JP5471059B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5471059B2
JP5471059B2 JP2009145545A JP2009145545A JP5471059B2 JP 5471059 B2 JP5471059 B2 JP 5471059B2 JP 2009145545 A JP2009145545 A JP 2009145545A JP 2009145545 A JP2009145545 A JP 2009145545A JP 5471059 B2 JP5471059 B2 JP 5471059B2
Authority
JP
Japan
Prior art keywords
refrigerant
lubricating oil
oil
outdoor units
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009145545A
Other languages
Japanese (ja)
Other versions
JP2011002160A (en
Inventor
雄治 峯村
秀行 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2009145545A priority Critical patent/JP5471059B2/en
Priority to KR1020100020269A priority patent/KR101264474B1/en
Publication of JP2011002160A publication Critical patent/JP2011002160A/en
Application granted granted Critical
Publication of JP5471059B2 publication Critical patent/JP5471059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/03Oil level
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

本発明は、複数台の室外機が並列接続されてなる空気調和装置に関するものである。   The present invention relates to an air conditioner in which a plurality of outdoor units are connected in parallel.

従来、複数台の室外機が並列接続されてなる空気調和装置が知られている。こうした空気調和装置では、複数台の室外機間で圧縮機の潤滑油(いわゆる冷凍機油)が不均等になっていずれかの室外機が潤滑油の不足状態に陥ることを抑制するため、これら室外機間を均油管で接続することが行われている。しかしながら、均油管を用いる場合、現地での据付工事性が悪くなり、あるいはコストの増大を余儀なくされてしまう。   Conventionally, an air conditioner in which a plurality of outdoor units are connected in parallel is known. In such an air conditioner, in order to prevent the lubricating oil of the compressor (so-called refrigerating machine oil) from becoming uneven between a plurality of outdoor units and preventing any of the outdoor units from being in a state of lack of lubricating oil, The machines are connected with oil leveling pipes. However, when an oil equalizing pipe is used, the installation workability at the site is deteriorated or the cost is inevitably increased.

そこで、例えば特許文献1の空気調和装置では、複数台の室外機の各々に油分離器に接続されたオイルタンク等を設けている。そして、通常運転時は油分離器からの潤滑油をオイルタンクに溜め、油供給管を通じて圧縮機に供給している。また、均油運転時は高周波数で運転している室外機のオイルタンクから当該室外機の圧縮機内に多量の潤滑油を供給してその系外に追い出すとともに、該潤滑油を低周波数で運転している室外機の圧縮機に回収させている。この場合、均油運転時に高周波数で運転する室外機を順次切り替えることで、全室外機の圧縮機に一定量の潤滑油が確保される。   Thus, for example, in the air conditioner of Patent Document 1, an oil tank or the like connected to an oil separator is provided in each of a plurality of outdoor units. During normal operation, lubricating oil from the oil separator is stored in an oil tank and supplied to the compressor through an oil supply pipe. Also, during oil leveling operation, a large amount of lubricating oil is supplied from the oil tank of the outdoor unit operating at a high frequency into the compressor of the outdoor unit and driven out of the system, and the lubricating oil is operated at a low frequency. It is collected by the compressor of the outdoor unit. In this case, a certain amount of lubricating oil is secured in the compressors of all outdoor units by sequentially switching the outdoor units that operate at a high frequency during the oil leveling operation.

特開2007−101127号公報JP 2007-101127 A

ところで、特許文献1の空気調和装置では、複数台の室外機間の潤滑油の不均等状態を解消するための要素部品を別途、設ける必要がある。具体的には、オイルタンク、オイルタンクと油分離器とを接続する返油管、返油管上に設置する電磁弁及びキャピラリー、オイルタンクと圧縮機とを接続する油供給管並びに油供給管上に設置する電磁弁を設ける必要があり、部品点数の増加及び配置スペースの増大を余儀なくされてしまう。   By the way, in the air conditioning apparatus of patent document 1, it is necessary to provide separately the element components for eliminating the uneven state of the lubricating oil between several outdoor units. Specifically, the oil tank, the oil return pipe connecting the oil tank and the oil separator, the solenoid valve and capillary installed on the oil return pipe, the oil supply pipe connecting the oil tank and the compressor, and the oil supply pipe It is necessary to provide a solenoid valve to be installed, which necessitates an increase in the number of parts and an increase in arrangement space.

本発明の目的は、部品点数の増加を抑制しつつ、複数台の室外機のいずれかが潤滑油の不足状態に陥ることを抑制することができる空気調和装置を提供することにある。   An object of the present invention is to provide an air conditioner capable of suppressing any of a plurality of outdoor units from falling into a lack of lubricating oil while suppressing an increase in the number of parts.

上記問題点を解決するために、請求項1に記載の発明は、冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する圧縮機、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する室外機熱交換器及び冷媒に混入する前記圧縮機の潤滑油を分離するとともに溜まった該潤滑油を前記圧縮機に戻す油分離器をそれぞれ有し、並列接続された複数台の室外機と、前記各室外機に接続され、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する室内機と、前記各室外機及び前記室内機に冷媒を循環させる冷媒回路とを備える空気調和装置において、前記複数台の室外機間の前記潤滑油の不均等状態を検出する検出手段と、前記複数台の室外機間の前記潤滑油の不均等状態が検出されたとき、前記潤滑油が少ない一の前記室外機の冷媒循環量が、前記潤滑油が多い他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機を駆動制御する均油手段とを備えたことを要旨とする。   In order to solve the above problems, the invention according to claim 1 is a compressor that sucks refrigerant and compresses and discharges the sucked refrigerant, and functions as a refrigerant condenser during cooling operation and operates during heating operation. Has an outdoor unit heat exchanger that functions as a refrigerant evaporator and an oil separator that separates the lubricating oil of the compressor mixed in the refrigerant and returns the accumulated lubricating oil to the compressor, and is connected in parallel. A plurality of outdoor units, an indoor unit connected to each of the outdoor units, and having an indoor unit heat exchanger functioning as a refrigerant evaporator during cooling operation and functioning as a refrigerant condenser during heating operation, In the air conditioner including each outdoor unit and a refrigerant circuit that circulates refrigerant to the indoor unit, a detecting unit that detects an uneven state of the lubricating oil between the plurality of outdoor units, and the plurality of outdoor units Non-uniformity of the lubricant between When the state is detected, each of the corresponding compressors is arranged such that the refrigerant circulation amount of the one outdoor unit with less lubricating oil is larger than the refrigerant circulation amount of the other outdoor unit with much lubricating oil. The gist is provided with oil leveling means for driving control.

同構成によれば、前記検出手段により前記複数台の室外機間の前記潤滑油の不均等状態が検出されたとき、前記均油手段により前記潤滑油が少ない一の前記室外機の冷媒循環量が、前記潤滑油が多い他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機が駆動制御される。一般に、並列接続された複数台の室外機の各々には、対応する冷媒循環量に比例して前記潤滑油が分配されることから、前記潤滑油が少ない一の前記室外機により多くの前記潤滑油を分配することができ、前記複数台の室外機間の前記潤滑油をより均等にすることができる。そして、前記複数台の室外機のいずれかが前記潤滑油の不足状態に陥ることを抑制することができる。   According to this configuration, when the non-uniform state of the lubricating oil among the plurality of outdoor units is detected by the detecting unit, the refrigerant circulation amount of the one outdoor unit with a small amount of the lubricating oil by the oil leveling unit However, the corresponding compressors are driven and controlled so as to be larger than the refrigerant circulation amount of the other outdoor units with a large amount of the lubricating oil. Generally, since the lubricating oil is distributed to each of a plurality of outdoor units connected in parallel in proportion to the amount of refrigerant circulating, a larger amount of the lubrication is performed by the one outdoor unit with a small amount of lubricating oil. Oil can be distributed, and the lubricating oil among the plurality of outdoor units can be made more even. Then, any of the plurality of outdoor units can be prevented from falling into the lack of the lubricating oil.

また、前記複数台の室外機間の前記潤滑油の均等化は、前記潤滑油が少ない一の前記室外機の冷媒循環量が、前記潤滑油が多い他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機を駆動制御するのみで実現されるため、例えば前記潤滑油の不均等状態を解消するための要素部品(例えば各室外機ごとに一定量の潤滑油を確保するためのオイルタンクなど)を別途、設ける必要がなくなり、部品点数の増加を抑制することができる。   In addition, the equalization of the lubricating oil between the plurality of outdoor units is performed such that the refrigerant circulation amount of the one outdoor unit with less lubricating oil is larger than the refrigerant circulation amount of the other outdoor unit with more lubricating oil. Since it is realized only by driving and controlling each corresponding compressor so as to increase, for example, an element part for eliminating the uneven state of the lubricating oil (for example, securing a certain amount of lubricating oil for each outdoor unit) Therefore, it is not necessary to provide a separate oil tank or the like, and an increase in the number of parts can be suppressed.

また、請求項に記載の発明は、前記複数台の室外機の前記圧縮機に供給される冷媒の、前記油分離器から戻される前記潤滑油との合流部の上流側及び下流側の各々の温度をそれぞれ検出する上流側温度センサ及び下流側温度センサと、前記検出された上流側の温度に対する下流側の温度の上昇分が所定温度を下回ることで、該当の室外機の前記潤滑油が不足状態にあると判断する不足状態判断手段とを備え、前記均油手段は、前記潤滑油が不足状態にあると判断された該当の室外機の冷媒循環量が、他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機を駆動制御する The invention of claim 1, prior Symbol plurality of refrigerant supplied to the compressor of the outdoor unit, upstream and downstream of the confluence portion with the lubricating oil returned from the oil separator The upstream side temperature sensor and the downstream side temperature sensor that detect each temperature, and the increase in the downstream temperature with respect to the detected upstream temperature is below a predetermined temperature, so that the lubricating oil of the corresponding outdoor unit The oil leveling means determines that the amount of refrigerant circulating in the outdoor unit in which the lubricating oil is determined to be in a shortage state is equal to that of the other outdoor unit. The corresponding compressors are driven and controlled to be larger than the refrigerant circulation amount .

一般に、前記各室外機の前記圧縮機に供給される冷媒は、前記油分離器から高温の前記潤滑油が戻されることで、前記合流部の上流側の温度に対し下流側の温度が上昇する。また、前記合流部の上流側の温度に対する下流側の温度の上昇分は、前記油分離器から戻される前記潤滑油の量が少ないほど、即ち前記室外機の前記潤滑油が不足するほど小さくなる。同構成によれば、前記上流側温度センサ及び前記下流側温度センサにより、前記複数台の室外機の前記合流部の上流側及び下流側の各々の温度をそれぞれ実際に検出し、前記検出された上流側の温度に対する下流側の温度の上昇分が所定温度を下回ることで、前記不足状態判断手段により該当の室外機の前記潤滑油が不足状態にあると判断するため、該不足状態を実態に即して判断することができる。そして、前記均油手段により、前記潤滑油が不足状態にあると判断された該当の室外機の冷媒循環量が、他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機が駆動制御される。これにより、前記潤滑油が不足状態にある該当室外機により多くの前記潤滑油を分配ことができ、前記潤滑油の不足状態を軽減することができる。そして、前記複数台の室外機のいずれかが前記潤滑油の不足状態に陥ることを抑制することができる。   In general, the refrigerant supplied to the compressor of each outdoor unit has a temperature on the downstream side that is higher than the temperature on the upstream side of the merging portion by returning the high-temperature lubricating oil from the oil separator. . Further, the increase in the temperature on the downstream side with respect to the temperature on the upstream side of the merge portion becomes smaller as the amount of the lubricating oil returned from the oil separator is smaller, that is, as the lubricating oil in the outdoor unit becomes insufficient. . According to this configuration, the upstream side temperature sensor and the downstream side temperature sensor actually detect the temperatures on the upstream side and the downstream side of the merging portion of the plurality of outdoor units, respectively. Since the increase in the downstream temperature with respect to the upstream temperature falls below a predetermined temperature, the insufficient state determination means determines that the lubricating oil of the corresponding outdoor unit is in the insufficient state. Judgment can be made accordingly. Then, each of the compressions corresponding to each other so that the refrigerant circulation amount of the corresponding outdoor unit determined by the oil leveling means to be in a state where the lubricating oil is insufficient is larger than the refrigerant circulation amount of the other outdoor units. The machine is driven and controlled. Accordingly, a large amount of the lubricating oil can be distributed to the corresponding outdoor unit in which the lubricating oil is insufficient, and the insufficient state of the lubricating oil can be reduced. Then, any of the plurality of outdoor units can be prevented from falling into the lack of the lubricating oil.

また、請求項に記載の発明は、前記圧縮機の吸入口の圧力を検出する低側圧力センサと、前記圧縮機の吐出口の圧力を検出する高側圧力センサと、前記検出された圧縮機の吐出口の圧力及び吸入口の圧力の圧力差が大きいときよりも小さいときの方が前記所定温度が小さくなるように補正する補正手段とを備える。 The invention of claim 1 includes a low-side pressure sensor for detecting the pressure in the suction port of the previous SL compressor, a high-side pressure sensor for detecting the pressure of the discharge port of the compressor, is the detected who is smaller than when the pressure difference between the pressure at the discharge port of the compressor and the pressure of the inlet is large Ru and a correcting means for correcting so that the predetermined temperature decreases.

同構成によれば、前記補正手段により、前記所定温度は、前記検出された圧縮機の吐出口の圧力及び吸入口の圧力の圧力差が大きいときよりも小さいとき、即ち冷媒の循環速度が速いときよりも遅いときの方が小さくなるように補正される。これにより、冷媒の循環速度が速く前記潤滑油の温度の影響が小さいときには前記所定温度が相対的に大きくなるように補正されて前記潤滑油の不足状態をより大まかに判断することができ、反対に冷媒の循環速度が遅く前記潤滑油からの熱吸収が多いときには前記所定温度が相対的に小さくなるように補正されて前記潤滑油の不足状態をより厳格に判断することができる。   According to this configuration, the correction means causes the predetermined temperature to be smaller when the detected pressure difference between the discharge port pressure and the suction port pressure is smaller, that is, the refrigerant circulation speed is faster. It is corrected so that it becomes smaller when it is later than when it is. Thereby, when the circulation speed of the refrigerant is fast and the influence of the temperature of the lubricating oil is small, the predetermined temperature is corrected so as to be relatively large, and the lack of the lubricating oil can be roughly determined. In addition, when the refrigerant circulation speed is slow and the heat absorption from the lubricating oil is large, the predetermined temperature is corrected to be relatively small, and the lack of the lubricating oil can be determined more strictly.

請求項2に記載の発明は、請求項1に記載の空気調和装置において、前記検出手段は、前記複数台の室外機の前記圧縮機の回転速度に基づき前記複数台の室外機の冷媒循環量をそれぞれ演算する冷媒循環量演算手段と、前記複数台の室外機間の冷媒循環量差を逐次演算する冷媒循環量差演算手段と、前記逐次演算された冷媒循環量差を積算する冷媒循環量差積算手段と、前記積算された冷媒循環量差が所定閾値を超えることで、該当の室外機間の前記潤滑油が不均等状態にあると判断する不均等状態判断手段とを備えたことを要旨とする。
同構成によれば、前記検出手段は、前記冷媒循環量演算手段により前記複数台の室外機の前記圧縮機の回転速度に基づき各々の前記室外機の冷媒循環量を演算し、前記冷媒循環量差演算手段により前記複数台の室外機間の冷媒循環量差を逐次演算し、前記冷媒循環量差積算手段により前記逐次演算された冷媒循環量差を積算し、前記積算された冷媒循環量差が所定閾値を超えることで、前記不均等状態判断手段により該当の室外機間の前記潤滑油が不均等状態にあると判断できる。このため、前記複数台の室外機の前記圧縮機の回転速度を検出できれば、特別なセンサを設けることなく演算上で前記複数台の室外機間の前記潤滑油の不均等状態を検出することができ、部品点数の増加を抑制することができる。
請求項に記載の発明は、請求項又はに記載の空気調和装置において、前記均油手段による処理後においても、該当の室外機の前記潤滑油が不足状態にあると判断されるとき、室内機油戻し制御を行う室内機油戻し手段を備えたことを要旨とする。
According to a second aspect of the present invention, in the air conditioning apparatus according to the first aspect, the detecting means is a refrigerant circulation amount of the plurality of outdoor units based on a rotational speed of the compressor of the plurality of outdoor units. Refrigerant circulation amount calculation means for respectively calculating refrigerant circulation amount difference calculation means for sequentially calculating the refrigerant circulation amount difference between the plurality of outdoor units, and refrigerant circulation amount for integrating the sequentially calculated refrigerant circulation amount difference Difference integrating means, and unequal state determining means for determining that the lubricating oil between the corresponding outdoor units is in an unequal state when the accumulated refrigerant circulation amount difference exceeds a predetermined threshold value. The gist.
According to this configuration, the detection means calculates the refrigerant circulation amount of each outdoor unit based on the rotation speed of the compressor of the plurality of outdoor units by the refrigerant circulation amount calculation unit, and the refrigerant circulation amount The difference calculation means sequentially calculates the refrigerant circulation amount difference between the plurality of outdoor units, the refrigerant circulation amount difference integration means integrates the sequentially calculated refrigerant circulation amount difference, and the accumulated refrigerant circulation amount difference Exceeds a predetermined threshold value, it can be determined by the non-uniform state determination means that the lubricating oil between the corresponding outdoor units is in an uneven state. For this reason, if the rotational speed of the compressor of the plurality of outdoor units can be detected, it is possible to detect an uneven state of the lubricating oil between the plurality of outdoor units in a calculation without providing a special sensor. And increase in the number of parts can be suppressed.
According to a third aspect of the present invention, in the air conditioner according to the first or second aspect , when it is determined that the lubricating oil of the corresponding outdoor unit is in a shortage state even after processing by the oil equalizing means. The gist of the present invention is that it includes an indoor unit oil return means for performing indoor unit oil return control.

前記均油手段による処理後においても、該当の室外機の前記潤滑油が不足状態にあると判断されるとき、該潤滑油は前記室内機(室内機熱交換器)又は該室内機と各室外機とを接続する冷媒配管の壁面に付着し寝込んでいると考えられる。同構成によれば、前記均油手段による処理後においても、該当の室外機の前記潤滑油が不足状態にあると判断されるとき、前記室内機油戻し手段により室内機油戻し制御(すなわち、室外機熱交換器で凝縮した冷媒を液状態のまま室内機を通過させて、冷媒とともに前記潤滑油を押し流して室外機で回収する制御)が行われることで、該当の室外機の前記潤滑油の不足状態を軽減することができる。   Even after the treatment by the oil leveling means, when it is determined that the lubricating oil of the corresponding outdoor unit is in a shortage state, the lubricating oil is used as the indoor unit (indoor unit heat exchanger) or the indoor unit and each outdoor unit. It is thought that it is attached to the wall surface of the refrigerant pipe connecting the machine and is sleeping. According to this configuration, when it is determined that the lubricating oil of the corresponding outdoor unit is in a shortage state even after processing by the oil leveling means, the indoor unit oil return control (that is, the outdoor unit) is performed by the indoor unit oil return unit. The refrigerant condensed in the heat exchanger is passed through the indoor unit in the liquid state, and the lubricating oil in the outdoor unit is removed by pushing the lubricating oil together with the refrigerant. The state can be reduced.

本発明では、部品点数の増加を抑制しつつ、複数台の室外機のいずれかが潤滑油の不足状態に陥ることを抑制することができる空気調和装置を提供することができる。   According to the present invention, it is possible to provide an air conditioner capable of suppressing any of the plurality of outdoor units from falling into a lubricating oil shortage state while suppressing an increase in the number of components.

本発明の一実施形態の冷媒系統を示す回路図。The circuit diagram which shows the refrigerant | coolant system | strain of one Embodiment of this invention. コンプレッサの回転速度と冷媒流量との関係を示すグラフ。The graph which shows the relationship between the rotational speed of a compressor, and a refrigerant | coolant flow rate. 冷媒流量と油分離効率との関係を示すグラフ。The graph which shows the relationship between a refrigerant | coolant flow volume and oil separation efficiency. 同実施形態の制御態様を示すフローチャート。The flowchart which shows the control aspect of the embodiment.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、本実施形態に係る空気調和装置の冷媒系統を示す回路図である。同図に示されるように、この空気調和装置は、複数台(本実施形態では2台)の室外機10A,10Bと室内機30とを備えて構成されている。なお、室外機10A,10Bは、互いに同一の構成を有しており、以下では一方の室外機10Aの構成を代表して説明する。また、両室外機10A,10Bの部材を区別する際には、該当部材の符号に便宜的にA,Bを付して説明する。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 is a circuit diagram showing a refrigerant system of the air-conditioning apparatus according to the present embodiment. As shown in the figure, the air conditioner includes a plurality of (in the present embodiment, two) outdoor units 10A and 10B and an indoor unit 30. The outdoor units 10A and 10B have the same configuration, and the configuration of one outdoor unit 10A will be described below as a representative. Moreover, when distinguishing the members of both outdoor units 10A and 10B, description will be made by adding A and B to the reference numerals of the corresponding members for convenience.

室外機10Aには、図示しない駆動源(例えばガスエンジンや電動モータなど)により回転駆動される圧縮機としてのコンプレッサ12が設置されている。このコンプレッサ12は、その吸入口12aから冷媒を吸入するとともに該吸入した冷媒を圧縮して、その吐出口12bに冷媒配管13aを介して接続された四方弁14に冷媒を送り出す。なお、この冷媒配管13aには、油分離器としてのオイルセパレータ26が設けられている。このオイルセパレータ26は、冷媒に混入するコンプレッサ12の潤滑油を分離するとともに、該潤滑油を溜める。   The outdoor unit 10A is provided with a compressor 12 as a compressor that is rotationally driven by a driving source (not shown) (for example, a gas engine or an electric motor). The compressor 12 sucks the refrigerant from the suction port 12a, compresses the sucked refrigerant, and sends the refrigerant to the four-way valve 14 connected to the discharge port 12b via the refrigerant pipe 13a. The refrigerant pipe 13a is provided with an oil separator 26 as an oil separator. The oil separator 26 separates the lubricating oil of the compressor 12 mixed in the refrigerant and stores the lubricating oil.

四方弁14は、冷媒配管13bを介して室外機熱交換器15に接続されるとともに、冷媒配管13cを介してサブ熱交換器16に接続され、更に冷媒配管13dを介して開閉弁17に接続されている。そして、該開閉弁17は、冷媒配管13eを介して分配管18に接続されている。また、四方弁14は、冷媒配管13fを介してアキュームレータ19に接続されるとともに、該アキュームレータ19は、冷媒配管13gを介して前記コンプレッサ12の吸入口12aに接続されている。また、前記オイルセパレータ26は、冷媒配管13hを介して冷媒配管13gとの合流部20に接続されている。そして、冷媒配管13hには、オイル戻し弁21が設けられている。オイルセパレータ26に溜まった潤滑油は、オイル戻し弁21が開放されることでコンプレッサ12に戻される。   The four-way valve 14 is connected to the outdoor unit heat exchanger 15 through the refrigerant pipe 13b, is connected to the sub heat exchanger 16 through the refrigerant pipe 13c, and is further connected to the on-off valve 17 through the refrigerant pipe 13d. Has been. The on-off valve 17 is connected to a distribution pipe 18 through a refrigerant pipe 13e. The four-way valve 14 is connected to an accumulator 19 through a refrigerant pipe 13f, and the accumulator 19 is connected to the suction port 12a of the compressor 12 through a refrigerant pipe 13g. The oil separator 26 is connected to the junction 20 with the refrigerant pipe 13g through the refrigerant pipe 13h. An oil return valve 21 is provided in the refrigerant pipe 13h. The lubricating oil accumulated in the oil separator 26 is returned to the compressor 12 when the oil return valve 21 is opened.

なお、前記室外機熱交換器15は、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能するもので、冷媒配管13iを介して過冷却熱交換器22に接続されている。また、冷媒配管13iには、過冷却熱交換器22側への冷媒の流れを許容する逆止弁23が配置されるとともに、該逆止弁23と並列で流量調整弁24aが配置されている。前記サブ熱交換器16は、暖房運転時は冷媒の蒸発器として機能するもので、冷媒配管13jを介して過冷却熱交換器22に接続されている。そして、冷媒配管13jには、流量調整弁24bが配置されている。また、過冷却熱交換器22は冷媒配管13kを介して開閉弁27に接続されるとともに、該開閉弁27は冷媒配管13lを介して分配管25に接続している。   The outdoor unit heat exchanger 15 functions as a refrigerant condenser during the cooling operation and functions as a refrigerant evaporator during the heating operation, and is connected to the supercooling heat exchanger 22 via the refrigerant pipe 13i. Has been. In addition, a check valve 23 that allows the refrigerant to flow to the supercooling heat exchanger 22 side is disposed in the refrigerant pipe 13i, and a flow rate adjustment valve 24a is disposed in parallel with the check valve 23. . The sub heat exchanger 16 functions as a refrigerant evaporator during heating operation, and is connected to the supercooling heat exchanger 22 via a refrigerant pipe 13j. And the flow control valve 24b is arrange | positioned at the refrigerant | coolant piping 13j. The supercooling heat exchanger 22 is connected to the on-off valve 27 through the refrigerant pipe 13k, and the on-off valve 27 is connected to the distribution pipe 25 through the refrigerant pipe 13l.

既述のように、室外機10Bも、室外機10Aと同一の構成を有する。これら室外機10A,10Bは、各々の開閉弁17が冷媒配管13eA,13eBを介して分配管18に接続されるとともに、各々の開閉弁27が冷媒配管13lA,13lBを介して分配管25に接続されて、並列接続されている。   As described above, the outdoor unit 10B also has the same configuration as the outdoor unit 10A. In these outdoor units 10A and 10B, each on-off valve 17 is connected to the distribution pipe 18 via the refrigerant pipes 13eA and 13eB, and each on-off valve 27 is connected to the distribution pipe 25 via the refrigerant pipes 13lA and 13lB. Being connected in parallel.

室内機30に設置された室内機熱交換器31は冷媒配管32aを介して前記分配管18に接続されるとともに、冷媒配管32bを介して前記分配管25に接続されている。また、冷媒配管32bには膨張弁33が配置されている。なお、前記室内機熱交換器31は、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する。   An indoor unit heat exchanger 31 installed in the indoor unit 30 is connected to the distribution pipe 18 via a refrigerant pipe 32a and to the distribution pipe 25 via a refrigerant pipe 32b. An expansion valve 33 is disposed in the refrigerant pipe 32b. The indoor unit heat exchanger 31 functions as a refrigerant evaporator during the cooling operation and functions as a refrigerant condenser during the heating operation.

両室外機10A,10Bの冷媒配管13a〜13l及び室内機30の冷媒配管32a,32bは、これら室外機10A,10B及び室内機30に冷媒を循環させる冷媒回路Lを構成する。   The refrigerant pipes 13a to 13l of the outdoor units 10A and 10B and the refrigerant pipes 32a and 32b of the indoor unit 30 constitute a refrigerant circuit L that circulates refrigerant to the outdoor units 10A and 10B and the indoor unit 30.

ここで、冷媒の流れについて説明する。なお、図1では、冷房運転時及び暖房運転時の冷媒の流れを実線矢印および破線矢印で表している。
冷房運転時、室外機10Aのコンプレッサ12(12A)を出た冷媒は、オイルセパレータ26及び四方弁14を通過した後、室外機熱交換器15に導かれる。ここで、冷媒は、外気により熱を奪われ凝縮・液化し、更に過冷却熱交換器22により過冷却状態となる。そして、冷媒は、分配管25に導かれる。同様に、室外機10Bのコンプレッサ12(12B)を出た冷媒は、上記に準じて分配管25に導かれる。
Here, the flow of the refrigerant will be described. In FIG. 1, the refrigerant flow during the cooling operation and the heating operation is represented by solid arrows and broken arrows.
During the cooling operation, the refrigerant that has exited the compressor 12 (12A) of the outdoor unit 10A passes through the oil separator 26 and the four-way valve 14, and is then guided to the outdoor unit heat exchanger 15. Here, the refrigerant is deprived of heat by the outside air and condensed and liquefied, and is further brought into a supercooled state by the supercooling heat exchanger 22. Then, the refrigerant is guided to the distribution pipe 25. Similarly, the refrigerant that has exited the compressor 12 (12B) of the outdoor unit 10B is guided to the distribution pipe 25 according to the above.

分配管25において合流した両室外機10A,10Bからの冷媒は、冷媒配管32bを通り室内機30の膨張弁33で減圧されるとともに、室内機熱交換器31で室内の熱を奪い気化する。その後、冷媒は、冷媒配管32aを通って分配管18に導かれ、室外機10A,10Bに分配される。この際、各室外機10A,10Bには、各々の冷媒流量(又はその比率)に比例して冷媒が分配されることになる。そして、室外機10Aに分配された冷媒は、四方弁14及びアキュームレータ19を経てコンプレッサ12(12A)に戻る。同様に、室外機10Bに分配された冷媒は、上記に準じてコンプレッサ12(12B)に戻る。以上の過程を経ることで、室内が冷房される。   Refrigerant from both outdoor units 10A and 10B joined at the distribution pipe 25 passes through the refrigerant pipe 32b and is depressurized by the expansion valve 33 of the indoor unit 30, and takes heat from the room by the indoor unit heat exchanger 31 and vaporizes. Thereafter, the refrigerant is guided to the distribution pipe 18 through the refrigerant pipe 32a and distributed to the outdoor units 10A and 10B. At this time, the refrigerant is distributed to each of the outdoor units 10A and 10B in proportion to each refrigerant flow rate (or a ratio thereof). Then, the refrigerant distributed to the outdoor unit 10A returns to the compressor 12 (12A) through the four-way valve 14 and the accumulator 19. Similarly, the refrigerant distributed to the outdoor unit 10B returns to the compressor 12 (12B) according to the above. Through the above process, the room is cooled.

一方、暖房運転時、室外機10Aのコンプレッサ12(12A)を出た冷媒は、オイルセパレータ26及び四方弁14を通過した後、分配管18に導かれる。同様に、室外機10Bのコンプレッサ12(12B)を出た冷媒は、上記に準じて分配管18に導かれる。   On the other hand, during the heating operation, the refrigerant that has exited the compressor 12 (12A) of the outdoor unit 10A passes through the oil separator 26 and the four-way valve 14, and is then guided to the distribution pipe 18. Similarly, the refrigerant that has exited the compressor 12 (12B) of the outdoor unit 10B is guided to the distribution pipe 18 according to the above.

分配管18において合流した両室外機10A,10Bからの冷媒は、冷媒配管32aを通り室内機熱交換器31(室内機30)に導かれる。ここで、冷媒は、室内へ熱を放出し、凝縮・液化する。その後、室内機30の膨張弁33で減圧された冷媒は、冷媒配管32bを通って分配管25に導かれ、室外機10A,10Bに分配される。この際、冷房運転時と同様に、各室外機10A,10Bには各々の冷媒流量(又はその比率)に比例して冷媒が分配されることになる。そして、室外機10Aに分配された冷媒は、流量調整弁24a、24bでそれぞれ減圧され、該流量調整弁24aを通過した冷媒は室外機熱交換器15に、流量調整弁24bを通過した冷媒はサブ熱交換器16にそれぞれ導かれる。冷媒は、室外機熱交換器15では外気から熱を吸収、気化し、サブ熱交換器16では適宜の媒体(例えば冷却液)から熱を吸収、気化する。その後、室外機熱交換器15を通過し四方弁14を経た冷媒と、サブ熱交換器16を通過した冷媒とが合流し、アキュームレータ19を経てコンプレッサ12(12A)に戻る。同様に、室外機10Bに分配された冷媒は、上記に準じてコンプレッサ12(12B)に戻る。以上の過程を経ることで、室内が暖房される。   Refrigerant from both outdoor units 10A and 10B joined at the distribution pipe 18 passes through the refrigerant pipe 32a and is guided to the indoor unit heat exchanger 31 (indoor unit 30). Here, the refrigerant releases heat into the room and condenses and liquefies. Thereafter, the refrigerant decompressed by the expansion valve 33 of the indoor unit 30 is guided to the distribution pipe 25 through the refrigerant pipe 32b and distributed to the outdoor units 10A and 10B. At this time, similarly to the cooling operation, the refrigerant is distributed to each of the outdoor units 10A and 10B in proportion to the refrigerant flow rate (or the ratio). The refrigerant distributed to the outdoor unit 10A is depressurized by the flow rate adjusting valves 24a and 24b, and the refrigerant passing through the flow rate adjusting valve 24a is sent to the outdoor unit heat exchanger 15 and the refrigerant passing through the flow rate adjusting valve 24b is changed. Each is led to the sub heat exchanger 16. The refrigerant absorbs and vaporizes heat from the outside air in the outdoor unit heat exchanger 15, and absorbs and vaporizes heat from an appropriate medium (for example, coolant) in the sub heat exchanger 16. Thereafter, the refrigerant that has passed through the outdoor unit heat exchanger 15 and passed through the four-way valve 14 and the refrigerant that has passed through the sub heat exchanger 16 join together, and return to the compressor 12 (12A) via the accumulator 19. Similarly, the refrigerant distributed to the outdoor unit 10B returns to the compressor 12 (12B) according to the above. Through the above process, the room is heated.

次に、本実施形態の電気的構成について説明する。図1に示すように、各室外機10A,10Bには、例えばマイコンを主体に構成された制御装置40が設けられている。両室外機10A,10Bの制御装置40A,40B同士は電気的に接続されて、各々の情報を共有し得るように連係されている。そして、各制御装置40には、アキュームレータ19の出口温度(合流部20の上流側の温度)T1を検出する上流側温度センサ41が電気的に接続されるとともに、コンプレッサ12の吸入温度(合流部20の下流側の温度)T2を検出する下流側温度センサ42が電気的に接続されている。また、各制御装置40には、コンプレッサ12の吸入口12aの圧力PLを検出する低側圧力センサ43が電気的に接続されるとともに、コンプレッサ12の吐出口12bの圧力PHを検出する高側圧力センサ44が電気的に接続されている。さらに、各制御装置40には、コンプレッサ12の回転速度Nを検出する回転センサ45が電気的に接続されている。制御装置40A(40B)は、他の制御装置40B(40A)の情報及び対応する室外機10A(10B)のセンサ41〜45の検出結果に基づいて、前記コンプレッサ12A(12B)等を駆動制御する。   Next, the electrical configuration of the present embodiment will be described. As shown in FIG. 1, each outdoor unit 10A, 10B is provided with a control device 40 mainly composed of, for example, a microcomputer. The control devices 40A and 40B of both outdoor units 10A and 10B are electrically connected to each other so as to share information. Each control device 40 is electrically connected to an upstream temperature sensor 41 that detects the outlet temperature of the accumulator 19 (the temperature on the upstream side of the merging portion 20) T1, and the intake temperature of the compressor 12 (the merging portion). The downstream temperature sensor 42 for detecting the temperature 20) of the downstream side 20) is electrically connected. Each control device 40 is electrically connected to a low-side pressure sensor 43 that detects the pressure PL of the suction port 12a of the compressor 12, and also detects a pressure PH of the discharge port 12b of the compressor 12. The sensor 44 is electrically connected. Furthermore, a rotation sensor 45 that detects the rotation speed N of the compressor 12 is electrically connected to each control device 40. The control device 40A (40B) drives and controls the compressor 12A (12B) and the like based on the information of the other control device 40B (40A) and the detection results of the sensors 41 to 45 of the corresponding outdoor unit 10A (10B). .

次に、本実施形態の制御態様について説明する。
図2に示すように、各室外機10A,10Bを循環する冷媒流量は、対応するコンプレッサ12A,12Bの回転速度が大きくなるほど大きくなることが確認されている。従って、コンプレッサ12A,12B間に回転速度差が設定されることで、両室外機10A,10Bを循環する冷媒流量に差(冷媒循環量差)が生じる。こうしたコンプレッサ12A,12B間の回転速度差は、例えばいずれかのコンプレッサ12A,12Bの吐出口12bの圧力(PH)が過大になるなどした際にその性能悪化を回避するため、当該コンプレッサ12A,12Bの回転を強制的に停止(いわゆる高圧回避)することで生じる。そして、各室外機10A,10Bには、各々を循環する冷媒流量に略比例して冷媒に混入する潤滑油が分配されることも確認されている。従って、両室外機10A,10Bの潤滑油は、上述の冷媒循環量差が生じる都度に偏って分配され、その積算に応じて互いの油量が不均等になる。
Next, the control mode of this embodiment will be described.
As shown in FIG. 2, it has been confirmed that the flow rate of the refrigerant circulating through each of the outdoor units 10A and 10B increases as the rotational speed of the corresponding compressors 12A and 12B increases. Therefore, a difference in the refrigerant flow rate circulating between the outdoor units 10A and 10B (refrigerant circulation amount difference) is generated by setting the rotational speed difference between the compressors 12A and 12B. Such a difference in rotational speed between the compressors 12A and 12B is, for example, in order to avoid deterioration in performance when the pressure (PH) at the discharge port 12b of any of the compressors 12A and 12B becomes excessive. This is caused by forcibly stopping the rotation of the motor (so-called high pressure avoidance). It has also been confirmed that the lubricating oil mixed in the refrigerant is distributed to each of the outdoor units 10A and 10B substantially in proportion to the flow rate of the refrigerant circulating through each of the outdoor units 10A and 10B. Therefore, the lubricating oils of the outdoor units 10A and 10B are distributed unevenly every time the above-described refrigerant circulation amount difference occurs, and the oil amounts of the lubricants become non-uniform according to the integration.

また、本実施形態では、旋回流式のオイルセパレータ26が採用されており、図3に示すように、こうしたオイルセパレータ26で回収される油量に相関する油分離効率は、冷媒循環量が大きくなるほど大きくなることが確認されている。従って、両室外機10A,10Bに冷媒流量差が生じた場合、前述の冷媒循環量差に応じて各対応するオイルセパレータ26で回収される油量が不均等になる。   Further, in this embodiment, a swirl type oil separator 26 is employed, and as shown in FIG. 3, the oil separation efficiency correlated with the amount of oil recovered by the oil separator 26 has a large refrigerant circulation amount. It has been confirmed that it grows. Therefore, when there is a refrigerant flow rate difference between the outdoor units 10A and 10B, the amount of oil collected by the corresponding oil separators 26 becomes uneven according to the refrigerant circulation amount difference.

本実施形態では、このような特性を利用して、両室外機10A,10Bの冷媒循環量に基づき、室外機10A,10B間の潤滑油の不均等状態を検出する(検出手段)。
詳述すると、既述のように、各室外機10A,10Bを循環する冷媒流量は、対応するコンプレッサ12A,12Bの回転速度が大きくなるほど大きくなる。従って、各室外機10A,10Bの制御装置40A,40Bは、対応する回転センサ45A,45Bにより検出されたコンプレッサ12A,12Bの回転速度NA,NBに基づき、室外機10A,10Bの冷媒循環量VA,VBをそれぞれ演算する(冷媒循環量演算手段)。また、各制御装置40A,40Bは、室外機10A,10B間の冷媒循環量VA,VBの差分である冷媒循環量差DVを逐次演算する(冷媒循環量差演算手段)。さらに、各制御装置40A,40Bは、逐次演算された冷媒循環量差DVを積算し(冷媒循環量差積算手段)、該積算された冷媒循環量差(以下、積算値SDVともいう)が所定閾値Vthを超えることで、該当の室外機10A,10B間の潤滑油が不均等状態にあると判断する(不均等状態判断手段)。このとき、いずれかの室外機10A,10Bの潤滑油の相対的な不足状態(以下、「システム低OCR(Oil Circulation Ratio)状態」ともいう)が判断される。なお、以下では、上記した室外機10A,10Bの潤滑油の不足状態の判断をシステム低OCR判定ともいう。
In the present embodiment, using such characteristics, the non-uniform state of the lubricating oil between the outdoor units 10A and 10B is detected based on the refrigerant circulation amount of both the outdoor units 10A and 10B (detection means).
More specifically, as described above, the flow rate of the refrigerant circulating through each of the outdoor units 10A and 10B increases as the rotational speed of the corresponding compressors 12A and 12B increases. Accordingly, the control devices 40A and 40B of the outdoor units 10A and 10B are circulated with the refrigerant circulation amount VA of the outdoor units 10A and 10B based on the rotational speeds NA and NB of the compressors 12A and 12B detected by the corresponding rotation sensors 45A and 45B. , VB are respectively calculated (refrigerant circulation amount calculating means). Each of the control devices 40A and 40B sequentially calculates a refrigerant circulation amount difference DV that is a difference between the refrigerant circulation amounts VA and VB between the outdoor units 10A and 10B (refrigerant circulation amount difference calculating means). Furthermore, each of the control devices 40A and 40B integrates the refrigerant circulation amount difference DV sequentially calculated (refrigerant circulation amount difference integration means), and the accumulated refrigerant circulation amount difference (hereinafter also referred to as an integrated value SDV) is predetermined. By exceeding the threshold value Vth, it is determined that the lubricating oil between the corresponding outdoor units 10A and 10B is in an uneven state (uneven state determining means). At this time, a relative shortage state (hereinafter also referred to as “system low OCR (Oil Circulation Ratio) state”) of the lubricating oil of any of the outdoor units 10A and 10B is determined. Hereinafter, the determination of the lack of lubricating oil in the outdoor units 10A and 10B is also referred to as system low OCR determination.

システム低OCR判定があるとき、制御装置40A,40Bは、潤滑油が少ない一の室外機10A,10Bの冷媒循環量が、潤滑油が多い他の室外機10A,10Bの冷媒循環量よりも大きくなるように各対応するコンプレッサ12A,12Bを駆動制御する(均油手段)。このときの両室外機10A,10Bの冷媒循環量の合計は、全体の空調要求(空調負荷)に相当する冷媒循環量であることが好ましい。このとき、室内機30から戻った潤滑油は、両室外機10A,10Bの接続部分(分配管18,25)において、各室外機10A,10Bの冷媒循環量に比例して分配され、加えて各室外機10A,10Bの冷媒循環量に応じて対応するオイルセパレータ26に回収される。これにより、潤滑油の不足状態にある該当室外機10A,10Bにより多くの潤滑油が戻ることで、その潤滑油の不足状態が軽減される。なお、以下では、このようなコンプレッサ12A,12Bの駆動制御を均油制御ともいう。   When there is a system low OCR determination, the control devices 40A and 40B allow the refrigerant circulation amount of one outdoor unit 10A and 10B with less lubricating oil to be larger than the refrigerant circulation amount of the other outdoor units 10A and 10B with much lubricating oil. Thus, the corresponding compressors 12A and 12B are driven and controlled (equalizing means). At this time, the total refrigerant circulation amount of both outdoor units 10A and 10B is preferably the refrigerant circulation amount corresponding to the overall air conditioning requirement (air conditioning load). At this time, the lubricating oil returned from the indoor unit 30 is distributed in proportion to the refrigerant circulation amount of each of the outdoor units 10A and 10B in the connection portions (distribution pipes 18 and 25) of both the outdoor units 10A and 10B. It is recovered by the corresponding oil separator 26 according to the refrigerant circulation amount of each outdoor unit 10A, 10B. Accordingly, a large amount of lubricating oil returns to the corresponding outdoor units 10A and 10B that are in a shortage state of the lubricating oil, thereby reducing the shortage state of the lubricating oil. Hereinafter, such drive control of the compressors 12A and 12B is also referred to as oil equalization control.

ちなみに、各オイルセパレータ26で保有可能な油量は、該オイルセパレータ26の出口管位置とその貯留する潤滑油の油面高さとの関係で決まっていることから、均油制御に伴い該当の室外機10A,10Bに戻り過ぎた潤滑油は、当該室外機10A,10Bの外側の冷媒回路へ流出する。従って、均油制御中で両室外機10A,10B間に冷媒循環量差が設定される場合、潤滑油は冷媒循環量の大きい室外機10A,10Bに戻りやすく、再びその外側の冷媒回路へ流出して循環を繰り返す。そして、均油制御が終了し冷媒循環量差の設定が解消されると、各室外機10A,10Bの外部の冷媒回路を循環する潤滑油は該室外機10A,10Bに均等に戻って潤滑油の偏りが解消される。   Incidentally, the amount of oil that can be held in each oil separator 26 is determined by the relationship between the position of the outlet pipe of the oil separator 26 and the oil level of the stored lubricating oil. The lubricating oil that has returned too much to the units 10A and 10B flows out to the refrigerant circuit outside the outdoor units 10A and 10B. Accordingly, when the refrigerant circulation amount difference is set between the outdoor units 10A and 10B during the oil leveling control, the lubricating oil easily returns to the outdoor units 10A and 10B having a large refrigerant circulation amount, and flows out to the refrigerant circuit outside the lubricating oil again. And repeat the cycle. When the oil equalization control is completed and the setting of the refrigerant circulation amount difference is eliminated, the lubricating oil circulating in the refrigerant circuit outside the outdoor units 10A and 10B returns to the outdoor units 10A and 10B evenly and returns to the lubricating oil. Is eliminated.

ところで、上記した室外機10A,10Bの潤滑油の不足状態の判断(システム低OCR判定)は、コンプレッサ12A,12Bの回転速度を利用した間接的なものとなっている。そこで、各制御装置40は、上流側温度センサ41及び下流側温度センサ42によって実際に検出された前記温度T1,T2を利用して、室外機10A,10Bの潤滑油の不足状態(以下、「実動作低OCR状態」ともいう)の判断を併せて行うようにしている(不足状態判断手段)。   By the way, the above-described determination of the lack of lubricating oil in the outdoor units 10A and 10B (system low OCR determination) is indirect using the rotational speeds of the compressors 12A and 12B. Therefore, each control device 40 uses the temperatures T1 and T2 actually detected by the upstream temperature sensor 41 and the downstream temperature sensor 42 to make a shortage of lubricating oil in the outdoor units 10A and 10B (hereinafter, “ The determination of “actual operation low OCR state” is also performed (insufficient state determination means).

詳述すると、各室外機10A,10Bのコンプレッサ12(吸入口12a)に供給される冷媒にはオイルセパレータ26から冷媒配管13hを通じて高温の潤滑油が戻されることで、アキュームレータ19の出口温度T1に対しコンプレッサ12の吸入温度T2が上昇する。また、出口温度T1に対する吸入温度T2の上昇分ΔT(=T2−T1)は、オイルセパレータ26から戻される潤滑油の量が少ないほど、即ち室外機10A,10Bの潤滑油が不足するほど該潤滑油による過熱度が減少して小さくなる。各制御装置40は、上昇分ΔTが所定温度Tthを下回ることで該当の室外機10A,10Bの潤滑油の不足状態を判断する。なお、以下では、上記した室外機10A,10Bの潤滑油の不足状態の判断を実動作低OCR判定ともいう。   More specifically, high temperature lubricating oil is returned to the refrigerant supplied to the compressor 12 (suction port 12a) of each outdoor unit 10A, 10B from the oil separator 26 through the refrigerant pipe 13h, so that the outlet temperature T1 of the accumulator 19 is reached. In contrast, the suction temperature T2 of the compressor 12 increases. The increase ΔT (= T2−T1) of the suction temperature T2 with respect to the outlet temperature T1 is such that the smaller the amount of lubricating oil returned from the oil separator 26, that is, the less lubricating oil in the outdoor units 10A and 10B becomes. The degree of superheat due to oil decreases and decreases. Each control device 40 determines the lack of lubricating oil in the corresponding outdoor units 10A and 10B when the increase ΔT is lower than the predetermined temperature Tth. Hereinafter, the determination of the lack of lubricating oil in the outdoor units 10A and 10B described above is also referred to as actual operation low OCR determination.

また、各制御装置40は、前記圧力PH,PLの圧力差ΔP(=PH−PL)が大きいときよりも小さいとき、即ち冷媒の循環速度が速いときよりも遅いときの方が所定温度Tthが小さくなるように補正する(補正手段)。これにより、冷媒の循環速度が速く潤滑油の温度の影響が小さいときには所定温度Tthが相対的に大きくなるように補正されて潤滑油の不足状態がより大まかに判断され、反対に冷媒の循環速度が遅く潤滑油からの熱吸収が多いときには所定温度Tthが相対的に小さくなるように補正されて潤滑油の不足状態がより厳格に判断される。   In addition, each control device 40 has a predetermined temperature Tth when the pressure difference ΔP (= PH−PL) between the pressures PH and PL is smaller than when the pressure difference is large, that is, when the refrigerant circulation speed is slower than when the refrigerant is fast. Correction is made so as to decrease (correction means). Thus, when the refrigerant circulation speed is fast and the influence of the lubricating oil temperature is small, the predetermined temperature Tth is corrected so as to be relatively large, and the insufficient condition of the lubricating oil is more roughly determined. However, when the heat absorption from the lubricating oil is slow, the predetermined temperature Tth is corrected to be relatively small, and the lack of lubricating oil is determined more strictly.

具体的には、圧力差ΔPが小さいとき(例えば、0.35≦ΔP≦1[MPa])、各制御装置40は、所定温度Tthとして相対的に小さい所定温度Tth1(例えば1°C)を設定する。そして、各制御装置40は、「ΔT<Tth1」の成立する状態が所定時間(例えば2分)継続することで、当該室外機10A,10Bの実動作低OCR判定を行う。一方、圧力差ΔPが大きいとき(例えば、ΔP≧1[MPa])、各制御装置40は、所定温度Tthとして相対的に大きい所定温度Tth2(例えば3°C)を設定する。そして、各制御装置40は、「ΔT<Tth2」の成立する状態が所定時間(例えば2分)継続することで、当該室外機10A,10Bの実動作低OCR判定を行う。   Specifically, when the pressure difference ΔP is small (for example, 0.35 ≦ ΔP ≦ 1 [MPa]), each control device 40 sets a relatively small predetermined temperature Tth1 (for example, 1 ° C.) as the predetermined temperature Tth. Set. And each control apparatus 40 performs actual operation low OCR determination of the said outdoor unit 10A, 10B because the state in which "(DELTA) T <Tth1" is materialized continues for predetermined time (for example, 2 minutes). On the other hand, when the pressure difference ΔP is large (for example, ΔP ≧ 1 [MPa]), each control device 40 sets a relatively large predetermined temperature Tth2 (for example, 3 ° C.) as the predetermined temperature Tth. And each control apparatus 40 performs actual operation low OCR determination of the said outdoor unit 10A, 10B because the state in which "(DELTA) T <Tth2" is materialized continues for predetermined time (for example, 2 minutes).

そして、前記実動作低OCR判定があるときも、制御装置40A,40Bは、前記均油制御を行う。これにより、前述の態様で潤滑油の不足状態が軽減される。
さらに、前記した均油制御によっても依然として低OCR状態(実動作低OCR状態)が解消されない場合には、潤滑油は室内機30(室内機熱交換器31)又は該室内機30と各室外機10A,10Bとを接続する冷媒配管の壁面に付着し寝込んでいると考えられることから、各制御装置40は室内機油戻し制御を行う(室内機油戻し手段)。
Even when the actual operation low OCR determination is made, the control devices 40A and 40B perform the oil equalization control. Thereby, the shortage state of the lubricating oil is reduced in the above-described manner.
Further, if the low OCR state (actual operation low OCR state) is still not solved by the oil leveling control, the lubricating oil is used as the indoor unit 30 (indoor unit heat exchanger 31) or the indoor unit 30 and each outdoor unit. Since it is thought that it has adhered to the wall surface of the refrigerant | coolant piping which connects 10A and 10B, and is sleeping, each control apparatus 40 performs indoor unit oil return control (indoor unit oil return means).

具体的には、冷房運転時においては、室内機30の膨張弁33を所定時間、全開にすることにより、各室外機10A,10Bで凝縮した冷媒を液状態のまま室内機30を通過させ、室内機30又は該室内機30と各室外機10A,10Bとを接続する冷媒配管に付着していた潤滑油を冷媒とともに押し流す。これにより、室外機10A,10Bにおいて潤滑油が回収される。   Specifically, at the time of cooling operation, by opening the expansion valve 33 of the indoor unit 30 for a predetermined time, the refrigerant condensed in each of the outdoor units 10A and 10B is allowed to pass through the indoor unit 30 while being in a liquid state. Lubricating oil adhering to the indoor unit 30 or the refrigerant pipe connecting the indoor unit 30 and each outdoor unit 10A, 10B is pushed away together with the refrigerant. Thereby, lubricating oil is collect | recovered in outdoor unit 10A, 10B.

あるいは、暖房時期(冬季など)においては、前記四方弁14の切り替えにより、いわゆる除霜運転となるように冷媒の流路を変更することで、冷房運転時に準じて室外機10A,10Bにおいて潤滑油が回収される。   Alternatively, during the heating period (winter season, etc.), by switching the four-way valve 14, the refrigerant flow path is changed so that a so-called defrosting operation is performed, so that the lubricating oil in the outdoor units 10 </ b> A and 10 </ b> B is changed according to the cooling operation. Is recovered.

なお、以上の均油制御、室内機油戻し制御によっても低OCR状態(実動作低OCR状態)を解消できない場合は、配管破損等の異常と推定されることから、各制御装置40は、適宜の報知手段(警告灯、ブザー等)を駆動して利用者に報知する。   Note that if the low OCR state (actual operation low OCR state) cannot be resolved even by the above oil leveling control and indoor unit oil return control, it is estimated that there is an abnormality such as a pipe breakage. The notification means (warning lamp, buzzer, etc.) is driven to notify the user.

次に、各制御装置40による前記した低OCR状態の解消態様について図4のフローチャートによって総括して説明する。
室外機10A,10Bが2台運転される状態において(S(ステップ)1)、システム低OCR判定が行われる(S2)。ここで、システム低OCR判定「あり」と判断されない場合は、更に実動作低OCR判定が行われる(S3)。ここで、実動作低OCR判定「あり」と判断され、あるいはS2においてシステム低OCR判定「あり」と判断された場合は均油制御が行われる(S4)。
Next, a mode for eliminating the above-described low OCR state by each control device 40 will be collectively described with reference to a flowchart of FIG.
In a state where two outdoor units 10A and 10B are operated (S (step) 1), the system low OCR determination is performed (S2). If it is not determined that the system low OCR determination is “present”, an actual operation low OCR determination is further performed (S3). Here, if it is determined that the actual operation low OCR determination is “present”, or if it is determined that the system low OCR determination is “present” in S2, oil equalization control is performed (S4).

均油制御の実施後、所定時間(例えば5分)の経過を待って、実動作低OCR状態が解消したか否かが判断される(S5)。そして、実動作低OCR状態が解消しないと判断されると、室内機油戻し制御が行われる(S6)。   After performing the oil equalization control, it is determined whether or not the actual operation low OCR state has been resolved after a predetermined time (for example, 5 minutes) has elapsed (S5). When it is determined that the actual operation low OCR state is not resolved, indoor unit oil return control is performed (S6).

再び、実動作低OCR状態が解消したか否かが判断され(S7)、依然として実動作低OCR状態が解消しないと判断されると、報知処理が行われる(S8)。
一方、S3において実動作低OCR判定「あり」と判断されず、あるいはS5,S7で実動作低OCR状態が解消したと判断される場合は、通常運転が実施又は開始される(S9)。
Again, it is determined whether or not the actual operation low OCR state has been resolved (S7). If it is determined that the actual operation low OCR state is still not resolved, a notification process is performed (S8).
On the other hand, if it is not determined in S3 that the actual operation low OCR determination is “present”, or if it is determined in S5 and S7 that the actual operation low OCR state has been resolved, normal operation is performed or started (S9).

以上詳述したように、本実施形態によれば、以下に示す効果が得られるようになる。
(1)本実施形態では、室外機10A,10B間の潤滑油の不均等状態が検出されたとき、潤滑油が少ない一の室外機10A,10Bの冷媒循環量が、潤滑油が多い他の室外機10A,10Bの冷媒循環量よりも大きくなるように各対応するコンプレッサ12A,12Bが駆動制御されることで、潤滑油が少ない一の室外機10A,10Bにより多くの潤滑油を分配することができ、室外機10A,10B間の潤滑油をより均等にすることができる。そして、室外機10A,10Bのいずれかが潤滑油の不足状態に陥ることを抑制することができる。また、室外機10A,10B間の潤滑油の均等化は、前述の態様で各対応するコンプレッサ12A,12Bを駆動制御するのみで実現されるため、例えば潤滑油の不均等状態を解消するための要素部品(オイルタンクなど)を別途、設ける必要がなくなり、部品点数の増加及び配置スペースの増大を抑制することができる。
As described above in detail, according to the present embodiment, the following effects can be obtained.
(1) In this embodiment, when an uneven state of the lubricating oil between the outdoor units 10A and 10B is detected, the refrigerant circulation amount of the one outdoor unit 10A and 10B with a small amount of lubricating oil is different from that with a large amount of lubricating oil. Each of the corresponding compressors 12A and 12B is driven and controlled so as to be larger than the refrigerant circulation amount of the outdoor units 10A and 10B, whereby a large amount of lubricating oil is distributed to the one outdoor unit 10A and 10B with less lubricating oil. The lubricating oil between the outdoor units 10A and 10B can be made more even. And it can suppress that either outdoor unit 10A, 10B falls into the lack of lubricating oil. Further, since the equalization of the lubricating oil between the outdoor units 10A and 10B is realized only by driving and controlling the corresponding compressors 12A and 12B in the above-described manner, for example, for eliminating the uneven state of the lubricating oil There is no need to separately provide component parts (such as an oil tank), and an increase in the number of parts and an increase in arrangement space can be suppressed.

(2)本実施形態では、室外機10A,10Bのコンプレッサ12A,12Bの回転速度NA,NBに基づき、各々の室外機10A,10Bの冷媒循環量VA,VBを演算し、室外機10A,10B間の冷媒循環量差DVを逐次演算し、冷媒循環量差DVを積算し、積算された冷媒循環量差(SDV)が所定閾値Vthを超えることで、室外機10A,10B間の潤滑油が不均等状態にあると判断できる。このため、室外機10A,10Bのコンプレッサ12A,12Bの回転速度NA,NBを検出できれば、特別なセンサを設けることなく演算上で室外機10A,10B間の潤滑油の不均等状態を検出することができ、部品点数の増加を抑制することができる。   (2) In this embodiment, based on the rotational speeds NA and NB of the compressors 12A and 12B of the outdoor units 10A and 10B, the refrigerant circulation amounts VA and VB of the outdoor units 10A and 10B are calculated, and the outdoor units 10A and 10B are calculated. The refrigerant circulation amount difference DV is sequentially calculated, the refrigerant circulation amount difference DV is integrated, and the accumulated refrigerant circulation amount difference (SDV) exceeds a predetermined threshold value Vth, so that the lubricating oil between the outdoor units 10A and 10B is increased. It can be determined that there is an unequal state. For this reason, if the rotational speeds NA and NB of the compressors 12A and 12B of the outdoor units 10A and 10B can be detected, the non-uniform state of the lubricating oil between the outdoor units 10A and 10B can be detected in calculation without providing a special sensor. And the increase in the number of parts can be suppressed.

また、潤滑油の不均等状態の検出タイミング、即ち該検出時の不均等状態の程度は、所定閾値Vthの選択・設定によって容易に調整することができ、例えば所定閾値Vthを比較的小さく設定しておくことで先行的に潤滑油の不均等状態を検出することができる。   In addition, the detection timing of the unequal state of the lubricating oil, that is, the degree of the unequal state at the time of detection, can be easily adjusted by selecting and setting the predetermined threshold value Vth. For example, the predetermined threshold value Vth is set to be relatively small. Therefore, it is possible to detect the unequal state of the lubricating oil in advance.

(3)本実施形態では、上流側温度センサ41及び下流側温度センサ42により、両室外機10A,10Bにおける出口温度T1及び吸入温度T2をそれぞれ実際に検出し、出口温度T1に対する吸入温度T2の上昇分ΔTが所定温度Tthを下回ることで、該当室外機の潤滑油の不足状態を実態に即して判断することができる。そして、いずれかの室外機10A,10Bの潤滑油が不足状態にあると判断されると、均油制御が実施されることで当該室外機10A,10Bの潤滑油の不足状態を軽減することができる。   (3) In this embodiment, the upstream side temperature sensor 41 and the downstream side temperature sensor 42 actually detect the outlet temperature T1 and the suction temperature T2 in the outdoor units 10A and 10B, respectively, and the suction temperature T2 relative to the outlet temperature T1. When the increase ΔT is lower than the predetermined temperature Tth, it is possible to determine the lack of lubricating oil in the outdoor unit according to the actual situation. And when it is judged that the lubricating oil of any outdoor unit 10A, 10B is in a shortage state, the shortage of the lubricating oil in the outdoor unit 10A, 10B can be reduced by performing oil equalization control. it can.

(4)本実施形態では、低側圧力センサ43及び高側圧力センサ44により検出されたコンプレッサ12の吐出口12bの圧力PH及び吸入口12aの圧力PLの圧力差ΔPが大きいときよりも小さいときの方が所定温度Tthが小さくなるように補正される。これにより、冷媒の循環速度が速く潤滑油の温度の影響が小さいときには所定温度Tthが相対的に大きくなるように補正されて潤滑油の不足状態をより大まかに判断することができ、反対に冷媒の循環速度が遅く潤滑油からの熱吸収が多いときには所定温度Tthが相対的に小さくなるように補正されて潤滑油の不足状態をより厳格に判断することができる。   (4) In this embodiment, when the pressure difference ΔP between the pressure PH of the discharge port 12b of the compressor 12 and the pressure PL of the suction port 12a detected by the low-side pressure sensor 43 and the high-side pressure sensor 44 is smaller than when it is large. Is corrected so that the predetermined temperature Tth becomes smaller. As a result, when the circulation speed of the refrigerant is fast and the influence of the temperature of the lubricating oil is small, the predetermined temperature Tth is corrected so as to be relatively large, and the lack of lubricating oil can be roughly determined. When the circulation speed of the oil is slow and the heat absorption from the lubricating oil is large, the predetermined temperature Tth is corrected to be relatively small, and the lack of lubricating oil can be judged more strictly.

(5)本実施形態では、均油制御の実施後においても、該当の室外機10A,10Bの潤滑油が不足状態にあると判断されるとき、室内機油戻し制御が行われることで、室内機30又は該室内機30と各室外機10A,10Bとを接続する冷媒配管の壁面に付着している潤滑油を回収することができ、該当室外機の潤滑油の不足状態を軽減することができる。   (5) In the present embodiment, the indoor unit oil return control is performed when it is determined that the lubricating oil of the corresponding outdoor units 10A and 10B is in a shortage state even after the oil leveling control is performed. 30 or the lubricating oil adhering to the wall surface of the refrigerant pipe connecting the indoor unit 30 and each outdoor unit 10A, 10B can be recovered, and the lack of lubricating oil in the corresponding outdoor unit can be reduced. .

なお、上記の実施形態は以下のように変更してもよい。
・S2においてシステム低OCR判定「あり」と判断された場合は、当該判断がされなくなるまで均油制御実施(S4)をそのまま繰り返すようにしてもよい。
In addition, you may change said embodiment as follows.
When it is determined that the system low OCR determination is “Yes” in S2, the oil equalization control execution (S4) may be repeated as it is until the determination is not made.

・前記実施形態では、コンプレッサ12の回転速度Nに基づいて冷媒流量を演算したが、これに代えて、該コンプレッサ12の駆動源(ガスエンジン、電動モーターなど)の回転速度に基づいて冷媒流量を演算してもよい。   In the embodiment, the refrigerant flow rate is calculated based on the rotational speed N of the compressor 12, but instead, the refrigerant flow rate is calculated based on the rotational speed of the drive source (gas engine, electric motor, etc.) of the compressor 12. You may calculate.

・各室外機10A,10Bに設置されるコンプレッサ12は複数台であってもよい。
・室内機30は複数台設けてもよい。
・室外機は並列接続で3台以上設けてもよい。
-The compressor 12 installed in each outdoor unit 10A, 10B may be plural.
-Multiple indoor units 30 may be provided.
-Three or more outdoor units may be provided in parallel connection.

・複数台ある全ての室外機(10A,10B)を共通の一つの制御装置によって統括制御してもよい。   -You may control all the outdoor units (10A, 10B) in multiple numbers by one common control apparatus.

L…冷媒回路、10A,10B…室外機、12,12A,12B…コンプレッサ(圧縮機)15…室外機熱交換器、20…合流部、26…油分離器、30…室内機、31…室内機熱交換器、40…制御装置(検出手段、均油手段、冷媒循環量演算手段、冷媒循環量差演算手段、冷媒循環量差積算手段、不均等状態判断手段、不足状態判断手段、補正手段、室内機油戻し手段)、41…上流側温度センサ、42…下流側温度センサ、43…低側圧力センサ、44…高側圧力センサ、45…回転センサ。   L ... Refrigerant circuit, 10A, 10B ... Outdoor unit, 12, 12A, 12B ... Compressor (compressor) 15 ... Outdoor unit heat exchanger, 20 ... Merger, 26 ... Oil separator, 30 ... Indoor unit, 31 ... Indoor Machine heat exchanger, 40... Control device (detection means, oil leveling means, refrigerant circulation amount calculation means, refrigerant circulation amount difference calculation means, refrigerant circulation amount difference integration means, non-uniform state determination means, deficient state determination means, correction means , Indoor unit oil return means), 41 ... upstream temperature sensor, 42 ... downstream temperature sensor, 43 ... low pressure sensor, 44 ... high pressure sensor, 45 ... rotation sensor.

Claims (3)

冷媒を吸入するとともに該吸入した冷媒を圧縮して吐出する圧縮機、冷房運転時は冷媒の凝縮器として機能し暖房運転時は冷媒の蒸発器として機能する室外機熱交換器及び冷媒に混入する前記圧縮機の潤滑油を分離するとともに溜まった該潤滑油を前記圧縮機に戻す油分離器をそれぞれ有し、並列接続された複数台の室外機と、
前記各室外機に接続され、冷房運転時は冷媒の蒸発器として機能し暖房運転時は冷媒の凝縮器として機能する室内機熱交換器を有する室内機と、
前記各室外機及び前記室内機に冷媒を循環させる冷媒回路とを備える空気調和装置において、
前記複数台の室外機間の前記潤滑油の不均等状態を検出する検出手段と、
前記複数台の室外機間の前記潤滑油の不均等状態が検出されたとき、前記潤滑油が少ない一の前記室外機の冷媒循環量が、前記潤滑油が多い他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機を駆動制御する均油手段と
前記複数台の室外機の前記圧縮機に供給される冷媒の、前記油分離器から戻される前記潤滑油との合流部の上流側及び下流側の各々の温度をそれぞれ検出する上流側温度センサ及び下流側温度センサと、
前記検出された上流側の温度に対する下流側の温度の上昇分が所定温度を下回ることで、該当の室外機の前記潤滑油が不足状態にあると判断する不足状態判断手段とを備え
前記均油手段は、前記潤滑油が不足状態にあると判断された該当の室外機の冷媒循環量が、他の前記室外機の冷媒循環量よりも大きくなるように各対応する前記圧縮機を駆動制御し、
更に、前記圧縮機の吸入口の圧力を検出する低側圧力センサと、
前記圧縮機の吐出口の圧力を検出する高側圧力センサと、
前記検出された圧縮機の吐出口の圧力及び吸入口の圧力の圧力差が大きいときよりも小さいときの方が前記所定温度が小さくなるように補正する補正手段とを備えたことを特徴とする空気調和装置。
A compressor that sucks in the refrigerant and compresses and discharges the sucked refrigerant. The compressor functions as a refrigerant condenser during cooling operation and functions as a refrigerant evaporator during heating operation. An oil separator that separates the lubricating oil of the compressor and returns the accumulated lubricating oil to the compressor, and a plurality of outdoor units connected in parallel;
An indoor unit having an indoor unit heat exchanger connected to each of the outdoor units, functioning as a refrigerant evaporator during cooling operation and functioning as a refrigerant condenser during heating operation;
In the air conditioner provided with each outdoor unit and a refrigerant circuit for circulating a refrigerant in the indoor unit,
Detecting means for detecting an uneven state of the lubricating oil between the plurality of outdoor units;
When an uneven state of the lubricating oil among the plurality of outdoor units is detected, the refrigerant circulation amount of the one outdoor unit with a small amount of the lubricating oil is the refrigerant circulation of the other outdoor unit with a large amount of the lubricating oil. Oil leveling means for driving and controlling each of the corresponding compressors to be greater than the amount ;
An upstream temperature sensor for detecting temperatures of a refrigerant supplied to the compressors of the plurality of outdoor units on an upstream side and a downstream side of a joining portion with the lubricating oil returned from the oil separator, and A downstream temperature sensor;
A shortage state determining means for determining that the lubricating oil of the corresponding outdoor unit is in a shortage state because an increase in downstream temperature with respect to the detected upstream temperature is below a predetermined temperature ;
The oil leveling means adjusts the corresponding compressors so that the refrigerant circulation amount of the corresponding outdoor unit determined to be in a state where the lubricating oil is insufficient is larger than the refrigerant circulation amount of the other outdoor units. Drive control,
Furthermore, a low-side pressure sensor that detects the pressure of the suction port of the compressor;
A high-side pressure sensor for detecting the pressure at the discharge port of the compressor;
And correction means for correcting the predetermined temperature to be smaller when the pressure difference between the detected pressure at the discharge port of the compressor and the pressure at the suction port is smaller than when the pressure difference is large. Air conditioner.
請求項1に記載の空気調和装置において、
前記検出手段は、
前記複数台の室外機の前記圧縮機の回転速度に基づき前記複数台の室外機の冷媒循環量をそれぞれ演算する冷媒循環量演算手段と、
前記複数台の室外機間の冷媒循環量差を逐次演算する冷媒循環量差演算手段と、
前記逐次演算された冷媒循環量差を積算する冷媒循環量差積算手段と、
前記積算された冷媒循環量差が所定閾値を超えることで、該当の室外機間の前記潤滑油が不均等状態にあると判断する不均等状態判断手段とを備えたことを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1,
The detection means includes
Refrigerant circulation amount calculating means for calculating the refrigerant circulation amount of each of the plurality of outdoor units based on the rotation speed of the compressor of the plurality of outdoor units;
Refrigerant circulation amount difference calculating means for sequentially calculating a refrigerant circulation amount difference between the plurality of outdoor units;
Refrigerant circulation amount difference integration means for integrating the sequentially calculated refrigerant circulation amount difference;
Air conditioning, comprising: an unequal state determining means for determining that the lubricating oil between the corresponding outdoor units is in an unequal state when the accumulated refrigerant circulation amount difference exceeds a predetermined threshold value apparatus.
請求項又はに記載の空気調和装置において、
前記均油手段による処理後においても、該当の室外機の前記潤滑油が不足状態にあると判断されるとき、室内機油戻し制御を行う室内機油戻し手段を備えた空気調和装置。
In the air conditioning apparatus according to claim 1 or 2 ,
An air conditioner including an indoor unit oil return unit that performs indoor unit oil return control when it is determined that the lubricating oil of the corresponding outdoor unit is in a shortage state even after processing by the oil leveling unit.
JP2009145545A 2009-06-18 2009-06-18 Air conditioner Active JP5471059B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009145545A JP5471059B2 (en) 2009-06-18 2009-06-18 Air conditioner
KR1020100020269A KR101264474B1 (en) 2009-06-18 2010-03-08 air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009145545A JP5471059B2 (en) 2009-06-18 2009-06-18 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011002160A JP2011002160A (en) 2011-01-06
JP5471059B2 true JP5471059B2 (en) 2014-04-16

Family

ID=43510492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009145545A Active JP5471059B2 (en) 2009-06-18 2009-06-18 Air conditioner

Country Status (2)

Country Link
JP (1) JP5471059B2 (en)
KR (1) KR101264474B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168927B2 (en) * 2016-11-25 2021-11-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901189B (en) * 2012-09-29 2014-12-24 四川长虹电器股份有限公司 Air conditioning system, control system and air conditioning control method
CN103062841B (en) * 2013-01-18 2015-08-19 四川长虹电器股份有限公司 A kind of air-conditioning system, control system and air conditioning control method
CN103062840B (en) * 2013-01-18 2015-05-06 四川长虹电器股份有限公司 Air-conditioning system, control system and air-conditioning control method
CN103604194B (en) * 2013-11-22 2016-01-13 四川长虹电器股份有限公司 A kind of intelligent air-conditioner control method and air-conditioner control system
EP3081881A1 (en) * 2015-04-17 2016-10-19 Daikin Europe N.V. Compressor unit for an air conditioner and heat source unit for an air conditioner comprising the compressor unit and a heat source unit
JP6859461B2 (en) * 2018-02-16 2021-04-14 東芝キヤリア株式会社 Refrigeration cycle equipment
EP3967950A4 (en) * 2019-05-31 2022-06-22 Daikin Industries, Ltd. Refrigeration device
JP7532160B2 (en) 2020-09-15 2024-08-13 日本キヤリア株式会社 Air conditioners

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142002A (en) * 1997-11-07 1999-05-28 Mitsubishi Electric Corp Refrigerating air conditioning device
JP2001123954A (en) * 1999-10-22 2001-05-08 Yamaha Motor Co Ltd Compressor lubricating oil sensing device in refrigerant circulating heat transferring device
JP4448390B2 (en) * 2004-06-24 2010-04-07 三菱電機株式会社 Refrigeration equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168927B2 (en) * 2016-11-25 2021-11-09 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
KR101264474B1 (en) 2013-05-14
JP2011002160A (en) 2011-01-06
KR20100136397A (en) 2010-12-28

Similar Documents

Publication Publication Date Title
JP5471059B2 (en) Air conditioner
AU2008208346B2 (en) Air conditioner
AU2005268223B2 (en) Refrigerating apparatus
EP2428750B1 (en) Refrigerator
JP6138711B2 (en) Air conditioner
WO2006025530A1 (en) Refrigerating apparatus
KR20120085396A (en) Refrigerant system and method for controlling the same
JP2010175190A (en) Air conditioner
JP2016003848A (en) Air conditioning system and control method for the same
JP2006132924A (en) Capacity controller of air conditioner and method of controlling the same
US12018867B2 (en) Refrigeration apparatus
JP4418936B2 (en) Air conditioner
US8276400B2 (en) Refrigeration apparatus
EP3163219B1 (en) Chiller system
JP2009139041A (en) Air conditioner
JP5627564B2 (en) Refrigeration cycle system
JP2017101857A (en) Freezing device
JP6577263B2 (en) Air conditioner
WO2017094594A1 (en) Refrigeration device
JP2017110820A (en) Air conditioning device
JP2006145170A (en) Refrigerating cycle
JP3883725B2 (en) Method of operating air conditioner and air conditioner
JP2000154950A (en) Engine-driven heat pump cycle
WO2013014896A1 (en) Condensing unit set
KR100941470B1 (en) A heat pump system and an operating control method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140120

R151 Written notification of patent or utility model registration

Ref document number: 5471059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151