JP3028008B2 - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JP3028008B2
JP3028008B2 JP4086933A JP8693392A JP3028008B2 JP 3028008 B2 JP3028008 B2 JP 3028008B2 JP 4086933 A JP4086933 A JP 4086933A JP 8693392 A JP8693392 A JP 8693392A JP 3028008 B2 JP3028008 B2 JP 3028008B2
Authority
JP
Japan
Prior art keywords
compressor
refrigerant
capacity
air conditioner
suction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4086933A
Other languages
Japanese (ja)
Other versions
JPH05288413A (en
Inventor
政樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP4086933A priority Critical patent/JP3028008B2/en
Publication of JPH05288413A publication Critical patent/JPH05288413A/en
Application granted granted Critical
Publication of JP3028008B2 publication Critical patent/JP3028008B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、インバータにより運転
周波数を可変に調節される圧縮機を備えた空気調和装置
の改良に係り、特に連絡配管長による誤差の補正対策に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an air conditioner having a compressor whose operating frequency is variably adjusted by an inverter, and more particularly to a measure for correcting an error due to a length of a communication pipe.

【0002】[0002]

【従来の技術】従来より、例えば特開昭63−6350
号公報に開示される如く、空気調和装置において、室外
ユニット側で吸入圧力相当飽和温度を検出し、その値に
応じて圧縮機の運転容量を制御するとともに、室外ユニ
ットと室内ユニットとの間の圧力損失に起因する吸入圧
力相当飽和温度の実際の蒸発圧力相当飽和温度からのず
れに対応すべく、連絡配管の長さに応じて補正係数を手
動で切換えて、吸入圧力相当飽和温度の制御目標値をイ
ンバータ周波数に応じて補正することにより、室外ユニ
ットだけの信号の授受により正確な能力制御を行おうと
するものは公知の技術である。
2. Description of the Related Art Conventionally, for example, Japanese Patent Application Laid-Open No. 63-6350
As disclosed in Japanese Patent Application Laid-Open Publication No. H07-175, in the air conditioner, the outdoor unit detects the saturation temperature corresponding to the suction pressure, controls the operating capacity of the compressor according to the detected value, and controls the operation between the outdoor unit and the indoor unit. In order to cope with the deviation of the saturation temperature equivalent to the suction pressure due to the pressure loss from the actual saturation temperature equivalent to the evaporating pressure, the correction coefficient is manually switched according to the length of the connecting pipe to control the saturation temperature equivalent to the suction pressure. It is a known technique that corrects the value in accordance with the inverter frequency to perform accurate capacity control by transmitting and receiving signals only from the outdoor unit.

【0003】また、特開平2−195155号公報に開
示されるごとく、インバータ周波数と連絡配管における
圧力損失との関係を、連絡配管長をパラメータとする複
数の関係式として予め記憶しておき、一定のインバータ
周波数で運転しながらそのときの圧力損失を蒸発圧力相
当飽和温度−吸入圧力相当飽和温度間の差として検知
し、そのときのインバータ周波数と圧力損失とがどの関
係式に該当するのかを見ることで、当該装置の連絡配管
長に対応する関係式つまり補正係数を決定し、その補正
係数を用いて能力制御の制御目標値を補正するようにし
たものも公知の技術として知られている。
Further, as disclosed in Japanese Patent Application Laid-Open No. 2-195155, the relationship between the inverter frequency and the pressure loss in the connecting pipe is stored in advance as a plurality of relational expressions using the connecting pipe length as a parameter, and is fixed. While operating at the inverter frequency, the pressure loss at that time is detected as the difference between the evaporating pressure equivalent saturation temperature and the suction pressure equivalent saturation temperature, and the relational formula between the inverter frequency and the pressure loss at that time is determined. As a known technique, a relational expression corresponding to the communication pipe length of the apparatus, that is, a correction coefficient is determined, and the control target value of the capacity control is corrected using the correction coefficient.

【0004】[0004]

【発明が解決しようとする課題】ところで、本来、圧縮
機の容量制御つまりインバータ周波数の制御は、冷媒の
蒸発圧力相当飽和温度を一定に制御することにより、空
調負荷に応じた適正な冷媒循環量を確保しようとするも
のであるため、蒸発器における蒸発圧力相当飽和温度を
指標として制御すべきものである。すなわち、室内ユニ
ットと室外ユニット間の連絡配管における圧力損失があ
るため、室外ユニットで検出される冷媒の吸入圧力相当
飽和温度は、室内ユニットにおける実際の蒸発圧力相当
飽和温度とは一致しない。
By the way, the control of the capacity of the compressor, that is, the control of the inverter frequency, is basically performed by controlling the saturation temperature corresponding to the evaporating pressure of the refrigerant at a constant value, thereby obtaining an appropriate refrigerant circulation amount according to the air conditioning load. Therefore, the temperature should be controlled using the saturation temperature corresponding to the evaporation pressure in the evaporator as an index. That is, since there is a pressure loss in the communication pipe between the indoor unit and the outdoor unit, the saturation temperature corresponding to the suction pressure of the refrigerant detected in the outdoor unit does not match the actual saturation temperature corresponding to the evaporation pressure in the indoor unit .

【0005】しかし、室内ユニットのセンサで検出され
る信号を使用するよりは室外ユニットのセンサで検出さ
れる信号を用いて圧縮機の容量制御を行うのが好まし
く、特にマルチ形空気調和装置では、センサからの信号
が単一化される利点がある。
[0005] However, it is preferable to control the capacity of the compressor using the signal detected by the sensor of the outdoor unit, rather than using the signal detected by the sensor of the indoor unit. There is an advantage that the signal from the sensor is unified .

【0006】上記従来のもののうち前者の公報のもの
は、かかる観点から、連絡配管の長さに応じて、吸入圧
力相当飽和温度の制御目標値を実際の蒸発圧力相当飽和
温度に対応した値に補正することにより、正確な制御目
標値を指標としてインバータ周波数の制御を行うもので
あるが、その場合、装置の取り付け時、配管長に応じて
圧力損失を補正するための補正係数の切換えを手動で行
うため、その切換えの誤りや切換え忘れが生じる虞れが
あった。
[0006] Among the above-mentioned conventional ones, the former publication discloses, from this viewpoint, the control target value of the saturation temperature corresponding to the suction pressure is changed to a value corresponding to the actual saturation temperature corresponding to the evaporation pressure in accordance with the length of the connecting pipe. The correction is used to control the inverter frequency using the accurate control target value as an index.In this case, when installing the device, manually switch the correction coefficient for correcting the pressure loss according to the pipe length. Therefore, there is a possibility that an error in the switching or forgetting of the switching may occur.

【0007】一方、上記後者の公報によるものは、その
ような補正係数の設定忘れ等に対応すべく、圧力損失を
補正するための補正係数を連絡配管の長さに応じて自動
的に算出し、その補正係数を使用して冷房運転中におけ
る制御目標値を補正しようとするものである。
On the other hand, in the case of the latter publication, a correction coefficient for correcting pressure loss is automatically calculated according to the length of the connecting pipe in order to cope with such a setting error. And the correction coefficient is used to correct the control target value during the cooling operation.

【0008】ところで、室外ユニット−室内ユニット間
の連絡配管における圧力損失を変化させる要因として
は、配管長及び冷媒の循環量のほか冷媒の比体積があ
る。つまり、冷媒が乾き状態のときには、冷媒が適度の
湿り状態のときに比べて比体積が大きくなるので、連絡
配管長や圧縮機の運転容量が同じでも圧力損失が異な
る。したがって、予め設定されている関係式が求められ
た条件と異なる冷媒条件下で補正係数を決定すると、そ
の後、誤った補正係数に応じて周波数制御の制御目標値
が補正されることになり、正確な能力に制御できなくな
る虞れがあった。
The factors that change the pressure loss in the communication pipe between the outdoor unit and the indoor unit include the pipe length, the amount of circulating refrigerant, and the specific volume of the refrigerant. That is, when the refrigerant is in a dry state, the specific volume is larger than when the refrigerant is in a moderately wet state, so that the pressure loss differs even if the communication pipe length and the operating capacity of the compressor are the same. Therefore, if the correction coefficient is determined under the refrigerant condition different from the condition in which the relational expression set in advance is determined, the control target value of the frequency control will be corrected according to the incorrect correction coefficient, and the accurate There is a possibility that the power cannot be controlled to an appropriate level.

【0009】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、能力制御の制御目標値を補正する補
正係数を決定するための設定運転を適正条件下で行うこ
とにより、能力制御の目標値を正確に決定し、もって、
制御性能及び信頼性の向上を図ることにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to perform a set operation for determining a correction coefficient for correcting a control target value of a performance control under an appropriate condition. The target value of the control is accurately determined,
The purpose is to improve control performance and reliability.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、運転容量が可変に調節される圧縮機(1)及び熱源
側熱交換器(6)を有する室外ユニット(A)と、利用
側熱交換器(12)及び利用側電動膨張弁(13)を有
する室内ユニット(B)とを液側連絡配管(11a)及
びガス側連絡配管(11b)で接続するとともに、上記
室外ユニット(A)における冷媒の吸入圧力相当飽和温
度を検出する吸入圧力検出手段(P2)を備え、空気調
和装置の冷房運転中に、該吸入圧力検出手段(P2)で
検出される吸入圧力相当飽和温度に応じて上記圧縮機
(1)の運転容量を能力制御するようにした空気調和装
置を対象とする。
In order to achieve the above object, the means of the first aspect of the present invention is to provide a compressor (1) whose operating capacity is variably adjusted as shown in FIG. The outdoor unit (A) having the heat exchanger (6) and the indoor unit (B) having the use side heat exchanger (12) and the use side electric expansion valve (13) are connected to the liquid side communication pipe (11a) and the gas. A suction pressure detecting means (P2) for detecting the saturation temperature corresponding to the suction pressure of the refrigerant in the outdoor unit (A), which is connected by the side communication pipe (11b), and which operates during the cooling operation of the air conditioner. The present invention is directed to an air conditioner in which the operation capacity of the compressor (1) is controlled according to the suction pressure equivalent saturation temperature detected by the detection means (P2).

【0011】そして、上記利用側熱交換器(12)にお
ける冷媒の蒸発圧力相当飽和温度を検出する蒸発圧力検
出手段(Th2)と、上記圧縮機(1)の運転容量とガス
側連絡配管における冷媒の圧力損失との関係を、上記ガ
ス側連絡配管(11b)の長さをパラメータとする複数
の関係式として記憶する記憶手段(51)と、冷房サイ
クルにすると共に、上記利用側電動膨張弁(13)が一
定の大開度にし、且つ圧縮機(1)の運転容量が一定の
大容量となる油戻し運転状態に制御する設定運転制御手
段(53)と、該設定運転制御手段(53)による運転
中、吸入冷媒の過熱度を検出する過熱度検出手段(6
0)と、上記設定運転制御手段(53)による運転中、
上記過熱度検出手段(60)で検出される吸入過熱度が
所定値よりも小さいときに、上記吸入圧力検出手段(P
2)及び蒸発圧力検出手段(Th2)で検出される蒸発圧
力相当飽和温度−吸入圧力相当飽和温度の差と圧縮機
(1)の運転容量との関係から、上記記憶手段(51)
に記憶される複数の関係式のうち連絡配管長に対応する
関係式を補正係数として決定する補正係数決定手段(5
4)とを設ける構成としたものである。
[0011] And, the evaporation pressure detecting means for detecting the evaporation pressure corresponding saturation temperature of the refrigerant in the upper Symbol utilization-side heat exchanger (12) (Th2), the operating capacity of the compressor (1) and the gas side communication pipe the relationship between the pressure loss of the refrigerant in said gas-side communication pipe and a storage means for storing a length of (11b) as a plurality of relational expressions as parameters (51), cooling Sai
And the use-side electric expansion valve (13)
Constant large opening and constant operating capacity of compressor (1)
A set operation control means (53) for controlling the oil return operation state to a large capacity, and a superheat degree detection means (6) for detecting the degree of superheat of the suction refrigerant during operation by the set operation control means (53).
And 0), in luck rolling that by the above-mentioned setting operation control means (53),
When the suction superheat degree detected by the superheat degree detection means (60) is smaller than a predetermined value, the suction pressure detection means (P
2) From the relationship between the difference between the evaporating pressure equivalent saturation temperature and the suction pressure equivalent saturation temperature detected by the evaporating pressure detecting means (Th2) and the operating capacity of the compressor (1), the storage means (51)
Correction coefficient determination means for determining a correction factor a relational expression corresponding to a plurality of relational expressions sac Chi communicating絡配pipe length to be stored in (5
4).

【0012】請求項2の発明の講じた手段は、図1の破
線部分に示すように、上記請求項1の発明において、空
気調和装置の冷房運転中に、圧縮機(1)の運転容量の
変化に応じ、補正係数決定手段(54)で補正された補
正係数と圧縮機(1)の運転容量との積を用いて上記能
力制御手段(50)の制御目標値を補正する補正手段
(55)を設けたものである。
As shown by the broken line in FIG. 1, the means adopted by the second aspect of the present invention is that, in the first aspect of the present invention, the operating capacity of the compressor (1) is reduced during the cooling operation of the air conditioner. Correction means (55) for correcting the control target value of the capacity control means (50) using the product of the correction coefficient corrected by the correction coefficient determination means (54) and the operating capacity of the compressor (1) according to the change. ).

【0013】[0013]

【作用】請求項1の発明では、設定運転制御手段(5
3)により圧縮機(1)の運転容量を一定とする運転が
行われると、補正係数決定手段(54)により、予め記
憶手段(51)に記憶されている圧縮機(1)の運転容
量と圧力損失との関係式から、当該空気調和装置の連絡
配管長に該当する関係式が補正係数として決定される。
その場合、冷媒の状態が適正な湿り状態でなく乾き状態
であると、圧縮機(1)の運転容量等が同じでも比体積
の増加により適正状態とは圧力損失が異なり、誤った補
正係数が決定される虞れがあるが、本発明では、過熱度
検出手段(60)で検出される過熱度が所定値よりも小
さい適正な湿り条件下で補正係数の決定が行われるの
で、正確な補正係数が決定されることになる。
According to the first aspect of the present invention, the set operation control means (5
When the operation for keeping the operating capacity of the compressor (1) constant is performed by 3), the operating capacity of the compressor (1) previously stored in the storage means (51) is compared with the operating capacity of the compressor (1) by the correction coefficient determining means (54). From the relational expression with the pressure loss, the relational expression corresponding to the communication pipe length of the air conditioner is determined as a correction coefficient.
In this case, if the refrigerant state is not a proper wet state but a dry state, even if the operating capacity of the compressor (1) is the same, the pressure loss differs from the proper state due to an increase in the specific volume, and an erroneous correction coefficient is increased. Although the correction coefficient may be determined, in the present invention, the correction coefficient is determined under an appropriate wet condition in which the degree of superheat detected by the degree of superheat detection means (60) is smaller than a predetermined value. The coefficients will be determined.

【0014】また、上記設定運転手段(53)により行
われる設定運転が油戻し運転であるので、冷媒が適正な
湿り状態となっており、圧縮機(1)の運転容量も大き
いので関係式を決定するときの精度が良好となる。ま
た、空気調和装置に補正係数決定のための設定運転モー
ドを別途設けることなく、既存の油戻し運転モードが利
用されるので、制御構成が簡素化されることになる。
Further, since the setting operation is performed by the setting operation section (53) is an oil return operation, the refrigerant has become a proper wet state, the relational expression because the operating capacity is also large in the compressor (1) The accuracy of the determination is good. Further, since the existing oil return operation mode is used without separately providing the set operation mode for determining the correction coefficient in the air conditioner, the control configuration is simplified.

【0015】請求項2の発明では、補正手段(55)に
より、空気調和装置の冷房運転中に、圧縮機(1)の運
転容量の変化に応じ、補正係数決定手段(54)で決定
された補正係数と圧縮機(1)の運転容量との積を用い
て能力制御の制御目標値が補正されるので、能力制御の
制御機能が向上する。
According to the second aspect of the present invention, the correction coefficient is determined by the correction coefficient determining means in accordance with a change in the operating capacity of the compressor during the cooling operation of the air conditioner. Since the control target value of the capacity control is corrected using the product of the correction coefficient and the operating capacity of the compressor (1), the control function of the capacity control is improved.

【0016】[0016]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0017】図2は、実施例に係る空気調和装置の室外
ユニット(A)の冷媒配管系統を示し、室外ユニット
(A)の内部には、出力周波数を30〜70Hzの範囲
で10Hz毎に可変に切換えられるインバータ(2a)
により容量が調整される第1圧縮機(1a)と、パイロ
ット圧の高低で差動するアンローダ(2b)により容量
がフルロード(100%)およびアンロード(50%)
状態の2段階に調整される第2圧縮機(1b)とを逆止
弁(1e)を介して並列に接続して構成される容量可変
な圧縮機(1)と、上記第1、第2圧縮機(1a,1
b)から吐出されるガス中の油を分離する油分離器
(4)と、冷房運転時には図中実線の如く切換わり暖房
運転時には図中破線の如く切換わる四路切換弁(5)
と、冷房運転時に凝縮器、暖房運転時に蒸発器となる室
外熱交換器(6)および該室外熱交換器(6)に付設さ
れた2台の室外ファン(6a,6b)と、冷房運転時に
は冷媒流量を調節し、暖房運転時には冷媒の絞り作用を
行う熱源側電動膨張弁である室外電動膨張弁(8)と、
液化した冷媒を貯蔵するレシーバ(9)と、アキュムレ
ータ(10)とが主要機器として内蔵されていて、該各
機器(1〜10)は各々冷媒配管(11)で冷媒の流通
可能に接続されている。
FIG. 2 shows a refrigerant piping system of the outdoor unit (A) of the air conditioner according to the embodiment. Inside the outdoor unit (A), the output frequency is variable in the range of 30 to 70 Hz every 10 Hz. Inverter (2a) switched to
The capacity is adjusted to full load (100%) and unload (50%) by the first compressor (1a) whose capacity is adjusted by the first compressor (1a) and the unloader (2b) that differentials depending on the pilot pressure.
A variable capacity compressor (1) configured by connecting a second compressor (1b) adjusted to two stages of states in parallel via a check valve (1e); Compressor (1a, 1
an oil separator (4) for separating the oil in the gas discharged from b), and a four-way switching valve (5) that switches as shown by the solid line in the cooling operation and switches as shown by the dashed line in the heating operation during the cooling operation
An outdoor heat exchanger (6) serving as a condenser during a cooling operation and an evaporator during a heating operation, and two outdoor fans (6a, 6b) attached to the outdoor heat exchanger (6). An outdoor electric expansion valve (8), which is a heat source side electric expansion valve that adjusts the refrigerant flow rate and performs a throttling operation of the refrigerant during a heating operation;
A receiver (9) for storing the liquefied refrigerant and an accumulator (10) are built in as main devices, and each of the devices (1 to 10) is connected to a refrigerant pipe (11) so that the refrigerant can flow therethrough. I have.

【0018】また、図3は室内ユニット(B)の冷媒配
管系統を示し、該室内ユニット(B)には、冷房運転時
には蒸発器、暖房運転時には凝縮器となる室内熱交換器
(12)及びそのファン(12a)が配設されていると
ともに、室内熱交換器(12)の液管側には、暖房運転
時に冷媒流量を調節し、冷房運転時に冷媒の絞り作用を
行う利用側電動膨張弁である室内電動膨張弁(13)が
介設され、手動閉鎖弁(17a,17b)を介し液側連
絡配管(11a)及びガス側連絡配管(11b)によっ
て室外ユニット(A)との間を接続されている。
FIG. 3 shows a refrigerant piping system of the indoor unit (B). The indoor unit (B) includes an indoor heat exchanger (12) which becomes an evaporator during a cooling operation and a condenser during a heating operation. The fan (12a) is provided, and a use-side electric expansion valve that adjusts a refrigerant flow rate during a heating operation and performs a throttle function of the refrigerant during a cooling operation, on a liquid pipe side of the indoor heat exchanger (12). And a liquid-side communication pipe (11a) and a gas-side communication pipe (11b) through a manual shut-off valve (17a, 17b) to connect with the outdoor unit (A). Have been.

【0019】以上の各機器は冷媒配管(11)により、
冷媒の流通可能に接続されていて、室外空気との熱交換
により得た熱を室内空気に放出するようにした主冷媒回
路(14)が構成されている。
The above devices are connected by a refrigerant pipe (11).
A main refrigerant circuit (14) is connected to the refrigerant so that the refrigerant can flow therethrough, and discharges heat obtained by heat exchange with outdoor air to indoor air.

【0020】次に、室外ユニット(A)において、(1
1e)は、吐出管と液管側とを吐出ガス(ホットガス)
のバイパス可能に接続する暖房過負荷制御用バイパス路
であって、該バイパス路(11e)には、室外熱交換器
(6)と共通の空気通路に設置された補助熱交換器(2
2)、キャピラリチューブ(28)及び冷媒の高圧時に
開作動する過負荷制御開閉弁(24)が順次直列にかつ
室外熱交換器(6)とは並列に接続されており、冷房運
転時には常時、暖房運転時には高圧が過上昇時に、上記
過負荷制御開閉弁(24)がオンつまり開状態になっ
て、吐出ガスの一部を主冷媒回路(14)から暖房過負
荷制御用バイパス路(11e)にバイパスするようにし
いる。
Next, in the outdoor unit (A), (1)
1e) Discharge gas (hot gas) between the discharge pipe and the liquid pipe side
A bypass path for heating overload control, which is connected to the outdoor heat exchanger (6) in an air passage common to the outdoor heat exchanger (6).
2), a capillary tube (28) and an overload control opening / closing valve (24) that opens when the refrigerant is at a high pressure are sequentially connected in series and in parallel with the outdoor heat exchanger (6). During the heating operation, when the high pressure rises excessively, the overload control on-off valve (24) is turned on or opened, and a part of the discharge gas is transferred from the main refrigerant circuit (14) to the heating overload control bypass passage (11e). I try to bypass .

【0021】このとき、吐出ガスの一部を補助熱交換器
(22)で凝縮させて室外熱交換器(6)の能力を補助
するとともに、キャピラリチューブ(28)で室外熱交
換器(6)側の圧力損失とのバランスを取るようになさ
れている。
At this time, a part of the discharged gas is condensed by the auxiliary heat exchanger (22) to assist the capacity of the outdoor heat exchanger (6), and the outdoor heat exchanger (6) is condensed by the capillary tube (28). It is designed to balance the pressure loss on the side.

【0022】また、(31)は、吸入管中の吸入冷媒と
液管中の液冷媒との熱交換により吸入冷媒を冷却させ
て、ガス側連絡配管(11b)における冷媒の過熱度の
上昇を補償するための吸入管熱交換器である。
In addition, (31) cools the suction refrigerant by heat exchange between the suction refrigerant in the suction pipe and the liquid refrigerant in the liquid pipe, thereby increasing the degree of superheat of the refrigerant in the gas side communication pipe (11b). A suction pipe heat exchanger to compensate.

【0023】さらに、(40a,40b)は上記主冷媒
回路(14)の室外電動膨張弁(42a)−レシーバ
(9)間の液管と各圧縮機(1a,1b)の吸入側との
間を接続し、冷暖房運転時に吸入ガスの過熱度を調節す
るためのリキッドインジェクションバイパス路であっ
て、該各バイパス路(40a,40b)には圧縮機
(1)のオン・オフと連動して開閉するインジェクショ
ン開閉弁(42a,42b)と、キャピラリチューブ
(41a,41b)とがそれぞれ介設されている。
Further, (40a, 40b) is between the liquid pipe between the outdoor electric expansion valve (42a) and the receiver (9) of the main refrigerant circuit (14) and the suction side of each compressor (1a, 1b). And a liquid injection bypass passage for adjusting the degree of superheat of the suction gas during the cooling and heating operation. Each of the bypass passages (40a, 40b) is opened and closed in conjunction with the on / off of the compressor (1). Injection on-off valves (42a, 42b) and capillary tubes (41a, 41b) are provided respectively.

【0024】なお、上記各主要機器以外に補助用の諸機
器が設けられている。(1f)は第2圧縮機(1b)の
バイパス路(11c)に介設されて、第2圧縮機(1
b)の停止時およびアンロード状態時に「開」となり、
フルロード状態で「閉」となるアンローダ用開閉弁、
(1g)は上記バイパス路(11c)に介設されたキャ
ピラリチューブ、(21)は吐出管と吸入管とを接続す
る均圧ホットガスバイパス路(11d )に介設されて、
サーモオフ状態等による圧縮機(1)の停止時、再起動
前に一定時間開作動する均圧用開閉弁、(33a,33
b)はそれぞれキャピラリチューブ(32a,32b)
を介して上記第1,第2油分離器(4a,4b)から第
1、第2圧縮機(1a,1b)に油を戻すための油戻し
管である。
In addition, auxiliary devices are provided in addition to the main devices. (1f) is interposed in the bypass path (11c) of the second compressor (1b), and is connected to the second compressor (1b).
It becomes "open" at the time of stop and unload state of b),
On-off valve for unloader that closes when fully loaded,
(1g) is a capillary tube provided in the bypass passage (11c), (21) is provided in a pressure equalizing hot gas bypass passage (11d) connecting the discharge pipe and the suction pipe,
When the compressor (1) is stopped due to a thermo-off state or the like, an equalizing on-off valve that opens for a predetermined time before restarting, (33a, 33
b) is a capillary tube (32a, 32b) respectively
And an oil return pipe for returning oil from the first and second oil separators (4a, 4b) to the first and second compressors (1a, 1b) through the first and second oil separators.

【0025】また、図中、(HPS)は圧縮機保護用の高
圧圧力開閉器、(SP)はサービスポート、(GP)は
ゲージポートである。
In the drawing, (HPS) is a high-pressure switch for protecting the compressor, (SP) is a service port, and (GP) is a gauge port.

【0026】ここで、装置には多くのセンサ類が配置さ
れていて、(Th1)は室内温度を検出する室温サーモス
タット、(Th2)は室内熱交換器(12)の液側配管温
度T2を検出する吸入圧力検出手段としての室内液温セ
ンサ、(Th3)はガス側配管温度を検出する室内ガス温
センサ、(Th4a,Th4b)はそれぞれ各圧縮機(1
a,1b)の吐出管温度を検出する吐出管センサ、(T
h5)は室外熱交換器(6)の液管温度を検出する外熱交
センサ、(Th6)は上記吸入管熱交換器(31)の下流
側の吸入管に配置され、吸入管温度を検出する吸入管セ
ンサ、(Th7)は室外熱交換器(6)の空気吸込口に配
置され、吸込空気温度を検出する外気温センサ、(Th8
a,Th8b)はそれぞれ各リキッドインジェクションバ
イパス路(40a,40b)の圧縮機(1a,1b)直
上流側に配設され、インジェクションされる冷媒の温度
を検出する注入温センサ、(P1)は冷房運転時には冷
媒回路(14)の高圧側圧力つまり凝縮圧力相当飽和温
度を検出する高圧センサ、(P2)は冷媒回路(14)
の低圧側圧力つまり蒸発圧力相当飽和温度Teを検出す
る吸入圧力検出手段としての低圧センサである。上記吸
入管センサ(Th6)の検出値T6と上記低圧センサ(P
2)で検出される蒸発圧力相当飽和温度Teとの温度差
(T6−Te)により吸入冷媒の過熱度Shが検知さ
れ、上記吸入管センサ(Th6)及び低圧センサ(P2)
により、過熱度検出手段(60)が構成されている。
Here, a number of sensors are arranged in the apparatus. (Th1) is a room temperature thermostat for detecting the indoor temperature, and (Th2) is a liquid side piping temperature T2 of the indoor heat exchanger (12). (Th3) is an indoor gas temperature sensor for detecting the gas-side pipe temperature, and (Th4a, Th4b) are each compressor (1).
a, 1b) a discharge pipe sensor for detecting the discharge pipe temperature, (T
h5) is an external heat exchange sensor that detects the temperature of the liquid pipe of the outdoor heat exchanger (6), and (Th6) is disposed on the suction pipe downstream of the suction pipe heat exchanger (31) and detects the temperature of the suction pipe. (Th7) is an air temperature sensor disposed at the air suction port of the outdoor heat exchanger (6) to detect the temperature of the suction air; (Th8)
a, Th8b) are disposed immediately upstream of the compressors (1a, 1b) of the liquid injection bypass paths (40a, 40b), respectively, and are injection temperature sensors for detecting the temperature of the refrigerant to be injected, and (P1) is cooling. During operation, a high-pressure sensor that detects the high-pressure side pressure of the refrigerant circuit (14), that is, the saturation temperature corresponding to the condensing pressure, (P2) is the refrigerant circuit (14)
Is a low pressure sensor as suction pressure detecting means for detecting the low pressure side pressure, that is, the evaporating pressure equivalent saturation temperature Te. The detected value T6 of the suction pipe sensor (Th6) and the low pressure sensor (P
The superheat degree Sh of the suction refrigerant is detected based on the temperature difference (T6-Te) from the saturation temperature Te corresponding to the evaporation pressure detected in 2), and the suction pipe sensor (Th6) and the low pressure sensor (P2) are detected.
This constitutes a superheat degree detection means (60).

【0027】上記各センサの信号は、空気調和装置の運
転を制御するコントローラ(50)に入力可能になされ
ており、該コントローラ(50)により、各センサの信
号に応じて空気調和装置の運転を制御するようになされ
ている。ここで、該コントローラ(50)には、各種デ
ータを記憶する記憶回路(51)や、制御目標値等を設
定する設定回路(52)などが内蔵されている。
The signals from the sensors can be input to a controller (50) for controlling the operation of the air conditioner. The controller (50) controls the operation of the air conditioner in accordance with the signals from the sensors. Has been made to control. Here, the controller (50) includes a storage circuit (51) for storing various data, a setting circuit (52) for setting a control target value, and the like.

【0028】上記記憶回路(51)には、図4に示すよ
うに、適正な冷媒の湿り状態下における圧縮機(1)の
運転容量fと上記室内液温センサ(Th2)及び低圧セン
サ(P2)の検出値T2,Teの温度差ΔTe(=T2
−Te)(圧力損失)との関係が、ガス側連絡配管(1
1b)の長さ(各室内ユニット(B,…)についての平
均値)をパラメータとする複数の関係式(直線式)とし
て記憶されており、各関係式の傾きが補正係数γ1〜γ
4となっている。また、図5に示すように、上記図4に
おける各関係式を圧縮機(1)の一定容量fo の箇所で
切断したときの温度差ΔTe(=T2−Te)と補正係
数Kとの関係が記憶されていて、圧縮機(1)が一定容
量fo で運転されているときの温度差ΔTeから補正係
数Kがγ1,γ2,…のうちいずれに該当するかが求ま
るようになされている。
As shown in FIG. 4, the storage capacity (51) of the compressor (1), the indoor liquid temperature sensor (Th2) and the low-pressure sensor (P2) are stored in the storage circuit (51) as shown in FIG. ), The temperature difference ΔTe between the detected values T2 and Te (= T2
-Te) (pressure loss) is related to the gas side communication pipe (1
1b) is stored as a plurality of relational expressions (linear expressions) using the length (average value of each indoor unit (B,...)) As a parameter, and the slopes of the respective relational expressions are corrected coefficients γ1 to γ.
It is 4. As shown in FIG. 5, the relationship between the temperature difference ΔTe (= T2−Te) and the correction coefficient K when each of the relational expressions in FIG. 4 is cut at a position of a fixed capacity fo of the compressor (1). .. Are stored, and it is determined from the temperature difference ΔTe when the compressor (1) is operated at the fixed capacity fo which of the correction coefficients K corresponds to γ1, γ2,.

【0029】図2及び図3において、空気調和装置の冷
房運転時、四路切換弁(2)が図中実線側に切換わり、
圧縮機(1)で圧縮された冷媒が室外熱交換器(6)及
び補助熱交換器(22)で凝縮され、連絡配管を経て各
室内ユニット(B,…)に送られ、各室内電動膨張弁
(13,…)で減圧されて、各室内熱交換器(12,
…)で蒸発した後、室外ユニット(A)にガス状態で戻
り、圧縮機(1)に吸入されるように循環する。
2 and 3, during the cooling operation of the air conditioner, the four-way switching valve (2) is switched to the solid line side in the drawing.
The refrigerant compressed by the compressor (1) is condensed by the outdoor heat exchanger (6) and the auxiliary heat exchanger (22), sent to each indoor unit (B,...) Via the communication pipe, and electrically driven by each indoor unit. The pressure in the indoor heat exchangers (12,.
...), return to the outdoor unit (A) in a gaseous state, and circulate so as to be sucked into the compressor (1).

【0030】また、暖房運転時には、四路切換弁(5)
が図中破線側に切換わり、冷媒の流れは上記冷房運転時
と逆となって、圧縮機(1)で圧縮された冷媒が、各室
内熱交換器(12,…)で凝縮され、液状態で室外ユニ
ット(A)に流れて、室外電動膨張弁(8)により減圧
され、室外熱交換器(6)で蒸発した後圧縮機(1)に
戻るように循環する。
During the heating operation, the four-way switching valve (5)
Is switched to the broken line side in the figure, and the flow of the refrigerant is opposite to that in the cooling operation, and the refrigerant compressed in the compressor (1) is condensed in each indoor heat exchanger (12,...) In this state, the air flows into the outdoor unit (A), is depressurized by the outdoor electric expansion valve (8), evaporates in the outdoor heat exchanger (6), and circulates back to the compressor (1).

【0031】ここで、補正係数の決定制御の内容につい
て、図6のフローチャートに基づき説明する。
Here, the content of the control for determining the correction coefficient will be described with reference to the flowchart of FIG.

【0032】まず、ステップST1で、油戻し運転か否
かを判別し、ステップST2で、室内ユニット(B,
…)の機器を油戻し運転動作に、つまり、室内電動膨張
弁(13)を全開に、室内ファン(12a)を油戻し運
転動作に従った風量とする。また、ステップST2で、
室外ユニット(A)の各機器を油戻し運転動作に、つま
り室外電動膨張弁(8)を全開に、室外ファン(6a)
を油戻し運転に従った風量に、圧縮機(1)を最大容量
に制御する。
First, in step ST1, it is determined whether or not an oil return operation is to be performed. In step ST2, the indoor unit (B,
..) Are set to the oil return operation, that is, the indoor electric expansion valve (13) is fully opened, and the indoor fan (12a) is set to the air volume according to the oil return operation. Also, in step ST2,
Each device of the outdoor unit (A) is set to the oil return operation, that is, the outdoor electric expansion valve (8) is fully opened, and the outdoor fan (6a) is operated.
Is controlled to the air volume according to the oil return operation, and the compressor (1) is controlled to the maximum capacity.

【0033】そして、この状態で、ステップST4で、
上記過熱度検出手段(60)で検出される吸入冷媒の過
熱度Shが所定値α(例えば3℃)よりも小さいか否か
を判別し、Sh<αであれば、ステップST5で、上記
室内液温センサ(Th2)で検出される蒸発圧力相当飽和
温度T2と低圧センサ(P2)で検出される吸入圧力相
当飽和温度Teとを入力し、ステップST6〜ST12
で、蒸発圧力相当飽和温度T2と吸入圧力相当飽和温度
Teとの温度差(T2−Te)に応じ、下記のように、
補正係数Kを変更設定する。
Then, in this state, in step ST4,
It is determined whether or not the superheat degree Sh of the suction refrigerant detected by the superheat degree detection means (60) is smaller than a predetermined value α (for example, 3 ° C.). The evaporating pressure-equivalent saturation temperature T2 detected by the liquid temperature sensor (Th2) and the suction pressure-equivalent saturation temperature Te detected by the low pressure sensor (P2) are input, and steps ST6 to ST12 are performed.
Then, according to the temperature difference (T2-Te) between the evaporation pressure equivalent saturation temperature T2 and the suction pressure equivalent saturation temperature Te, as follows:
Change and set the correction coefficient K.

【0034】すなわち、T2−Te≦β1であればK=
γ1と設定し(ステップST7)、β1<T2−Te≦
β2であればK=γ2と設定し(ステップST9)、β
2<T2−Te≦β3であればK=γ3と設定する(ス
テップST11)一方、そのいずれでもなければステッ
プST12に進んで、K=γ4に設定する。
That is, if T2-Te ≦ β1, K =
γ1 is set (step ST7), and β1 <T2-Te ≦
If β2, K = γ2 is set (step ST9), and β
If 2 <T2-Te ≦ β3, K = γ3 is set (step ST11). If none of them is satisfied, the process proceeds to step ST12, where K = γ4.

【0035】上記フローにおいて、ステップST2及び
ST3の制御により、請求項1の発明にいう設定運転制
御手段(53)が構成され、ステップST5〜ST12
の制御により、補正係数決定手段(54)が構成されて
いる。
In the above flow, the set operation control means (53) according to the first aspect of the present invention is constituted by the control of steps ST2 and ST3.
Control constitutes a correction coefficient determining means (54).

【0036】次に、図7は通常冷房運転時における圧縮
機(1)の容量制御の内容を示し、ステップSS1で、
蒸発圧力相当飽和温度T2と吸入圧力相当飽和温度Te
とを入力し、ステップSS2で、制御目標値の補正量Δ
Te(圧力損失)を式 ΔTe=K×fに基づき演算
し、ステップSS3で、制御目標値Tsを式Ts=Tso
−ΔTeに基づき補正する。ただし、Tsoは連絡配管長
が「0」と仮定したときつまり圧力損失がないとしたと
きの制御目標値である。
FIG. 7 shows the contents of the capacity control of the compressor (1) during the normal cooling operation.
Evaporation pressure equivalent saturation temperature T2 and suction pressure equivalent saturation temperature Te
And, in step SS2, the correction amount Δ of the control target value
Te (pressure loss) is calculated based on the equation ΔTe = K × f, and in step SS3, the control target value Ts is calculated by the equation Ts = Tso
Correction is made based on -ΔTe. Here, Tso is a control target value when the communication pipe length is assumed to be "0", that is, when there is no pressure loss.

【0037】すなわち、図8に示すように、設定運転に
よって補正係数Kがγ1〜γ4のいずれか(例えばγ3)
に決定されると、冷房運転中には、圧力損失がないとし
たときの制御目標値Tsoからその補正係数γ3とそのと
きの運転容量f1との積を差し引いた値が吸入圧力相当
飽和温度Teの制御目標値Ts1になるように補正され
る。
That is, as shown in FIG. 8, depending on the set operation, the correction coefficient K is any one of γ1 to γ4 (for example, γ3).
During the cooling operation, a value obtained by subtracting the product of the correction coefficient γ3 and the operating capacity f1 at that time from the control target value Tso assuming that there is no pressure loss is the suction pressure equivalent saturation temperature Te. Is corrected to become the control target value Ts1 of
You.

【0038】そして、ステップSS4で、上記制御で補
正された制御目標値Tsに基づき、圧縮機(1)の容量
fをPI制御する。
In step SS4, the capacity f of the compressor (1) is PI-controlled based on the control target value Ts corrected by the above control.

【0039】上記フローにおいて、ステップSS2及び
SS3の制御により、請求項2の発明にいう補正手段
(55)が構成されている。
In the above flow, the control of steps SS2 and SS3 constitutes the correcting means (55) according to the second aspect of the present invention.

【0040】したがって、上記実施例では、設定運転制
御手段(53)により、圧縮機(1)の運転容量を一定
とする運転が行われると、補正係数決定手段(54)に
より、予め記憶回路(51)に記憶されている圧縮機
(1)の運転容量と圧力損失との複数の関係式から、当
該空気調和装置の連絡配管長に該当する関係式が補正係
数として決定される。その場合、冷媒の状態が適正な湿
り状態でなく乾き状態であると、圧縮機(1)の運転容
量等が同じでも比体積の増加により適正状態とは圧力損
失が異なり、誤った補正係数Kが決定される虞れがある
が、上記実施例では、過熱度Shが所定値α以下のとき
に補正係数Kの決定が行われるので、正確な補正係数K
が決定されることになる。
Therefore, in the above embodiment, when the set operation control means (53) performs an operation for keeping the operating capacity of the compressor (1) constant, the correction coefficient determining means (54) preliminarily stores the memory circuit ( From a plurality of relational expressions between the operating capacity of the compressor (1) and the pressure loss stored in 51), a relational expression corresponding to the communication pipe length of the air conditioner is determined as a correction coefficient. In this case, if the refrigerant state is not a proper wet state but a dry state, the pressure loss differs from the proper state due to an increase in the specific volume even if the operating capacity of the compressor (1) is the same. May be determined, but in the above embodiment, the correction coefficient K is determined when the degree of superheat Sh is equal to or less than the predetermined value α.
Will be determined.

【0041】特に、設定運転手段(53)により行われ
る設定運転を油戻し運転とした場合、油戻し運転は冷媒
配管中や各機器内の油を戻すために冷房サイクルで室内
電動膨張弁(13)を全開程度の大開度にして運転する
ものであるために、冷媒が適正な湿り状態となってお
り、圧縮機(1)の運転容量も大きいので関係式を決定
する際の精度が良好である。また、空気調和装置におい
て、連絡配管長に対応する補正係数Kを決定するための
設定運転モードを別途設けることは制御構成を複雑化す
ることになるが、既存の油戻し運転モードを利用するこ
とで、制御構成の簡素化を図ることができる。
In particular, when the set operation performed by the set operation means (53) is an oil return operation, the oil return operation is performed in the cooling cycle to return the oil in the refrigerant pipe and each device in the indoor electric expansion valve (13). ) Is operated with a large opening degree of about full opening, the refrigerant is in an appropriate wet state, and the operating capacity of the compressor (1) is large, so that the accuracy in determining the relational expression is good. is there. Also, in the air conditioner, providing a separate setting operation mode for determining the correction coefficient K corresponding to the communication pipe length complicates the control configuration, but requires the use of the existing oil return operation mode. Thus, the control configuration can be simplified.

【0042】さらに、補正手段(55)により、空気調
和装置の冷房運転中に、圧縮機(1)の運転容量の変化
に応じ、補正係数Kと圧縮機(1)の運転容量fとの積
を用いて能力制御の制御目標値Tsを補正することで、
運転制御機能の向上を図ることができる。
Further, the correction means (55) calculates the product of the correction coefficient K and the operating capacity f of the compressor (1) according to the change in the operating capacity of the compressor (1) during the cooling operation of the air conditioner. Is used to correct the control target value Ts of the capacity control,
The operation control function can be improved.

【0043】なお、上記実施例では、冷暖房運転の切換
え可能なマルチ形空気調和装置に本発明を適用した例を
説明したが、本発明はかかる実施例に限定されるもので
はなく、一台の室外ユニットに一台の室内ユニットを接
続した装置や、冷房専用機についても適用しうるもので
ある。
In the above embodiment, an example in which the present invention is applied to a multi-type air conditioner capable of switching between cooling and heating operations has been described. However, the present invention is not limited to such an embodiment, and the present invention is not limited thereto. The present invention is also applicable to a device in which one indoor unit is connected to an outdoor unit, or a cooling only machine.

【0044】[0044]

【発明の効果】以上説明したように、請求項1の発明に
よれば、容量可変形圧縮機及び熱源側熱交換器を有する
室外ユニットと、利用側熱交換器及び利用側電動膨張弁
を有する室内ユニットとを、液側連絡配管及びガス側連
絡配管で接続し、吸入圧力相当飽和温度に応じて冷房運
転中の圧縮機容量を制御するようにした空気調和装置に
おいて、圧縮機の運転容量を一定とする運転を行い、過
熱度が所定値よりも小さいときに、予め記憶されている
圧縮機の運転容量と圧力損失との関係式から、当該空気
調和装置の連絡配管長に該当する関係式を補正係数とし
て決定するようにしたので、適正な湿り条件下で正確な
補正係数が決定され、よって、信頼性及び制御性能の向
上を図ることができる。
As described above, according to the first aspect of the present invention, the outdoor unit having the variable displacement compressor and the heat source side heat exchanger, the use side heat exchanger and the use side electric expansion valve are provided. In an air conditioner in which an indoor unit is connected with a liquid-side communication pipe and a gas-side communication pipe to control a compressor capacity during a cooling operation according to a suction pressure equivalent saturation temperature, the operating capacity of the compressor is reduced. When a constant operation is performed and the degree of superheat is smaller than a predetermined value, a relational expression corresponding to the communication pipe length of the air conditioner is obtained from a relational expression between the operating capacity of the compressor and the pressure loss stored in advance. Is determined as a correction coefficient, so that an accurate correction coefficient is determined under an appropriate wet condition, so that reliability and control performance can be improved.

【0045】また、補正係数決定のための設定運転を油
戻し運転モードで行うようにしたので、冷媒の適正な湿
り状態条件下で、かつ大きな圧縮機の運転容量で関係式
が決定され、補正係数の決定精度の向上と、既存の油戻
し運転モードの利用による制御構成の簡素化とを図るこ
とができる。
Further, since the set operation for determining the correction coefficient is performed in the oil return operation mode, the relational expression is determined under the appropriate wet condition of the refrigerant and with the large operating capacity of the compressor. It is possible to improve the coefficient determination accuracy and simplify the control configuration by using the existing oil return operation mode.

【0046】請求項2の発明によれば、上記請求項1
発明において、空気調和装置の冷房運転中に、圧縮機の
運転容量の変化に応じ、決定された補正係数と圧縮機の
運転容量との積を用いて能力制御の制御目標値を補正す
るようにしたので、能力制御の制御機能の向上を図るこ
とができる。
According to the second aspect of the present invention, in the first aspect of the present invention, the correction coefficient and the operating capacity of the compressor determined according to the change in the operating capacity of the compressor during the cooling operation of the air conditioner. Is used to correct the control target value of the capacity control, so that the control function of the capacity control can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the present invention.

【図2】実施例に係る空気調和装置の室外ユニットの冷
媒配管系統図である。
FIG. 2 is a refrigerant piping system diagram of an outdoor unit of the air conditioner according to the embodiment.

【図3】実施例に係る空気調和装置の室内ユニットの冷
媒配管系統図である。
FIG. 3 is a refrigerant piping system diagram of an indoor unit of the air-conditioning apparatus according to the embodiment.

【図4】予め記憶される圧縮機容量と圧力損失との関係
式を示す特性図である。
FIG. 4 is a characteristic diagram showing a relational expression between a compressor capacity and a pressure loss stored in advance.

【図5】一定容量における圧力損失と補正係数との関係
を示す特性図である。
FIG. 5 is a characteristic diagram showing a relationship between a pressure loss and a correction coefficient at a constant capacity.

【図6】補正係数の決定制御の内容を示すフローチャー
ト図である。
FIG. 6 is a flowchart illustrating the details of control for determining a correction coefficient.

【図7】制御目標値の補正制御の内容を示すフローチャ
ート図である。
FIG. 7 is a flowchart showing the contents of a control for correcting a control target value.

【図8】圧縮機の容量と制御目標値の補正との関係を示
す特性図である。
FIG. 8 is a characteristic diagram showing a relationship between a capacity of a compressor and correction of a control target value.

【符号の説明】[Explanation of symbols]

1 圧縮機 6 室外熱交換器(熱源側熱交換器) 11a 液側連絡配管 11b ガス側連絡配管 12 室内熱交換器(利用側熱交換器) 13 室内電動膨張弁(利用側電動膨張弁) 51 記憶回路(記憶手段) 53 設定運転制御手段 54 補正係数決定手段 55 補正手段 60 過熱度検出手段 A 室外ユニット B 室内ユニット P2 低圧センサ(吸入圧力検出手段) Th2 室内液温センサ(蒸発圧力検出手段) DESCRIPTION OF SYMBOLS 1 Compressor 6 Outdoor heat exchanger (heat source side heat exchanger) 11a Liquid side connection pipe 11b Gas side connection pipe 12 Indoor heat exchanger (use side heat exchanger) 13 Indoor electric expansion valve (use side electric expansion valve) 51 Storage circuit (storage means) 53 Setting operation control means 54 Correction coefficient determination means 55 Correction means 60 Superheat degree detection means A Outdoor unit B Indoor unit P2 Low pressure sensor (Suction pressure detection means) Th2 Indoor liquid temperature sensor (Evaporation pressure detection means)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 運転容量が可変に調節される圧縮機
(1)及び熱源側熱交換器(6)を有する室外ユニット
(A)と、利用側熱交換器(12)及び利用側電動膨張
弁(13)を有する室内ユニット(B)とを液側連絡配
管(11a)及びガス側連絡配管(11b)で接続する
とともに、上記室外ユニット(A)における冷媒の吸入
圧力相当飽和温度を検出する吸入圧力検出手段(P2)
を備え、空気調和装置の冷房運転中に、該吸入圧力検出
手段(P2)で検出される吸入圧力相当飽和温度に応じ
て上記圧縮機(1)の運転容量を能力制御するようにし
た空気調和装置において、 上記利用側熱交換器(12)における冷媒の蒸発圧力相
当飽和温度を検出する蒸発圧力検出手段(Th2)と、 上記圧縮機(1)の運転容量とガス側連絡配管における
冷媒の圧力損失との関係を、上記ガス側連絡配管(11
b)の長さをパラメータとする複数の関係式として記憶
する記憶手段(51)と、冷房サイクルにすると共に、上記利用側電動膨張弁(1
3)が一定の大開度にし、且つ圧縮機(1)の運転容量
が一定の大容量となる油戻し運転状態に制御する 設定運
転制御手段(53)と、 該設定運転制御手段(53)による運転中、吸入冷媒の
過熱度を検出する過熱度検出手段(60)と、 上記設定運転制御手段(53)による運転中、上記過熱
度検出手段(60)で検出される吸入過熱度が所定値よ
りも小さいときに、上記吸入圧力検出手段(P2)及び
蒸発圧力検出手段(Th2)で検出される蒸発圧力相当飽
和温度−吸入圧力相当飽和温度の差と圧縮機(1)の運
転容量との関係から、上記記憶手段(51)に記憶され
る複数の関係式のうち連絡配管長に対応する関係式を補
正係数として決定する補正係数決定手段(54)とを備
えたことを特徴とする空気調和装置。
An outdoor unit (A) having a compressor (1) and a heat source side heat exchanger (6) whose operating capacity is variably adjusted, a use side heat exchanger (12) and a use side electric expansion valve. The indoor unit (B) having (13) is connected by a liquid-side communication pipe (11a) and a gas-side communication pipe (11b), and the suction unit detects the saturation temperature corresponding to the suction pressure of the refrigerant in the outdoor unit (A). Pressure detection means (P2)
An air conditioner for controlling the operation capacity of the compressor (1) according to the suction pressure equivalent saturation temperature detected by the suction pressure detecting means (P2) during the cooling operation of the air conditioner. An evaporating pressure detecting means (Th2) for detecting a saturated temperature corresponding to an evaporating pressure of the refrigerant in the use-side heat exchanger (12); an operating capacity of the compressor (1) and a pressure of the refrigerant in a gas-side communication pipe; The relationship with the loss is determined by the gas side communication pipe (11
b) storage means (51) for storing as a plurality of relational expressions using the length as a parameter, a cooling cycle, and the use-side electric expansion valve (1).
3) has a constant large opening and the operating capacity of the compressor (1)
Setting operation control means (53) for controlling the oil return operation state to a constant large capacity, and superheat degree detection means (60) for detecting the degree of superheat of the suction refrigerant during operation by the setting operation control means (53) If, during oPERATION that by the above setting operation control means (53), when the suction superheat degree detected by the superheat degree detecting means (60) is smaller than a predetermined value, the suction pressure detection means (P2) and From the relationship between the difference between the evaporating pressure equivalent saturation temperature and the suction pressure equivalent saturation temperature detected by the evaporating pressure detecting means (Th2) and the operating capacity of the compressor (1), the plurality of storages stored in the storage means (51) are determined. air conditioner, wherein a relational expression corresponding to equation sac Chi communicating絡配tube length and a correction coefficient determination means for determining a correction factor (54).
【請求項2】 請求項1記載の空気調和装置において、 空気調和装置の冷房運転中に、圧縮機(1)の運転容量
の変化に応じ、補正係数決定手段(54)で補正された
補正係数と圧縮機(1)の運転容量との積を用いて上記
能力制御手段(50)の制御目標値を補正する補正手段
(55)を備えたことを特徴とする空気調和装置。
2. The air conditioner according to claim 1 , wherein the correction coefficient is corrected by the correction coefficient determining means (54) according to a change in the operating capacity of the compressor (1) during the cooling operation of the air conditioner. An air conditioner comprising a correction means (55) for correcting a control target value of the capacity control means (50) using a product of the operating capacity of the compressor (1).
JP4086933A 1992-04-08 1992-04-08 Air conditioner Expired - Fee Related JP3028008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4086933A JP3028008B2 (en) 1992-04-08 1992-04-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4086933A JP3028008B2 (en) 1992-04-08 1992-04-08 Air conditioner

Publications (2)

Publication Number Publication Date
JPH05288413A JPH05288413A (en) 1993-11-02
JP3028008B2 true JP3028008B2 (en) 2000-04-04

Family

ID=13900673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4086933A Expired - Fee Related JP3028008B2 (en) 1992-04-08 1992-04-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP3028008B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115891A1 (en) * 2013-01-28 2014-07-31 ダイキン工業 株式会社 Air conditioner
US11639802B2 (en) * 2018-06-28 2023-05-02 Gree Electric Appliances, Inc. Of Zhuhai Control method and device of air conditioning system and air conditioning system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100315784B1 (en) * 1999-09-03 2001-12-12 구자홍 Control unit with delay compensation for air conditioner and the same method
JP5259944B2 (en) * 2006-10-11 2013-08-07 三菱重工業株式会社 Air conditioner
JP5109971B2 (en) * 2008-12-26 2012-12-26 ダイキン工業株式会社 Air conditioner
JP4905447B2 (en) * 2008-12-26 2012-03-28 ダイキン工業株式会社 Air conditioner
CN113280533B (en) * 2021-06-10 2022-04-19 宁波奥克斯电气股份有限公司 Oil return method for multi-connected air conditioner compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115891A1 (en) * 2013-01-28 2014-07-31 ダイキン工業 株式会社 Air conditioner
JP2014159944A (en) * 2013-01-28 2014-09-04 Daikin Ind Ltd Air conditioner
US9835341B2 (en) 2013-01-28 2017-12-05 Daikin Industries, Ltd. Air conditioner
US11639802B2 (en) * 2018-06-28 2023-05-02 Gree Electric Appliances, Inc. Of Zhuhai Control method and device of air conditioning system and air conditioning system

Also Published As

Publication number Publication date
JPH05288413A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
KR100471453B1 (en) a heat pump system and a linear expansion valve&#39;s control method for the same
EP2083230B1 (en) Air conditioning system
US20110174005A1 (en) Refrigerating apparatus
US20110192176A1 (en) Air conditioner and control method thereof
JP3028008B2 (en) Air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
EP1972861B1 (en) Simultaneous Heating and Cooling Type Multi-Air Conditioner and Method for Controlling the Same
JP3291753B2 (en) Refrigerant charging amount detection device for refrigeration equipment
JP3334601B2 (en) Air conditioner with natural circulation
JP3277665B2 (en) Air conditioner
US11788759B2 (en) Refrigeration system and heat source unit
JP3555575B2 (en) Refrigeration equipment
KR101911272B1 (en) Air conditioner and Method for controlling it
JPH01260249A (en) Remote control device for air conditioner
JPH0833245B2 (en) Refrigeration system operation controller
JPH05272822A (en) Freezer
JPH03251661A (en) Heat pump system
CN114857664B (en) Multi-split air conditioner system
JPH08128747A (en) Controller for air conditioner
GB2560455A (en) Air-conditioning device
JP2976905B2 (en) Air conditioner
KR20220027563A (en) Multi-air conditioner for heating and cooling operations
JPH0263150B2 (en)
JPS62299660A (en) Air conditioner
JPH085184A (en) Multi-room type air conditioner

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees