JPH09184662A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH09184662A
JPH09184662A JP7352836A JP35283695A JPH09184662A JP H09184662 A JPH09184662 A JP H09184662A JP 7352836 A JP7352836 A JP 7352836A JP 35283695 A JP35283695 A JP 35283695A JP H09184662 A JPH09184662 A JP H09184662A
Authority
JP
Japan
Prior art keywords
pressure
refrigerant
high pressure
control valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7352836A
Other languages
Japanese (ja)
Other versions
JP2966786B2 (en
Inventor
Sadayasu Nakano
定康 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7352836A priority Critical patent/JP2966786B2/en
Priority to CN96123613A priority patent/CN1106542C/en
Priority to KR1019960074333A priority patent/KR100413307B1/en
Publication of JPH09184662A publication Critical patent/JPH09184662A/en
Application granted granted Critical
Publication of JP2966786B2 publication Critical patent/JP2966786B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/50Load

Abstract

PROBLEM TO BE SOLVED: To prevent comfortableness from being deteriorated by determining whether opening of a refrigerant control valve is effective of closing of the valve is effective when a specified high pressure is detected during heating operation. SOLUTION: When a specified high pressure is detected by a pressure sensor 1 and a judgment that selection of high load relieving method is necessary is made, refrigerant pressure discharged from a compressor 51 is stored as a high pressure PH in RAM. Then, a refrigerant control valve 55 of each of indoor units in operation is made to travel to half of a present ratio of the valve opening and a timer function starts counting time. When time counted up exceeds a specified value or pressure difference between the high pressure PH and a current pressure (P) exceeds a specified value, the pressure (P) is compared with the high pressure PH at a next step. If the pressure (P) is lower than the high pressure PH, the refrigerant control valve 55 is made to travel to decrease the ratio of the valve opening, and if the pressure (P) is higher than the high pressure PH, the refrigerant control valve 55 is made to travel to increase the ratio of the valve opening. Thus, an optimum high load relieving method can be selected for each of combinations of the operating indoor units.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷媒の圧縮/膨張
を繰り返すことによって冷凍サイクルを構成し、冷/暖
房などを行う空気調和機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner that constitutes a refrigeration cycle by repeating compression / expansion of a refrigerant and performs cooling / heating or the like.

【0002】[0002]

【従来の技術】1台の室外機に複数台の室内機を接続す
る、いわゆるマルチタイプの空気調和機の場合、室内機
の運転台数によっては、室外機の容量と室内機の運転容
量との差が大きく開くことがある。
2. Description of the Related Art In the case of a so-called multi-type air conditioner in which a plurality of indoor units are connected to one outdoor unit, depending on the number of operating indoor units, the capacity of the outdoor unit and the operating capacity of the indoor unit may differ. The difference may widen.

【0003】また、1台毎の室内機の容量が小容量化の
傾向にある現在では、室内機と室外機との容量比が1:
20のようなこともある。このため、圧縮機で圧縮した
冷媒を室内機に直接供給する暖房運転時に、圧縮機吐出
側の圧力が異常に上昇する、いわゆる高負荷状態に陥り
易い状況になっている。
At present, the capacity of each indoor unit tends to be smaller, and the capacity ratio of the indoor unit to the outdoor unit is 1 :.
There are things like 20. Therefore, during the heating operation in which the refrigerant compressed by the compressor is directly supplied to the indoor unit, the pressure on the discharge side of the compressor is abnormally increased, which is a situation in which a so-called high load state is likely to occur.

【0004】高負荷状態の運転が続くと、室内機におけ
る吹き出し温度が上昇し、快適性が損なわれるので、室
内機に流入する冷媒の量を制御する冷媒制御弁の開度を
増加して、凝縮量を増加させ高負荷状態の解消を図って
いる。
If the operation under a high load continues, the temperature of blown air in the indoor unit rises and the comfort is deteriorated. Therefore, the opening of the refrigerant control valve for controlling the amount of the refrigerant flowing into the indoor unit is increased, The amount of condensation is increased to eliminate the high load condition.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記の方法
は、凝縮器として機能する室内熱交換器の容量が、蒸発
器として機能する室外熱交換器の容量より小さい、例え
ば100%以下75%程度以上の場合には有効である
が、室内熱交換器の容量が室外熱交換器の容量より大き
い場合には、高負荷の解消自体は達成できるものの、室
内機から放出する熱量が増加するので実用的には良い方
法ではない。すなわち、冷媒制御弁を開けることによ
り、室内機の吹き出し温度が上昇し、快適性を損ねるの
で好ましくないと云った問題点があり、この点の解決が
課題となっていた。
However, in the above method, the capacity of the indoor heat exchanger that functions as a condenser is smaller than the capacity of the outdoor heat exchanger that functions as an evaporator, for example, 100% or less and 75% or less. It is effective in the above cases, but when the capacity of the indoor heat exchanger is larger than the capacity of the outdoor heat exchanger, although the high load can be eliminated itself, the amount of heat released from the indoor unit increases, so it is practical Is not a good method. That is, there is a problem that opening the refrigerant control valve raises the temperature of the indoor unit and impairs comfort, which is not preferable, and there is a problem to be solved.

【0006】[0006]

【課題を解決するための手段】この発明は、上記のよう
な、圧縮機・室外熱交換器・室内熱交換器などを配管接
続して構成する空気調和機において
SUMMARY OF THE INVENTION The present invention is an air conditioner constructed by connecting a compressor, an outdoor heat exchanger, an indoor heat exchanger, etc. by piping as described above.

【0007】圧縮機吐出側の冷媒圧力を検出する圧力検
出手段と、この圧力検出手段が暖房運転時に所定の高圧
を検出したとき、前記室内熱交換器に供給する冷媒の量
を制御する冷媒制御弁を開く方向に制御した方が前記圧
縮機吐出側の高圧解消に有効か、前記冷媒制御弁を閉じ
る方向に制御した方が前記圧縮機吐出側の高圧解消に有
効かを判定する判定制御手段と、を備えるようにした第
1の構成の空気調和機と、
Pressure detecting means for detecting the refrigerant pressure on the discharge side of the compressor, and refrigerant control for controlling the amount of refrigerant supplied to the indoor heat exchanger when the pressure detecting means detects a predetermined high pressure during heating operation. Judgment control means for determining whether controlling the valve in the opening direction is effective in eliminating high pressure on the compressor discharge side, or controlling in the closing direction of the refrigerant control valve is effective in eliminating high pressure on the compressor discharge side And an air conditioner having a first configuration including:

【0008】前記第1の構成の空気調和機において、室
内熱交換器を複数設置すると共に、前回判定時と同じ室
内熱交換器が運転されていて圧力検出手段が所定の高圧
を検出したとき、前回の判定を代用する機能を判定制御
手段が備えるようにした第2の構成の空気調和機と、
In the air conditioner of the first construction, when a plurality of indoor heat exchangers are installed and the same indoor heat exchanger as in the previous determination is operating and the pressure detecting means detects a predetermined high pressure, An air conditioner having a second configuration in which the determination control means has a function of substituting the previous determination;

【0009】前記第1または第2の構成の空気調和機に
おいて、暖房運転時に室内熱交換器から流出する冷媒の
温度を検出する温度検出手段を備え、圧力検出手段が暖
房運転時に所定の高圧を検出したとき、前記温度検出手
段および前記圧力検出手段が検出するデータに基づいて
過冷却度を算出すると共に、この過冷却度に基づいて前
記冷媒制御弁の開度を高圧解消に有効であると判定され
た方向へ変更する機能を判定制御手段が備えるようにし
た第3の構成の空気調和機と、を提供することにより、
上記の課題を解決し得るようにしたものである。
In the air conditioner of the first or second construction, there is provided temperature detecting means for detecting the temperature of the refrigerant flowing out of the indoor heat exchanger during the heating operation, and the pressure detecting means provides a predetermined high pressure during the heating operation. When it is detected, the supercooling degree is calculated based on the data detected by the temperature detecting means and the pressure detecting means, and the opening degree of the refrigerant control valve is effective for canceling the high pressure based on the supercooling degree. By providing the air conditioner of the third configuration in which the determination control means has the function of changing to the determined direction,
The above-mentioned problems can be solved.

【0010】[0010]

【発明の実施の形態】以下、図面に基づいて本発明の一
実施形態を説明する。図4は、エンジン駆動ヒートポン
プ空調装置の構成を示す図であり、51は図示しないエ
ンジンなどによって駆動される圧縮機、52は四方弁、
53は室外熱交換器、54はレシーバタンク、55は冷
媒制御弁、56は室内熱交換器、57はアキュームレー
タ、58は膨張弁であり、これら機器は従来周知のもの
と特に変わるものではなく、順次連結して破線で示した
暖房回路と、実線で示した冷房回路とを形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 4 is a diagram showing the configuration of an engine-driven heat pump air conditioner, in which 51 is a compressor driven by an engine (not shown), 52 is a four-way valve,
53 is an outdoor heat exchanger, 54 is a receiver tank, 55 is a refrigerant control valve, 56 is an indoor heat exchanger, 57 is an accumulator, and 58 is an expansion valve. These devices are not particularly different from those conventionally known, The heating circuit shown by a broken line and the cooling circuit shown by a solid line are sequentially connected.

【0011】また、圧縮機51が吐出した冷媒の圧力を
検出する圧力センサ1と、暖房運転時に室内熱交換器5
6から流出する冷媒の温度を検出する温度センサ2と、
制御器3とを設置する。なお、59は室外送風機、60
は室内送風機であり、この室内送風機60と前記した冷
媒制御弁55・室内熱交換器56とは、空調を行う室内
に設置するので、合わせて室内機と呼んでいる。
The pressure sensor 1 for detecting the pressure of the refrigerant discharged from the compressor 51 and the indoor heat exchanger 5 during the heating operation.
A temperature sensor 2 for detecting the temperature of the refrigerant flowing out of 6,
The controller 3 is installed. In addition, 59 is an outdoor blower, 60
Is an indoor blower, and the indoor blower 60 and the above-mentioned refrigerant control valve 55 and indoor heat exchanger 56 are installed in a room where air conditioning is performed, and are therefore collectively referred to as an indoor unit.

【0012】制御器3としては、例えば図5に示したよ
うに、圧力センサ1・温度センサ2が出力する情報を信
号変換して中央演算処理装置(以下CPUと云う)3B
へ出力する入力インターフェイス3Aと、所定の演算
式、演算プログラムなどを記憶している記憶装置(以下
ROMと云う)3Cと、CPU3Bからの信号を入力し
て冷媒制御弁55などへ所要の信号を出力する出力イン
ターフェイス3Dと、所定時間毎に信号を出力し、所要
時間が計時できるタイマ機能を備えた時計回路3Eと、
圧力センサ1・温度センサ2から入力した情報、時計回
路3Eによって計時した時間などを記憶する読込/消去
可能な記憶装置(以下RAMと云う)3Fと、を備えた
ものを使用する。
As the controller 3, for example, as shown in FIG. 5, a central processing unit (hereinafter referred to as CPU) 3B is provided by converting the information output from the pressure sensor 1 and the temperature sensor 2 into a signal.
The input interface 3A to output to, a storage device (hereinafter referred to as ROM) 3C that stores a predetermined arithmetic expression, an arithmetic program, and the like, and a signal from the CPU 3B are input to send a required signal to the refrigerant control valve 55 and the like. An output interface 3D for outputting, a clock circuit 3E having a timer function capable of outputting a signal at predetermined time intervals and measuring the required time,
A readable / erasable storage device (hereinafter referred to as RAM) 3F that stores information input from the pressure sensor 1 and the temperature sensor 2 and the time measured by the clock circuit 3E is used.

【0013】そして、ROM3Cには、圧力センサ1・
温度センサ2から入力する冷媒回路の圧力および温度の
情報に基づいて、冷媒制御弁55の開度を制御するため
の、例えば図1〜図3に示す制御プログラムを記憶させ
ておく。
The ROM 3C has a pressure sensor 1.
Based on the pressure and temperature information of the refrigerant circuit input from the temperature sensor 2, a control program for controlling the opening of the refrigerant control valve 55, for example, shown in FIGS. 1 to 3 is stored.

【0014】先ず、図1と図2に基づいて、高負荷解消
方式を選択する要領を説明する。空調負荷に基づく通常
の運転制御をメイン制御で行っていて、圧力センサ1が
所定の圧力、例えば2.3MPa以上を検出し、高負荷
解消方式を選択する必要があると判断されたときには、
図1の制御フローを開始し、ステップS1では圧力セン
サ1が検出する冷媒吐出圧力を高圧PH としてRAM3
Fに記憶する。
First, the procedure for selecting the high load elimination method will be described with reference to FIGS. 1 and 2. When the normal operation control based on the air conditioning load is performed by the main control, the pressure sensor 1 detects a predetermined pressure, for example, 2.3 MPa or more, and it is determined that the high load elimination method needs to be selected,
The control flow of FIG. 1 is started, and in step S1, the refrigerant discharge pressure detected by the pressure sensor 1 is set to the high pressure P H and the RAM 3
Store in F.

【0015】ステップS2では、運転している全室内機
の冷媒制御弁55の開度を、現在の開度の1/2に絞
る。
In step S2, the opening of the refrigerant control valve 55 of all the operating indoor units is reduced to 1/2 of the current opening.

【0016】ステップS3では、時計回路3Eのタイマ
機能を起動して計時を開始し、ステップS4では、ステ
ップS3で起動したタイマ機能による計時時間T1が所
定時間、例えば1分を越えているか否かを判定し、越え
ていればステップS6に移行し、そうでなければステッ
プS5に移行する。
In step S3, the timer function of the clock circuit 3E is activated to start counting, and in step S4, it is determined whether or not the time T1 measured by the timer function activated in step S3 exceeds a predetermined time, for example, 1 minute. Is determined, and if it exceeds, the process proceeds to step S6, and if not, the process proceeds to step S5.

【0017】ステップS5では、RAM3Fに記憶して
いる高圧PH と、圧力センサ1が現在検出している冷媒
の圧力Pとを比較し、その圧力差が0.1MPaを越え
ているときにはステップS6に移行し、そうでないとき
にはステップS4に戻る。
In step S5, the high pressure P H stored in the RAM 3F is compared with the refrigerant pressure P currently detected by the pressure sensor 1, and when the pressure difference exceeds 0.1 MPa, step S6. If not, the process returns to step S4.

【0018】ステップS6では、高圧PH と圧力Pとを
比較し、現在の圧力PがRAM3Fに記憶している高圧
H より低いときにはステップS7に移行して冷媒制御
弁55の開度を閉じる方式の制御を選択し、現在の圧力
Pの方がRAM3Fに記憶している高圧PH より高いと
きにはステップS8に移行して冷媒制御弁55の開度を
開く方式の制御を選択する。
In step S6, the high pressure P H and the pressure P are compared. When the current pressure P is lower than the high pressure P H stored in the RAM 3F, the process proceeds to step S7 and the opening of the refrigerant control valve 55 is closed. When the current pressure P is higher than the high pressure P H stored in the RAM 3F, the process proceeds to step S8 to select the system control for opening the opening of the refrigerant control valve 55.

【0019】そして、ステップS9では、運転している
全室内機の冷媒制御弁55の開度を現在の開度の2倍に
して元に戻し、メイン制御に復帰する。
Then, in step S9, the opening degree of the refrigerant control valve 55 of all the operating indoor units is doubled to the present opening degree and returned to the original state, and the main control is restored.

【0020】また、空調負荷に基づく通常の運転制御を
メイン制御で行っていて、圧力センサ1が所定の圧力、
例えば2.3MPa以上を検出したとき、図2の制御フ
ローを開始し、ステップS21では運転している室内機
を調べ、圧縮機51吐出側の高圧解消に冷媒制御弁55
の開度を開く方向に制御する方が有効か、閉じる方向に
制御する方が有効かを前回判定したときと全く同じ室内
機が運転されているときにはステップS22に移行して
前回と同じ弁制御方式を選択してメイン制御に戻り、そ
うでないときにはステップS23に移行し、冷媒制御弁
55を制御する方式の選択を新規に行うことを決定して
メイン制御に戻る(ステップS23を経由してメイン制
御に戻った場合は、続いて前記した図1の制御が行われ
る)。
Further, the normal operation control based on the air conditioning load is performed by the main control, and the pressure sensor 1 is set to a predetermined pressure,
For example, when 2.3 MPa or more is detected, the control flow of FIG. 2 is started, and in step S21, the operating indoor unit is checked to eliminate the high pressure on the discharge side of the compressor 51 and the refrigerant control valve 55.
When the indoor unit is operating exactly the same as when the previous determination was made as to whether it is effective to control the opening degree of the valve in the opening direction or to control it in the closing direction, the process proceeds to step S22 and the same valve control as the previous time is performed. A system is selected and it returns to main control, and when that is not right, it transfers to step S23, it decides to newly select the method which controls the refrigerant control valve 55, and returns to main control (via step S23 main When returning to the control, the above-described control of FIG. 1 is subsequently performed).

【0021】次に、図3に基づいて、高圧解消のために
実行する冷媒制御弁55の具体的な制御例を説明する。
空調負荷に基づく通常の運転制御をメイン制御で行って
いて、圧力センサ1が所定の圧力、例えば2.3MPa
以上を検出し、高圧解消が必要になった場合、図3の制
御フローが自動的に開始され、ステップS41では高負
荷解消の方法を選択する。この場合、例えば図2・図1
の順に実行する。
Next, with reference to FIG. 3, a specific control example of the refrigerant control valve 55 executed to eliminate the high pressure will be described.
The normal operation control based on the air conditioning load is performed by the main control, and the pressure sensor 1 has a predetermined pressure, for example, 2.3 MPa.
When the above is detected, and the high voltage cancellation is required, the control flow of FIG. 3 is automatically started, and the high load cancellation method is selected in step S41. In this case, for example, FIG.
Execute in order.

【0022】ステップS41において、冷媒制御弁55
の開度を開く方式が選択されたときには、ステップS4
2に移行して運転している全室内機の冷媒制御弁55の
開度を全開にし、その後メイン制御に戻る。一方、ステ
ップS41において冷媒制御弁55の開度を閉じる方式
が選択されたときには、ステップS43に移行して圧力
センサ1が検出する冷媒の圧力をRAM3Fに記憶す
る。
In step S41, the refrigerant control valve 55
When the method of opening the opening of is selected, step S4
After shifting to 2, the opening degree of the refrigerant control valve 55 of all the operating indoor units is fully opened, and then the process returns to the main control. On the other hand, when the method of closing the opening degree of the refrigerant control valve 55 is selected in step S41, the process proceeds to step S43 and the pressure of the refrigerant detected by the pressure sensor 1 is stored in the RAM 3F.

【0023】ステップS44では、RAM3Fに記憶し
ている圧力とROM3Cに記憶している演算式により、
圧縮機51が吐出している冷媒の飽和温度を演算する。
In step S44, the pressure stored in the RAM 3F and the arithmetic expression stored in the ROM 3C are used to calculate
The saturation temperature of the refrigerant discharged from the compressor 51 is calculated.

【0024】ステップS45では、運転している全室内
機の温度センサ2が検出する冷媒の温度を全てRAM3
Fに記憶する。
In step S45, all the temperatures of the refrigerant detected by the temperature sensors 2 of all the operating indoor units are stored in the RAM3.
Store in F.

【0025】ステップS46では、各室内機の過冷却度
(SCi)をSCi=飽和温度−各室内機の冷媒出口温
度(温度センサ2が検出する温度)、として演算し、R
AM3Fに記憶する。
In step S46, the degree of supercooling (SCi) of each indoor unit is calculated as SCi = saturation temperature-refrigerant outlet temperature of each indoor unit (temperature detected by the temperature sensor 2), and R
Store in AM3F.

【0026】ステップS47では、各室内機の過冷却度
(SCi)をSCi=SCi+1としてRAM3Fに記
憶する。
In step S47, the degree of supercooling (SCi) of each indoor unit is stored in the RAM 3F as SCi = SCi + 1.

【0027】ステップS48では、時計回路3Eのタイ
マ機能を起動して計時を開始し、ステップS49では、
ステップS48で起動したタイマ機能による計時時間T
2が所定時間、例えば10秒を越えているか否かを判定
し、越えるのを待ってステップS50に移行する。
In step S48, the timer function of the clock circuit 3E is activated to start clocking, and in step S49,
Time measured T by the timer function started in step S48
It is determined whether or not 2 exceeds a predetermined time, for example, 10 seconds, and after waiting for the time, the process proceeds to step S50.

【0028】ステップS50では、ステップS43〜ス
テップS46と同様にして、各室内機の過冷却度(SC
i′)をSCi′=飽和温度−各室内機の冷媒出口温
度、として演算し、RAM3Fに記憶する。
In step S50, the degree of supercooling (SC) of each indoor unit (SC) is performed as in steps S43 to S46.
i ′) is calculated as SCi ′ = saturation temperature−refrigerant outlet temperature of each indoor unit and stored in the RAM 3F.

【0029】ステップS51では、ステップS47で求
めた過冷却度(SCi)とステップS50で求めた過冷
却度(SCi′)とを、運転している全室内機に渡って
順次比較し、SCi−SCi′が0を越えているときに
はステップS52に移行し、その冷媒制御弁55の開度
を現在より1減らしてステップS50に戻り、SCi−
SCi′が0未満のときにはステップS53に移行し、
その冷媒制御弁55の開度を現在より1増やしてステッ
プS50に戻り、SCi−SCi′が0(全ての室内機
に渡って)のときにはメイン制御に戻る。
In step S51, the degree of supercooling (SCi) obtained in step S47 and the degree of supercooling (SCi ') obtained in step S50 are sequentially compared across all operating indoor units, and SCi- When SCi 'exceeds 0, the process proceeds to step S52, the opening degree of the refrigerant control valve 55 is reduced by 1 from the present, and the process returns to step S50.
When SCi 'is less than 0, the process proceeds to step S53,
The opening degree of the refrigerant control valve 55 is increased by 1 from the present value and the process returns to step S50. When SCi-SCi 'is 0 (over all indoor units), the process returns to the main control.

【0030】上記したように、本発明の空気調和機にお
いては、圧力センサ1が所定の高い圧力を検出したと
き、運転している室内機の冷媒制御弁55の開度を絞っ
てその圧力変化を調べることにより、高圧(高負荷状
態)の解消に冷媒制御弁55を開けた方が有効なのか、
閉じた方が有効なのかを判定し、この判定に基づいて室
内機の冷媒制御弁55の開度を制御するので、運転して
いる室内機に冷媒を溜め込み、循環する冷媒の量を減ら
しても加熱(凝縮)能力が低下しない十分大きな容量を
持った室内機が運転しているときには、冷媒制御弁55
の開度を絞って高負荷状態の解消を図り、
As described above, in the air conditioner of the present invention, when the pressure sensor 1 detects a predetermined high pressure, the refrigerant control valve 55 of the operating indoor unit is throttled to change its pressure. By checking, is it more effective to open the refrigerant control valve 55 to eliminate the high pressure (high load state)?
It is determined whether closing is effective, and the opening of the refrigerant control valve 55 of the indoor unit is controlled based on this determination. Therefore, the refrigerant is stored in the operating indoor unit to reduce the amount of circulating refrigerant. Even when the indoor unit having a sufficiently large capacity that the heating (condensing) capacity does not decrease is operating, the refrigerant control valve 55
To reduce the high load condition,

【0031】逆に、運転している室内機の容量が小さ
く、冷媒制御弁55の開度を絞って冷媒を室内機に溜め
込んだのでは加熱(凝縮)能力が低下し、且つ、圧力が
さらに上昇するときには、冷媒制御弁55の開度を開け
て高負荷状態の解消を図るなど、運転している室内機の
組み合わせ毎に最適な高負荷解消方法が選択できる。
On the contrary, if the capacity of the operating indoor unit is small and the refrigerant control valve 55 is throttled to store the refrigerant in the indoor unit, the heating (condensing) capacity is lowered and the pressure is further increased. When rising, the optimum high load elimination method can be selected for each combination of operating indoor units, such as opening the opening of the refrigerant control valve 55 to eliminate the high load condition.

【0032】なお、本発明は上記実施の形態に限定され
るものではないので、特許請求の範囲に記載の趣旨に沿
って各種の変形実施が可能である。
Since the present invention is not limited to the above-mentioned embodiment, various modifications can be made within the scope of the claims.

【0033】例えば、図1におけるステップS2の動作
は、容量の大きい室内機の中から選択して、例えば1/
3の台数、あるいは半分の台数など適宜の台数について
のみ行うように構成することもできる。
For example, the operation of step S2 in FIG.
It is also possible to configure so as to perform only for an appropriate number such as three or half.

【0034】また、図1におけるステップS2の動作
は、冷媒制御弁55の開度を、例えば20%増加するよ
うに構成し、その後の圧力変化を調べるようにしても良
い。この場合、ステップS6における判定式の不等号
は、逆向きにして判定する。
Further, the operation of step S2 in FIG. 1 may be configured so that the opening degree of the refrigerant control valve 55 is increased, for example, by 20%, and the subsequent pressure change is examined. In this case, the inequality sign in the determination expression in step S6 is reversed.

【0035】[0035]

【発明の効果】上記したように、本発明の空気調和機に
おいては、圧力検出手段が所定の高圧を検出したとき、
運転している室内機の冷媒制御弁を、例えば1/2の開
度に絞るなどしてその圧力変化を調べることにより、高
負荷状態の解消に冷媒制御弁を開けた方が有効なのか、
閉じた方が有効なのかを判定し、この判定に基づいて室
内機の冷媒制御弁の開度を制御するので、運転している
室内機に冷媒を溜め込み、循環する冷媒の量を減らして
も加熱(凝縮)能力が低下しない十分大きな容量を持っ
た室内機が運転しているときには、冷媒制御弁の開度を
絞って高負荷状態の解消を図り、
As described above, in the air conditioner of the present invention, when the pressure detecting means detects a predetermined high pressure,
Is it more effective to open the refrigerant control valve to eliminate the high load state by checking the pressure change by squeezing the opening of the refrigerant control valve of the operating indoor unit to, for example, 1/2?
It is determined whether it is effective to close it, and the opening of the refrigerant control valve of the indoor unit is controlled based on this determination, so even if the amount of circulating refrigerant is reduced by storing the refrigerant in the operating indoor unit. When an indoor unit with a sufficiently large capacity that the heating (condensing) capacity does not decrease is operating, the opening of the refrigerant control valve is reduced to eliminate the high load state,

【0036】逆に、運転している室内機の容量が小さ
く、冷媒制御弁の開度を絞って冷媒を室内機に溜め込ん
だのでは加熱(凝縮)能力が低下し、且つ、冷媒圧力が
さらに上昇するときには、冷媒制御弁の開度を開けて高
負荷状態の解消を図るなど、運転している室内機の組み
合わせ毎に最適な高負荷解消方法が選択できる。
On the contrary, if the capacity of the operating indoor unit is small and the refrigerant control valve is throttled to store the refrigerant in the indoor unit, the heating (condensing) capacity is lowered and the refrigerant pressure is further increased. When rising, it is possible to select the optimum high load elimination method for each combination of operating indoor units, such as opening the opening of the refrigerant control valve to eliminate the high load condition.

【0037】また、高負荷状態の解消に、冷媒制御弁の
開度を開く方向に制御する方が有効か、閉じる方向に制
御する方が有効かを前回判定したときと全く同じ室内機
が運転されているとき、前回と同じ弁制御方式を選択す
るように構成した空気調和機においては、高負荷状態の
解消が速やかに行える。
In order to eliminate the high load condition, the completely same indoor unit is operated as when it was previously determined whether it is effective to control the opening of the refrigerant control valve in the opening direction or to control it in the closing direction. In the air conditioner configured to select the same valve control method as the previous time, the high load state can be quickly eliminated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高負荷解消方式の選択要領を示す説明図であ
る。
FIG. 1 is an explanatory diagram showing a selection procedure of a high load elimination method.

【図2】高負荷解消方式の選択要領を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a selection procedure of a high load elimination method.

【図3】高負荷解消要領を示す説明図である。FIG. 3 is an explanatory diagram showing a high load elimination procedure.

【図4】装置の全体構成を示す説明図である。FIG. 4 is an explanatory diagram showing the overall configuration of the apparatus.

【図5】制御器の構成を示す説明図である。FIG. 5 is an explanatory diagram showing a configuration of a controller.

【符号の説明】[Explanation of symbols]

1 圧力センサ 2 温度センサ 3 制御器 3A 入力インターフェイス 3B 中央演算処理装置(CPU) 3C 記憶装置(ROM) 3D 出力インターフェイス 3E 時計回路 3F 記憶装置(RAM) 51 圧縮機 52 四方弁 53 室外熱交換器 54 レシーバタンク 55 冷媒制御弁 56 室内熱交換器 57 アキュームレータ 58 膨張弁 59 室外送風機 60 室内送風機 1 Pressure Sensor 2 Temperature Sensor 3 Controller 3A Input Interface 3B Central Processing Unit (CPU) 3C Storage Device (ROM) 3D Output Interface 3E Clock Circuit 3F Storage Device (RAM) 51 Compressor 52 Four-way Valve 53 Outdoor Heat Exchanger 54 Receiver tank 55 Refrigerant control valve 56 Indoor heat exchanger 57 Accumulator 58 Expansion valve 59 Outdoor blower 60 Indoor blower

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機・室外熱交換器・室内熱交換器な
どを配管接続して構成する空気調和機において、圧縮機
吐出側の冷媒圧力を検出する圧力検出手段と、この圧力
検出手段が暖房運転時に所定の高圧を検出したとき、前
記室内熱交換器に供給する冷媒の量を制御する冷媒制御
弁を開く方向に制御した方が前記圧縮機吐出側の高圧解
消に有効か、前記冷媒制御弁を閉じる方向に制御した方
が前記圧縮機吐出側の高圧解消に有効かを判定する判定
制御手段と、を備えたことを特徴とする空気調和機。
1. An air conditioner configured by connecting a compressor, an outdoor heat exchanger, an indoor heat exchanger, and the like by piping, the pressure detecting means for detecting the refrigerant pressure on the discharge side of the compressor, and the pressure detecting means. When a predetermined high pressure is detected during the heating operation, it is effective to eliminate the high pressure on the discharge side of the compressor by controlling the direction in which the refrigerant control valve that controls the amount of the refrigerant supplied to the indoor heat exchanger is opened, or the refrigerant. An air conditioner, comprising: a determination control unit that determines whether controlling the control valve in a closing direction is effective in eliminating high pressure on the discharge side of the compressor.
【請求項2】 室内熱交換器が複数設置されると共に、
前回判定時と同じ室内熱交換器が運転されていて圧力検
出手段が所定の高圧を検出したとき、前回の判定を代用
する機能を判定制御手段が備えている請求項1記載の空
気調和機。
2. A plurality of indoor heat exchangers are installed, and
The air conditioner according to claim 1, wherein the determination control means has a function of substituting the previous determination when the same indoor heat exchanger as in the previous determination is operating and the pressure detection means detects a predetermined high pressure.
【請求項3】 暖房運転時に室内熱交換器から流出する
冷媒の温度を検出する温度検出手段を備え、圧力検出手
段が暖房運転時に所定の高圧を検出したとき、前記温度
検出手段および前記圧力検出手段が検出するデータに基
づいて過冷却度を算出すると共に、この過冷却度に基づ
いて前記冷媒制御弁の開度を高圧解消に有効であると判
定された方向へ変更する機能を判定制御手段が備えてい
る請求項1または2記載の空気調和機。
3. A temperature detecting means for detecting the temperature of the refrigerant flowing out of the indoor heat exchanger during the heating operation, and when the pressure detecting means detects a predetermined high pressure during the heating operation, the temperature detecting means and the pressure detection. Determination control means for calculating the degree of supercooling based on the data detected by the means, and changing the degree of opening of the refrigerant control valve based on the degree of supercooling to a direction determined to be effective for eliminating the high pressure. The air conditioner according to claim 1 or 2, which is provided with.
JP7352836A 1995-12-29 1995-12-29 Air conditioner Expired - Fee Related JP2966786B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP7352836A JP2966786B2 (en) 1995-12-29 1995-12-29 Air conditioner
CN96123613A CN1106542C (en) 1995-12-29 1996-12-27 Air conditioner
KR1019960074333A KR100413307B1 (en) 1995-12-29 1996-12-28 Air Conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7352836A JP2966786B2 (en) 1995-12-29 1995-12-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH09184662A true JPH09184662A (en) 1997-07-15
JP2966786B2 JP2966786B2 (en) 1999-10-25

Family

ID=18426775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7352836A Expired - Fee Related JP2966786B2 (en) 1995-12-29 1995-12-29 Air conditioner

Country Status (3)

Country Link
JP (1) JP2966786B2 (en)
KR (1) KR100413307B1 (en)
CN (1) CN1106542C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109199A1 (en) * 2003-06-06 2004-12-16 Daikin Industries, Ltd. Air conditioner

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100523041B1 (en) * 1999-01-27 2005-10-21 삼성전자주식회사 Control method for bistable valve and compressor of refrigerator
KR100437806B1 (en) * 2002-06-12 2004-06-30 엘지전자 주식회사 Method for controlling working of multi-type air conditioner
KR20050122625A (en) * 2004-06-25 2005-12-29 삼성전자주식회사 A multi air conditioner system and a driving method of indoor unit
JP4906255B2 (en) * 2004-11-02 2012-03-28 東芝キヤリア株式会社 refrigerator
CN100436975C (en) * 2006-11-17 2008-11-26 广东科龙电器股份有限公司 Self-adapting type air conditioner capable of early-warning for high pressure, and control method
JP5484930B2 (en) 2010-01-25 2014-05-07 三菱重工業株式会社 Air conditioner
CN106482242B (en) * 2015-08-31 2019-10-22 青岛海尔空调电子有限公司 Replaced type multi-connected machine outdoor unit and its control method
CN111121252B (en) * 2018-10-31 2022-12-06 西门子瑞士有限公司 Actuator of temperature control system and temperature control system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692894B2 (en) * 1988-09-20 1997-12-17 三洋電機株式会社 Air conditioner
JPH04363552A (en) * 1991-06-11 1992-12-16 Nippondenso Co Ltd Refrigerating cycle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109199A1 (en) * 2003-06-06 2004-12-16 Daikin Industries, Ltd. Air conditioner

Also Published As

Publication number Publication date
CN1158399A (en) 1997-09-03
KR100413307B1 (en) 2004-02-14
JP2966786B2 (en) 1999-10-25
CN1106542C (en) 2003-04-23
KR970047377A (en) 1997-07-26

Similar Documents

Publication Publication Date Title
KR20030097179A (en) Heat-Pump Air Conditioner's Operating Method
JPH0674496A (en) Air-conditioner
JP2966786B2 (en) Air conditioner
US20060207273A1 (en) Method of controlling over-load cooling operation of air conditioner
JPH08114359A (en) Air conditioner
JP3320631B2 (en) Cooling and heating equipment
JP3028008B2 (en) Air conditioner
KR101500730B1 (en) Controlling method of an air conditioner
US6669102B1 (en) Method for operating air conditioner in warming mode
JP3275669B2 (en) Multi-room air conditioning system
JPH0245777B2 (en)
JP2003247742A (en) Multi-chamber type air conditioner and control method thereof
JP4675083B2 (en) Air conditioner
JP2001182991A (en) Air conditioner
US6722576B1 (en) Method for operating air conditioner in warming mode
JPH05272822A (en) Freezer
JPH06317360A (en) Multi-chamber type air conditioner
JP2719456B2 (en) Air conditioner
JP3128480B2 (en) Refrigeration apparatus and air conditioner using the refrigeration apparatus
JPH06159819A (en) Air conditioner and method for controlling the same
JP2970358B2 (en) Air conditioner
JP3337264B2 (en) Air conditioner defroster
JPH1183212A (en) Operation controller for refrigerator
JPH1194406A (en) Air conditioner
JPH09210491A (en) Multi-chamber type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees