JP5259944B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5259944B2
JP5259944B2 JP2006277481A JP2006277481A JP5259944B2 JP 5259944 B2 JP5259944 B2 JP 5259944B2 JP 2006277481 A JP2006277481 A JP 2006277481A JP 2006277481 A JP2006277481 A JP 2006277481A JP 5259944 B2 JP5259944 B2 JP 5259944B2
Authority
JP
Japan
Prior art keywords
refrigerant pipe
pipe length
refrigerant
indoor
oil recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006277481A
Other languages
Japanese (ja)
Other versions
JP2008096019A (en
Inventor
聡 渡辺
政司 前野
晋一 五十住
恵介 三苫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2006277481A priority Critical patent/JP5259944B2/en
Priority to CN200710007708XA priority patent/CN101162104B/en
Priority to EP20070118087 priority patent/EP1914493B8/en
Priority to ES07118087T priority patent/ES2390485T3/en
Publication of JP2008096019A publication Critical patent/JP2008096019A/en
Application granted granted Critical
Publication of JP5259944B2 publication Critical patent/JP5259944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、圧縮機から吐出される冷媒と共に冷媒回路に循環され、冷媒回路側に滞留する潤滑油を圧縮機に回収する油回収運転機能を備えたマルチタイプ空気調和装置に関するものである。   The present invention relates to a multi-type air conditioner having an oil recovery operation function of recovering lubricating oil that circulates in a refrigerant circuit together with refrigerant discharged from a compressor and stays on the refrigerant circuit side to the compressor.

冷媒圧縮式冷凍サイクルを用いた空気調和装置では、冷媒を圧縮機により圧縮して冷媒回路内を循環させることにより、冷暖房効果を得ている。圧縮機には摺動部を潤滑するための潤滑油が充填されており、この潤滑油の一部が圧縮された冷媒と共に圧縮機から冷媒回路に吐出される。潤滑油は、冷媒と共に冷媒回路内を循環した後、再び圧縮機に帰還されるが、一部の潤滑油は冷媒回路側に滞留することがある。この潤滑油の滞留量は、各室内機の冷媒配管長あるいは運転状態により区々であるが、一般的に空気調和装置の運転時間に比例して増加すると考えられる。   In an air conditioner using a refrigerant compression refrigeration cycle, the refrigerant is compressed by a compressor and circulated in the refrigerant circuit to obtain an air conditioning effect. The compressor is filled with lubricating oil for lubricating the sliding portion, and a part of the lubricating oil is discharged from the compressor to the refrigerant circuit together with the compressed refrigerant. The lubricating oil circulates in the refrigerant circuit together with the refrigerant, and then returns to the compressor again. However, some lubricating oil may stay on the refrigerant circuit side. The retention amount of the lubricating oil varies depending on the refrigerant pipe length or operation state of each indoor unit, but is generally considered to increase in proportion to the operation time of the air conditioner.

上記のように、冷媒回路側に滞留する潤滑油が増加すると、その分圧縮機に保持される潤滑油の量が減少することになるので、圧縮機の潤滑作用に影響を及ぼし、場合によっては、潤滑油不足により圧縮機の故障、破損等を招く事態にもなり兼ねない。そこで、空気調和装置を一定時間(例えば、8時間)運転する毎に、冷媒回路内に滞留している潤滑油を強制的に圧縮機に回収するための油回収運転を一定時間(例えば、3分)行うようにしている。また、油回収運転としては、圧縮機を設定回転数とし、室内膨張弁および室外膨張弁をそれぞれ設定開度として液バック気味運転を行い、液冷媒と共に冷媒回路に滞留している潤滑油を圧縮機側に回収する方法が知られている。   As described above, if the amount of lubricating oil staying on the refrigerant circuit side increases, the amount of lubricating oil retained in the compressor will decrease accordingly, affecting the lubricating action of the compressor, and in some cases In addition, the lack of lubricating oil may cause a failure or breakage of the compressor. Therefore, every time the air conditioner is operated for a certain time (for example, 8 hours), the oil recovery operation for forcibly collecting the lubricating oil staying in the refrigerant circuit to the compressor is performed for a certain time (for example, 3 hours). Min). In addition, as the oil recovery operation, the compressor is set to the set rotation speed, the liquid expansion operation is performed with the indoor expansion valve and the outdoor expansion valve set to the respective opening degrees, and the lubricating oil staying in the refrigerant circuit together with the liquid refrigerant is compressed. A method of collecting on the machine side is known.

ところで、室内機が複数台並列に接続されるマルチタイプの空気調和装置において、特に、ビル空調用に据え付けられるものは、冷媒配管長が非常に長く、しかも室内機毎に冷媒配管長が異なっている場合がほとんどである。このマルチタイプ空気調和装置では、上記のように、一律に一定時間だけ油回収運転を行っても、圧縮機に予想した通りの量の潤滑油が戻らないこともあり、潤滑不良に陥る場合がある。
このような事態を避けるため、油回収運転時に、圧縮機に吸入される冷媒の吸入スーパーヒートに基づいて、潤滑油が圧縮機に戻っているか否かを判断し、必要に応じて油回収運転の運転時間を変更するようにしたものが提案されている(例えば、特許文献1参照)。
By the way, in a multi-type air conditioner in which a plurality of indoor units are connected in parallel, especially those installed for building air conditioning have a very long refrigerant piping length, and the refrigerant piping length differs for each indoor unit. In most cases. In this multi-type air conditioner, as described above, even if the oil recovery operation is performed for a certain period of time, the amount of lubricating oil may not return to the compressor as expected, which may result in poor lubrication. is there.
In order to avoid such a situation, during oil recovery operation, it is determined whether the lubricating oil has returned to the compressor based on the suction superheat of the refrigerant sucked into the compressor, and if necessary, oil recovery operation The thing which changed the driving | operation time of this is proposed (for example, refer patent document 1).

一方、上記のようなマルチタイプ空気調和装置では、現地工事において空気調和装置を据え付け後、各室内機の冷媒配管長に対応した適量の冷媒を追加充填する必要がある。冷媒の充填量は、規定通りの空調性能が得られるかどうかに直接影響するため、冷媒配管長を可能な限り正確に把握し、それに見合う適正量の冷媒を追加充填しなければならない。そこで、冷媒配管長を検知するためのシステムや方法が提案されている(例えば、特許文献2参照)。   On the other hand, in the multi-type air conditioner as described above, after installing the air conditioner in the field work, it is necessary to additionally charge an appropriate amount of refrigerant corresponding to the refrigerant pipe length of each indoor unit. Since the charge amount of the refrigerant directly affects whether or not the specified air conditioning performance can be obtained, it is necessary to grasp the length of the refrigerant pipe as accurately as possible and additionally charge an appropriate amount of refrigerant corresponding to it. Therefore, a system and a method for detecting the refrigerant pipe length have been proposed (see, for example, Patent Document 2).

特開平10−288410号公報Japanese Patent Laid-Open No. 10-288410 特開2006−183979号公報JP 2006-183979 A

しかしながら、上記特許文献1のものは、圧縮機に吸入される冷媒の吸入スーパーヒートに基づいて、潤滑油が圧縮機に戻っているか否かを判断し、吸入スーパーヒートが所定値以下である状態が所定時間連続したとき、または、油回収運転開始後予め定められた最大時間を経過したとき、油回収運転を終了するようにしている。このため、複数台の室内機の冷媒配管長差に関係なく、冷媒配管長が比較的短い室内機を循環して戻る液冷媒により圧縮機の吸入スーパーヒートが低下し、それにより油回収運転時間が決まってしまうこととなる。従って、かかる構成では、冷媒配管長が長い室内機およびその冷媒回路側に滞留している潤滑油を十分に回収することができない問題がある。
なお、特許文献2は、冷媒配管長を検知するためのシステムおよび方法を提案するものであって、冷媒回路に滞留している潤滑油を圧縮機の回収する技術を直接開示ないし示唆するものではない。
However, in Patent Document 1, it is determined whether the lubricating oil has returned to the compressor based on the suction superheat of the refrigerant sucked into the compressor, and the state where the suction superheat is equal to or less than a predetermined value. Is continued for a predetermined time or when a predetermined maximum time has elapsed after the start of the oil recovery operation, the oil recovery operation is terminated. For this reason, regardless of the difference in the refrigerant pipe length of the multiple indoor units, the suction superheat of the compressor is reduced by the liquid refrigerant that circulates and returns through the indoor unit having a relatively short refrigerant pipe length, thereby reducing the oil recovery operation time. Will be decided. Therefore, in such a configuration, there is a problem that the indoor unit having a long refrigerant pipe length and the lubricating oil staying on the refrigerant circuit side cannot be sufficiently recovered.
Patent Document 2 proposes a system and method for detecting the refrigerant pipe length, and does not directly disclose or suggest a technique for recovering the lubricating oil staying in the refrigerant circuit by the compressor. Absent.

本発明は、このような事情に鑑みてなされたものであって、複数台接続される室内機の冷媒配管長差にかかわりなく、各室内機およびその冷媒回路側に滞留している潤滑油を確実に回収することができる空気調和装置を提供することを目的とする。   This invention is made in view of such a situation, Comprising: Lubricating oil stagnated in each indoor unit and its refrigerant circuit side is irrespective of the refrigerant pipe length difference of the indoor unit connected with two or more units. An object is to provide an air conditioner that can be reliably recovered.

上記課題を解決するために、本発明の空気調和装置は、以下の手段を採用する。
すなわち、本発明にかかる空気調和装置は、圧縮機および室外熱交換器を有する室外機と、室内熱交換器および室内膨張弁を有し、互いに並列に接続される複数台の室内機と、前記室外機および前記室内機の前記圧縮機、前記室外熱交換器、前記複数台の室内熱交換器および室内膨張弁を順次冷媒配管により接続して構成される冷媒回路と、所定のタイミングで前記各室内機を液バック気味運転とし、前記冷媒回路に滞留している潤滑油を回収する油回収運転を行い、前記室外機側で液バックが検出されたとき、前記油回収運転を終了する油回収運転部と、を備えた空気調和装置において、前記油回収運転部は、前記各室内機の冷媒配管長を検知する冷媒配管長検知部と、該冷媒配管長検知部により検知された冷媒配管長を記憶する冷媒配管長記憶部と、該冷媒配管長記憶部に記憶されている前記各室内機の冷媒配管長に基づいて、前記油回収運転時に前記各室内膨張弁の開度を変更する油回収制御部と、を備えていることを特徴とする。
In order to solve the above problems, the air conditioning apparatus of the present invention employs the following means.
That is, an air conditioner according to the present invention includes an outdoor unit having a compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger and an indoor expansion valve, and connected in parallel to each other, A refrigerant circuit configured by sequentially connecting an outdoor unit and the compressor of the indoor unit, the outdoor heat exchanger, the plurality of indoor heat exchangers, and an indoor expansion valve by a refrigerant pipe; Oil recovery operation in which the indoor unit is in a liquid back operation, the oil recovery operation is performed to recover the lubricating oil remaining in the refrigerant circuit, and the oil recovery operation is terminated when a liquid back is detected on the outdoor unit side In the air conditioner including the operation unit, the oil recovery operation unit includes a refrigerant pipe length detection unit that detects a refrigerant pipe length of each indoor unit, and a refrigerant pipe length detected by the refrigerant pipe length detection unit. Refrigerant piping that remembers A storage unit, based on the refrigerant pipe length of each indoor unit stored in the refrigerant pipe length memory, and the oil recovery control unit for changing the opening degree of each of the indoor expansion valve during the oil-recovery operation, the It is characterized by having.

本発明によれば、油回収運転部は、各室内機の冷媒配管長を検知する冷媒配管長検知部と、その冷媒配管長を記憶する冷媒配管長記憶部と、記憶されている各室内機の冷媒配管長に基づいて、油回収運転時に各室内膨張弁開度を変更する油回収制御部と、を備えているので、室内機毎に冷媒配管長が異なっていても、各室内機の冷媒配管長に基づいて、油回収運転時に各室内膨張弁の開度を変更することにより、各室内機に対して各々適量の冷媒を流し、各室内機およびその冷媒回路に滞留している潤滑油を回収することができる。このため、冷媒配管長の長い室内機およびその冷媒回路に溜まり込んでいる潤滑油も確実に圧縮機側に回収することができる。従って、圧縮機内に常に所定量の潤滑油を保持することができ、冷媒回路側への油上がり現象によって圧縮機が潤滑油不足に陥り、潤滑不良をまねく事態を確実に解消することができる。   According to the present invention, the oil recovery operation unit includes a refrigerant pipe length detection unit that detects the refrigerant pipe length of each indoor unit, a refrigerant pipe length storage unit that stores the refrigerant pipe length, and each stored indoor unit. And an oil recovery control unit that changes the opening degree of each indoor expansion valve during oil recovery operation based on the refrigerant pipe length of each indoor unit. Based on the refrigerant pipe length, by changing the opening of each indoor expansion valve during oil recovery operation, an appropriate amount of refrigerant flows through each indoor unit, and lubrication that remains in each indoor unit and its refrigerant circuit Oil can be recovered. For this reason, the lubricating oil accumulated in the indoor unit having a long refrigerant pipe length and the refrigerant circuit can be reliably recovered to the compressor side. Accordingly, a predetermined amount of lubricating oil can always be held in the compressor, and the situation where the compressor falls short of the lubricating oil due to the oil rising phenomenon toward the refrigerant circuit side and leads to poor lubrication can be reliably solved.

また、本発明の空気調和装置は、上記の空気調和装置において、前記油回収制御部は、前記各室内機の冷媒配管長差を判断し、その冷媒配管長差に基づいて、冷媒配管長が長い前記室内機ほど、前記室内膨張弁の開度を大きくすることを特徴とする。   In the air conditioner of the present invention, in the above air conditioner, the oil recovery control unit determines a refrigerant pipe length difference between the indoor units, and the refrigerant pipe length is determined based on the refrigerant pipe length difference. The longer the indoor unit, the larger the opening of the indoor expansion valve.

本発明によれば、各室内機の冷媒配管長差を判断し、その冷媒配管長差に基づいて、冷媒配管長が長い室内機ほど、その室内膨張弁の開度を大きくするようにしているので、冷媒配管長が長い室内機ほど、冷媒を多く流し積極的に液バックさせて潤滑油を回収することができる。このため、冷媒配管長の長い室内機およびその冷媒回路に溜まり込んでいる潤滑油も確実に回収することができる。従って、圧縮機が潤滑油不足に至る事態を解消することができる。   According to the present invention, the refrigerant pipe length difference of each indoor unit is determined, and based on the refrigerant pipe length difference, the indoor unit having a longer refrigerant pipe length increases the opening of the indoor expansion valve. Therefore, the longer the refrigerant pipe length is, the more the refrigerant can flow and the liquid back can be actively collected to recover the lubricating oil. For this reason, the lubricating oil accumulated in the indoor unit having a long refrigerant pipe length and the refrigerant circuit thereof can also be reliably recovered. Accordingly, it is possible to eliminate the situation where the compressor is short of lubricating oil.

本発明によると、室内機毎に冷媒配管長が異なっていても、各室内機の冷媒配管長に基づいて、油回収運転時の室内膨張弁開度を変更するようにしているため、冷媒配管長の長い室内機およびその冷媒回路側に溜まり込んでいる潤滑油も確実に圧縮機側に回収することができる。従って、圧縮機内に常に所定量の潤滑油を保持することができ、圧縮機が潤滑油不足に陥り、潤滑不良をまねく事態を確実に解消することができる。 According to the present invention, since they are in different refrigerant pipe length for each indoor unit, based on the refrigerant pipe length of each indoor unit, so that changing the chamber expansion valve during the oil-recovery operation, The indoor unit having a long refrigerant pipe length and the lubricating oil accumulated on the refrigerant circuit side can also be reliably collected on the compressor side. Therefore, a predetermined amount of lubricating oil can always be held in the compressor, and it is possible to reliably eliminate the situation where the compressor falls short of lubricating oil and leads to poor lubrication.

以下、本発明の一実施形態について、図1ないし図3を用いて説明する。
図1には、本発明の一実施形態にかかるマルチタイプ空気調和装置1の冷媒回路図が示されている。空気調和装置1は、1台の室外機2と、この室外機2に対して並列に接続される複数台の室内機3A,3B,3Cとから構成される。なお、本実施形態では、室内機3A,3B,3Cが3台接続された例が示されているが、室内機3A,3B,3Cの接続台数については、制約されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a refrigerant circuit diagram of a multi-type air conditioner 1 according to an embodiment of the present invention. The air conditioner 1 includes a single outdoor unit 2 and a plurality of indoor units 3A, 3B, 3C connected in parallel to the outdoor unit 2. In this embodiment, an example in which three indoor units 3A, 3B, and 3C are connected is shown, but the number of connected indoor units 3A, 3B, and 3C is not limited.

室外機2は、冷媒を圧縮するインバータ駆動の圧縮機4と、冷媒の循環方向を切替える四方切替弁5と、冷媒と外気とを熱交換させる室外熱交換器6と、暖房時用の室外電子膨張弁7と、液冷媒を貯留するレシーバ8と、液冷媒に過冷却を付与する過冷却熱交換器9と、冷媒ガス中の液分を分離してガス冷媒のみを圧縮機4に吸入させるアキュームレータ10と、を備え、これらは公知の如く冷媒配管11により接続され、室外機2側の冷媒回路12を構成している。過冷却熱交換器9は、二重管構造の熱交換器で、その内管側に冷媒配管11から分岐された冷媒が電子膨張弁13を経て導入され、その外管側を流通する液冷媒を冷却する構成とされており、内管側に導入された冷媒は、ガス冷媒となってアキュームレータ10の入口側に導かれる構成とされている。   The outdoor unit 2 includes an inverter-driven compressor 4 that compresses the refrigerant, a four-way switching valve 5 that switches the refrigerant circulation direction, an outdoor heat exchanger 6 that exchanges heat between the refrigerant and the outside air, and outdoor electronics for heating. An expansion valve 7, a receiver 8 that stores liquid refrigerant, a supercooling heat exchanger 9 that provides supercooling to the liquid refrigerant, and a liquid component in the refrigerant gas are separated and only the gas refrigerant is sucked into the compressor 4. And an accumulator 10, which are connected by a refrigerant pipe 11 as is well known, and constitute a refrigerant circuit 12 on the outdoor unit 2 side. The supercooling heat exchanger 9 is a heat exchanger having a double-pipe structure, in which a refrigerant branched from a refrigerant pipe 11 is introduced to the inner pipe side through an electronic expansion valve 13 and flows through the outer pipe side. The refrigerant introduced to the inner tube side is configured to be a gas refrigerant and guided to the inlet side of the accumulator 10.

室外機2には、ガス側操作弁14および液側操作弁15が設けられ、このガス側操作弁14および液側操作弁15を介して、室内機3A,3B,3C側に延長されるガス配管16および液配管17が接続される。ガス配管16および液配管17には、図示省略の分岐器および室内側冷媒配管18A,18B,18Cを介して複数台の室内機3A,3B,3Cが互いに並列に接続配置される。   The outdoor unit 2 is provided with a gas side operation valve 14 and a liquid side operation valve 15, and the gas extended to the indoor units 3 </ b> A, 3 </ b> B, 3 </ b> C via the gas side operation valve 14 and the liquid side operation valve 15. A pipe 16 and a liquid pipe 17 are connected. A plurality of indoor units 3A, 3B, and 3C are connected to the gas pipe 16 and the liquid pipe 17 in parallel with each other via a branching unit (not shown) and indoor side refrigerant pipes 18A, 18B, and 18C.

室内機3A,3B,3Cは、各々室内空気と熱交換される室内熱交換器19と、冷房時用の室内電子膨張弁20と、を備え、各空調ゾーンあるいは各室毎に配設される。この室内機3A,3B,3Cに接続される冷媒配管18A,18B,18Cの長さは、各室内機3A,3B,3Cの配設位置により異なり、ここでは、18A>18B>18Cの関係とされている。そして、この室内側の冷媒配管18A,18B,18Cが、ガス配管16および液配管17を介して室外機2側の冷媒回路12と接続されることにより、1系統の密閉された冷媒回路21が構成される。   Each of the indoor units 3A, 3B, and 3C includes an indoor heat exchanger 19 that exchanges heat with indoor air, and an indoor electronic expansion valve 20 for cooling, and is disposed in each air conditioning zone or each room. . The lengths of the refrigerant pipes 18A, 18B, and 18C connected to the indoor units 3A, 3B, and 3C differ depending on the arrangement positions of the indoor units 3A, 3B, and 3C. Here, the relationship of 18A> 18B> 18C Has been. The indoor refrigerant pipes 18A, 18B, and 18C are connected to the refrigerant circuit 12 on the outdoor unit 2 side via the gas pipe 16 and the liquid pipe 17, whereby a single-line sealed refrigerant circuit 21 is formed. Composed.

上記空気調和装置1は、所定のタイミング、例えば、予め定められた運転時間毎に、各室内機3A,3B,3Cを液バック気味運転とし、冷媒回路21の主にガス側冷媒回路内に滞留している潤滑油を回収する油回収運転を行い、室外機2側で液バックが検知されたとき、油回収運転を終了する油回収運転部22を備えている。なお、油回収運転のタイミングは、上記に限らず、潤滑油の流出量を所定の算式に基づいて算出し、その積算流出量が予め定められている限界流出量に達したとき、油回収運転を行うなど、他のタイミングで行ってもよい。また、液バック気味運転は、各室内機3A,3B,3Cの室内電子膨張弁20を油回収運転のための設定開度とすることにより可能である。さらに、油回収運転時に室外機2に液バックされているか否かは、アキュームレータ10の入口側冷媒配管11に設けられている低圧圧力センサ23および吸入冷媒温度センサ24の検出値から吸入冷媒の過熱度を求めることにより検知可能である。   The air conditioner 1 sets each indoor unit 3A, 3B, 3C to a liquid back operation at a predetermined timing, for example, every predetermined operation time, and stays in the refrigerant circuit 21 mainly in the gas side refrigerant circuit. An oil recovery operation unit 22 is provided that performs an oil recovery operation for recovering the lubricating oil, and terminates the oil recovery operation when a liquid back is detected on the outdoor unit 2 side. Note that the timing of the oil recovery operation is not limited to the above, and the oil recovery operation is performed when the amount of outflow of the lubricating oil is calculated based on a predetermined formula and the accumulated outflow amount reaches a predetermined limit outflow amount. It may be performed at other timing such as. Further, the liquid back operation is possible by setting the indoor electronic expansion valve 20 of each indoor unit 3A, 3B, 3C to a set opening for oil recovery operation. Further, whether or not the liquid is returned to the outdoor unit 2 during the oil recovery operation is determined based on the detected values of the low-pressure pressure sensor 23 and the suction refrigerant temperature sensor 24 provided in the inlet-side refrigerant pipe 11 of the accumulator 10 and the overheating of the suction refrigerant. It can be detected by determining the degree.

油回収運転部22には、各室内機3A,3B,3Cに接続される冷媒配管18A,18B,18Cの配管長を検知する冷媒配管長検知部26およびそれを記憶する冷媒配管長記憶部27が設けられる。冷媒配管長の検知には、本出願人の出願である前述の特許文献2(特開2006−183979号)の発明を利用することができる。この冷媒配管長の検出方法は、冷房運転を行わせたときの圧縮機4の吸入圧力(低圧圧力センサ23により検知される。)と室内側熱交換器18の飽和圧力(室内側熱交換器18に設けられる温度センサ25により検知される冷媒温度から算出される。)とから低圧ガス配管(各冷媒配管18A,18B,18Cとガス配管16)の圧力損失を算出し、その圧力損失に基づいて、以下のダルシーの式(Darcy’s Formula)から、低圧ガス配管の配管長を求めるものである。
ΔP=λ(Δx/D)・(ρu/2)
ここで、λはダルシーの管摩擦係数、Δxは低圧ガス配管の配管長、Dは配管の内径、ρは冷媒の比重、uは平均流速である。ダルシーの管摩擦係数λ、配管の内径D、冷媒の比重ρ、平均流速uは、予め取得される。平均流速uは、圧縮機4の吐出流量から冷媒回路21内を流れる冷媒の平均流量を算出し、これを冷媒配管の流路断面積(πD/4)で除することにより算出することができる。
The oil recovery operation unit 22 includes a refrigerant pipe length detection unit 26 that detects the pipe lengths of the refrigerant pipes 18A, 18B, and 18C connected to the indoor units 3A, 3B, and 3C, and a refrigerant pipe length storage unit 27 that stores the refrigerant pipes. Is provided. The invention of the above-mentioned Patent Document 2 (Japanese Patent Laid-Open No. 2006-183979) filed by the present applicant can be used for detecting the refrigerant pipe length. In this refrigerant pipe length detection method, the suction pressure of the compressor 4 (detected by the low-pressure sensor 23) and the saturation pressure of the indoor heat exchanger 18 (the indoor heat exchanger) when the cooling operation is performed. The pressure loss of the low-pressure gas pipes (respective refrigerant pipes 18A, 18B, 18C and the gas pipe 16) is calculated from the refrigerant temperature detected by the temperature sensor 25 provided at 18 and based on the pressure loss. Thus, the pipe length of the low-pressure gas pipe is obtained from the following Darcy's formula (Darcy's Formula).
ΔP = λ (Δx / D) · (ρu 2/2)
Here, λ is Darcy's pipe friction coefficient, Δx is the pipe length of the low-pressure gas pipe, D is the pipe inner diameter, ρ is the specific gravity of the refrigerant, and u is the average flow velocity. Darcy's pipe friction coefficient λ, pipe inner diameter D, refrigerant specific gravity ρ, and average flow velocity u are acquired in advance. The average flow velocity u is that the discharge flow rate of the compressor 4 to calculate the average flow rate of the refrigerant flowing through the refrigerant circuit 21, which is calculated by dividing the flow path cross-sectional area of the refrigerant pipe ([pi] D 2/4) it can.

なお、冷媒配管長の検知は、上記の方法に限定されるものではなく、例えば、冷房運転を行い、それが安定状態となった後に、強制的に膨張弁の開度を変更し、圧縮機からの吐出ガス温度が所定温度になるまでの経過時間によって冷媒配管長を算出する等、他の公知の方法を用いてもよいことはもちろんである。
冷媒配管長検知部26による冷媒配管長の検知は、空気調和装置1を据え付け後、冷媒配管長に見合う量の冷媒を追加充填するために、冷媒配管長を検知するので、その検知結果を冷媒配管長記憶部27により記憶しておき、それを油回収運転時に利用すればよい。
The detection of the refrigerant pipe length is not limited to the above method. For example, after the cooling operation is performed and the state becomes stable, the opening of the expansion valve is forcibly changed, and the compressor Of course, other known methods such as calculating the refrigerant pipe length from the elapsed time until the discharge gas temperature from the gas reaches a predetermined temperature may be used.
The refrigerant pipe length detection by the refrigerant pipe length detector 26 detects the refrigerant pipe length after the air conditioner 1 is installed in order to additionally fill the refrigerant pipe with an amount corresponding to the refrigerant pipe length. What is necessary is just to memorize | store by the pipe length memory | storage part 27, and to use it at the time of oil collection | recovery driving | operation.

また、油回収運転部22には、上記タイミングで油回収運転を行う時、冷媒配管長記憶部27に記憶されている各室内機3A,3B,3Cの冷媒配管18A,18B,18Cの長さ(実際には、これにガス配管16の長さを加えた低圧ガス配管長)に基づいて、油回収運転の運転時間を変更する油回収制御部28が設けられる。
この油回収制御部28は、図2に示される制御フローに従い、以下の通り油回収運転時にその運転時間を制御する構成とされる。なお、この図2の制御フローは、冷媒配管長差に基づいて、油回収運転の運転終了時間を変更する本発明の参考例のフロー図である。
The oil recovery operation unit 22 also includes the lengths of the refrigerant pipes 18A, 18B, and 18C of the indoor units 3A, 3B, and 3C stored in the refrigerant pipe length storage unit 27 when the oil recovery operation is performed at the above timing. Based on (actually, the length of the low pressure gas pipe obtained by adding the length of the gas pipe 16 to this), an oil recovery control unit 28 that changes the operation time of the oil recovery operation is provided.
The oil recovery control unit 28 is configured to control the operation time during the oil recovery operation as follows in accordance with the control flow shown in FIG. The control flow of FIG. 2 is a flowchart of a reference example of the present invention in which the operation end time of the oil recovery operation is changed based on the refrigerant pipe length difference.

油回収制御部28においては、まず、冷媒配管長の検知結果に基づいて、冷媒配管18Aが最も長い最遠室内機3Aの冷媒配管長(Lmax)と、冷媒配管18Cが最も短い最近室内機3Cの冷媒配管長(Lmin)との差が、設定配管長差Llim(例えば、40m)よりも大きいか否かが判断される(S1)。冷媒配管長差が設定配管長差Llimよりも小さければ、通常制御に移行し、上記の油回収運転が実施され、室外機2側で液バックが検出されると、冷媒配管長さに基づいて変更された油回収運転の運転時間Tk後(例えば、30秒後)に油回収運転が終了される。上記の冷媒配管長差が設定配管長差Llimよりも大きい場合は、油回収運転の終了条件が変更されることとなる(S2)。   In the oil recovery control unit 28, first, based on the detection result of the refrigerant pipe length, the refrigerant pipe length (Lmax) of the farthest indoor unit 3A having the longest refrigerant pipe 18A and the latest indoor unit 3C having the shortest refrigerant pipe 18C. It is determined whether or not the difference from the refrigerant pipe length (Lmin) is greater than a set pipe length difference Llim (for example, 40 m) (S1). If the refrigerant pipe length difference is smaller than the set pipe length difference Llim, the control shifts to normal control, and when the oil recovery operation is performed and the liquid back is detected on the outdoor unit 2 side, the refrigerant pipe length is determined based on the refrigerant pipe length. The oil recovery operation is terminated after the changed operation time Tk of the oil recovery operation (for example, after 30 seconds). When the refrigerant pipe length difference is larger than the set pipe length difference Llim, the end condition of the oil recovery operation is changed (S2).

油回収運転の終了条件の変更は、冷媒配管長差(Lmax−Lmin)に基づいて、油回収運転の運転終了時間をどれだけ遅らせるかが判断される(S3)。冷媒配管長差(Lmax−Lmin)が設定範囲(例えば、40m<Lmax−Lmin≦60m)内であれば、運転終了時間を規定の終了時間から、例えば30秒遅らせ、油回収運転時間を30秒間長くする(S4)。冷媒配管長差(Lmax−Lmin)が設定範囲(例えば、60m)を超えている場合は、運転終了時間を規定の終了時間から、例えば60秒遅らせ、油回収運転時間を60秒だけ長くする(S5)。そして、上記により変更した運転終了条件を、室外機2側コントローラの油回収運転部22が記憶(S6)し、これにより通常制御に移行して上記の油回収運転が実行される。   The change in the end condition of the oil recovery operation is determined based on the refrigerant pipe length difference (Lmax−Lmin) as to how much the operation end time of the oil recovery operation is delayed (S3). If the refrigerant pipe length difference (Lmax−Lmin) is within a set range (for example, 40 m <Lmax−Lmin ≦ 60 m), the operation end time is delayed from the specified end time by, for example, 30 seconds, and the oil recovery operation time is set to 30 seconds. Increase the length (S4). When the refrigerant pipe length difference (Lmax−Lmin) exceeds a set range (for example, 60 m), the operation end time is delayed from the specified end time by, for example, 60 seconds, and the oil recovery operation time is increased by 60 seconds ( S5). Then, the oil recovery operation unit 22 of the outdoor unit 2 side controller stores the operation end condition changed as described above (S6), thereby shifting to normal control and executing the oil recovery operation.

以上の構成により、本参考例によると、以下の作用効果を奏する。
通常の空調運転が行われている間に、圧縮機4から冷媒ガスと共に吐出された潤滑油の一部は、冷媒ガスと共に冷媒回路21内を循環した後、再び圧縮機4に戻るが、その一部は各室内機3A,3B,3Cやその冷媒配管18A,18B,18C、主にガス側冷媒配管内に滞留する。所定のタイミング、例えば、運転時間が所定時間経過したとき、あるいは潤滑油の流出量が限界流出量に達したとき、油回収運転が開始される。
油回収運転は、冷房サイクルにより、各室内機3A,3B,3Cの室内電子膨張弁20を油回収運転のための設定開度とし、液バック気味運転を行い、室外機2側に液バックさせることによって、その冷媒流で各室内機3A,3B,3Cやその冷媒配管18A,18B,18C等に滞留している潤滑油を洗い流して圧縮機4側に回収する。
With the above configuration, the present embodiment provides the following operational effects.
During normal air-conditioning operation, a part of the lubricating oil discharged from the compressor 4 together with the refrigerant gas circulates in the refrigerant circuit 21 together with the refrigerant gas, and then returns to the compressor 4 again. Some of them stay in the indoor units 3A, 3B, 3C and their refrigerant pipes 18A, 18B, 18C, mainly gas side refrigerant pipes. The oil recovery operation is started at a predetermined timing, for example, when the operation time has passed for a predetermined time, or when the amount of lubricant flowing out reaches the limit amount.
In the oil recovery operation, the indoor electronic expansion valve 20 of each indoor unit 3A, 3B, 3C is set to a set opening degree for oil recovery operation by a cooling cycle, and a liquid back operation is performed and liquid is returned to the outdoor unit 2 side. As a result, the lubricating oil staying in the indoor units 3A, 3B, 3C, the refrigerant pipes 18A, 18B, 18C, and the like is washed away with the refrigerant flow and recovered to the compressor 4 side.

室外機2側に液バックされると、それを検知して油回収運転が終了される。室外機2に液バックされているか否かは、アキュームレータ10の入口側冷媒配管11に設けられている低圧圧力センサ23および吸入冷媒温度センサ24の検出値から吸入冷媒の過熱度を求めることにより検知可能である。また、油回収運転の終了は、室外機2側で液バックが検知されてから、所定時間、本実施形態では30秒後に終了されるようになっている。
一般に、冷媒配管長が長い場合には、圧力損失が大きくなるため、膨張弁の前後で取り得る差圧も小さくなり、冷媒流量が低下するので、油の戻りが悪くなる。また、冷媒配管長が長い場合には、その中での熱ロスも大きく、液バック状態としていても、配管内を流れている間に冷媒が過熱状態に近づいてしまう。油は液バックされている方が戻りやすいが、過熱されることで油の戻りが悪くなる。
When the liquid is returned to the outdoor unit 2 side, this is detected and the oil recovery operation is terminated. Whether or not the liquid is backed by the outdoor unit 2 is detected by obtaining the degree of superheat of the suction refrigerant from the detection values of the low pressure sensor 23 and the suction refrigerant temperature sensor 24 provided in the inlet side refrigerant pipe 11 of the accumulator 10. Is possible. The oil recovery operation is ended after a predetermined time, in this embodiment, 30 seconds after the liquid back is detected on the outdoor unit 2 side.
In general, when the refrigerant pipe length is long, the pressure loss increases, so that the differential pressure that can be taken before and after the expansion valve also decreases, and the refrigerant flow rate decreases, so that the return of oil becomes worse. Further, when the refrigerant pipe length is long, the heat loss in the refrigerant pipe is large, and the refrigerant approaches an overheated state while flowing in the pipe even in the liquid back state. The oil is more likely to return when it is backed up, but the return of oil becomes worse when overheated.

そこで、本参考例では、冷媒配管長検知部26により予め検知され、冷媒配管長記憶部27に記憶されている各室内機3A,3B,3Cの冷媒配管長差(Lmax−Lmin)が、設定配管長差Llim(例えば、40m)と比較され(図2のS1)、40m未満であれば、上記の通り、液バック検知後、30秒経過した時点で油回収運転は終了される。冷媒配管長差(Lmax−Lmin)が、40m以上であれば、油回収運転の終了条件が変更されることとなる。   Therefore, in this reference example, the refrigerant pipe length difference (Lmax−Lmin) of each of the indoor units 3A, 3B, 3C that is detected in advance by the refrigerant pipe length detection unit 26 and stored in the refrigerant pipe length storage unit 27 is set. When compared with the pipe length difference Llim (for example, 40 m) (S1 in FIG. 2) and less than 40 m, as described above, the oil recovery operation is terminated when 30 seconds have elapsed after the liquid back detection. If the refrigerant pipe length difference (Lmax−Lmin) is 40 m or more, the end condition of the oil recovery operation is changed.

油回収運転の終了条件は、室内機3Aと室内機3Cとの冷媒配管長差が、40m<Lmax−Lmin≦60mの範囲か否かで判断され(図2のS3)、冷媒配管長差が40m〜60mの場合は、油回収運転時間が30秒延長され(図2のS4)、室外機2側で液バックを検知後、60秒経過した時点で油回収運転が終了される。また、上記の冷媒配管長差が60mを超えている場合は、油回収運転時間が60秒延長され(図2のS5)、室外機2側で液バックを検知後、90秒経過した時点で油回収運転が終了される。このように、室内機3A,3B,3C毎に冷媒配管長が異なっていても、各室内機3A,3B,3Cの冷媒配管長に基づき、油回収運転時の運転時間を変更し、冷媒配管長の長い室内機3Aに見合った適切な油回収運転時間を確保することができる。このため、各室内機3A,3B,3Cおよびその冷媒回路に滞留している潤滑油を確実に回収することができる。   The end condition of the oil recovery operation is determined based on whether or not the refrigerant pipe length difference between the indoor unit 3A and the indoor unit 3C is in a range of 40 m <Lmax−Lmin ≦ 60 m (S3 in FIG. 2). In the case of 40 m to 60 m, the oil recovery operation time is extended by 30 seconds (S4 in FIG. 2), and the oil recovery operation is terminated when 60 seconds have elapsed after detecting the liquid back on the outdoor unit 2 side. If the refrigerant pipe length difference exceeds 60 m, the oil recovery operation time is extended by 60 seconds (S5 in FIG. 2), and 90 seconds have elapsed after the liquid back is detected on the outdoor unit 2 side. The oil recovery operation is terminated. As described above, even if the refrigerant pipe length is different for each of the indoor units 3A, 3B, and 3C, the operation time during the oil recovery operation is changed based on the refrigerant pipe length of each of the indoor units 3A, 3B, and 3C. An appropriate oil recovery operation time commensurate with the long indoor unit 3A can be secured. For this reason, the lubricating oil staying in each indoor unit 3A, 3B, 3C and its refrigerant circuit can be reliably recovered.

特に、本参考例では、各室内機3A,3B,3Cの冷媒配管長差を判断し、その冷媒配管長差に基づき、油回収運転時にその運転終了時間を変更するようにしているので、冷媒配管長差が大きいと判断される場合、それに応じた時間だけ、油回収運転の終了時間を遅らせ、運転時間を長くすることができる。このため、冷媒配管長の長い室内機3Aおよびその冷媒配管18Aに溜まり込んでいる潤滑油も確実に圧縮機4側に回収することができる。従って、圧縮機4内に常に所定量の潤滑油を保持することができ、冷媒回路21側への油上がり現象によって圧縮機4が潤滑油不足に陥り、潤滑不良をまねく事態を確実に解消することができる。   In particular, in this reference example, the refrigerant pipe length difference of each indoor unit 3A, 3B, 3C is judged, and the operation end time is changed during the oil recovery operation based on the refrigerant pipe length difference. When it is determined that the pipe length difference is large, the end time of the oil recovery operation can be delayed and the operation time can be lengthened by a time corresponding to the difference. For this reason, the lubricating oil accumulated in the indoor unit 3A having a long refrigerant pipe length and the refrigerant pipe 18A can be reliably recovered to the compressor 4 side. Accordingly, a predetermined amount of lubricating oil can always be held in the compressor 4, and the situation where the compressor 4 falls short of the lubricating oil due to the oil rising phenomenon toward the refrigerant circuit 21 side and causes poor lubrication is surely eliminated. be able to.

なお、上記参考例では、冷媒配管長差が設定配管長差以上の場合、油回収運転の運転時間を2段階に変更しているが、3段階以上に変更してもよく、あるいは連続的に変更してもよい。
また、油回収運転時の運転時間を各室内機3A,3B,3Cの冷媒配管長差に基づいて変更しているが、これに限らず、以下の通り種々の変形例が考えられる。
第1に、各室内機3A,3B,3Cの冷媒配管長検知結果に基づいて、冷媒配管長の分布状態を判断し、平均冷媒配管長よりも冷媒配管長が長い室内機が多い場合には、それに応じた時間だけ、油回収運転の終了時間を遅らせ、油回収運転時間を長くする。これによって、上記実施形態と同様、冷媒配管長の長い室内機およびその冷媒配管に溜まり込んでいる潤滑油も確実に圧縮機4側に回収することができる。従って、圧縮機4に常に十分な量の潤滑油を確保することができ、潤滑油不足による潤滑不良を確実に解消することができる。
In the above reference example, when the refrigerant pipe length difference is equal to or larger than the set pipe length difference, the operation time of the oil recovery operation is changed to two stages, but may be changed to three stages or more or continuously. It may be changed.
Moreover, although the operation time at the time of oil collection | recovery operation is changed based on the refrigerant | coolant piping length difference of each indoor unit 3A, 3B, 3C, it is not restricted to this but various modifications are considered as follows.
First, based on the refrigerant pipe length detection result of each indoor unit 3A, 3B, 3C, the distribution state of the refrigerant pipe length is judged, and when there are many indoor units whose refrigerant pipe length is longer than the average refrigerant pipe length The oil recovery operation end time is delayed and the oil recovery operation time is lengthened by the time corresponding thereto. As a result, similarly to the above-described embodiment, the indoor unit having a long refrigerant pipe length and the lubricating oil accumulated in the refrigerant pipe can be reliably recovered to the compressor 4 side. Therefore, a sufficient amount of lubricating oil can always be ensured in the compressor 4, and the poor lubrication due to the lack of lubricating oil can be reliably eliminated.

第2に、各室内機3A,3B,3Cの冷媒配管長検知結果に基づいて、すべての室内機3A,3B,3Cの冷媒配管長を積算し、その積算冷媒配管長に基づいて、積算冷媒配管長が基準となる配管長よりも長いと判断される場合には、その長さに応じた時間だけ、油回収運転の終了時間を遅らせ、油回収運転時間を長くする。これによっても、上記参考例と同様の効果を得ることができる。
一方、上記各参考例では、何れも各室内機3A,3B,3Cの冷媒配管長に基づき、冷媒配管長の長い室内機に対応させて油回収運転の終了時間を遅らせ、油回収運転時間を長くするようにしているが、逆に、冷媒配管長の長い室内機3Aに対応させて基準となる油回収運転時間を設定し、冷媒配管長が短い室内機3Cについて、油回収運転を開始する時間を変更するようにしてもよい。つまり、冷媒配管長の長い室内機3Aから順次油回収運転を開始し、冷媒配管長が短い室内機3Cについては、油回収運転の開始時間を遅らせることによって、冷媒配管長の長い室内機3Aについては、油回収運転時間を長くし、冷媒配管長が短い室内機3Cについては、油回収運転時間を短くするようにしている。
Second, based on the refrigerant pipe length detection result of each indoor unit 3A, 3B, 3C, the refrigerant pipe lengths of all the indoor units 3A, 3B, 3C are integrated, and based on the integrated refrigerant pipe length, the integrated refrigerant When it is determined that the pipe length is longer than the reference pipe length, the end time of the oil recovery operation is delayed by a time corresponding to the length, and the oil recovery operation time is lengthened. Also by this, the same effect as the reference example can be obtained.
On the other hand, in each of the above reference examples, the end time of the oil recovery operation is delayed according to the indoor unit having a longer refrigerant pipe length based on the refrigerant pipe length of each indoor unit 3A, 3B, 3C, and the oil recovery operation time is reduced. On the contrary, a reference oil recovery operation time is set corresponding to the indoor unit 3A having a long refrigerant pipe length, and the oil recovery operation is started for the indoor unit 3C having a short refrigerant pipe length. You may make it change time . That is, the oil recovery operation is sequentially started from the indoor unit 3A having a long refrigerant pipe length, and the indoor unit 3C having a long refrigerant pipe length is delayed for the indoor unit 3C having a short refrigerant pipe length by delaying the start time of the oil recovery operation. Increases the oil recovery operation time and shortens the oil recovery operation time for the indoor unit 3C having a short refrigerant pipe length.

これによって、室内機3A,3B,3C毎に適切な油回収運転時間を確保し、冷媒配管長の長い3Aおよびその冷媒配管18Aに溜まり込んでいる潤滑油も確実に回収することができる。従って、圧縮機4内に常に所定量の潤滑油を保持することができ、冷媒回路21側への油上がり現象によって圧縮機4が潤滑油不足に陥り、潤滑不良をまねく事態を確実に解消することができる。   Thus, an appropriate oil recovery operation time is ensured for each of the indoor units 3A, 3B, and 3C, and the lubricating oil accumulated in the long refrigerant pipe 3A and the refrigerant pipe 18A can be reliably collected. Accordingly, a predetermined amount of lubricating oil can always be held in the compressor 4, and the situation where the compressor 4 falls short of the lubricating oil due to the oil rising phenomenon toward the refrigerant circuit 21 side and causes poor lubrication is surely eliminated. be able to.

なお、かかる参考例において、油回収運転時に変更される運転時間は、上記に限定されるものではなく、適宜設定することができる。但し、油回収運転は、液バック気味運転であることから、アキュームレータ10の容量等を勘案して、最長運転時間を制限しておくことが望ましい。 In this reference example , the operation time changed during the oil recovery operation is not limited to the above, and can be set as appropriate. However, since the oil recovery operation is a liquid back operation, it is desirable to limit the maximum operation time in consideration of the capacity of the accumulator 10 and the like.

次に、本発明の一実施形態について、図3を用いて説明する。
本実施形態は、上記した参考例に対して、油回収制御部38の構成が異なっている。その他の点については、参考例と同様であるので、説明は省略する。
本実施形態の油回収制御部38は、油回収運転時にその運転時間を変更する代わりに、各室内機3A,3B,3Cの冷媒配管長に基づいて、各室内電子膨張弁20の開度を変更する構成とされている。
この油回収制御部38は、図3に示される制御フローに従い、以下の通り油回収運転時に各室内電子膨張弁20の開度を制御する。
Next, an embodiment of the present invention will be described with reference to FIG.
This embodiment differs in the structure of the oil collection | recovery control part 38 with respect to the above-mentioned reference example . The other points are the same as in the reference example, and thus the description thereof is omitted.
The oil recovery control unit 38 of this embodiment changes the opening time of each indoor electronic expansion valve 20 based on the refrigerant pipe length of each indoor unit 3A, 3B, 3C instead of changing the operation time during the oil recovery operation. The configuration is to be changed.
The oil recovery control unit 38 controls the opening degree of each indoor electronic expansion valve 20 during the oil recovery operation as follows according to the control flow shown in FIG.

油回収制御部38では、図3に示すように、冷媒配管長検知部26により検知され、冷媒配管長記憶部27に記憶されている冷媒配管長の検知結果に基づき、冷媒配管18Aが最も長い最遠室内機3Aの冷媒配管長(Lmax)と、冷媒配管18Cが最も短い最近室内機3Cの冷媒配管長(Lmin)との差が、設定配管長差Llim(例えば、40m)より大きいか否かが判断される(S11)。冷媒配管長差が設定配管長差Llimよりも小さければ、通常制御に移行し、上記の油回収運転が実施され、室外機2側で液バックが検出されると、その30秒後に油回収運転が終了される。上記の冷媒配管長差が設定配管長差Llimよりも大きい場合には、油回収運転の運転条件、すなわち、各室内機3A,3B,3Cの各室内電子膨張弁20開度が、以下の通り変更されることとなる。   In the oil recovery control unit 38, as shown in FIG. 3, the refrigerant pipe 18A is the longest based on the detection result of the refrigerant pipe length detected by the refrigerant pipe length detection unit 26 and stored in the refrigerant pipe length storage unit 27. Whether or not the difference between the refrigerant pipe length (Lmax) of the farthest indoor unit 3A and the refrigerant pipe length (Lmin) of the latest indoor unit 3C having the shortest refrigerant pipe 18C is larger than the set pipe length difference Llim (for example, 40 m). Is determined (S11). If the refrigerant pipe length difference is smaller than the set pipe length difference Llim, the control shifts to normal control, the above oil recovery operation is performed, and when a liquid back is detected on the outdoor unit 2 side, the oil recovery operation is performed 30 seconds later. Is terminated. When the refrigerant pipe length difference is larger than the set pipe length difference Llim, the operating conditions of the oil recovery operation, that is, the opening degrees of the indoor electronic expansion valves 20 of the indoor units 3A, 3B, 3C are as follows. Will be changed.

まず、各室内機3A,3B,3Cの冷媒配管18A,18B,18C(実際には、これらにガス配管16の長さを加えた低圧ガス配管長)の平均的な長さLave(Length Averageの略で、以下「Lave」という。)が、Lave=(Lmax−Lmin)/2により算出される(S12)。つぎに、全ての室内機3A,3B,3Cの冷媒配管長(Li:i=1〜接続台数)と平均的長さLaveとを比較(S13)し、Li>Laveか否かが判断される(S14)。この結果、Liが大きい場合(Yes)は、引き続き、Li>Lave+20か否かが判断され(S15)、Liが小さい場合(No)は、引き続き、Li>Lave−20か否かが判断される(S16)。
ここで、上記の「+20」、「−20」は、油回収運転時における各室内電子膨張弁20の設定開度に対して、変更する開度に相当するパルス数を「Xパルス」としたとき、例えば、「X=+20パルス」、「X=−20パルス」という意味で使用しているものである。
First, the average length of the refrigerant pipes 18A, 18B, 18C of each indoor unit 3A, 3B, 3C (actually, the length of the low-pressure gas pipe obtained by adding the length of the gas pipe 16 to this) (Abbreviated and referred to as “Lave” hereinafter) is calculated by Lave = (Lmax−Lmin) / 2 (S12). Next, the refrigerant pipe lengths (Li: i = 1 to 1) of all the indoor units 3A, 3B, and 3C are compared with the average length Lave (S13), and it is determined whether Li> Lave. (S14). As a result, if Li is large (Yes), it is continuously determined whether Li> Lave + 20 (S15). If Li is small (No), it is continuously determined whether Li> Lave-20. (S16).
Here, the above “+20” and “−20” are “X pulses” corresponding to the opening degree to be changed with respect to the set opening degree of each indoor electronic expansion valve 20 during the oil recovery operation. In some cases, for example, “X = + 20 pulses” and “X = −20 pulses” are used.

次いで、Li>Lave+20の比較結果、Liが大きい場合(Yes)、当該室内機の室内電子膨張弁20は、例えば、設定開度+40パルスとされ、設定開度よりも40パルス分だけ大きい開度とされる(S17)。また、Liが小さい場合(No)、当該室内機の室内電子膨張弁20は、例えば、設定開度+20パルスとされ、設定開度よりも20パルス分だけ大きい開度とされる(S18)。一方、Li>Lave−20の比較結果、Liが大きい場合(Yes)、当該室内機の室内電子膨張弁20は、例えば、設定開度−20パルスとされ、設定開度よりも20パルス分だけ小さい開度とされる(S19)。また、Liが小さい場合(No)、当該室内機の室内電子膨張弁20は、例えば、設定開度−40パルスとされ、設定開度よりも40パルス分だけ小さい開度とされる(S20)。   Next, if Li> Lave + 20 is compared and Li is large (Yes), the indoor electronic expansion valve 20 of the indoor unit is, for example, a set opening degree + 40 pulses, and the opening degree is larger by 40 pulses than the set opening degree. (S17). Moreover, when Li is small (No), the indoor electronic expansion valve 20 of the indoor unit is set to, for example, a set opening degree + 20 pulses, and is set to an opening degree that is 20 pulses larger than the set opening degree (S18). On the other hand, when Li> Lave-20 is a comparison result and Li is large (Yes), the indoor electronic expansion valve 20 of the indoor unit is set to, for example, a set opening degree −20 pulses, and only 20 pulses from the set opening degree. A small opening is set (S19). Moreover, when Li is small (No), the indoor electronic expansion valve 20 of the indoor unit is set to, for example, a set opening degree −40 pulses, and is set to an opening degree that is smaller than the set opening degree by 40 pulses (S20). .

上記により、各室内電子膨張弁20の開度が決定され、各室内電子膨張弁20に対して開度変更指令が出され(S21)、各室内電子膨張弁20は、その開度とされて油回収運転が実施される。そして、油回収運転が実行され、上記の如く室外機2側で液バックが検出されると、その30秒後に油回収運転が終了されることとなる。なお、各室内電子膨張弁20の開度指令値の変更方法としては、次の2通りの方法が考えられ、何れの方法を用いてもよい。
(1)各室内機3A,3B,3Cに、各室内電子膨張弁20の変更開度を送信し、各室内機3A,3B,3Cがその情報を記憶し、油回収運転時に、それをもとに個別に各室内電子膨張弁20の開度を補正する。
(2)油回収運転時に、各室内機3A,3B,3Cに対して室外機2が強制的に補正した各室内電子膨張弁20の開度指令を行う。
As described above, the opening degree of each indoor electronic expansion valve 20 is determined, an opening degree change command is issued to each indoor electronic expansion valve 20 (S21), and each indoor electronic expansion valve 20 is set to the opening degree. Oil recovery operation is carried out. Then, when the oil recovery operation is executed and the liquid back is detected on the outdoor unit 2 side as described above, the oil recovery operation is terminated after 30 seconds. In addition, as a method of changing the opening command value of each indoor electronic expansion valve 20, the following two methods are conceivable, and any method may be used.
(1) The changed opening degree of each indoor electronic expansion valve 20 is transmitted to each indoor unit 3A, 3B, 3C, and each indoor unit 3A, 3B, 3C stores the information and also stores it during oil recovery operation. In addition, the opening degree of each indoor electronic expansion valve 20 is corrected individually.
(2) At the time of oil recovery operation, the opening degree command of each indoor electronic expansion valve 20 corrected by the outdoor unit 2 is forcibly corrected with respect to each indoor unit 3A, 3B, 3C.

上記のように、室内機3A,3B,3C毎に冷媒配管長が異なっていても、各室内機3A,3B,3Cの冷媒配管長に基づいて、油回収運転時に各室内側膨張弁20の開度を変更することにより、各室内機3A,3B,3Cに対して冷媒配管長に応じた適量の冷媒を流して液バック気味運転を行い、各室内機3A,3B,3Cおよびその冷媒配管18A,18B,18Cに滞留している潤滑油を回収することができる。このため、冷媒配管長の長い室内機3Aおよびその冷媒配管18Aに溜まり込んでいる潤滑油も確実に圧縮機4側に回収することができる。   As described above, even if the refrigerant pipe length is different for each of the indoor units 3A, 3B, and 3C, based on the refrigerant pipe length of each of the indoor units 3A, 3B, and 3C, By changing the opening, an appropriate amount of refrigerant corresponding to the length of the refrigerant pipe is supplied to each indoor unit 3A, 3B, 3C to perform a liquid back operation, and each indoor unit 3A, 3B, 3C and its refrigerant pipe The lubricating oil staying in 18A, 18B, 18C can be recovered. For this reason, the lubricating oil accumulated in the indoor unit 3A having a long refrigerant pipe length and the refrigerant pipe 18A can be reliably recovered to the compressor 4 side.

特に、各室内機3A,3B,3Cの冷媒配管長差を判断し、その冷媒配管長差に基づいて、冷媒配管長が長い室内機3Aほど、その室内側膨張弁20の開度を大きくするようにしているので、冷媒配管長が長い室内機3Aほど、冷媒を多く流し積極的に液バックさせて潤滑油を回収することができる。
従って、本実施形態においても、冷媒回路21側からの確実な潤滑油の回収により圧縮機4内に常に所定量の潤滑油を保持することができ、圧縮機4が潤滑油不足に陥り、潤滑不良をまねく事態を確実に解消することができる。
In particular, the refrigerant pipe length difference of each indoor unit 3A, 3B, 3C is judged, and based on the refrigerant pipe length difference, the opening degree of the indoor expansion valve 20 is increased as the indoor unit 3A has a longer refrigerant pipe length. As a result, the indoor unit 3A having a longer refrigerant pipe length can recover the lubricating oil by flowing more refrigerant and actively liquid back.
Therefore, also in the present embodiment, the predetermined amount of lubricating oil can always be held in the compressor 4 by the reliable recovery of the lubricating oil from the refrigerant circuit 21 side , and the compressor 4 falls into a shortage of lubricating oil and lubricates. It is possible to reliably eliminate the situation that leads to defects.

なお、上記実施形態において、低圧圧力センサ23、吸入冷媒温度センサ24、熱交温度センサ25等の各種センサは、通常、この種空気調和装置1に設置されている既設のセンサをそのまま利用すればよく、新たに設置する必要はない。また、冷媒配管長検知部26は、冷媒を追加補充するために設置される冷媒配管長検知システムと兼用できることはもちろんである。   In the above embodiment, the various sensors such as the low pressure sensor 23, the intake refrigerant temperature sensor 24, the heat exchange temperature sensor 25, etc. are normally used as they are, as they are already installed in this type of air conditioner 1. Well, there is no need to install a new one. Of course, the refrigerant pipe length detection unit 26 can also be used as a refrigerant pipe length detection system installed to supplement the refrigerant.

本発明の一実施形態に係る空気調和装置の冷媒回路構成図である。It is a refrigerant circuit block diagram of the air conditioning apparatus which concerns on one Embodiment of this invention. 本発明の参考例に係る空気調和装置の油回収制御部の制御フローチャート図である。It is a control flowchart figure of the oil collection | recovery control part of the air conditioning apparatus which concerns on the reference example of this invention. 本発明の一実施形態に係る空気調和装置の油回収制御部の制御フローチャート図である。It is a control flowchart figure of the oil collection | recovery control part of the air conditioning apparatus which concerns on one Embodiment of this invention.

1 空気調和装置
2 室外機
3A,3A,3C 室内機
4 圧縮機
6 室外熱交換器
11,18A,18B,18C 冷媒配管
16 ガス配管
17 液配管
19 室内熱交換器
20 室内電子膨張弁
21 冷媒回路
22 油回収運転部
26 冷媒配管長検知部
27 冷媒配管長記憶部
28,38 油回収制御部
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 3A, 3A, 3C Indoor unit 4 Compressor 6 Outdoor heat exchanger 11, 18A, 18B, 18C Refrigerant piping 16 Gas piping 17 Liquid piping 19 Indoor heat exchanger 20 Indoor electronic expansion valve 21 Refrigerant circuit 22 Oil recovery operation part 26 Refrigerant pipe length detection part 27 Refrigerant pipe length storage part 28, 38 Oil recovery control part

Claims (2)

圧縮機および室外熱交換器を有する室外機と、
室内熱交換器および室内膨張弁を有し、互いに並列に接続される複数台の室内機と、
前記室外機および前記室内機の前記圧縮機、前記室外熱交換器、前記複数台の室内熱交換器および室内膨張弁を順次冷媒配管により接続して構成される冷媒回路と、
所定のタイミングで前記各室内機を液バック気味運転とし、前記冷媒回路に滞留している潤滑油を回収する油回収運転を行い、前記室外機側で液バックが検出されたとき、前記油回収運転を終了する油回収運転部と、を備えた空気調和装置において、
前記油回収運転部は、前記各室内機の冷媒配管長を検知する冷媒配管長検知部と、
該冷媒配管長検知部により検知された冷媒配管長を記憶する冷媒配管長記憶部と、
該冷媒配管長記憶部に記憶されている前記各室内機の冷媒配管長に基づいて、前記油回収運転時に前記各室内膨張弁の開度を変更する油回収制御部と、を備えていることを特徴とする空気調和装置。
An outdoor unit having a compressor and an outdoor heat exchanger;
A plurality of indoor units having an indoor heat exchanger and an indoor expansion valve and connected in parallel to each other;
A refrigerant circuit configured by sequentially connecting the compressor of the outdoor unit and the indoor unit, the outdoor heat exchanger, the plurality of indoor heat exchangers, and an indoor expansion valve by a refrigerant pipe;
Each indoor unit is set in a liquid back operation at a predetermined timing, an oil recovery operation is performed to recover the lubricating oil staying in the refrigerant circuit, and the oil recovery is performed when a liquid back is detected on the outdoor unit side. In an air conditioner equipped with an oil recovery operation unit that terminates operation,
The oil recovery operation unit includes a refrigerant pipe length detection unit that detects a refrigerant pipe length of each indoor unit,
A refrigerant pipe length storage unit for storing the refrigerant pipe length detected by the refrigerant pipe length detection unit;
An oil recovery control unit that changes the opening of each indoor expansion valve during the oil recovery operation based on the refrigerant pipe length of each indoor unit stored in the refrigerant pipe length storage unit. An air conditioner characterized by.
前記油回収制御部は、前記各室内機の冷媒配管長差を判断し、その冷媒配管長差に基づいて、冷媒配管長が長い前記室内機ほど、前記室内膨張弁の開度を大きくすることを特徴とする請求項に記載の空気調和装置。 The oil recovery control unit determines the refrigerant pipe length difference between the indoor units, and based on the refrigerant pipe length difference, increases the opening of the indoor expansion valve as the indoor unit has a longer refrigerant pipe length. The air conditioning apparatus according to claim 1 .
JP2006277481A 2006-10-11 2006-10-11 Air conditioner Expired - Fee Related JP5259944B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006277481A JP5259944B2 (en) 2006-10-11 2006-10-11 Air conditioner
CN200710007708XA CN101162104B (en) 2006-10-11 2007-01-29 Air-conditioning apparatus
EP20070118087 EP1914493B8 (en) 2006-10-11 2007-10-09 Air-conditioning apparatus
ES07118087T ES2390485T3 (en) 2006-10-11 2007-10-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006277481A JP5259944B2 (en) 2006-10-11 2006-10-11 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008096019A JP2008096019A (en) 2008-04-24
JP5259944B2 true JP5259944B2 (en) 2013-08-07

Family

ID=38951720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006277481A Expired - Fee Related JP5259944B2 (en) 2006-10-11 2006-10-11 Air conditioner

Country Status (4)

Country Link
EP (1) EP1914493B8 (en)
JP (1) JP5259944B2 (en)
CN (1) CN101162104B (en)
ES (1) ES2390485T3 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4902723B2 (en) * 2009-11-12 2012-03-21 三菱電機株式会社 Condensation pressure detection system and refrigeration cycle system
JP5773711B2 (en) * 2011-04-01 2015-09-02 三菱電機株式会社 refrigerator
JP2013044512A (en) * 2011-08-26 2013-03-04 Yanmar Co Ltd Air conditioning system
CN103162385B (en) * 2013-04-02 2016-01-13 四川长虹电器股份有限公司 A kind of device and method adjusting electronic expansion valve of refrigeration equipment
JP6207982B2 (en) * 2013-11-13 2017-10-04 三菱重工サーマルシステムズ株式会社 Cooling / heating free multi-type air conditioner refrigerant piping cleaning method
KR102073011B1 (en) 2013-12-18 2020-03-02 삼성전자주식회사 Oil detecting apparatus, compressor having the same and method for controlling compressor
JP6690151B2 (en) 2015-08-03 2020-04-28 ダイキン工業株式会社 Judgment device
CN108885028B (en) * 2016-04-18 2020-07-17 三菱电机株式会社 Refrigeration cycle device
JP6540666B2 (en) * 2016-11-24 2019-07-10 ダイキン工業株式会社 Refrigeration system
WO2018235262A1 (en) * 2017-06-23 2018-12-27 三菱電機株式会社 Refrigeration cycle device
WO2020066016A1 (en) * 2018-09-28 2020-04-02 三菱電機株式会社 Air conditioner
CN109539407A (en) * 2018-11-19 2019-03-29 珠海格力电器股份有限公司 Multi-line system and its control method
EP3933296A4 (en) * 2019-02-28 2022-03-02 Mitsubishi Electric Corporation Refrigeration cycle device
CN109855229A (en) * 2019-03-01 2019-06-07 珠海格力电器股份有限公司 It is segmented the method for controlling oil return and multi-line system of oil return
CN110645745A (en) * 2019-10-23 2020-01-03 珠海格力电器股份有限公司 Air conditioner capable of continuously heating and control method thereof
CN110986257B (en) * 2019-12-17 2023-05-26 珠海格力电器股份有限公司 Multi-split system cleaning method and device and air conditioning equipment
CN114061056B (en) * 2020-07-28 2023-05-30 广东美的制冷设备有限公司 Air conditioner control method, air conditioner and computer readable storage medium
CN112361537B (en) * 2020-11-23 2021-10-15 珠海格力电器股份有限公司 Multi-split air conditioning system and oil return control method and device thereof, storage medium and processor
CN113108445B (en) * 2021-04-26 2023-04-21 广东美的暖通设备有限公司 Oil return control method and device for multi-split air conditioning system
CN113324287A (en) * 2021-05-21 2021-08-31 广东美的暖通设备有限公司 Method and device for identifying lengths of connecting pipes of indoor unit and outdoor unit and air conditioning system
CN113280533B (en) * 2021-06-10 2022-04-19 宁波奥克斯电气股份有限公司 Oil return method for multi-connected air conditioner compressor
CN113639390B (en) * 2021-07-16 2022-12-27 青岛海尔空调电子有限公司 Control method and system of air conditioner compressor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0213760A (en) * 1988-06-30 1990-01-18 Toshiba Corp Controller for multiple air-conditioning system
JPH05157380A (en) * 1991-12-10 1993-06-22 Toshiba Ave Corp Air conditioner
JP2955424B2 (en) * 1992-03-10 1999-10-04 東芝エー・ブイ・イー株式会社 Air conditioner
JP3028008B2 (en) * 1992-04-08 2000-04-04 ダイキン工業株式会社 Air conditioner
JP3732907B2 (en) * 1996-12-12 2006-01-11 三洋電機株式会社 Air conditioner and refrigeration oil recovery method thereof
JPH10288410A (en) * 1997-04-14 1998-10-27 Daikin Ind Ltd Refrigerator
JP3849468B2 (en) * 2001-07-11 2006-11-22 松下電器産業株式会社 Air conditioner
JP3791444B2 (en) * 2002-03-29 2006-06-28 松下電器産業株式会社 Air conditioner
JP2004270974A (en) * 2003-03-06 2004-09-30 Mitsubishi Electric Corp Method for changing refrigerant in refrigerant circuit for freezing and refrigerating device
JP4522690B2 (en) * 2003-10-28 2010-08-11 三菱電機株式会社 Air conditioner
CN1752669A (en) * 2004-09-24 2006-03-29 乐金电子(天津)电器有限公司 Central air conditioner and controlling method thereof
JP2006125762A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Indoor unit, air conditioning device comprising the same, and its operating method
KR100640852B1 (en) * 2004-12-09 2006-11-02 엘지전자 주식회사 method for controlling multi airconditioner
JP2006183979A (en) * 2004-12-28 2006-07-13 Mitsubishi Heavy Ind Ltd Detection system of refrigerant pipe length and detection method of refrigerant pipe length

Also Published As

Publication number Publication date
JP2008096019A (en) 2008-04-24
EP1914493B8 (en) 2012-09-26
CN101162104A (en) 2008-04-16
CN101162104B (en) 2010-08-25
ES2390485T3 (en) 2012-11-13
EP1914493B1 (en) 2012-07-11
EP1914493A3 (en) 2011-06-08
EP1914493A2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JP5259944B2 (en) Air conditioner
EP2136158B1 (en) Refrigerating device
EP2128542B1 (en) Air conditioner
JP5414482B2 (en) Air conditioner
CN1766446B (en) System for detecting mis-connected state between communication lines for multi-type air conditioner and method thereof
EP3059521A1 (en) Air conditioning device
EP2196746B1 (en) Refrigeration apparatus
JP6028816B2 (en) Air conditioner
JP4609469B2 (en) Air conditioner
JP5471059B2 (en) Air conditioner
JP2019078440A (en) Air conditioner
JP2016142434A (en) Air conditioner
JP2008128517A (en) Air conditioner
JP2012083010A (en) Refrigeration cycle device
JP5796619B2 (en) Air conditioner
JP2004116794A (en) Refrigeration cycle
JP6987269B2 (en) Refrigeration cycle device
JP2008145036A (en) Air conditioner and oil return control method thereof
EP2093508A1 (en) Air Conditioner and Method of Controlling the Same
JP7005172B2 (en) Air conditioner
JP2010101569A (en) Multi-chamber type air conditioner
JP2009204174A (en) Multiple chamber air conditioner
JP4877052B2 (en) Multi-room air conditioner
JP2011027314A (en) Air conditioner
JP2011242097A (en) Refrigerating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5259944

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees