of the present embodiment, R410A is used as a refrigerant having a saturation pressure characteristic higher than that of R407C, and a plurality of usage units 5 are operated in the low pressure section 10b having a maximum operating pressure of less than 3.3 MPa. Since the accumulator 25 capable of storing the surplus refrigerant that increases and decreases due to the fluctuation of the load is provided, it is not necessary to provide a receiver in the high-pressure section 10a.
これにより、空気調和装置 1では、 R407Cよりも高圧の飽和圧力特性を有する冷媒 を使用することにより、冷媒回路の最高使用圧力が高くなつても、冷媒回路を構成す る部品のコストが増加するのを抑えることが可能になっている。  As a result, in the air conditioner 1, the use of a refrigerant having a saturation pressure characteristic higher than that of R407C increases the cost of components constituting the refrigerant circuit even when the maximum operating pressure of the refrigerant circuit is increased. It is possible to suppress.
このコストの増加を抑える効果にっ 、て、 R410Aを作動冷媒として使用することに より冷媒回路の最高使用圧力が高くなる場合において、本実施形態のように低圧部 10bにアキュムレータ 25を設ける場合と、従来のように高圧部 10aにレシーバ(図示 せず)を設ける場合とを比較することによって説明する。  The effect of suppressing this increase in cost is that when the maximum operating pressure of the refrigerant circuit is increased by using R410A as the working refrigerant, the case where the accumulator 25 is provided in the low-pressure section 10b as in the present embodiment is considered. This will be described by comparing with a conventional case where a receiver (not shown) is provided in the high-voltage unit 10a.
例えば、呼び径 10インチの円筒形状のアキュムレータ 25及びレシーバを JIS規格 品の STPG370E (圧力配管用炭素鋼鋼管)を素材として使用する場合して加工'製 造する場合、スケジュール 20 (肉厚 6. 4mm)やスケジュール 30 (肉厚 7. 8mm)を選 択することが考えられる。そして、図 3の使用圧力と肉厚との関係図に示されるように 、スケジュール 20の素材は、 3. 3MPaの使用圧力まで使用すること可能であり、スケ ジュール 30の素材は、 4. 3MPaまで使用することが可能である。  For example, if a cylindrical accumulator 25 with a nominal diameter of 10 inches and a receiver are processed using JIS standard STPG370E (carbon steel pipe for pressure piping) as a material, schedule 20 (wall thickness 6. 4mm) or schedule 30 (wall thickness 7.8mm) may be selected. Then, as shown in the relationship diagram between the working pressure and the wall thickness in FIG. 3, the material of schedule 20 can be used up to the working pressure of 3.3 MPa, and the material of schedule 30 can be used at 4.3 MPa. It is possible to use up to.
ここで、アキュムレータ 25の最高使用圧力は、約 2. OMPa (低圧部 10bの最高使 用圧力)であるため、スケジュール 20の素材であっても十分な耐圧強度を有しており 選択可能である。一方、レシーバの最高使用圧力は、約 4. OMPa (高圧部 10aの最 高使用圧力)であるため、スケジュール 20の素材を使用することができず、し力も、計 算上では、約 7. 4mmの肉厚で十分であるにもかかわらず、スケジュール 30の素材 を選択しなければならな ヽ。  Here, since the maximum operating pressure of the accumulator 25 is about 2. OMPa (the maximum operating pressure of the low-pressure section 10b), even the material of schedule 20 has a sufficient pressure resistance and can be selected. . On the other hand, the maximum working pressure of the receiver is about 4.OMPa (maximum working pressure of the high-pressure section 10a), so the material of schedule 20 cannot be used, and the force is about 7. Even though a wall thickness of 4mm is enough, you must select a material for schedule 30.
このように、空気調和装置の作動冷媒として R407Cを使用する場合には、高圧部 の最高使用圧力が 3. 0-3. 3MPaであるため、スケジュール 20の素材を使用する ことが可能であるが、本実施形態のように、 R410A等の R407Cよりも高圧の飽和圧 力特性を有する冷媒を使用する場合に、余剰冷媒を溜める容器としてレシーバを採 用すると、大幅な肉厚増加が生じることになることになり、冷媒回路を構成する部品の コストの増加が必要以上に大きくなつてしまう。言い換えれば、上記のように、 R410A 等の R407Cよりも高圧の飽和圧力特性を有する冷媒を使用する場合には、余剰冷 媒を溜める容器として、レシーバでなくアキュムレータを採用する方がコストの増加が 抑免られること〖こなる。 As described above, when R407C is used as the working refrigerant of the air conditioner, since the maximum working pressure of the high-pressure section is 3.0-3.3 MPa, it is possible to use the material of schedule 20. However, when a refrigerant having a saturation pressure characteristic higher than that of R407C such as R410A is used as in this embodiment, a receiver is used as a container for storing excess refrigerant. If used, the wall thickness will increase significantly, and the cost of the components constituting the refrigerant circuit will increase unnecessarily. In other words, as described above, when using a refrigerant having a higher saturation pressure characteristic than R407C such as R410A, it is more costly to use an accumulator instead of a receiver as a container for storing excess refrigerant. Being repressed
(B)  (B)
また、 R410Aは擬似共沸混合冷媒であるため、余剰冷媒を溜める容器としてアキ ュムレータ 25を採用しても、 R407C等の非共沸混合冷媒を使用する場合のような冷 媒の組成変化を防ぐためのバイパス管等の部品が不要になっており、冷媒回路を構 成する部品のコストが増加するのを抑えることが可能になっている。  In addition, since R410A is a pseudo-azeotropic mixed refrigerant, even if the accumulator 25 is used as a container for storing the surplus refrigerant, the composition of the refrigerant is prevented from changing as in the case of using a non-azeotropic mixed refrigerant such as R407C. This eliminates the need for components such as bypass pipes, thereby making it possible to suppress an increase in the cost of components constituting the refrigerant circuit.
(C)  (C)
さらに、空気調和装置 1では、冷房運転時には、高圧圧力検出器 28によって検出 される高圧のガス冷媒の圧力値と熱源側温度検出器 29によって検出される高圧の 液冷媒の温度値との温度差に基づいて、高圧の液冷媒の過冷却度を算出して、過 冷却度が所定の値になるように、熱源側膨張弁 24の開度を調節することができるた め、運転負荷に応じて増減する余剰冷媒を確実にアキュムレータ 25に溜めておくこ とができる。また、暖房運転時には、高圧圧力検出器 28によって検出される高圧のガ ス冷媒の圧力値と利用側温度検出器 53によって検出される高圧の液冷媒の温度値 との温度差に基づいて、高圧の液冷媒の過冷却度を算出して、過冷却度が所定の 値になるように、利用側膨張弁 51の開度を調節することができるため、運転負荷に応 じて増減する余剰冷媒を確実にアキュムレータ 25に溜めておくことができる。  Further, in the air conditioner 1, during the cooling operation, the temperature difference between the pressure value of the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the temperature value of the high-pressure liquid refrigerant detected by the heat source side temperature detector 29 is determined. The degree of supercooling of the high-pressure liquid refrigerant is calculated based on the above equation, and the degree of opening of the heat source side expansion valve 24 can be adjusted so that the degree of subcooling becomes a predetermined value. As a result, the surplus refrigerant that increases and decreases can be reliably stored in the accumulator 25. Also, during the heating operation, the high-pressure gas refrigerant detected by the high-pressure pressure detector 28 and the high-pressure liquid refrigerant detected by the use-side temperature detector 53 have a high-pressure difference based on the temperature difference. The degree of supercooling of the liquid refrigerant is calculated, and the degree of opening of the usage side expansion valve 51 can be adjusted so that the degree of supercooling becomes a predetermined value. Can be reliably stored in the accumulator 25.
(6)他の実施形態  (6) Other embodiments
以上、本発明の実施形態について図面に基づいて説明したが、具体的な構成は、 これらの実施形態に限られるものではなぐ発明の要旨を逸脱しない範囲で変更可 能である。  Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration can be changed without departing from the spirit of the invention, which is not limited to these embodiments.
(A)  (A)
前記実施形態の空気調和装置は、冷房及び暖房運転可能な冷媒回路を有して ヽ るが、これに限定されず、四路切換弁を有しない冷房専用又は暖房専用の冷媒回路 を有する空気調和装置に本発明を適用してもよい。 The air-conditioning apparatus of the embodiment has a refrigerant circuit capable of cooling and heating operations, but is not limited to this, and is a cooling-only or heating-only refrigerant circuit without a four-way switching valve. The present invention may be applied to an air conditioner having
(B)  (B)
前記実施形態では、作動冷媒として、擬似共沸混合冷媒の一つである R410Aを 採用したが、これに限定されず、 R410B (R32 :45wt%、 R125 : 55wt%)等のよう な R32 :R125組成比が R410Aと異なる擬似共沸混合冷媒や、 R32等の単一冷媒 や、他の擬似共沸混合冷媒又は共沸混合冷媒を採用してもよい。  In the above-described embodiment, R410A, which is one of the pseudo-azeotropic mixed refrigerants, is employed as the working refrigerant, but is not limited thereto, and R32: R125 such as R410B (R32: 45 wt%, R125: 55 wt%), etc. A pseudo-azeotropic mixed refrigerant having a composition ratio different from that of R410A, a single refrigerant such as R32, or another pseudo-azeotropic mixed refrigerant or another azeotropic mixed refrigerant may be employed.
産業上の利用可能性 Industrial applicability
本発明を利用すれば、複数の利用ユニットを備えた空気調和装置にぉ 、て、 R40 7Cよりも高圧の飽和圧力特性を有する冷媒を使用することにより、冷媒回路の最高 使用圧力が高くなつても、冷媒回路を構成する部品のコストが増加するのを抑えるこ とがでさる。  According to the present invention, the maximum operating pressure of the refrigerant circuit can be increased by using a refrigerant having a saturation pressure characteristic higher than that of R407C in an air conditioner having a plurality of usage units. In addition, it is possible to suppress an increase in the cost of the components constituting the refrigerant circuit.

Claims

請求の範囲 The scope of the claims
[1] 複数の利用ュ-ット (5)を備えた空気調和装置(1)であって、  [1] An air conditioner (1) having a plurality of utilization units (5),
最高使用圧力が 3. 3MPa以上の高圧の冷媒を流すことが可能な部品が接続され て構成される高圧部(10a)と、最高使用圧力が 3. 3MPa未満の低圧の冷媒のみを 流すことが可能な部品が接続されて構成される低圧部(10b)とを有する蒸気圧縮式 の冷媒回路(10)と、  It is possible to flow only the high-pressure section (10a), which is connected to parts that can flow high-pressure refrigerant with a maximum operating pressure of 3.3 MPa or more, and low-pressure refrigerant with a maximum operating pressure of less than 3.3 MPa. A vapor compression type refrigerant circuit (10) having a low pressure part (10b) configured by connecting possible parts;
前記低圧部を構成する部品の一つであり、前記冷媒回路内を循環する冷媒を液冷 媒として溜めることが可能なアキュムレータ(25)とを備え、  An accumulator (25), which is one of components constituting the low-pressure section and is capable of storing a refrigerant circulating in the refrigerant circuit as a liquid cooling medium,
前記低圧部及び前記高圧部を流れる冷媒は、 R407Cよりも高圧の飽和圧力特性 を有する擬似共沸混合冷媒、共沸混合冷媒又は単一冷媒である、  The refrigerant flowing through the low-pressure section and the high-pressure section is a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single refrigerant having a saturation pressure characteristic higher than R407C.
空気調和装置(1)。  Air conditioner (1).
[2] 低圧のガス冷媒を圧縮して高圧のガス冷媒を吐出する圧縮機 (21)と、  [2] A compressor (21) that compresses a low-pressure gas refrigerant and discharges a high-pressure gas refrigerant,
蒸発器及び凝縮器として機能することが可能な熱源側熱交 (23)と、 互いが並列に接続され、凝縮器及び蒸発器として機能することが可能な複数の利 用側熱交 (52)と、  Heat source side heat exchange that can function as an evaporator and condenser (23), and multiple use side heat exchanges that are connected in parallel and can function as a condenser and evaporator (52) When,
前記利用側熱交^^と前記熱源側熱交^^との間に接続された膨張機構 (24、 5 An expansion mechanism (24, 5) connected between the use side heat exchange ^^ and the heat source side heat exchange ^^.
1)と、 1) and
前記熱源側熱交換器のガス側を前記圧縮機の吐出側に接続するとともに前記圧 縮機の吸入側を前記利用側熱交換器のガス側に接続して低圧のガス冷媒を圧縮機 に吸入させる状態と、前記熱源側熱交換器のガス側を前記圧縮機の吸入側に接続 するとともに前記圧縮機の吐出側を前記利用側熱交換器のガス側に接続して高圧 のガス冷媒を前記利用側熱交^^に流す状態とを切り換え可能な切 構 (22)と 前記切換機構と前記圧縮機の吸入側との間に接続され、低圧の冷媒を液冷媒とし て溜めることが可能なアキュムレータ(25)とを備え、  The gas side of the heat source side heat exchanger is connected to the discharge side of the compressor, and the suction side of the compressor is connected to the gas side of the utilization side heat exchanger to suck a low-pressure gas refrigerant into the compressor. And the gas side of the heat source side heat exchanger is connected to the suction side of the compressor, and the discharge side of the compressor is connected to the gas side of the utilization side heat exchanger to supply high pressure gas refrigerant to the compressor. It is connected between the switching mechanism (22) and the switching mechanism and the suction side of the compressor that can switch the state of flowing to the use side heat exchange, and can store low-pressure refrigerant as liquid refrigerant. With an accumulator (25),
前記アキュムレータを含み、前記切換機構と前記圧縮機の吸入側とが接続されて 構成される低圧部(10b)は、最高使用圧力が 3. 3MPa未満の低圧の冷媒のみを流 すことが可能であり、 前記低圧部を除く部分であり、前記圧縮機、前記熱源側熱交換器、前記複数の利 用側熱交^^、及び前記切 構が接続されて構成される高圧部(10a)は、最高 使用圧力が 3. 3MPa以上の高圧の冷媒を流すことが可能であり、 The low-pressure part (10b) including the accumulator and configured by connecting the switching mechanism and the suction side of the compressor can flow only low-pressure refrigerant having a maximum operating pressure of less than 3.3 MPa. Yes, The high-pressure section (10a), which is a section excluding the low-pressure section and which is connected to the compressor, the heat-source-side heat exchanger, the plurality of use-side heat exchangers ^, and the cutting structure, has a maximum capacity. It is possible to flow a high-pressure refrigerant whose operating pressure is 3.3MPa or more.
前記低圧部及び前記高圧部を流れる冷媒は、 R407Cよりも高圧の飽和圧力特性 を有する擬似共沸混合冷媒、共沸混合冷媒又は単一冷媒である、  The refrigerant flowing through the low-pressure section and the high-pressure section is a pseudo-azeotropic mixed refrigerant, an azeotropic mixed refrigerant, or a single refrigerant having a saturation pressure characteristic higher than R407C.
空気調和装置(1)。  Air conditioner (1).
[3] 前記熱源側熱交換器 (23)の液側における冷媒温度を検出する熱源側温度検出 器 (29)と、前記各利用側熱交換器 (52)の液側における冷媒温度を検出する利用 側温度検出器 (53)と、前記圧縮機 (21)の吐出側の冷媒圧力を検出する高圧圧力 検出器 (28)とをさらに備え、  [3] A heat source side temperature detector (29) for detecting a refrigerant temperature on a liquid side of the heat source side heat exchanger (23), and a refrigerant temperature on a liquid side of each of the use side heat exchangers (52). A usage-side temperature detector (53); and a high-pressure pressure detector (28) for detecting a refrigerant pressure on a discharge side of the compressor (21).
前記熱源側温度検出器、前記利用側温度検出器、及び前記高圧圧力検出器で検 出される冷媒温度及び冷媒圧力の値に基づ!ヽて、前記熱源側熱交換器が凝縮器と して機能する際には前記熱源側熱交換器の液側における液冷媒が所定の過冷却状 態になるように前記膨張機構 (24)の開度を調節し、前記利用側熱交換器が凝縮器 として機能する際には前記利用側熱交^^の液側における液冷媒が所定の過冷却 状態になるように前記膨張機構 (51)の開度を調節する、  Based on the refrigerant temperature and the refrigerant pressure values detected by the heat source side temperature detector, the utilization side temperature detector, and the high pressure detector, the heat source side heat exchanger serves as a condenser. When functioning, the opening degree of the expansion mechanism (24) is adjusted so that the liquid refrigerant on the liquid side of the heat source side heat exchanger is in a predetermined supercooled state, and the use side heat exchanger is When functioning as, the opening degree of the expansion mechanism (51) is adjusted so that the liquid refrigerant on the liquid side of the use side heat exchange is in a predetermined supercooled state.
請求項 2に記載の空気調和装置(1)。  The air conditioner (1) according to claim 2.
[4] 前記低圧部(10b)及び前記高圧部(10a)を流れる冷媒は、 R32を含んでいる、請 求項 1一 3のいずれかに記載の空気調和装置(1)。  [4] The air-conditioning apparatus (1) according to any one of claims 13 to 13, wherein the refrigerant flowing through the low-pressure section (10b) and the high-pressure section (10a) contains R32.
[5] 前記低圧部(10b)及び前記高圧部(10a)を流れる冷媒は、 R410Aである、請求 項 1一 3のいずれかに記載の空気調和装置(1)。  5. The air conditioner (1) according to claim 13, wherein the refrigerant flowing through the low-pressure section (10b) and the high-pressure section (10a) is R410A.
PCT/JP2004/007490 2003-06-06 2004-05-31 Air conditioner WO2004109199A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2004245797A AU2004245797B2 (en) 2003-06-06 2004-05-31 Air conditioner
EP04745455A EP1632732B1 (en) 2003-06-06 2004-05-31 Air conditioner
US10/523,780 US20060000224A1 (en) 2003-06-06 2004-05-31 Air conditioner
ES04745455T ES2380331T3 (en) 2003-06-06 2004-05-31 Air conditioner
AT04745455T ATE541167T1 (en) 2003-06-06 2004-05-31 AIR CONDITIONER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003161934A JP2004361036A (en) 2003-06-06 2003-06-06 Air conditioning system
JP2003-161934 2003-06-06

Publications (1)

Publication Number Publication Date
WO2004109199A1 true WO2004109199A1 (en) 2004-12-16

Family

ID=33508651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/007490 WO2004109199A1 (en) 2003-06-06 2004-05-31 Air conditioner

Country Status (9)

Country Link
US (1) US20060000224A1 (en)
EP (1) EP1632732B1 (en)
JP (1) JP2004361036A (en)
KR (1) KR100605797B1 (en)
CN (1) CN100419344C (en)
AT (1) ATE541167T1 (en)
AU (1) AU2004245797B2 (en)
ES (1) ES2380331T3 (en)
WO (1) WO2004109199A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4187020B2 (en) * 2006-08-08 2008-11-26 ダイキン工業株式会社 Air conditioner and cleaning method thereof
JP5138292B2 (en) * 2007-07-04 2013-02-06 三菱重工業株式会社 Air conditioner
JP5213372B2 (en) * 2007-07-09 2013-06-19 三菱電機株式会社 Air conditioner
US20170080773A1 (en) * 2008-11-03 2017-03-23 Arkema France Vehicle Heating and/or Air Conditioning Method
JP5315990B2 (en) * 2008-12-29 2013-10-16 ダイキン工業株式会社 Air conditioning apparatus and control method thereof
CN103154637B (en) * 2010-09-30 2015-11-25 三菱电机株式会社 Aircondition
KR20120136854A (en) * 2011-06-10 2012-12-20 삼성전자주식회사 Water supply apparatus
CN103842747B (en) 2011-10-04 2016-02-24 三菱电机株式会社 Refrigerating circulatory device
JP6064412B2 (en) * 2012-07-30 2017-01-25 株式会社富士通ゼネラル Air conditioner
JP2016102631A (en) * 2014-11-28 2016-06-02 パナソニックIpマネジメント株式会社 Air conditioning device
WO2019123897A1 (en) * 2017-12-18 2019-06-27 ダイキン工業株式会社 Refrigeration cycle device
US11906207B2 (en) 2017-12-18 2024-02-20 Daikin Industries, Ltd. Refrigeration apparatus
US11435118B2 (en) 2017-12-18 2022-09-06 Daikin Industries, Ltd. Heat source unit and refrigeration cycle apparatus
US11820933B2 (en) 2017-12-18 2023-11-21 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11506425B2 (en) 2017-12-18 2022-11-22 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441819B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Refrigeration cycle apparatus
US11441802B2 (en) 2017-12-18 2022-09-13 Daikin Industries, Ltd. Air conditioning apparatus
US11549695B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Heat exchange unit
US11365335B2 (en) 2017-12-18 2022-06-21 Daikin Industries, Ltd. Composition comprising refrigerant, use thereof, refrigerating machine having same, and method for operating said refrigerating machine
US11549041B2 (en) 2017-12-18 2023-01-10 Daikin Industries, Ltd. Composition containing refrigerant, use of said composition, refrigerator having said composition, and method for operating said refrigerator
US11493244B2 (en) 2017-12-18 2022-11-08 Daikin Industries, Ltd. Air-conditioning unit
CN111511874A (en) 2017-12-18 2020-08-07 大金工业株式会社 Refrigeration cycle device
CN111479894B (en) 2017-12-18 2021-09-17 大金工业株式会社 Composition containing refrigerant, use thereof, refrigerator having same, and method for operating refrigerator
CN110953779B (en) * 2019-12-20 2021-06-22 潍柴动力股份有限公司 Method and device for controlling pressure of liquid storage tank of Rankine cycle system
KR20230168821A (en) 2022-06-08 2023-12-15 임종봉 R410A gas insulated transformer

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835725A (en) 1994-07-21 1996-02-06 Mitsubishi Electric Corp Refrigerating air conditioner using non-azeotrope refrigerant
JPH09184662A (en) * 1995-12-29 1997-07-15 Sanyo Electric Co Ltd Air conditioner
EP0848214A2 (en) 1996-12-12 1998-06-17 Sanyo Electric Co. Ltd Method of returning refrigerator oil of air conditioner
JPH10220880A (en) 1997-02-07 1998-08-21 Hitachi Ltd Air conditioner
JPH10332211A (en) 1997-06-03 1998-12-15 Hitachi Ltd Air conditioner
JPH11173698A (en) 1997-12-15 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle
JP2001183020A (en) 1999-12-27 2001-07-06 Daikin Ind Ltd Refrigerating device
JP2002162126A (en) * 2000-11-28 2002-06-07 Toshiba Kyaria Kk Air conditioner
JP2002195702A (en) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp Extraction and separation mechanism, refrigerating cycle apparatus, heat source unit and regeneration method therefor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779031A (en) * 1970-08-21 1973-12-18 Hitachi Ltd Air-conditioning system for cooling dehumidifying or heating operations
CN1013617B (en) * 1985-08-30 1991-08-21 德里康空气控股有限公司 Conditioner and method
US4771610A (en) * 1986-06-06 1988-09-20 Mitsubishi Denki Kabushiki Kaisha Multiroom air conditioner
JPH0711366B2 (en) * 1987-11-18 1995-02-08 三菱電機株式会社 Air conditioner
US4912937A (en) * 1988-04-25 1990-04-03 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JP2909190B2 (en) * 1990-11-02 1999-06-23 株式会社東芝 Air conditioner
US5888418A (en) * 1992-03-20 1999-03-30 The United States Of America As Represented By The Secretary Of Commerce Azeotropic refrigerant comprising bis-(difluoromethyl)ether and 1,1,2-trifluoroethane
JP3060770B2 (en) * 1993-02-26 2000-07-10 ダイキン工業株式会社 Refrigeration equipment
EP1162412A4 (en) * 1999-03-02 2003-03-12 Daikin Ind Ltd Refrigerating device
JP2002089978A (en) * 2000-09-11 2002-03-27 Daikin Ind Ltd Paired refrigerating device and multiple refrigerating device
US6662569B2 (en) * 2002-03-27 2003-12-16 Samuel M. Sami Method and apparatus for using magnetic fields for enhancing heat pump and refrigeration equipment performance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835725A (en) 1994-07-21 1996-02-06 Mitsubishi Electric Corp Refrigerating air conditioner using non-azeotrope refrigerant
JPH09184662A (en) * 1995-12-29 1997-07-15 Sanyo Electric Co Ltd Air conditioner
EP0848214A2 (en) 1996-12-12 1998-06-17 Sanyo Electric Co. Ltd Method of returning refrigerator oil of air conditioner
JPH10220880A (en) 1997-02-07 1998-08-21 Hitachi Ltd Air conditioner
JPH10332211A (en) 1997-06-03 1998-12-15 Hitachi Ltd Air conditioner
JPH11173698A (en) 1997-12-15 1999-07-02 Mitsubishi Electric Corp Refrigeration cycle
JP2001183020A (en) 1999-12-27 2001-07-06 Daikin Ind Ltd Refrigerating device
JP2002162126A (en) * 2000-11-28 2002-06-07 Toshiba Kyaria Kk Air conditioner
JP2002195702A (en) * 2000-12-25 2002-07-10 Mitsubishi Electric Corp Extraction and separation mechanism, refrigerating cycle apparatus, heat source unit and regeneration method therefor

Also Published As

Publication number Publication date
CN1723373A (en) 2006-01-18
JP2004361036A (en) 2004-12-24
AU2004245797B2 (en) 2006-06-29
KR20050044931A (en) 2005-05-13
EP1632732B1 (en) 2012-01-11
EP1632732A1 (en) 2006-03-08
ES2380331T3 (en) 2012-05-10
ATE541167T1 (en) 2012-01-15
AU2004245797A1 (en) 2004-12-16
US20060000224A1 (en) 2006-01-05
KR100605797B1 (en) 2006-08-01
EP1632732A4 (en) 2006-07-26
CN100419344C (en) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2004109199A1 (en) Air conditioner
EP2840335B1 (en) Refrigerating cycle device
CN111801535B (en) Refrigeration cycle device
JP5759017B2 (en) Air conditioner
JP5511983B2 (en) Air conditioning and hot water supply complex system
US9080778B2 (en) Air-conditioning hot-water supply combined system
KR101901540B1 (en) Air conditioning device
JP6289734B2 (en) Air conditioning and hot water supply complex system
JP2013015264A (en) Air conditioner
JP6257809B2 (en) Refrigeration cycle equipment
US6637236B2 (en) Refrigerating device
JP4488712B2 (en) Air conditioner
WO2017010007A1 (en) Air conditioner
JP2002162086A (en) Air conditioner
JP2004170048A (en) Air conditioning system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref document number: 2006000224

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10523780

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004245797

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004245797

Country of ref document: AU

Date of ref document: 20040531

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004245797

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004745455

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020057004897

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057004897

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004801832X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 10523780

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004745455

Country of ref document: EP