JPH11142002A - Refrigerating air conditioning device - Google Patents
Refrigerating air conditioning deviceInfo
- Publication number
- JPH11142002A JPH11142002A JP30554597A JP30554597A JPH11142002A JP H11142002 A JPH11142002 A JP H11142002A JP 30554597 A JP30554597 A JP 30554597A JP 30554597 A JP30554597 A JP 30554597A JP H11142002 A JPH11142002 A JP H11142002A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- main
- heat source
- source unit
- compressor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2313/00—Compression machines, plants or systems with reversible cycle not otherwise provided for
- F25B2313/025—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units
- F25B2313/0253—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements
- F25B2313/02531—Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple outdoor units in parallel arrangements during cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/07—Details of compressors or related parts
- F25B2400/075—Details of compressors or related parts with parallel compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
- F25B31/002—Lubrication
- F25B31/004—Lubrication oil recirculating arrangements
Landscapes
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、複数台の熱源機
を組合わせて形成された大容量の熱源手段が、一つの冷
媒系統により利用側負荷と接続されて構成された冷凍空
気調和装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration air conditioner in which a large-capacity heat source means formed by combining a plurality of heat source units is connected to a use side load by a single refrigerant system. .
【0002】[0002]
【従来の技術】図17は、従来の冷凍空気調和装置を示
す冷媒回路図である。図において、1は主熱源機で、そ
れぞれ同容量又は互いに異容量の一台以上の出力制御可
能な主圧縮機2、主油分離器3、主四方切換弁4、主熱
交換器5、一台以上の出力制御可能な主送風機6、主油
溜部7、主液溜部8、主油分離器3及び主油溜部7を接
続した主連結管9、主油溜部7から主圧縮機2に冷凍機
油を戻す主返油回路10及び主液溜部8から主圧縮機2
に液を戻す主返液回路11によって構成されている。FIG. 17 is a refrigerant circuit diagram showing a conventional refrigeration air conditioner. In the figure, 1 is a main heat source unit, one or more output controllable main compressors 2, main oil separators 3, main four-way switching valves 4, main heat exchangers 5, 1 and 2 each having the same capacity or different capacities. The main blower 6, the main oil sump 7, the main liquid sump 8, the main oil separator 3, and the main connecting pipe 9 connecting the main oil sump 7, the main compression of which can be controlled from the main oil sump 7. From the main oil return circuit 10 and the main reservoir 8 for returning the refrigerating machine oil to the compressor 2
And a main liquid return circuit 11 for returning the liquid to the apparatus.
【0003】101は従熱源機で、それぞれ同容量又は
互いに異容量の一台以上の定出力又は出力制御可能な従
圧縮機102、従油分離器103、従四方切換弁10
4、従熱交換器105、一台以上の出力制御可能な従送
風機106、従油溜部107、従液溜部108、従油分
離器103と従油溜部107を接続した従連結管10
9、従油溜部107から従圧縮機102に冷凍機油を戻
す従返油回路110及び従液溜部108から従圧縮機1
02に液を戻す従返液回路111によって構成されてい
る。[0003] Reference numeral 101 denotes a slave heat source unit, which includes one or more slave compressors 102, slave oil separators 103, and slave four-way switching valves 10 each of which can output at least one constant output or output of the same capacity or different capacities.
4. Secondary heat exchanger 105, one or more output-controllable secondary blowers 106, secondary oil reservoir 107, secondary liquid reservoir 108, secondary connecting pipe 10 connecting secondary oil separator 103 and secondary oil reservoir 107
9. A return oil circuit 110 for returning the refrigerating machine oil from the slave oil reservoir 107 to the slave compressor 102, and the slave compressor 1 from the slave fluid reservoir 108
The return liquid circuit 111 is configured to return the liquid to the liquid 02.
【0004】12は利用側流量制御弁13を介して主熱
源機1及び従熱源機101に並列に接続された利用側熱
交換器、14は液側合流部で、主熱源機1及び利用側熱
交換器12を接続した管路と従熱源機101及び利用側
熱交換器12を接続した管路とを接続する。15はガス
側合流部で、主熱源機1及び利用側熱交換器12を接続
した管路と従熱源機101及び利用側熱交換器12を接
続した管路とを接続する。[0004] Reference numeral 12 denotes a use side heat exchanger connected in parallel to the main heat source unit 1 and the sub heat source unit 101 via a use side flow control valve 13, and reference numeral 14 denotes a liquid side converging section. The pipe line to which the heat exchanger 12 is connected is connected to the pipe line to which the slave heat source device 101 and the use side heat exchanger 12 are connected. Reference numeral 15 denotes a gas-side junction, which connects a pipe connecting the main heat source unit 1 and the use-side heat exchanger 12 to a pipe connecting the slave heat source unit 101 and the use-side heat exchanger 12.
【0005】従来の冷凍空気調和装置は上記のように構
成され、主熱源機1、従熱源機101及び利用側熱交換
器12を主要部として冷媒回路が構成される。そして、
主熱源機1、従熱源機101の出力により利用側熱交換
器12を介して所要の空気調和作用が行われる。[0005] The conventional refrigeration air conditioner is configured as described above, and a refrigerant circuit is configured by using the main heat source unit 1, the auxiliary heat source unit 101 and the use side heat exchanger 12 as main parts. And
A required air conditioning operation is performed via the use side heat exchanger 12 by the outputs of the main heat source unit 1 and the sub heat source unit 101.
【0006】[0006]
【発明が解決しようとする課題】上記のような従来の冷
凍空気調和装置において、主熱源機1、従熱源機101
等の複数台の熱源機を組合わせることにより大容量の熱
源手段が形成され、この熱源手段が配置された冷媒回路
が構成される。このような構成では利用側熱交換器12
から戻る冷凍機油がそれぞれの熱源機から吐出した分だ
け各熱源機に戻ることが望ましい。In the conventional refrigeration air conditioner as described above, the main heat source unit 1 and the sub heat source unit 101 are used.
By combining a plurality of heat source devices, a large-capacity heat source means is formed, and a refrigerant circuit in which the heat source means is arranged is configured. In such a configuration, the use side heat exchanger 12
It is desirable that the amount of the refrigerating machine oil returned from each of the heat source units is returned to each of the heat source units.
【0007】しかし、主熱源機1、従熱源機101が別
個に配置されるので、実際に各熱源機から吐出される冷
凍機油量に対して、戻って来る冷凍機油量が同じなるよ
うに制御することは、設置される熱源機台数の増加に比
例して困難となる。このため、一部の熱源機で冷凍機油
が過剰気味になり、他部の熱源機で冷凍機油が不足気味
になって、冷凍機油の不足した熱源機において圧縮機の
動作信頼性が低下するという問題点があった。However, since the main heat source unit 1 and the slave heat source unit 101 are separately arranged, the control is performed so that the amount of the returned refrigerating machine oil is equal to the amount of the refrigerating machine oil actually discharged from each heat source unit. It becomes difficult to do so in proportion to the increase in the number of installed heat source devices. For this reason, the refrigerating machine oil tends to be excessive in some of the heat source machines, and the refrigerating machine oil tends to be in short in the other heat source machines, and the operating reliability of the compressor in the heat source machine in which the refrigerating machine oil is insufficient is reduced. There was a problem.
【0008】この発明は、かかる問題点を解消するため
になされたものであり、利用側熱交換器から戻る冷凍機
油が複数の熱源機それぞれの圧縮機に均等に配分される
冷凍空気調和装置を得ることを目的とする。SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and there is provided a refrigeration air conditioner in which refrigeration oil returning from a use side heat exchanger is evenly distributed to a plurality of compressors of a plurality of heat source units. The purpose is to gain.
【0009】[0009]
【課題を解決するための手段】この発明に係る冷凍空気
調和装置においては、出力制御可能な主圧縮機、主油分
離器、主熱交換器及び主油溜部を有する主熱源機と、定
出力又は出力制御可能な従圧縮機、従油分離器、従熱交
換器及び従油溜部を有する従熱源機と、主熱源機及び従
熱源機に接続された利用側熱交換器と、主熱源機及び利
用側熱交換器を接続した管路と従熱源機及び利用側熱交
換器を接続した管路とを接続する液側合流部と、主熱源
機及び利用側熱交換器を接続した管路と従熱源機及び利
用側熱交換器を接続した管路とを接続するガス側合流部
と、主油溜部及び従油溜部が油溜管路によって連結さ
れ、油溜管路の主油溜部側開口部は主油溜部内の液量が
第一所定量以下になったときに主油溜部内の液と接しな
い位置に配置され、油溜管路の従油溜部側開口部は従油
溜部内の液量が第二所定量以下になったときに従油溜部
内の液と接しない位置に配置された均油回路と、主圧縮
機及び従圧縮機の圧縮機運転時間計時手段と、この圧縮
機運転時間計時手段による主圧縮機及び従圧縮機の運転
時間を後述する式1における時間TOに対して比較して
均油運転要否を判定する均油運転要否判定手段とが設け
られる。In a refrigeration air conditioner according to the present invention, a main heat source unit having a main compressor, a main oil separator, a main heat exchanger, and a main oil reservoir whose output is controllable is provided. A secondary heat source unit having a secondary compressor, a secondary oil separator, a secondary heat exchanger, and a secondary oil reservoir that can output or control the output, a main heat source unit and a use side heat exchanger connected to the secondary heat source unit; The liquid-side junction connecting the pipe connecting the heat source unit and the use-side heat exchanger to the pipe connecting the slave heat source unit and the use-side heat exchanger, and connecting the main heat source unit and the use-side heat exchanger The gas-side junction connecting the pipeline to the pipeline connecting the slave heat source unit and the use side heat exchanger, the main oil sump and the slave oil sump are connected by the oil sump, and the oil sump The main oil reservoir side opening is disposed at a position that does not come into contact with the liquid in the main oil reservoir when the liquid amount in the main oil reservoir becomes equal to or less than the first predetermined amount, The oil sump circuit side opening of the sump line is provided with an oil equalizing circuit arranged at a position not in contact with the liquid in the oil sump when the amount of liquid in the oil sump falls below the second predetermined amount. The compressor operating time measuring means of the compressor and the slave compressor, and the operating time of the main compressor and the slave compressor by the compressor operating time counting means are compared with the time TO in Expression 1 described later, and the oil leveling operation is performed. An oil-equalizing operation necessity determining means for determining necessity is provided.
【0010】また、この発明に係る冷凍空気調和装置に
おいては、均油運転要否判定手段の均油運転要判定を介
して制御されて、運転出力が所定時間交互に増減する主
圧縮機及び従圧縮機が設けられる。Further, in the refrigeration air conditioner according to the present invention, the main compressor and the auxiliary compressor whose operation output alternately increases or decreases for a predetermined time are controlled by the oil equalizing operation necessity judging means by the oil equalizing operation necessity judging means. A compressor is provided.
【0011】また、この発明に係る冷凍空気調和装置に
おいては、主熱源機の主圧縮機の吐出部と主油溜部の間
のバイパス回路に設けられて均油運転要否判定手段の均
油運転要判定を介して制御されて所定時間開放する主開
閉弁と、従熱源機の従圧縮機の吐出部と従油溜部の間の
バイパス回路に設けらて均油運転要否判定手段の均油運
転要判定を介して制御されて主開閉弁の開放時に閉成す
る従開閉弁とが設けられる。Also, in the refrigeration air conditioner according to the present invention, the oil equalizing operation necessity judging means provided in the bypass circuit between the discharge portion of the main compressor of the main heat source unit and the main oil reservoir portion. A main opening / closing valve which is controlled through the operation necessity determination and is opened for a predetermined time; and a bypass circuit provided between the discharge part of the sub-compressor of the sub-heat source unit and the sub-oil storage part, and A slave on-off valve is provided which is controlled through the oil equalizing operation necessity determination and is closed when the main on-off valve is opened.
【0012】また、この発明に係る冷凍空気調和装置に
おいては、主熱源機側に設けられた主低圧圧力検知手段
と、従熱源機側に設けられた従低圧圧力検知手段と、主
低圧圧力検知手段及び従低圧圧力検知手段の両者の検知
値が第一所定値に収束したときに動作する第一収束判定
手段と、上記両者の検知値が第二所定値に収束したとき
に動作する第二収束判定手段と、第一収束判定手段及び
第二収束判定手段による収束時間を計時する収束時間計
時手段と、主熱交換器の主送風機の送風出力を制御する
主送風出力調整制御手段と、従熱交換器の従送風機の送
風出力を制御する従送風出力調整制御手段と、均油運転
要否判定手段の均油運転要判定を介して動作し、主送風
機及び従送風機の送風出力を主低圧圧力検知手段を介し
て検知した値と従低圧圧力検知手段を介して検知した値
が所定値に収束して、収束時間計時手段の計時値が所定
時間に達するまで主送風出力調整制御手段及び従送風出
力調整制御手段を動作させる均油運転制御装置とが設け
られる。In the refrigerated air conditioner according to the present invention, the main low pressure detecting means provided on the main heat source unit side, the sub low pressure detecting means provided on the sub heat source unit side, and the main low pressure detecting unit First convergence determination means that operates when the detection values of both the means and the sub-low pressure detection means converge to a first predetermined value, and a second convergence determination means that operates when the detection values of the two converge to a second predetermined value Convergence determination means, convergence time timer means for measuring convergence time by the first convergence determination means and the second convergence determination means, main blast output adjustment control means for controlling the blast output of the main blower of the main heat exchanger, and It operates through the auxiliary air output adjustment control means for controlling the air output of the auxiliary air blower of the heat exchanger and the oil equalization operation necessity determination of the oil equalization operation necessity determination means, and controls the air output of the main air blower and the auxiliary air blower to the main low pressure. The value detected through the pressure detection means Oil-equalizing operation in which the main airflow output adjustment control means and the subordinate airflow output adjustment control means are operated until the value detected through the pressure / pressure detection means converges to a predetermined value and the time value of the convergence time timer reaches a predetermined time. A control device is provided.
【0013】また、この発明に係る冷凍空気調和装置に
おいては、主熱源機側に設けられた主低圧圧力検知手段
と、従熱源機側に設けられた従低圧圧力検知手段と、主
低圧圧力検知手段及び従低圧圧力検知手段の両者の検知
値が第一所定値に収束したときに動作する第一収束判定
手段と、上記両者の検知値が第二所定値に収束したとき
に動作する第二収束判定手段と、第一収束判定手段及び
第二収束判定手段による収束時間を計時する収束時間計
時手段と、従熱交換器と液側合流部の間の管路に設けら
れた流量制御弁と、均油運転要否判定手段の均油運転要
判定を介して動作し、流量制御弁を主低圧圧力検知手段
を介して検知した値と従低圧圧力検知手段を介して検知
した値が所定値に収束して、収束時間計時手段の計時値
が所定時間に達するまで流量制御弁を動作させる流量制
御弁調整手段とが設けられる。Further, in the refrigeration air conditioner according to the present invention, the main low pressure detecting means provided on the main heat source unit side, the sub low pressure detecting means provided on the sub heat source unit side, and the main low pressure detecting unit First convergence determination means that operates when the detection values of both the means and the sub-low pressure detection means converge to a first predetermined value, and a second convergence determination means that operates when the detection values of the two converge to a second predetermined value Convergence determination means, convergence time timer means for measuring the convergence time by the first convergence determination means and the second convergence determination means, and a flow control valve provided in a pipeline between the slave heat exchanger and the liquid side junction Operating through the oil equalization operation necessity determination means of the oil equalization operation necessity determination means, and the value detected by the flow control valve through the main low pressure detection means and the value detected through the secondary low pressure detection means are a predetermined value. And the time value of the convergence time timer reaches the predetermined time. A flow control valve adjusting device for operating the flow control valve is provided to.
【0014】[0014]
【発明の実施の形態】実施の形態1.図1〜図7は、こ
の発明の実施の形態の一例を示す図で、図1は冷媒回路
図、図2は図1の熱源機における油収支を概念的に示す
グラフ、図3は図2に関連した主熱源機側の油収支関係
グラフ、図4は図2に関連した従熱源機側の油収支関係
グラフ、図5は図1の冷媒回路の油収支に関する返油回
路図、図6は図1の冷媒回路の冷媒循環量に対する油収
支関係グラフ、図7は図1の冷媒回路に対する制御を説
明するフローチャートである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 1 to 7 are diagrams showing an example of an embodiment of the present invention. FIG. 1 is a refrigerant circuit diagram, FIG. 2 is a graph conceptually showing an oil balance in the heat source unit of FIG. 1, and FIG. 4 is an oil balance relationship graph on the main heat source unit side related to FIG. 4, FIG. 4 is an oil balance relationship graph on the slave heat source unit side related to FIG. 2, FIG. 5 is an oil return circuit diagram relating to the oil balance of the refrigerant circuit of FIG. FIG. 7 is a graph showing an oil balance relationship with respect to the amount of circulating refrigerant in the refrigerant circuit of FIG. 1, and FIG. 7 is a flowchart illustrating control of the refrigerant circuit of FIG.
【0015】図において、1は主熱源機で、一台又は複
数台によって構成されて一台の場合は出力制御可能な圧
縮機によって構成され、複数台の場合は、出力制御可能
な圧縮機とこの圧縮機と同能力の定出力圧縮機又は出力
制御可能な圧縮機の組合わせ、もしくは異能力の定出力
圧縮機又は出力制御可能な圧縮機の組合わせによる複数
台からなる主圧縮機2、主油分離器3、主四方切換弁
4、主熱交換器5、一台以上の出力制御可能な主送風機
6、主油溜部7、主液溜部8、主油分離器3と主油溜部
7を接続した主連結管9、主油溜部7から主圧縮機2に
冷凍機油を戻す主返油回路10及び主液溜部8から主圧
縮機2に液を戻す主返液回路11によって構成されてい
る。In the figure, reference numeral 1 denotes a main heat source unit, which is constituted by one or more units, and in the case of one unit, is constituted by a compressor whose output can be controlled. A combination of a constant output compressor of the same capacity as the compressor or a combination of output controllable compressors, or a combination of a constant output compressor of a different capacity or a combination of output controllable compressors; Main oil separator 3, main four-way switching valve 4, main heat exchanger 5, one or more output-controllable main blowers 6, main oil reservoir 7, main liquid reservoir 8, main oil separator 3 and main oil A main connecting pipe 9 connected to the reservoir 7, a main oil return circuit 10 for returning refrigeration oil from the main oil reservoir 7 to the main compressor 2, and a main liquid return circuit for returning liquid to the main compressor 2 from the main liquid reservoir 8. 11.
【0016】101は従熱源機で、それぞれ同容量又は
互いに異容量の一台以上の定出力又は出力制御可能な従
圧縮機102、従油分離器103、従四方切換弁10
4、従熱交換器105、一台以上の出力制御可能な従送
風機106、従油溜部107、従液溜部108、従油分
離器103と従油溜部107を接続した従連結管10
9、従油溜部107から従圧縮機102に冷凍機油を戻
す従返油回路110及び従液溜部108から従圧縮機1
02に液を戻す従返液回路111によって構成されてい
る。Reference numeral 101 denotes a slave heat source unit, which includes one or more slave compressors 102, slave oil separators 103, and slave four-way switching valves 10 each having the same capacity or different capacities and capable of constant output or output control.
4. Secondary heat exchanger 105, one or more output-controllable secondary blowers 106, secondary oil reservoir 107, secondary liquid reservoir 108, secondary connecting pipe 10 connecting secondary oil separator 103 and secondary oil reservoir 107
9. A return oil circuit 110 for returning the refrigerating machine oil from the slave oil reservoir 107 to the slave compressor 102, and the slave compressor 1 from the slave fluid reservoir 108
The return liquid circuit 111 is configured to return the liquid to the liquid 02.
【0017】12は利用側流量制御弁13を介して主熱
源機1及び従熱源機101に並列に接続された利用側熱
交換器、14は液側合流部で、主熱源機1及び利用側熱
交換器12を接続した管路と従熱源機101及び利用側
熱交換器12を接続した管路とを接続する。15はガス
側合流部で、主熱源機1及び利用側熱交換器12を接続
した管路と従熱源機101及び利用側熱交換器12を接
続した管路とを接続する。Reference numeral 12 denotes a use side heat exchanger connected in parallel to the main heat source unit 1 and the sub heat source unit 101 via a use side flow control valve 13; The pipe line to which the heat exchanger 12 is connected is connected to the pipe line to which the slave heat source device 101 and the use side heat exchanger 12 are connected. Reference numeral 15 denotes a gas-side junction, which connects a pipe connecting the main heat source unit 1 and the use-side heat exchanger 12 to a pipe connecting the slave heat source unit 101 and the use-side heat exchanger 12.
【0018】16は均油回路で、主油溜部7及び従油溜
部107が油溜管路によって連結され、油溜管路の主油
溜部側開口部は主油溜部7内の液量が第一所定量以下に
なったときに主油溜部7内の液と接しない位置に配置さ
れ、油溜管路の従油溜部側開口部は従油溜部107内の
液量が第二所定量以下になったときに従油溜部107内
の液と接しない位置に配置される。Reference numeral 16 denotes an oil leveling circuit, in which the main oil reservoir 7 and the auxiliary oil reservoir 107 are connected by an oil reservoir, and an opening of the oil reservoir on the main oil reservoir side is formed in the main oil reservoir 7. When the liquid amount becomes equal to or less than the first predetermined amount, the oil reservoir is disposed at a position not in contact with the liquid in the main oil reservoir 7, and the opening in the auxiliary oil reservoir side of the oil reservoir pipe is the liquid in the auxiliary oil reservoir 107. When the amount becomes equal to or less than the second predetermined amount, the oil is disposed at a position not in contact with the liquid in the oil reservoir 107.
【0019】Goは各熱源機の冷媒循環量GRに対する
吐出油量、OSは油分離器による油分離効率、R1は各
熱源機系外への循環油量、R2は各熱源機系外へ流出し
た循環油量R1に対するガス側合流部15、液側合流部
14から各熱源機への返油量、R3は油分離器から油溜
部への返油量、R4は油溜部から圧縮機への返油量、R
5は油溜部から圧縮機への返油量である。なお、各記号
の末尾におけるaは主熱源機1に関する量を示し、bは
従熱源機101に関する量を示す。Go is the discharge oil amount relative to the refrigerant circulation amount GR of each heat source unit, OS is the oil separation efficiency by the oil separator, R1 is the amount of circulating oil outside each heat source unit system, and R2 is the outflow unit outside each heat source unit system. The amount of oil returned from the gas-side merging portion 15 and the liquid-side merging portion 14 to each heat source unit with respect to the circulated oil amount R1, the amount of oil returned from the oil separator to the oil sump, and the range of R4 from the oil sump to the compressor. Returned oil amount to R
5 is the amount of oil returned from the oil reservoir to the compressor. Note that a at the end of each symbol indicates an amount related to the main heat source unit 1, and b indicates an amount related to the sub heat source unit 101.
【0020】また、図2において横軸に主熱源機1及び
従熱源機101の冷媒循環量GRa、GRb、縦軸に主
熱源機1及び従熱源機101からの吐出油量Goa、G
obを示す。また、図3及び図4において横軸に主熱源
機1及び従熱源機101の循環油量R1a、R1b、縦
軸にガス側合流部15、液側合流部14からの返油量R
2a、R2bを示す。In FIG. 2, the horizontal axis represents the refrigerant circulation amounts GRa and GRb of the main heat source unit 1 and the sub heat source unit 101, and the vertical axis represents the oil amounts Goa and G discharged from the main heat source unit 1 and the sub heat source unit 101.
ob. 3 and 4, the horizontal axis represents the circulating oil amounts R1a and R1b of the main heat source unit 1 and the sub-heat source unit 101, and the vertical axis represents the oil return amount R from the gas-side junction 15 and the liquid-side junction 14.
2a and R2b are shown.
【0021】なお、以下は主熱源機1の主圧縮機2につ
いて一台の出力制御型圧縮機とし、また従熱源機101
の従圧縮機102について一台の定出力型圧縮機として
説明する。しかし、主圧縮機2については一台又は複数
台によって構成されて一台の場合は出力制御可能な圧縮
機によって構成され、複数台の場合は、出力制御可能な
圧縮機とこの圧縮機と同能力の定出力圧縮機又は出力制
御可能な圧縮機の組合わせ、もしくは異能力の定出力圧
縮機又は出力制御可能な圧縮機の組合わせによる構成で
あっても同様の作用を得ることができる。また、従圧縮
機102については適宜な能力の、また適宜な出力形態
の圧縮機の一台又は複数台によって構成された場合であ
っても同様の作用を得ることができる。In the following, the main compressor 2 of the main heat source unit 1 is assumed to be one output control type compressor, and the sub heat source unit 101
Of the secondary compressor 102 will be described as one constant output compressor. However, the main compressor 2 is composed of one or a plurality of compressors. In the case of one compressor, it is composed of a compressor whose output can be controlled. A similar effect can be obtained by a combination of a constant-output compressor or a compressor whose output is controllable or a combination of a constant-output compressor or a compressor whose output is controllable. Further, the same effect can be obtained even when the slave compressor 102 is constituted by one or more compressors having appropriate capacity and appropriate output form.
【0022】また、上記のような圧縮機の組合わせにお
いて一台以上の主熱源機1に対し、上記のような圧縮機
の組合わせにおける複数の従熱源機101が組合わされ
た場合であっても同様の作用を得ることができる。Also, in the above-described combination of compressors, one or more main heat source units 1 are combined with a plurality of auxiliary heat source units 101 in the above-described combination of compressors. Can obtain the same effect.
【0023】なお、図2において冷媒循環量GRの増加
に伴い油吐出量Go、各熱源機系外への循環油量R1も
増加することを示し、また返油量R4、R5は油吐出量
Goに比例し、返油量R3は冷媒循環量GRに対してほ
ぼ一定値を示す。以下、一例として主熱源機1側の油吐
出量Goaが、従熱源機101の油吐出量Gobよりも
大きい場合について述べる。FIG. 2 shows that the oil discharge amount Go and the circulating oil amount R1 to the outside of each heat source system increase as the refrigerant circulation amount GR increases, and the oil return amounts R4 and R5 are the oil discharge amounts. In proportion to Go, the oil return amount R3 shows a substantially constant value with respect to the refrigerant circulation amount GR. Hereinafter, a case where the oil discharge amount Goa of the main heat source unit 1 is larger than the oil discharge amount Gob of the sub heat source unit 101 will be described as an example.
【0024】また、図3及び図4において主熱源機1及
び従熱源機101からの循環油量R1に対する返油量R
2の偏差を示す。すなわち、図3及び図4中の一次直線
上に返油量R2が載れば、主熱源機1及び従熱源機10
1の循環油量R1に対する返油量R2が適正であること
を示す。In FIGS. 3 and 4, the amount of oil returned R with respect to the amount of circulating oil R1 from the main heat source unit 1 and the sub heat source unit 101 is shown.
2 shows a deviation of 2. That is, if the oil return amount R2 is on the primary straight line in FIGS. 3 and 4, the main heat source unit 1 and the sub heat source unit 10
This indicates that the returned oil amount R2 for the circulating oil amount R1 of 1 is appropriate.
【0025】以下、一例として、主熱源機1側の循環油
量R1aが増加すると主熱源機1側への返油量R2aが
減少し、その減少分が図4のA領域に示すように従熱源
機101側へ過剰に返油される。また、主熱源機1側の
循環油量R1aが減少すると主熱源機1側への返油量R
2aが増加し、主熱源機1側へ過剰に返油されその過剰
分が図4のB領域に示すように従熱源機101側への返
油量が減少する場合について述べる。In the following, as an example, when the circulating oil amount R1a on the main heat source unit 1 increases, the oil return amount R2a on the main heat source unit 1 side decreases, and the amount of the decrease is as shown in region A of FIG. Oil is excessively returned to the heat source device 101 side. When the circulating oil amount R1a of the main heat source unit 1 decreases, the oil return amount R to the main heat source unit 1 decreases.
The case where 2a increases and the oil is excessively returned to the main heat source unit 1 side, and the excess amount decreases the amount of oil returned to the sub heat source unit 101 side as shown in a region B in FIG.
【0026】上記のように構成された冷凍空気調和装置
において、主熱源機1、従熱源機101及び利用側熱交
換器12を主要部として冷媒回路が構成される。そし
て、主熱源機1、従熱源機101の出力により利用側熱
交換器12を介して所要の空気調和が行われる。In the refrigerated air conditioner configured as described above, the main heat source unit 1, the auxiliary heat source unit 101, and the use side heat exchanger 12 constitute a main part of a refrigerant circuit. Then, the required air conditioning is performed via the use side heat exchanger 12 by the outputs of the main heat source unit 1 and the sub heat source unit 101.
【0027】そして、均油回路16は主熱源機1及び従
熱源機101の両者の間に構成され、上記両者の油吐出
量に対し上記両者への返油量に不均衡が生じて、上記両
者の一方の熱源機で冷凍機油不足、他方の熱源機で冷凍
機油過剰となった場合に主油溜部7と従油溜部107の
間で均油を行う。The oil equalizing circuit 16 is provided between the main heat source unit 1 and the auxiliary heat source unit 101, and the amount of oil returned to the two units is imbalanced with respect to the amount of oil discharged to the two units. If one of the two heat source units has a shortage of refrigeration oil and the other one has an excess of refrigeration oil, the oil is leveled between the main oil reservoir 7 and the auxiliary oil reservoir 107.
【0028】また、主油溜部7内と従油溜部107内に
は圧縮機の必要冷凍機油量以外に前述の第一所定量又は
第二所定量分の冷凍機油が封入されている。これらの所
定量は、上記両者から吐出される冷凍機油量に対して上
記両者への返油量に不均衡が生じた場合に、上記両者の
圧縮機を不均衡発生後に所定時間運転するために必要な
冷凍機油量である。The first predetermined amount or the second predetermined amount of refrigerating machine oil in addition to the required refrigerating machine oil amount of the compressor is sealed in the main oil sump 7 and the sub oil sump 107. These predetermined amounts are used to operate both compressors for a predetermined time after the occurrence of imbalance when the amount of oil returned to the two is imbalanced with respect to the amount of refrigerating machine oil discharged from the two. This is the required amount of refrigerating machine oil.
【0029】以下、冷媒の挙動について図1に実線の矢
印で示す冷房運転の場合について説明する。すなわち、
主熱源機1の主圧縮機2を出た高温、高圧のガス冷媒は
主四方弁4を経て主熱交換機5へ流れる。ここで放熱し
高圧の液冷媒となり、その後主熱源機1を出て液側合流
部14に至る。Hereinafter, the behavior of the refrigerant will be described in the case of the cooling operation indicated by the solid arrow in FIG. That is,
The high-temperature, high-pressure gas refrigerant flowing out of the main compressor 2 of the main heat source unit 1 flows to the main heat exchanger 5 via the main four-way valve 4. Here, the heat is radiated to become a high-pressure liquid refrigerant, and then exits the main heat source unit 1 and reaches the liquid-side junction 14.
【0030】また、従熱源機101においても同様に従
圧縮機102から従四方弁104を経て従熱交換機10
5へ流れ、液側合流部14で主熱源機1からの液冷媒と
合流する。次いで、合流した液冷媒は利用側流量制御弁
13へ流れて減圧されて低温低圧の二相冷媒となり利用
側熱交換器12に流れて吸熱して、その殆どがガス状に
なる。そして、この低圧ガス冷媒はガス側合流部15で
主熱源機1側と従熱源機101側に別れる。Similarly, in the slave heat source unit 101, the slave heat exchanger 10 is sent from the slave compressor 102 via the slave four-way valve 104.
5 and merges with the liquid refrigerant from the main heat source unit 1 at the liquid side junction 14. Next, the combined liquid refrigerant flows to the use-side flow control valve 13 and is decompressed, becomes a low-temperature low-pressure two-phase refrigerant, flows to the use-side heat exchanger 12, absorbs heat, and almost becomes gaseous. Then, the low-pressure gas refrigerant is separated into the main heat source unit 1 side and the sub heat source unit 101 side at the gas side junction 15.
【0031】そして、主熱源機1に流れた冷媒は主四方
弁4を経て主液溜部8に入り、一部未蒸発であった液冷
媒を分離してガス冷媒のみが主圧縮機2に戻る。また、
従熱源機101側も主熱源機1側と同様に従四方弁10
4及び従液溜部108を経て従圧縮機102に戻る。Then, the refrigerant flowing to the main heat source unit 1 enters the main liquid reservoir 8 through the main four-way valve 4 and separates the liquid refrigerant which has been partially evaporated, and only the gas refrigerant flows to the main compressor 2. Return. Also,
The slave heat source unit 101 also has a slave four-way valve 10 similar to the main heat source unit 1 side.
4 and returns to the secondary compressor 102 via the secondary liquid storage section 108.
【0032】次に、図1に破線の矢印で示す暖房運転の
場合について説明する。すなわち、主熱源機1の主圧縮
機2を出た高温、高圧のガス冷媒は主四方弁4を経てガ
ス側合流部15に至る。ここで主熱源機1側と同様にし
て従熱源機101から流れるガス冷媒と合流し、利用側
熱交換器12に流れてガス冷媒が放熱、凝縮して高圧の
液冷媒となる。Next, the case of the heating operation shown by the broken arrow in FIG. 1 will be described. That is, the high-temperature, high-pressure gas refrigerant that has exited the main compressor 2 of the main heat source unit 1 reaches the gas-side junction 15 via the main four-way valve 4. Here, in the same manner as the main heat source unit 1 side, it merges with the gas refrigerant flowing from the sub heat source unit 101, flows into the use side heat exchanger 12, and radiates and condenses the gas refrigerant to become a high pressure liquid refrigerant.
【0033】そして、利用側熱交換器12を出た冷媒は
利用側流量制御弁13へ流れて減圧されて低圧の二相冷
媒となる。この二相冷媒はそのまま液側合流部14に至
り主熱源機1側と従熱源機101側に別れる。主熱源機
1側に流れた冷媒は主熱交換機5でその液部が殆ど吸熱
蒸発し主四方弁4を経て、主液溜部8により気液分離さ
れてガス冷媒のみが主圧縮機2に至る。また、液側合流
部14から従熱源機101に流れた冷媒は従熱交換機1
05、従四方弁104及び従液溜部108を経て従圧縮
機102に戻る。The refrigerant flowing out of the use side heat exchanger 12 flows to the use side flow control valve 13 and is reduced in pressure to become a low-pressure two-phase refrigerant. The two-phase refrigerant directly reaches the liquid-side merging section 14 and is separated into the main heat source unit 1 side and the sub heat source unit 101 side. Most of the refrigerant flowing to the main heat source unit 1 is absorbed and evaporated in the main heat exchanger 5, passes through the main four-way valve 4, is separated into gas and liquid by the main liquid reservoir 8, and only the gas refrigerant is transferred to the main compressor 2. Reach. Further, the refrigerant flowing from the liquid side merging section 14 to the sub heat source unit 101 is the sub heat exchanger 1
05, return to the slave compressor 102 via the slave four-way valve 104 and the slave liquid reservoir 108.
【0034】次に、冷凍機油の挙動について図1に実線
の矢印で示す冷房運転の場合について説明する。すなわ
ち、主熱源機1の主圧縮機2を出た高温、高圧のガス冷
媒と共に冷凍機油も吐出されて、主油分離器3によりガ
ス冷媒と冷凍機油に分離される。Next, the behavior of the refrigerating machine oil will be described in the case of a cooling operation indicated by a solid arrow in FIG. That is, the refrigerating machine oil is discharged together with the high-temperature, high-pressure gas refrigerant that has exited the main compressor 2 of the main heat source unit 1, and is separated into the gas refrigerant and the refrigerating machine oil by the main oil separator 3.
【0035】そして、主油分離器3で冷凍機油の大部分
を回収するが一部分はガス冷媒と共に主四方弁4を経て
主熱交換機5へ流れ、その後主熱源機1を出て液側合流
部14に至る。また、主油分離器3で分離された冷凍機
油は、主油分離器3と主油溜部7を連結する主連結管9
をとおって主油溜部7に溜められて、主返油回路10に
より主圧縮機2に還流する。The main oil separator 3 recovers most of the refrigerating machine oil, but a part of the oil flows together with the gas refrigerant through the main four-way valve 4 to the main heat exchanger 5, and then exits the main heat source unit 1 and joins the liquid side junction. It reaches 14. The refrigerating machine oil separated by the main oil separator 3 is supplied to the main connecting pipe 9 connecting the main oil separator 3 and the main oil reservoir 7.
And is returned to the main compressor 2 by the main oil return circuit 10.
【0036】また、従熱源機101においても主熱源機
1と同様に、従圧縮機102から吐出された冷凍機油は
従油分離器103でガス冷媒と冷凍機油に分離される。
そして、冷凍機油は一部分がガス冷媒と共に従四方弁1
04を経て従熱交換機105へ流れ、その後従熱源機1
01を出て液側合流部14に至る。また、従油分離器1
03で分離された冷凍機油は、従油分離器103と従油
溜部107を連結する従連結管109をとおって従油溜
部107に溜められて、従返油回路110により従圧縮
機102に還流する。In the auxiliary heat source unit 101, as in the main heat source unit 1, the refrigerating machine oil discharged from the sub compressor 102 is separated by the sub oil separator 103 into gas refrigerant and refrigerating machine oil.
And the refrigerating machine oil is partially mixed with the gas refrigerant,
04 to the slave heat exchanger 105, and then the slave heat source unit 1
After exiting from the position 01, it reaches the liquid side merging section 14. In addition, the slave oil separator 1
The refrigerating machine oil separated at 03 is stored in the secondary oil reservoir 107 through the secondary connection pipe 109 connecting the secondary oil separator 103 and the secondary oil reservoir 107, and is returned to the secondary compressor 102 by the return oil circuit 110. Reflux.
【0037】一方、主油分離器3又は従油分離器103
で分離されきれずに主熱源機1及び従熱源機101外へ
流出して、液側合流部14において合流した主熱源機1
及び従熱源機101からの冷凍機油は、そのまま利用側
熱交換器12に向かう。そして、利用側流量制御弁13
により減圧されて低温低圧の二相冷媒となり、利用側熱
交換器12で吸熱することにより、その殆どがガス状と
なった冷媒と共にガス側合流部15で主熱源機1側と従
熱源機101側に分かれる。On the other hand, the main oil separator 3 or the secondary oil separator 103
The main heat source unit 1 that flows out of the main heat source unit 1 and the sub heat source unit 101 without being separated by the
And the refrigerating machine oil from the subordinate heat source unit 101 goes to the use side heat exchanger 12 as it is. And the use side flow control valve 13
The refrigerant is turned into a low-temperature, low-pressure two-phase refrigerant, which absorbs heat in the use-side heat exchanger 12, so that most of the refrigerant becomes gaseous together with the main-heat source unit 1 and the auxiliary heat source unit 101 at the gas-side junction 15. Divide into sides.
【0038】そして、主熱源機1側に流れた冷凍機油は
主四方弁4を経て未蒸発の液冷媒と共に、主液溜部8に
入りガス冷媒と分離されて溜められる。この主液溜部8
に溜められた冷凍機油は、主液溜部8から主圧縮機2に
冷媒と冷凍機油の混合液を戻す主返液回路11によって
主圧縮機2へ戻る。また、従熱源機101側も主熱源機
1側と同様に従四方弁104、従液溜部108及び従返
液回路111を経て従圧縮機102に戻る。The refrigerating machine oil flowing to the main heat source unit 1 enters the main liquid reservoir 8 together with the unevaporated liquid refrigerant via the main four-way valve 4 and is separated and stored from the gas refrigerant. This main reservoir 8
The refrigerating machine oil stored in the main compressor 2 is returned to the main compressor 2 by a main liquid return circuit 11 for returning a mixed liquid of the refrigerant and the refrigerating machine oil from the main liquid reservoir 8 to the main compressor 2. The slave heat source unit 101 also returns to the slave compressor 102 via the slave four-way valve 104, the slave liquid storage unit 108, and the slave liquid circuit 111 in the same manner as the main heat source unit 1 side.
【0039】次に、冷凍機油の挙動について図1に破線
の矢印で示す暖房運転の場合について説明する。すなわ
ち、主熱源機1の主圧縮機2を出た高温、高圧のガス冷
媒と共に吐出された冷凍機油は、主油分離器3によりガ
ス冷媒と冷凍機油に分離される。Next, the behavior of the refrigerating machine oil will be described in the case of a heating operation indicated by a broken arrow in FIG. That is, the refrigerating machine oil discharged together with the high-temperature, high-pressure gas refrigerant exiting the main compressor 2 of the main heat source unit 1 is separated into the gas refrigerant and the refrigerating machine oil by the main oil separator 3.
【0040】そして、主油分離器3で冷凍機油の大部分
を回収するが一部分はガス冷媒と共に主四方弁4を経て
主熱源機1を出てガス側合流部15に至る。また、主油
分離器3で分離された冷凍機油は、主油分離器3と主油
溜部7を連結する主連結管9をとおって主油溜部7に溜
められて、主返油回路10により主圧縮機2に還流す
る。Then, most of the refrigerating machine oil is recovered by the main oil separator 3, but a part thereof exits the main heat source unit 1 via the main four-way valve 4 together with the gas refrigerant and reaches the gas side junction 15. Further, the refrigerating machine oil separated by the main oil separator 3 is stored in the main oil reservoir 7 through a main connecting pipe 9 connecting the main oil separator 3 and the main oil reservoir 7, and is returned to the main oil return circuit. The refrigerant is returned to the main compressor 2 by 10.
【0041】また、従熱源機101においても主熱源機
1と同様に、従圧縮機102から吐出された冷凍機油は
従油分離器103でガス冷媒と冷凍機油に分離される。
そして、冷凍機油は一部分がガス冷媒と共に従四方弁1
04を経て従熱交換機105へ流れ、その後従熱源機1
01を出てガス側合流部15に至る。また、従油分離器
103で分離された冷凍機油は、従油分離器103と従
油溜部107を連結する従連結管109をとおって従油
溜部107に溜められて、従返油回路110により従圧
縮機102に還流する。Further, in the slave heat source unit 101, similarly to the main heat source unit 1, the refrigerating machine oil discharged from the slave compressor 102 is separated into the gas refrigerant and the refrigerating machine oil by the slave oil separator 103.
And the refrigerating machine oil is partially mixed with the gas refrigerant,
04 to the slave heat exchanger 105, and then the slave heat source unit 1
After exiting 01, it reaches the gas-side merging section 15. The refrigerating machine oil separated by the slave oil separator 103 is stored in the slave oil reservoir 107 through a slave connection pipe 109 connecting the slave oil separator 103 and the slave oil reservoir 107, and is returned to the return oil circuit. The flow is returned to the slave compressor 102 by 110.
【0042】一方、主油分離器3又は従油分離器103
で分離されきれずに主熱源機1及び従熱源機101外へ
流出して、ガス側合流部15において合流した主熱源機
1及び従熱源機101からの冷凍機油は、そのまま利用
側熱交換器12に向かう。そして、利用側熱交換器12
で放熱して液冷媒となり利用側流量制御弁13により減
圧されて低温低圧の二相状態となった冷媒と共に、液側
合流部14で主熱源機1側と従熱源機101側に分かれ
る。On the other hand, the main oil separator 3 or the secondary oil separator 103
The refrigerating machine oil from the main heat source unit 1 and the sub heat source unit 101 that has flowed out of the main heat source unit 1 and the sub heat source unit 101 without being separated at the gas side and joined at the gas side junction unit 15 is used as it is as the use side heat exchanger. Go to 12. And the use side heat exchanger 12
At the liquid side merging section 14, the refrigerant is separated into the main heat source unit 1 and the sub heat source unit 101 together with the refrigerant which becomes a liquid refrigerant and becomes a low-temperature and low-pressure two-phase state by being reduced in pressure by the use side flow control valve 13.
【0043】そして、主熱源機1側に流れた冷凍機油は
主熱交換機5及び主四方弁4を経て未蒸発の液冷媒と共
に、主液溜部8に入りガス冷媒と分離されて溜められ
る。この主液溜部8に溜められた冷凍機油は、主液溜部
8から主圧縮機2に冷媒と冷凍機油の混合液を戻す主返
液回路11によって主圧縮機2へ戻る。The refrigerating machine oil flowing to the main heat source unit 1 passes through the main heat exchanger 5 and the main four-way valve 4 and enters the main liquid reservoir 8 together with the unevaporated liquid refrigerant, where it is separated from the gas refrigerant and stored. The refrigerating machine oil stored in the main liquid reservoir 8 returns to the main compressor 2 by a main liquid return circuit 11 that returns a mixed liquid of the refrigerant and the refrigerating machine oil from the main liquid reservoir 8 to the main compressor 2.
【0044】また、従熱源機101側も主熱源機1側と
同様に従熱交換機105及び従四方弁104を経て、未
蒸発の液冷媒と共に従液溜部108に溜められた冷凍機
油は、従液溜部108から従圧縮機102に冷媒と冷凍
機油の混合液を戻す従返液回路111によって従圧縮機
102へ戻る。Similarly to the main heat source unit 1, the refrigerating machine oil stored in the sub-liquid storage unit 108 together with the unevaporated liquid refrigerant passes through the sub heat exchanger 105 and the sub four-way valve 104 as in the main heat source unit 1 side. The secondary liquid is returned to the secondary compressor 102 by the secondary liquid circuit 111 that returns the mixed liquid of the refrigerant and the refrigerating machine oil from the secondary liquid storage unit 108 to the secondary compressor 102.
【0045】ここで、主熱源機1及び従熱源機101の
両者の一方で冷凍機油が不足し、他方で冷凍機油が過剰
となる事態が発生する経過を説明する。なお、このよう
な事態は前述の冷凍機油の挙動によって上記両者から吐
出された冷凍機油量に対し、液側合流部14及びガス側
合流部15において上記両者への返油量の不均衡のため
に発生する。Here, a description will be given of a process in which the refrigeration oil is insufficient on one side of the main heat source unit 1 and the auxiliary heat source unit 101 and the refrigeration oil is excessive on the other side. Note that such a situation is caused by an imbalance in the amount of oil returned to the two at the liquid-side merging portion 14 and the gas-side merging portion 15 with respect to the amount of the refrigerating machine oil discharged from the both due to the behavior of the above-described refrigerating machine oil. Occurs.
【0046】すなわち、今、図2に示すように主熱源機
1の主圧縮機2の油吐出量Goaに比べ、従熱源機10
1の従圧縮機102の油吐出量Gobの方が小さく、図
3及び図4に示すように主熱源機1系外へ流出する循環
油量R1aに対し返油量R2aが少なく、従圧縮機10
2の油吐出量Gobに対し返油量R2bが過剰な場合、
すなわち図4中のA領域について図5によって説明す
る。That is, as shown in FIG. 2, the oil discharge amount Goa of the main compressor 2 of the main heat source unit 1 is compared with that of the sub heat source unit 10.
The oil discharge amount Gob of the first secondary compressor 102 is smaller, and as shown in FIGS. 3 and 4, the return oil amount R2a is smaller than the circulating oil amount R1a flowing out of the main heat source unit 1 and the secondary compressor 102 10
When the oil return amount R2b is excessive with respect to the oil discharge amount Gob of No. 2,
That is, the region A in FIG. 4 will be described with reference to FIG.
【0047】すなわち、図2に示すように主圧縮機2の
油吐出量Goaが大きくなると、ある一定差圧において
一定返油能力の主油分離器3から主油溜部7への返油量
R3aに対し、主油分離器3における油分離効率OSa
(=R3a/Goa)が低下するので、主熱源機1系外
へ流出する循環油量R1aが増加する。また、図3中の
A領域に示すように液側合流部14及びガス側合流部1
5からの返油量R2aが主熱源機1系外へ流出する循環
油量R1aに比べ減少するため、主液溜部8から主圧縮
機2への返油量R4aも低下する。That is, as shown in FIG. 2, when the oil discharge amount Goa of the main compressor 2 increases, the amount of oil returned from the main oil separator 3 having a constant oil return capacity to the main oil reservoir 7 at a certain constant differential pressure. Oil separation efficiency OSa in the main oil separator 3 with respect to R3a
Since (= R3a / Goa) decreases, the circulating oil amount R1a flowing out of the main heat source unit 1 increases. Further, as shown in the region A in FIG. 3, the liquid side merging portion 14 and the gas side merging portion 1
5 is smaller than the circulating oil amount R1a flowing out of the main heat source unit 1, the amount of oil returned R4a from the main reservoir 8 to the main compressor 2 is also reduced.
【0048】そして、油吐出量Goaの増加に対し主油
分離器3から主油溜部7への返油量R3aが少ない上
に、主油溜部7から主圧縮機2への返油量R5aは油吐
出量Goaとほぼ同量で返油されるため、時間の経過と
共に主油溜部7内の冷凍機油量が低下してR5a>R3
aとなる。これによって、主油溜部7内の冷凍機油量が
空になるとGoa>R5a(=R3a)+R4aとなっ
て、いずれ主圧縮機2内の冷凍機油量さえも低下する。As the oil discharge amount Goa increases, the amount R3a of oil returned from the main oil separator 3 to the main oil reservoir 7 is small, and the amount of oil returned from the main oil reservoir 7 to the main compressor 2 is small. Since R5a is returned in substantially the same amount as the oil discharge amount Goa, the amount of refrigerating machine oil in the main oil reservoir 7 decreases with time, and R5a> R3
a. As a result, when the refrigerating machine oil amount in the main oil reservoir 7 becomes empty, Goa> R5a (= R3a) + R4a, and even the refrigerating machine oil amount in the main compressor 2 eventually decreases.
【0049】また、図2に示すように油吐出量Goaの
大きい主圧縮機2に比べて、比較的に油吐出量Gobの
小さい従圧縮機102では、図4に示すA領域のように
液側合流部14及びガス側合流部15からの返油量R2
bが従熱源機101系外へ流出する循環油量R1bに比
べ増加するため、従液溜部108から従圧縮機102へ
の返油量R4bも増加する。Further, as compared with the main compressor 2 having a large oil discharge amount Goa as shown in FIG. 2, the secondary compressor 102 having a relatively small oil discharge amount Gob has a fluid Oil return amount R2 from the side merging portion 14 and the gas side merging portion 15
Since b is larger than the circulating oil amount R1b flowing out of the auxiliary heat source device 101 system, the oil return amount R4b from the auxiliary liquid reservoir 108 to the auxiliary compressor 102 is also increased.
【0050】このとき、従圧縮機102内の冷凍機油量
が増加するので油吐出量Gobが若干増加してGob’
となるが、油吐出量Gobに対し油分離効率OSaが一
定領域であるため従油分離器103から従油溜部107
への絶対返油量R3bのみが増加し、返油量R1bは一
定のままとなる。At this time, since the amount of refrigerating machine oil in the secondary compressor 102 increases, the oil discharge amount Gob slightly increases and Gob '
However, since the oil separation efficiency OSa is in a constant region with respect to the oil discharge amount Gob, the oil separation unit 103 moves the oil separation efficiency
Only the absolute oil return amount R3b increases, and the oil return amount R1b remains constant.
【0051】また、従油溜部107から従圧縮機102
への返油量R5bは、従液溜部108から従圧縮機10
2への返油量R4bが増加する前の油吐出量Gobとほ
ぼ同量で返油されるため、Gob’=R5b(=Go
b)+R4b、R5b<R3bとなり、時間の経過と共
に従油溜部107内の冷凍機油量が増加する。Further, the secondary compressor 102
The amount of oil returned R5b to the secondary compressor 10
Since the oil is returned in substantially the same amount as the oil discharge amount Gob before the oil return amount R4b to 2 increases, Gob ′ = R5b (= Go
b) + R4b, R5b <R3b, and the amount of refrigerating machine oil in the slave oil reservoir 107 increases over time.
【0052】なお、前述の説明では主熱源機1及び従熱
源機101の両者間の冷凍機油の偏在を放置すると、上
記両者の一方の圧縮機の冷凍機油量が低下して圧縮機の
動作信頼性が低下する状況を述べた。しかし、この問題
は上記両者間において均油運転を行うことによって解消
するものの、過度に均油運転を行うと冷凍空気調和の快
適性や、冷凍空気調和性能の低下を招く。In the above description, if the refrigerating machine oil is unevenly distributed between both the main heat source unit 1 and the sub-heat source unit 101, the refrigerating machine oil amount of one of the two compressors decreases, and the operation reliability of the compressor is reduced. Mentioned the situation where sex is reduced. However, although this problem is solved by performing the oil equalizing operation between the two, the excessive oil equalizing operation causes a reduction in the comfort of the refrigeration air conditioning and the refrigeration air conditioning performance.
【0053】したがって、図1〜図7の実施の形態にお
いては上記両者の圧縮機の油吐出量Goと、液側合流部
14及びガス側合流部15における上記両者への返油量
の偏差及び上記両者の圧縮機の運転出力を考慮し、上記
両者の運転が所定時間に達したときに適正な均油運転を
行うように冷凍空気調和装置が制御される。Accordingly, in the embodiment shown in FIGS. 1 to 7, the oil discharge amount Go of the two compressors and the deviation of the oil return amount to the two at the liquid side merging portion 14 and the gas side merging portion 15 and The refrigeration air conditioner is controlled so as to perform an appropriate oil leveling operation when the operation of both compressors reaches a predetermined time in consideration of the operation outputs of both compressors.
【0054】すなわち、主熱源機1及び従熱源機101
の両者間の冷凍機油の偏在を解消するために適正な均油
運転を行って上記両者の圧縮機の動作信頼性を向上す
る。このために主油溜部7及び従油溜部107の一方の
内部の冷凍機油が空になった場合にのみ均油運転を行
う。That is, the main heat source unit 1 and the sub heat source unit 101
In order to eliminate uneven distribution of refrigerating machine oil between the two, an appropriate oil leveling operation is performed to improve the operation reliability of the two compressors. Therefore, the oil leveling operation is performed only when the refrigeration oil inside one of the main oil reservoir 7 and the sub oil reservoir 107 is empty.
【0055】このような均油運転を行うには、主圧縮機
2及び従圧縮機102の油吐出量Goと液側合流部14
及びガス側合流部15における上記両者への返油量の偏
差及び主圧縮機2及び従圧縮機102の運転出力の図6
に示すような関係から均油運転要、すなわち油溜部内部
の冷凍機油が空となるまでの運転可能時間を最適に設定
することにより均油運転の頻度が抑制される。In order to perform such an oil equalizing operation, the oil discharge amount Go of the main compressor 2 and the sub compressor 102 and the liquid-side confluence 14
FIG. 6 shows the deviation of the oil return amount to the above and the operation output of the main compressor 2 and the sub compressor 102 in the gas-side merging section 15.
The frequency of the oil equalizing operation is suppressed by optimally setting the oil equalizing operation required, that is, the operable time until the refrigerating machine oil inside the oil reservoir becomes empty from the relationship shown in FIG.
【0056】そして、前述の油吐出量Goa>Gob、
かつ返油量R2a<R2bについて考察すると、油溜部
内部の冷凍機油が空となるまでの運転可能時間Tは次の
式1に示すようになる。Then, the aforementioned oil discharge amount Goa> Gob,
Considering the returned oil amount R2a <R2b, the operable time T until the refrigerating machine oil inside the oil reservoir becomes empty is expressed by the following equation 1.
【数2】 ここに χ:主油溜部7、従油溜部107内の冷凍機油
量 ρ:油密度 R5:主油溜部7、従油溜部107から主圧縮機2、従
圧縮機102への返油量 R3:主油分離器3、従油分離器103から主油溜部
7、従油溜部107への返油量(Equation 2) Here, χ: Refrigerant oil amount in the main oil reservoir 7 and the auxiliary oil reservoir 107 ρ: Oil density R5: Return from the main oil reservoir 7 and the auxiliary oil reservoir 107 to the main compressor 2 and the auxiliary compressor 102 Oil amount R3: Return amount of oil from the main oil separator 3 and the secondary oil separator 103 to the main oil reservoir 7 and the secondary oil reservoir 107
【0057】そして、前述のA領域の運転範囲では最悪
条件であるR5a=R5amax ≒〔Goamax (圧縮機
の冷媒循環量max に対する油吐出量max 値)又は圧縮機
吸入管内の流速max 値と前後差圧、液冷媒ヘッドにより
求められる返油量max 値〕と、R3a=R3amin (主
油分離器3と主油溜部7を結ぶ主連結管9の管路径、長
さ及び前後差圧から求められるmin 値)によって運転可
能時間Taが求められる。Then, the worst condition R5a = R5amax ≒ [Goamax (maximum oil discharge amount with respect to the refrigerant circulation amount max of the compressor) or the flow velocity max value in the suction pipe of the compressor, which is the worst condition in the operation range of the above-mentioned region A, R3a = R3amin (determined from the pipe diameter, length, and differential pressure across the main connecting pipe 9 connecting the main oil separator 3 and the main oil reservoir 7). The operable time Ta is obtained from the (min value).
【0058】また、従熱源機101の従油溜部107内
の冷凍機油量が低下する場合、すなわち油吐出量Goa
<Gob、かつ返油量R2a>R2bについて考察する
と、均油運転要、すなわち油溜部内部の冷凍機油が空と
なるまでの運転可能時間Tbは、最悪条件であるR5b
=R5bmax ≒〔Gobmax (圧縮機の冷媒循環量max
に対する油吐出量max 値)又は圧縮機吸入管内の流速ma
x 値と前後差圧、液冷媒ヘッドにより求められる返油量
max 値〕と、R3b=R3bmin (従油分離器103と
従油溜部107を結ぶ従連結管109の管路径、長さ及
び前後差圧から求められるmin 値)によって運転可能時
間Tbが求められる。When the refrigerating machine oil amount in the slave oil reservoir 107 of the slave heat source unit 101 decreases, that is, the oil discharge amount Goa
Considering <Gob and oil return amount R2a> R2b, the oil equalization operation required, that is, the operable time Tb until the refrigeration oil inside the oil reservoir becomes empty is the worst condition R5b.
= R5bmax ≒ [Gobmax (refrigerant circulation amount max of compressor
Oil flow rate max value) or the flow rate ma in the compressor suction pipe
x value, differential pressure before and after, oil return amount obtained by liquid refrigerant head
max value] and R3b = R3bmin (min value obtained from the pipe diameter, length, and front-rear differential pressure of the secondary connecting pipe 109 connecting the secondary oil separator 103 and the secondary oil reservoir 107) to obtain the operable time Tb. .
【0059】したがって、無用な均油運転を抑制して適
正な均油運転を行う圧縮機運転時間は、運転可能時間T
a及び運転可能時間Tbのいずれかの小さい方というこ
とになる。そして、図7に示すフローチャートによって
均油運転が行われる。すなわちステップ201において
運転時間計時手段201により主圧縮機2及び従圧縮機
102の運転時間Tが計時される。Therefore, the compressor operating time for performing unnecessary oil equalizing operation and performing proper oil equalizing operation is the operable time T
a or the operable time Tb, whichever is smaller. Then, the oil leveling operation is performed according to the flowchart shown in FIG. That is, in step 201, the operation time T of the main compressor 2 and the sub-compressor 102 is measured by the operation time measuring means 201.
【0060】次いでステップ202、すなわち均油運転
要否判定手段202へ進み、運転時間Tが運転可能時間
Ta及び運転可能時間Tbのいずれかの小さい方、すな
わち運転可能時間Toよりも小さければステップ201
へ戻り、大きければステップ203へ進む。そして、ス
テップ203へ進んで均油運転が行われる。Next, the routine proceeds to step 202, that is, to the oil equalizing operation necessity judging means 202. If the operation time T is smaller than the smaller of the operable time Ta and the operable time Tb, ie, if it is smaller than the operable time To, step 201
Return to step 203, and if larger, proceed to step 203. Then, the routine proceeds to step 203, where the oil equalizing operation is performed.
【0061】これによって、主熱源機1及び従熱源機1
01を組合わせて大容量の熱源手段が形成され、この熱
源手段により冷媒回路が構成された冷凍空気調和装置に
おいて、液側合流部14、ガス側合流部15における各
熱源機への返油量の偏向を考慮し、各熱源機の運転が所
定時間継続した段階で均油運転要否判定手段202の判
定を介して均油運転が行われる。Thus, the main heat source unit 1 and the sub heat source unit 1
01 in the refrigeration air conditioner in which a refrigerant circuit is constituted by the heat source means, the amount of oil returned to each heat source unit at the liquid-side junction 14 and the gas-side junction 15. When the operation of each heat source unit has continued for a predetermined time, the oil equalizing operation is performed through the determination of the oil equalizing operation necessity determination means 202 in consideration of the deflection of the heat source units.
【0062】そして、均油運転要否判定手段202の判
定による均油運転により利用側熱交換器12から戻る冷
凍機油が、適正な頻度により主熱源機1及び従熱源機1
01に均等に配分される。したがって、冷凍空気調和の
快適性や、冷凍空気調和の性能の低下を伴うことなく、
主圧縮機2、従圧縮機102の動作信頼性を向上するこ
とができる。Then, the refrigerating machine oil returned from the use side heat exchanger 12 by the oil equalizing operation determined by the oil equalizing operation necessity determining means 202 is subjected to the main heat source unit 1 and the sub heat source unit 1 at appropriate frequencies.
01 are evenly distributed. Therefore, without accompanying the comfort of refrigeration air conditioning and the performance of refrigeration air conditioning,
The operation reliability of the main compressor 2 and the sub compressor 102 can be improved.
【0063】実施の形態2.図8〜図11は、この発明
の他の実施の形態の一例を示す図で、図8〜図11はそ
れぞれ通常運転時における均油運転時の圧縮機運転出力
を示すグラフである。なお、冷凍空気調和装置の構成、
冷媒の流れ、通常運転時の冷凍機油の流れは前述の図1
〜図7の実施の形態と同様であり、均油運転については
次に述べるように行われる。Embodiment 2 8 to 11 are views showing an example of another embodiment of the present invention, and FIGS. 8 to 11 are graphs showing the compressor operation output during the oil equalization operation during the normal operation. The configuration of the refrigeration air conditioner,
The flow of the refrigerant and the flow of the refrigerating machine oil during normal operation are as shown in FIG.
7 to FIG. 7, and the oil leveling operation is performed as described below.
【0064】すなわち、前述の図7におけるステップ2
02、すなわち均油運転要否判定手段202による均油
運転要判定のときに、図8に示すように通常運転時の圧
縮機運転出力に応じて、均油運転時は各熱源機間で冷凍
機油が移動し得る所定時間だけ各熱源機の圧縮機の出力
を増減させる。そして、熱源機内の主油溜部7の内圧P
aと従油溜部107の内圧Pbとにより差圧を生じさせ
て冷凍機油を移動させる。That is, step 2 in FIG.
02, that is, at the time of oil equalization operation necessity determination by the oil equalization operation necessity determination means 202, as shown in FIG. 8, depending on the compressor operation output during normal operation, refrigeration between the heat source units during oil equalization operation. The output of the compressor of each heat source device is increased or decreased for a predetermined time during which the machine oil can move. The internal pressure P of the main oil reservoir 7 in the heat source unit
a and the internal pressure Pb of the slave oil reservoir 107 to generate a differential pressure to move the refrigerating machine oil.
【0065】図8により通常運転時に主圧縮機2運転出
力<従圧縮機102運転出力の場合、すなわち図8に示
すA部、図9の場合に少なくとも一台の出力制御型圧縮
機を有する主圧縮機2の運転出力を、従圧縮機102の
運転出力よりも大きくなるように所定時間増加させる。
これにより、主油溜部7の内圧Paと従油溜部107の
内圧Pbの関係を逆転させ、すなわち通常時Pa>Pb
→均油時Pa<Pbとし、従油溜部107内の冷凍機油
を主油溜部7へ移動させる。As shown in FIG. 8, when the operation output of the main compressor 2 is smaller than the operation output of the slave compressor 102 during normal operation, that is, the part A shown in FIG. 8 and the case of FIG. The operation output of the compressor 2 is increased for a predetermined time so as to be larger than the operation output of the slave compressor 102.
As a result, the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the sub oil reservoir 107 is reversed, that is, Pa> Pb at normal times.
→ When oil leveling is established, Pa <Pb, and the refrigerating machine oil in the secondary oil reservoir 107 is moved to the main oil reservoir 7.
【0066】そして、均油運転の所定時間が経過した後
に元の通常運転時の主圧縮機2、従圧縮機102の運転
状態に戻す。このときに主油溜部7、従油溜部107の
差圧は元に戻って主油溜部7内の冷凍機油が従油溜部1
07へ移動する。なお、均油回路16の開口部は主油溜
部7内の液量が第一所定量以下になったときに主油溜部
7内の液面と接しない位置に配置され、また従油溜部1
07内の液量が第二所定量以下になったときに従油溜部
107内の液面と接しない位置に配置される。このた
め、均油運転を行ったときに主油溜部7、従油溜部10
7の冷凍機油量が所定量を超えて低下することはない。Then, after a predetermined time of the oil equalizing operation has elapsed, the operation state of the main compressor 2 and the sub compressor 102 during the normal operation is returned to the original operation state. At this time, the pressure difference between the main oil sump 7 and the sub oil sump 107 returns to the original pressure, and the refrigerating machine oil in the main oil sump 7 is moved to the sub oil sump 1.
Move to 07. The opening of the oil equalizing circuit 16 is arranged at a position where it does not come into contact with the liquid level in the main oil reservoir 7 when the liquid amount in the main oil reservoir 7 becomes equal to or less than the first predetermined amount. Reservoir 1
When the liquid amount in 07 becomes equal to or less than the second predetermined amount, it is arranged at a position not in contact with the liquid surface in oil reservoir 107. Therefore, when the oil leveling operation is performed, the main oil reservoir 7 and the secondary oil reservoir 10
The refrigerating machine oil amount of 7 does not decrease below a predetermined amount.
【0067】例えば、図8に示すA部、図9の状態で
は、内圧Pa>Pbであり従油溜部107へ冷凍機油が
偏在し易い。このため、従油溜部107内に第二所定量
以上の冷凍機油が存在し、主油溜部7側で冷凍機油が不
足しているとすると、均油運転では従油溜部107から
主油溜部7へ冷凍機油が移動する。しかし、従油溜部1
07の第二所定量以上の余剰油のみが移動して、従油溜
部107に第二所定量の冷凍機油が保持される。For example, in the part A shown in FIG. 8 and the state shown in FIG. 9, the internal pressure Pa> Pb, and the refrigerating machine oil tends to be unevenly distributed to the sub oil reservoir 107. For this reason, if the second predetermined amount or more of the refrigerating machine oil exists in the sub oil reservoir 107 and the refrigerating machine oil is insufficient on the main oil reservoir 7 side, the main oil reservoir 107 The refrigerating machine oil moves to the oil reservoir 7. However, the secondary oil reservoir 1
Only the excess oil of the second predetermined amount of 07 or more moves, and the second predetermined amount of the refrigerating machine oil is held in the slave oil reservoir 107.
【0068】次に、図8により通常運転時に主圧縮機2
運転出力=従圧縮機102運転出力の場合、すなわち図
8に示すB部、図10の場合に少なくとも一台の出力制
御型圧縮機を有する主圧縮機2の運転出力を、まず従圧
縮機102の運転出力よりも大きくなるように所定時間
増加させる。Next, according to FIG. 8, the main compressor 2
When the operation output is the operation output of the secondary compressor 102, that is, the operation output of the main compressor 2 having at least one output control type compressor in the part B shown in FIG. Is increased for a predetermined time so as to be larger than the operation output of the above.
【0069】これにより、主油溜部7の内圧Paと従油
溜部107の内圧Pbに差圧を生じさせ、すなわち通常
時Pa=Pb→均油時Pa<Pbとし、従油溜部107
内の第二所定量以上の冷凍機油を主油溜部7へ移動させ
る。そして、均油運転の所定時間が経過した後に、主圧
縮機2側の運転出力を従圧縮機102の運転出力よりも
小さくなるように所定時間減少させ、主油溜部7の内圧
Paと従油溜部107の内圧Pbに差圧を逆転させて均
油時Pa<Pb→均油時Pa>Pbとする。As a result, a differential pressure is generated between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the sub oil reservoir 107, that is, Pa = Pb at normal time → Pa <Pb at oil leveling.
The second predetermined amount or more of the refrigerating machine oil is moved to the main oil reservoir 7. Then, after a lapse of a predetermined time of the oil equalizing operation, the operation output of the main compressor 2 is reduced for a predetermined time so as to be smaller than the operation output of the sub compressor 102, and the internal pressure Pa of the main oil reservoir 7 and the sub output are reduced. The differential pressure is reversed to the internal pressure Pb of the oil reservoir 107 to make the oil level Pa <Pb → the oil level Pa> Pb.
【0070】これにより、主油溜部7内の第一所定量以
上の冷凍機油を従油溜部107へ移動させる。そして、
所定時間経過後に元の通常運転時の主圧縮機2、従圧縮
機102の運転状態に戻す。また、図8により通常運転
時に主圧縮機2運転出力>従圧縮機102運転出力の場
合、すなわち図8に示すC部、図11の場合に少なくと
も一台の出力制御型圧縮機を有する主圧縮機2の運転出
力を、従圧縮機102の運転出力よりも小さくなるよう
に所定時間減少させる。As a result, the refrigerating machine oil of the first predetermined amount or more in the main oil reservoir 7 is moved to the auxiliary oil reservoir 107. And
After a lapse of a predetermined time, the operation state of the main compressor 2 and the sub-compressor 102 during the normal operation is restored. Further, according to FIG. 8, when the operation output of the main compressor 2 is greater than the operation output of the sub-compressor 102 during the normal operation, that is, the main compressor having at least one output control type compressor in the part C shown in FIG. The operation output of the compressor 2 is reduced for a predetermined time so as to be smaller than the operation output of the slave compressor 102.
【0071】これにより、主油溜部7の内圧Paと従油
溜部107の内圧Pbの関係を逆転させ、すなわち通常
時Pa<Pb→均油時Pa>Pbとし、主油溜部7内の
第一所定量以上の冷凍機油を従油溜部107へ移動させ
る。そして、均油運転の所定時間が経過した後に、元の
通常運転時の主圧縮機2、従圧縮機102の運転状態に
戻す。As a result, the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the sub oil reservoir 107 is reversed, that is, the normal oil pressure Pa <Pb → the oil leveling oil Pa> Pb. Is moved to the secondary oil storage 107. Then, after a predetermined time of the oil equalizing operation has elapsed, the operation state of the main compressor 2 and the sub compressor 102 during the normal operation is returned to the original operation state.
【0072】このときの主油溜部7、従油溜部107内
の差圧は元に戻って、従油溜部107内の第二所定量以
上の冷凍機油は主油溜部7へ移動する。このようにし
て、主熱源機1及び従熱源機101を組合わせて大容量
の熱源手段が形成され、この熱源手段により冷媒回路が
構成された冷凍空気調和装置において、主熱源機1及び
従熱源機101の運転出力差を所定時間逆転させる。At this time, the pressure difference between the main oil reservoir 7 and the sub oil reservoir 107 returns to the original pressure, and the second predetermined amount or more of the refrigerating machine oil in the sub oil reservoir 107 moves to the main oil reservoir 7. I do. In this manner, the main heat source unit 1 and the sub heat source unit 101 are combined to form a large-capacity heat source unit, and in the refrigeration air conditioner in which the refrigerant circuit is constituted by the heat source units, the main heat source unit 1 and the sub heat source unit The operation output difference of the machine 101 is reversed for a predetermined time.
【0073】これによって、利用側熱交換器12から戻
る冷凍機油が、適正な頻度の均油運転によって主熱源機
1及び従熱源機101に均等に配分される。したがっ
て、詳細な説明を省略するが図8〜図11の実施の形態
においても図1〜図7の実施の形態と同様な作用が得ら
れる。なお、以上の説明は均油運転時に主油溜部7、従
油溜部107の内圧差をつけるための圧縮機運転出力調
整を主圧縮機2側のみで行うものとした。As a result, the refrigerating machine oil returning from the use side heat exchanger 12 is equally distributed to the main heat source unit 1 and the sub heat source unit 101 by the oil equalizing operation of an appropriate frequency. Therefore, although detailed description is omitted, the same operation as the embodiment of FIGS. 1 to 7 can be obtained in the embodiment of FIGS. In the above description, the compressor operation output for adjusting the internal pressure difference between the main oil reservoir 7 and the sub oil reservoir 107 during the oil leveling operation is adjusted only on the main compressor 2 side.
【0074】しかし、従圧縮機102側にも出力制御型
圧縮機が設けられている場合に、主圧縮機2側の運転出
力をそのままとし、従圧縮機102側のみで圧縮機運転
出力を調整して主油溜部7、従油溜部107の内圧差を
つけ均油運転を行っても図8〜図11の実施の形態と同
様な作用を得ることができる。また、主圧縮機2及び従
圧縮機102の両方の運転出力を調整し、主油溜部7、
従油溜部107の内圧差をつけて均油運転を行うように
しても図8〜図11の実施の形態と同様な作用を得るこ
とができる。However, when the output control type compressor is also provided on the slave compressor 102 side, the operation output of the main compressor 2 is kept as it is, and the compressor operation output is adjusted only by the slave compressor 102 side. Thus, even if the internal pressure difference between the main oil reservoir 7 and the sub oil reservoir 107 is set and the oil leveling operation is performed, the same operation as the embodiment of FIGS. 8 to 11 can be obtained. In addition, the operation output of both the main compressor 2 and the sub-compressor 102 is adjusted, and the main oil reservoir 7,
Even when the oil leveling operation is performed with the internal pressure difference of the slave oil reservoir 107 being set, the same operation as the embodiment of FIGS. 8 to 11 can be obtained.
【0075】実施の形態3.図12も、この発明の他の
実施の形態の一例を示す図で、図12は冷凍空気調和装
置における冷媒回路の油収支に関する返油回路図であ
る。なお、冷凍空気調和装置の構成、冷媒の流れ、通常
運転時の冷凍機油の流れは前述の図1〜図7の実施の形
態と同様であり、均油運転については次に述べるように
行われる。図において、前述の図5と同符号は相当部分
を示す。Embodiment 3 FIG. 12 also shows an example of another embodiment of the present invention. FIG. 12 is an oil return circuit diagram relating to an oil balance of a refrigerant circuit in a refrigeration air conditioner. The configuration of the refrigeration air conditioner, the flow of the refrigerant, and the flow of the refrigerating machine oil during normal operation are the same as those in the embodiment of FIGS. 1 to 7 described above, and the oil leveling operation is performed as described below. . In the figure, the same reference numerals as those in FIG.
【0076】17は主熱源機1に設けられた主開閉弁
で、主圧縮機2の吐出部と主油溜部7の間のバイパス回
路に配置されている。117は従熱源機101に設けら
れた従開閉弁で、従圧縮機102の吐出部と従油溜部1
07の間のバイパス回路に配置されている。なお、主開
閉弁17及び従開閉弁117を、それぞれ対応した主圧
縮機2及び従圧縮機102のいかなる運転出力パターン
時においても、主油溜部7内圧Paと従油溜部107内
圧Pbとの差圧調整が可能な容量に設定する。Reference numeral 17 denotes a main opening / closing valve provided in the main heat source unit 1, which is arranged in a bypass circuit between the discharge part of the main compressor 2 and the main oil reservoir 7. Reference numeral 117 denotes a slave on-off valve provided in the slave heat source unit 101, and a discharge part of the slave compressor 102 and a slave oil reservoir 1
07 in the bypass circuit. The main on-off valve 17 and the on-off valve 117 are connected to the main oil reservoir 7 internal pressure Pa and the auxiliary oil reservoir 107 internal pressure Pb at any operation output pattern of the corresponding main compressor 2 and auxiliary compressor 102, respectively. Set to a capacity that allows adjustment of differential pressure.
【0077】上記のように構成された冷凍空気調和装置
において、前述の均油運転要否判定手段202により均
油運転要と判定された場合に、次に述べるように制御さ
れる。すなわち、図12に示すように均油運転時には主
圧縮機2、従熱圧縮102の運転出力にかかわらず、主
熱源機1、従熱源機101間で冷凍機油が移動し得る所
定時間だけ主開閉弁17、従開閉弁117を交互に開閉
させて、主油溜部7内圧Paと従油溜部107内圧Pb
との間に差圧をつけて冷凍機油を移動する。In the refrigeration air conditioner configured as described above, when the oil equalizing operation necessity determining means 202 determines that the oil equalizing operation is necessary, the control is performed as described below. In other words, as shown in FIG. 12, during the oil equalizing operation, regardless of the operation output of the main compressor 2 and the auxiliary heat compression 102, the main opening and closing is performed for a predetermined time during which the refrigerating machine oil can move between the main heat source unit 1 and the auxiliary heat source unit 101. The valve 17 and the slave on-off valve 117 are alternately opened and closed, so that the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the
Refrigeration oil is moved by applying a pressure difference between
【0078】例えば、図12に示すように通常運転時に
主油溜部7内圧Paと従油溜部107内圧Paの関係
が、Pa<Pbであり、主油溜部7内に余剰油が滞留し
従油溜部107内で冷凍機油の不足気味である場合に、
次の制御が行われる。For example, as shown in FIG. 12, the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pa of the secondary oil reservoir 107 during normal operation is Pa <Pb, and surplus oil stays in the main oil reservoir 7. However, if there is a shortage of refrigerating machine oil in the secondary oil reservoir 107,
The following control is performed.
【0079】すなわち、まず主開閉弁17を冷凍機油が
移動し得る所定時間だけ開放し、前述の差圧の関係をP
a>Pbとして主油溜部7内の冷凍機油を均油管16に
より従油溜部107へ移動させる。そして、所定時間経
過後に主開閉弁17を閉成して従開閉弁117を冷凍機
油が移動可能な所定時間開放し、前述の差圧の関係をP
a<Pbとして従油溜部107内の冷凍機油を均油管1
6により主油溜部7へ移動させる。次いで、この均油運
転のための所定時間の経過後に従開閉弁117が閉成さ
れて均油運転が終了し通常運転に復帰する。That is, first, the main on-off valve 17 is opened for a predetermined time during which the refrigeration oil can move, and
As a> Pb, the refrigerating machine oil in the main oil reservoir 7 is moved to the slave oil reservoir 107 by the oil equalizing pipe 16. After a lapse of a predetermined time, the main on-off valve 17 is closed, and the sub-on-off valve 117 is opened for a predetermined time during which the refrigerating machine oil can move.
a <Pb so that the refrigerating machine oil in the slave oil reservoir 107 is
6 to the main oil reservoir 7. Next, after a lapse of a predetermined time for the oil leveling operation, the on-off valve 117 is closed, the oil leveling operation ends, and the operation returns to the normal operation.
【0080】なお、均油回路16の開口部は、主油溜部
7内で第一所定量以下の液面になったときに主油溜部7
内の液面と接しない位置に配置され、また従油溜部10
7内で第二所定量以下の液面になったときに従油溜部1
07内の液面と接しない位置に配置される。このため、
均油運転を行ったときに主油溜部7、従油溜部107の
冷凍機油量が所定量を超えて低下することはない。The opening of the oil equalization circuit 16 is provided when the liquid level in the main oil reservoir 7 becomes equal to or less than the first predetermined amount.
Is disposed at a position not in contact with the liquid level in
When the liquid level becomes equal to or less than the second predetermined amount in the oil reservoir 7, the oil reservoir 1
07 in a position not in contact with the liquid surface. For this reason,
When the oil leveling operation is performed, the amount of the refrigerating machine oil in the main oil reservoir 7 and the sub oil reservoir 107 does not decrease beyond a predetermined amount.
【0081】例えば、前述の状態では主油溜部7に第一
所定量以上の冷凍機油があり、従油溜部107内で冷凍
機油が不足しているとすると、均油運転により主油溜部
7から従油溜部107へ冷凍機油が移動する。しかし、
主油溜部7の第一所定量以上の余剰冷凍機油のみが移動
して、第一所定量の冷凍機油は主油溜部7に保持され
る。For example, in the above-described state, if the main oil sump 7 has more than the first predetermined amount of refrigerating machine oil and the sub oil sump 107 is short of refrigerating machine oil, the main oil sump is operated by the oil equalizing operation. The refrigerating machine oil moves from the part 7 to the slave oil reservoir 107. But,
Only the excess refrigerating machine oil of the first predetermined amount or more in the main oil reservoir 7 moves, and the first predetermined amount of the refrigerating machine oil is held in the main oil reservoir 7.
【0082】また、以上は主油溜部7から従油溜部10
7へ冷凍機油を移動させる均油運転の制御について説明
したが、この制御と同様な制御によって従油溜部107
から主油溜部7へ冷凍機油を移動させる均油運転が行わ
れる。なお、主開閉弁17、従開閉弁117の交互開閉
動作は、冷凍機油の移動方向に対応した順序によって行
われる。In the above description, the main oil reservoir 7 and the secondary oil reservoir 10
7, the control of the oil leveling operation for moving the refrigerating machine oil has been described.
, The refrigerating machine oil is moved to the main oil reservoir 7 to perform oil leveling operation. The alternate opening / closing operation of the main opening / closing valve 17 and the slave opening / closing valve 117 is performed in an order corresponding to the moving direction of the refrigerating machine oil.
【0083】このようにして、主熱源機1及び従熱源機
101を組合わせて大容量の熱源手段が形成され、この
熱源手段により冷媒回路が構成された冷凍空気調和装置
において、主熱源機1及び従熱源機101間で冷凍機油
が移動し得る所定時間についてバイパス回路の主開閉弁
17、従開閉弁117を開閉させる。In this way, the main heat source unit 1 and the sub heat source unit 101 are combined to form a large-capacity heat source unit. In the refrigeration air conditioner in which the refrigerant circuit is constituted by this heat source unit, the main heat source unit 1 The main on-off valve 17 and the on-off valve 117 of the bypass circuit are opened and closed for a predetermined time during which the refrigerating machine oil can move between the sub heat source units 101.
【0084】これによって、利用側熱交換器12から戻
る冷凍機油が、適正な頻度の均油運転によって主熱源機
1及び従熱源機101に均等に配分される。したがっ
て、詳細な説明を省略するが図12の実施の形態におい
ても図1〜図7の実施の形態と同様な作用が得られる。As a result, the refrigerating machine oil returning from the use side heat exchanger 12 is equally distributed to the main heat source unit 1 and the sub heat source unit 101 by the oil equalizing operation of an appropriate frequency. Therefore, although detailed description is omitted, the same operation as the embodiment of FIGS. 1 to 7 can be obtained in the embodiment of FIG.
【0085】また、図12の実施の形態における圧縮機
運転出力調整により均油運転を行う手法と、他の実施の
形態における手法を組合わせて均油運転を行うことも可
能である。また、主油溜部7、従油溜部107と主液溜
部8、従液溜部108が連通している場合に、主圧縮機
2、従熱圧縮102から主開閉弁17、従開閉弁117
を介して主液溜部8、従液溜部108へのバイパス回路
を設けた構成であっても図12の実施の形態における作
用が得られる。Further, it is also possible to perform the oil leveling operation by combining the method of performing the oil leveling operation by adjusting the compressor operation output in the embodiment of FIG. 12 and the method of the other embodiments. When the main oil reservoir 7, the sub oil reservoir 107 communicates with the main liquid reservoir 8, and the sub liquid reservoir 108, the main compressor 2, the sub heat compression 102, the main open / close valve 17, the sub open / close valve Valve 117
The operation in the embodiment of FIG. 12 can be obtained even in a configuration in which a bypass circuit is provided to the main liquid storage section 8 and the sub liquid storage section 108 via the.
【0086】実施の形態4.図13及び図14も、この
発明の他の実施の形態の一例を示す図で、図13は冷媒
回路図、図14は図13の冷媒回路に対する制御を説明
するフローチャートである。なお、冷凍空気調和装置の
構成、冷媒の流れ、通常運転時の冷凍機油の流れは前述
の図1〜図7の実施の形態と同様であって、均油運転に
ついては次に述べるように行われる。図において、前述
の図1〜図7と同符号は相当部分を示す。Embodiment 4 FIGS. 13 and 14 also show an example of another embodiment of the present invention. FIG. 13 is a refrigerant circuit diagram, and FIG. 14 is a flowchart illustrating control of the refrigerant circuit of FIG. The configuration of the refrigeration air conditioner, the flow of the refrigerant, and the flow of the refrigeration oil during normal operation are the same as those in the above-described embodiment of FIGS. 1 to 7, and the oil leveling operation is performed as described below. Will be In the figure, the same reference numerals as those in FIGS.
【0087】18は主四方切換弁4と主油溜部7との間
に設けられた主低圧圧力検知手段、118は従四方切換
弁104と従油溜部107との間に設けられた従低圧圧
力検知手段、19は主低圧圧力検知手段18及び従低圧
圧力検知手段118の検知値が予め設定された第一の値
に収束したかどうかを判定する第一収束判定手段、20
は主低圧圧力検知手段18及び従低圧圧力検知手段11
8の検知値が予め設定された第二の値に収束したかどう
かを判定する第二収束判定手段である。Reference numeral 18 denotes main low pressure detecting means provided between the main four-way switching valve 4 and the main oil reservoir 7, and reference numeral 118 denotes a sub-pressure sensor provided between the sub-four-way switching valve 104 and the sub oil reservoir 107. The low pressure detecting means 19 is a first convergence determining means for determining whether or not the detection values of the main low pressure detecting means 18 and the sub low pressure detecting means 118 have converged to a first value set in advance.
Are the main low pressure detecting means 18 and the sub low pressure detecting means 11
The second convergence determination means determines whether the detected value of No. 8 has converged to a preset second value.
【0088】21は第一収束判定手段19及び第二収束
判定手段20の判定に基づく収束時間を計時する収束時
間計時手段、22は主送風機6の主送風出力調整制御手
段、122は従主送風機106の従送風出力調整制御手
段である。222は第一収束判定手段19、第二収束判
定手段20、収束時間計時手段21、主送風出力調整制
御手段22及び従送風出力調整制御手段122を主要部
として構成された均油運転制御装置である。Reference numeral 21 denotes a convergence time measuring means for measuring a convergence time based on the judgments of the first convergence judging means 19 and the second convergence judging means 20, 22 denotes a main blast output adjustment control means of the main blower 6, and 122 denotes a sub-main blower. Reference numeral 106 denotes a subordinate air output adjustment control unit. Reference numeral 222 denotes an oil equalizing operation control device mainly including the first convergence determination unit 19, the second convergence determination unit 20, the convergence time timer 21, the main ventilation output adjustment control unit 22, and the secondary ventilation output adjustment control unit 122. is there.
【0089】なお、主低圧圧力検知手段18及び従低圧
圧力検知手段118の配置位置は、対応した主圧縮機
2、従圧縮機102の吸入側に接続される適宜な低圧管
路であっても上記の配置と同様な作用を得ることができ
る。The main low pressure detecting means 18 and the sub low pressure detecting means 118 may be disposed at appropriate low pressure lines connected to the suction sides of the corresponding main compressor 2 and sub compressor 102. The same operation as the above arrangement can be obtained.
【0090】上記のように構成された冷凍空気調和装置
において、通常運転時の主圧縮機2、従圧縮機102の
運転出力にかかわらず主圧縮機2、従圧縮機102の運
転出力はそのままで、主油溜部7、従油溜部107の内
圧とほぼ同値である主熱源機1、従熱源機101内の低
圧圧力を検知する。この検知を介して冷凍機油の移動が
できる主油溜部7、従油溜部107の内圧差が確保でき
るように、主送風機6、従主送風機106の運転出力、
すなわち風量を調整して均油動作を行う。In the refrigeration air conditioner configured as described above, the operation output of the main compressor 2 and the sub-compressor 102 remains unchanged regardless of the operation output of the main compressor 2 and the sub-compressor 102 during normal operation. , Low pressures in the main heat source unit 1 and the sub heat source unit 101 which are substantially equal to the internal pressures of the main oil reservoir 7 and the sub oil reservoir 107 are detected. The operation output of the main blower 6 and the sub main blower 106 is set so that the internal pressure difference between the main oil sump 7 and the sub oil sump 107 capable of moving the refrigerating machine oil through this detection can be secured.
That is, the oil leveling operation is performed by adjusting the air volume.
【0091】そして、前述の均油運転要否判定手段20
2により均油運転要と判定された場合に、図14のフロ
ーチャートによる制御が行われる。すなわち、ステップ
301において前述の運転時間計時手段201により主
圧縮機2及び従圧縮機102の運転時間Tが計時され
る。Then, the oil equalizing operation necessity determining means 20
When it is determined that the oil equalizing operation is necessary according to 2, the control according to the flowchart of FIG. 14 is performed. That is, in step 301, the operation time T of the main compressor 2 and the sub-compressor 102 is measured by the above-mentioned operation time measuring means 201.
【0092】次いでステップ302、すなわち均油運転
要否判定手段202へ進み、運転時間Tが運転可能時間
Ta及び運転可能時間Tbのいずれかの小さい方、すな
わち運転時間Toよりも小さければステップ301へ戻
り、大きければステップ303へ進んで均油運転が行わ
れる。そして、ステップ304により主低圧圧力検知手
段18、ステップ305により従低圧圧力検知手段11
8によって対応した熱源機の低圧圧力を検知してステッ
プ306へ進む。Next, the routine proceeds to step 302, ie, the oil equalizing operation necessity judging means 202. If the operation time T is shorter of the operable time Ta and the operable time Tb, that is, smaller than the operation time To, the flow proceeds to step 301. Returning, if it is larger, the routine proceeds to step 303, where the oil leveling operation is performed. In step 304, the main low pressure detecting means 18 and in step 305, the sub low pressure detecting means 11
The corresponding low pressure of the heat source device is detected by 8 and the process proceeds to step 306.
【0093】そして、ステップ306で均油運転時に主
圧縮機2、従圧縮機102の運転出力にかかわらず主油
溜部7から従油溜部107へ冷凍機油を移動させるため
に、第一収束判定手段19の主油溜部7内圧Paと従油
溜部107内圧Pbの関係がPa>Pbでなければステ
ップ307へ進み、Pa>Pbであればステップ308
へ進む。In step 306, the first convergence is performed to move the refrigerating machine oil from the main oil reservoir 7 to the sub oil reservoir 107 regardless of the operation output of the main compressor 2 and the sub compressor 102 during the oil equalizing operation. If the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the secondary oil reservoir 107 of the determination means 19 is not Pa> Pb, the process proceeds to step 307, and if Pa> Pb, the process proceeds to step 308.
Proceed to.
【0094】そして、ステップ307において、主送風
出力調整制御手段22により主送風機6の運転出力が、
従送風出力調整制御手段122により従主送風機106
の運転出力が調整されてステップ306へ戻る。また、
ステップ308において収束時間計時手段21が動作し
てステップ309へ進み、収束時間計時手段21の計時
値T1が圧縮機運転時間Tよりも大きくなければステッ
プ308へ戻り、大きければステップ310へ進む。Then, in step 307, the operation output of the main blower 6 is
The secondary blower 106 is controlled by the secondary blower output adjustment control means 122.
Is adjusted, and the process returns to step 306. Also,
In step 308, the convergence time timer 21 operates to proceed to step 309. If the time T1 of the convergence time timer 21 is not larger than the compressor operation time T, the process returns to step 308. If it is larger, the process proceeds to step 310.
【0095】そして、ステップ310で従油溜部107
から主油溜部7へ冷凍機油を移動させるために第二収束
判定手段20の主油溜部7内圧Paと従油溜部107内
圧Pbの関係がPa<Pbでなければステップ311へ
進み、Pa<Pbであればステップ312へ進む。Then, at step 310, the secondary oil reservoir 107
If the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the secondary oil reservoir 107 of the second convergence determination means 20 is not Pa <Pb in order to move the refrigeration oil from the main oil reservoir 7 to the main oil reservoir 7, the process proceeds to step 311. If Pa <Pb, the process proceeds to step 312.
【0096】これにより、ステップ311において、主
送風出力調整制御手段22により主送風機6の運転出力
が、従送風出力調整制御手段122により従主送風機1
06の運転出力が調整されてステップ310へ戻る。ま
た、ステップ312で収束時間計時手段21が動作して
ステップ313へ進み、収束時間計時手段21の計時値
T1が圧縮機運転時間Tよりも大きくなければステップ
312へ戻り、大きければステップ314へ進んで均油
運転が終了する。Thus, in step 311, the operation output of the main blower 6 is controlled by the main blower output adjustment control means 22, and the slave blower 1
The operation output of step 06 is adjusted, and the process returns to step 310. Also, in step 312, the convergence time timer 21 operates to proceed to step 313. If the time T1 of the convergence time timer 21 is not larger than the compressor operating time T, the process returns to step 312. If it is larger, the process proceeds to step 314. Then, the oil leveling operation ends.
【0097】例えば、暖房運転時に第一収束判定手段1
9の主油溜部7内圧Paと従油溜部107内圧Pbの関
係をPa>Pbとして、主油溜部7から従油溜部107
へ冷凍機油を移動させる場合に主油溜部7内圧Paを上
昇させるために主送風機6の運転出力を増加して主熱交
換器5の蒸発圧力を上昇させる。また、従油溜部107
内圧Pbを低下させるために従送風機106の運転出力
を減少して従熱交換器105の蒸発圧力を低下させる。For example, during the heating operation, the first convergence determination means 1
9, the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the sub oil reservoir 107 is set to Pa> Pb, and
In order to increase the internal pressure Pa of the main oil reservoir 7 when the refrigerating machine oil is moved, the operation output of the main blower 6 is increased and the evaporation pressure of the main heat exchanger 5 is increased. Further, the slave oil reservoir 107
In order to lower the internal pressure Pb, the operation output of the follower blower 106 is reduced to lower the evaporation pressure of the slave heat exchanger 105.
【0098】このときに、主油溜部7内圧Paは蒸発圧
力の上昇に伴い上昇し、従油溜部107内圧Pbは蒸発
圧力の低下に伴い低下する。このため、主油溜部7内の
冷凍機油は従油溜部107へ移動する。また、第二収束
判定手段20の主油溜部7内圧Paと従油溜部107内
圧Pbの関係をPa<Pbとして、従油溜部107から
主油溜部7へ冷凍機油を移動させる場合に、主油溜部7
内圧Paを低下させるために主送風機6の運転出力を低
下して主熱交換器5の蒸発圧力を低下させる。At this time, the internal pressure Pa of the main oil reservoir 7 increases as the evaporation pressure increases, and the internal pressure Pb of the secondary oil reservoir 107 decreases as the evaporation pressure decreases. For this reason, the refrigerating machine oil in the main oil reservoir 7 moves to the slave oil reservoir 107. When the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the secondary oil reservoir 107 of the second convergence determination means 20 is set to Pa <Pb, and the refrigerating machine oil is moved from the secondary oil reservoir 107 to the main oil reservoir 7. The main oil reservoir 7
In order to reduce the internal pressure Pa, the operation output of the main blower 6 is reduced, and the evaporation pressure of the main heat exchanger 5 is reduced.
【0099】また、従油溜部107内圧Pbを上昇させ
るために従送風機106の運転出力を増加して従熱交換
器105の蒸発圧力を上昇させる。このときに、主油溜
部7内圧Paは蒸発圧力の低下に伴い低下し、従油溜部
107内圧Pbは蒸発圧力の上昇に伴い上昇する。この
ため、従油溜部107内の冷凍機油は主油溜部7へ移動
する。Further, in order to increase the internal pressure Pb of the slave oil reservoir 107, the operation output of the slave blower 106 is increased to increase the evaporation pressure of the slave heat exchanger 105. At this time, the internal pressure Pa of the main oil reservoir 7 decreases as the evaporation pressure decreases, and the internal pressure Pb of the secondary oil reservoir 107 increases as the evaporation pressure increases. Therefore, the refrigerating machine oil in the secondary oil reservoir 107 moves to the main oil reservoir 7.
【0100】このようにして、主熱源機1及び従熱源機
101を組合わせて大容量の熱源手段が形成され、この
熱源手段により冷媒回路が構成された冷凍空気調和装置
において、暖房運転中に均油運転が必要となった場合
に、均油運転制御装置222の動作により次に述べる作
用が得られる。すなわち、主熱源機1及び従熱源機10
1の運転出力をそのままとし各熱源機で検知した低圧に
基づいて、それぞれの低圧が各熱源機間で冷凍機油が移
動し得る値となるまで、主送風機6、従送風機106の
運転出力を調整する。In this manner, a large-capacity heat source means is formed by combining the main heat source unit 1 and the sub heat source unit 101. In the refrigeration air conditioner in which the refrigerant circuit is constituted by this heat source unit, during the heating operation, When the oil leveling operation becomes necessary, the operation of the oil leveling operation control device 222 provides the following operation. That is, the main heat source unit 1 and the sub heat source unit 10
The operation output of the main blower 6 and the auxiliary blower 106 is adjusted based on the low pressure detected by each heat source unit while keeping the operation output of the first unit as it is until the low pressure reaches a value at which the refrigerating machine oil can move between the heat source units. I do.
【0101】これによって、均油運転中の快適性、性能
低下が少なく、また各熱源機の運転出力変化がないこと
とも相俟って均油運転後に迅速に冷凍空気調和装置が性
能回復し、かつ利用側熱交換器12から戻る冷凍機油
が、適正な頻度の均油運転によって主熱源機1及び従熱
源機101に均等に配分される。したがって、詳細な説
明を省略するが図13及び図14の実施の形態において
も図1〜図7の実施の形態と同様な作用が得られる。As a result, the refrigeration air conditioner quickly recovers its performance after the oil leveling operation due to the fact that the comfort and the performance during the oil leveling operation are less reduced and the operation output of each heat source unit does not change. In addition, the refrigerating machine oil returned from the use side heat exchanger 12 is equally distributed to the main heat source unit 1 and the sub heat source unit 101 by the oil equalizing operation of an appropriate frequency. Therefore, although detailed description is omitted, the same operation as the embodiment of FIGS. 1 to 7 can be obtained in the embodiment of FIGS.
【0102】実施の形態5.図15及び図16も、この
発明の他の実施の形態の一例を示す図で、図15は冷媒
回路図、図16は図15の冷媒回路に対する制御を説明
するフローチャートである。なお、冷凍空気調和装置の
構成、冷媒の流れ、通常運転時の冷凍機油の流れは前述
の図1〜図7の実施の形態と同様であって、均油運転に
ついては次に述べるように行われる。図において、前述
の図1〜図7、図13及び図14と同符号は相当部分を
示し、23は従熱交換器105と液側合流部14の間の
管路に設けられた流量制御弁、24は流量制御弁23に
接続された流量制御弁調整手段である。Embodiment 5 FIG. 15 and 16 also show another example of the embodiment of the present invention. FIG. 15 is a refrigerant circuit diagram, and FIG. 16 is a flowchart for explaining control of the refrigerant circuit of FIG. The configuration of the refrigeration air conditioner, the flow of the refrigerant, and the flow of the refrigeration oil during normal operation are the same as those in the above-described embodiment of FIGS. 1 to 7, and the oil leveling operation is performed as described below. Will be In the figure, the same reference numerals as those in FIGS. 1 to 7, 13 and 14 denote the corresponding parts, and 23 denotes a flow control valve provided in a pipe line between the slave heat exchanger 105 and the liquid-side junction 14. , 24 are flow control valve adjusting means connected to the flow control valve 23.
【0103】上記のように構成された冷凍空気調和装置
において、通常運転時の主圧縮機2、従圧縮機102の
運転出力にかかわらず主圧縮機2、従圧縮機102の運
転出力はそのままで、主油溜部7、従油溜部107の内
圧とほぼ同値である主熱源機1、従熱源機101内の低
圧圧力を検知する。この検知を介して冷凍機油の移動が
できる主油溜部7、従油溜部107の内圧差が確保でき
るように、従熱源機101側の流量制御弁23を調整し
て均油動作を行う。In the refrigeration air conditioner configured as described above, the operation output of the main compressor 2 and the sub-compressor 102 remains unchanged regardless of the operation output of the main compressor 2 and the sub-compressor 102 during normal operation. , Low pressures in the main heat source unit 1 and the sub heat source unit 101 which are substantially equal to the internal pressures of the main oil reservoir 7 and the sub oil reservoir 107 are detected. The oil leveling operation is performed by adjusting the flow control valve 23 on the side of the sub heat source device 101 so that the internal pressure difference between the main oil reservoir 7 and the sub oil reservoir 107 through which the refrigerating machine oil can move through this detection can be secured. .
【0104】そして、前述の均油運転要否判定手段20
2により均油運転要と判定された場合に、図16のフロ
ーチャートによる制御が行われる。すなわち、ステップ
401において前述の運転時間計時手段201により主
圧縮機2及び従圧縮機102の運転時間Tが計時され
る。The above-described oil equalizing operation necessity determining means 20
When it is determined that the oil equalizing operation is necessary according to 2, the control according to the flowchart of FIG. 16 is performed. That is, in step 401, the operation time T of the main compressor 2 and the sub-compressor 102 is measured by the above-mentioned operation time measuring means 201.
【0105】次いでステップ402、すなわち均油運転
要否判定手段202へ進み、運転時間Tが運転可能時間
Ta及び運転可能時間Tbのいずれかの小さい方、すな
わち運転時間Toよりも小さければステップ401へ戻
り、大きければステップ403へ進んで均油運転が行わ
れる。そして、ステップ404により主低圧圧力検知手
段18、ステップ405により従低圧圧力検知手段11
8によって対応した熱源機の低圧圧力を検知してステッ
プ406へ進む。Next, the routine proceeds to step 402, that is, to the oil equalizing operation necessity judging means 202. If the operating time T is shorter of the operable time Ta and the operable time Tb, that is, smaller than the operating time To, the process proceeds to step 401. Returning, if it is larger, the routine proceeds to step 403, where the oil leveling operation is performed. In step 404, the main low pressure detecting means 18 is used, and in step 405, the sub low pressure detecting means 11 is used.
In step 406, the low pressure of the corresponding heat source device is detected.
【0106】そして、均油運転時に主圧縮機2、従圧縮
機102の運転出力にかかわらず主油溜部7から従油溜
部107へ冷凍機油を移動させるために、第一収束判定
手段19の主油溜部7内圧Paと従油溜部107内圧P
bの関係がPa>Pbでなければステップ407へ進
み、Pa>Pbであればステップ408へ進む。The first convergence judging means 19 moves the refrigerating machine oil from the main oil reservoir 7 to the auxiliary oil reservoir 107 regardless of the operation output of the main compressor 2 and the sub compressor 102 during the oil equalizing operation. Of the main oil reservoir 7 and the internal pressure P of the secondary oil reservoir 107
If the relationship of b is not Pa> Pb, the process proceeds to step 407, and if Pa> Pb, the process proceeds to step 408.
【0107】そして、ステップ407において、流量制
御弁調整手段24により流量制御弁23が調整されてス
テップ406へ戻る。また、ステップ408において収
束時間計時手段21が動作してステップ409へ進み、
収束時間計時手段21の計時値T1が圧縮機運転時間T
よりも大きくなければステップ408へ戻り、大きけれ
ばステップ410へ進む。Then, in step 407, the flow control valve 23 is adjusted by the flow control valve adjusting means 24, and the flow returns to step 406. Also, in step 408, the convergence time timer 21 operates to proceed to step 409,
The time value T1 of the convergence time time counting means 21 is the compressor operation time T
If not larger, the process returns to step 408, and if larger, the process proceeds to step 410.
【0108】そして、ステップ410で従油溜部107
から主油溜部7へ冷凍機油を移動させるために第二収束
判定手段20の主油溜部7内圧Paと従油溜部107内
圧Pbの関係がPa<Pbでなければステップ411へ
進み、Pa<Pbであればステップ412へ進む。これ
により、ステップ411において、流量制御弁調整手段
24により流量制御弁23が調整されてステップ410
へ戻る。Then, at step 410, the secondary oil reservoir 107
If the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the secondary oil reservoir 107 of the second convergence determination means 20 is not Pa <Pb in order to move the refrigerating machine oil from the main oil reservoir 7 to If Pa <Pb, the process proceeds to step 412. As a result, in step 411, the flow control valve 23 is adjusted by the flow control valve adjusting means 24, and in step 410
Return to
【0109】また、ステップ412で収束時間計時手段
21が動作してステップ413へ進み、収束時間計時手
段21の計時値T1が圧縮機運転時間Tよりも大きくな
ければステップ412へ戻り、大きければステップ41
4へ進んで均油運転が終了する。In step 412, the convergence time timer 21 operates to proceed to step 413. If the time T1 of the convergence time timer 21 is not larger than the compressor operation time T, the process returns to step 412. 41
Proceeding to 4, the oil leveling operation ends.
【0110】次に、図15により暖房運転時の冷媒の挙
動と併せて均油運転時の冷凍機油の流れを説明する。す
なわち、暖房運転時に第一収束判定手段19の主油溜部
7内圧Paと従油溜部107内圧Pbの関係をPa>P
bとして、主油溜部7から従油溜部107へ冷凍機油を
移動させる場合に、従油溜部107内圧Pbを低下させ
るために流量制御弁23を次第に閉成して従熱交換器1
05の蒸発圧力を低下させる。Next, the flow of the refrigerating machine oil during the oil leveling operation will be described with reference to FIG. 15, together with the behavior of the refrigerant during the heating operation. That is, the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the secondary oil reservoir 107 of the first convergence determination means 19 during the heating operation is expressed as Pa> P.
b, when the refrigerating machine oil is moved from the main oil reservoir 7 to the auxiliary oil reservoir 107, the flow control valve 23 is gradually closed in order to reduce the internal pressure Pb of the auxiliary oil reservoir 107, and the secondary heat exchanger 1
The evaporation pressure of 05 is reduced.
【0111】このときに、利用側熱交換器12、利用側
流量制御弁13を経て液側合流部14から従熱源機10
1へ分流された気液二相冷媒は、流量制御弁23を閉成
することにより更に減圧される。このため、液側合流部
14の圧力に対して主熱交換器5までの間に絞り装置の
ない主熱源機1側よりも圧力低下が大きいので、従熱交
換器105の蒸発圧力が低下する。At this time, the liquid-side merging section 14 passes through the use-side heat exchanger 12 and the use-side flow control valve 13 from the subordinate heat source unit 10.
The gas-liquid two-phase refrigerant branched to 1 is further reduced in pressure by closing the flow control valve 23. For this reason, since the pressure of the liquid-side merging portion 14 is larger than that of the main heat source unit 1 without the expansion device between the main heat exchanger 5 and the main heat exchanger 5, the evaporation pressure of the sub heat exchanger 105 is reduced. .
【0112】これに伴って、従油溜部107内圧Pbも
主油溜部7内圧Paよりも低下して、主油溜部7内の冷
凍機油は従油溜部107へ移動する。また、第二収束判
定手段20の主油溜部7内圧Paと従油溜部107内圧
Pbの関係をPa<Pbとして、従油溜部107から主
油溜部7へ冷凍機油を移動させる場合に、主油溜部7内
圧Paを上昇させるために流量制御弁23を次第に開放
し、従熱交換器105の蒸発圧力を上昇させる。Along with this, the internal pressure Pb of the secondary oil reservoir 107 also drops below the internal pressure Pa of the main oil reservoir 7, and the refrigerating machine oil in the main oil reservoir 7 moves to the secondary oil reservoir 107. When the relationship between the internal pressure Pa of the main oil reservoir 7 and the internal pressure Pb of the secondary oil reservoir 107 of the second convergence determination means 20 is set to Pa <Pb, and the refrigerating machine oil is moved from the secondary oil reservoir 107 to the main oil reservoir 7. Then, the flow control valve 23 is gradually opened to increase the internal pressure Pa of the main oil reservoir 7, and the evaporation pressure of the sub heat exchanger 105 is increased.
【0113】このときに、利用側熱交換器12、利用側
流量制御弁13を経て液側合流部14から従熱源機10
1へ分流された気液二相冷媒は、流量制御弁23を開放
することにより液側合流部14の圧力に対して圧力低下
が小さくなる。このため、従熱交換器105における蒸
発圧力が上昇する。これに伴って、従油溜部107内圧
Pbも主油溜部7内圧Paよりも上昇して、従油溜部1
07内の冷凍機油が主油溜部7へ移動する。At this time, the auxiliary heat source unit 10 is connected to the liquid side junction 14 via the use side heat exchanger 12 and the use side flow control valve 13.
The pressure drop of the gas-liquid two-phase refrigerant diverted to 1 becomes smaller than the pressure of the liquid-side merging portion 14 by opening the flow control valve 23. For this reason, the evaporation pressure in the sub heat exchanger 105 increases. Along with this, the internal pressure Pb of the secondary oil reservoir 107 also rises above the internal pressure Pa of the main oil reservoir 7, and the secondary oil reservoir 1
07 moves to the main oil reservoir 7.
【0114】このようにして、主熱源機1及び従熱源機
101を組合わせて大容量の熱源手段が形成され、この
熱源手段により冷媒回路が構成された冷凍空気調和装置
において、暖房運転中に均油運転が必要となった場合
に、主熱源機1及び従熱源機101の運転出力をそのま
まとし各熱源機で検知した低圧に基づいて、それぞれの
低圧が各熱源機間で冷凍機油が移動し得る値となるま
で、従熱交換器105と液側合流部14の間に配置され
た流量制御弁23を調整する。In this manner, a large-capacity heat source means is formed by combining the main heat source unit 1 and the sub heat source unit 101, and in the refrigeration air conditioner in which the refrigerant circuit is constituted by this heat source unit, during the heating operation. When the oil equalizing operation becomes necessary, the operation output of the main heat source unit 1 and the sub heat source unit 101 is kept as it is, and based on the low pressure detected by each heat source unit, the respective low pressure moves the refrigerating machine oil between each heat source unit. The flow control valve 23 disposed between the sub heat exchanger 105 and the liquid-side merging section 14 is adjusted until the flow rate reaches a value that can be obtained.
【0115】これによって、均油運転中の快適性、性能
低下が少なく、また各熱源機の運転出力変化がないこと
とも相俟って均油運転後に迅速に冷凍空気調和装置が性
能回復し、かつ利用側熱交換器12から戻る冷凍機油
が、適正な頻度の均油運転によって主熱源機1及び従熱
源機101に均等に配分される。したがって、詳細な説
明を省略するが図13及び図14の実施の形態において
も図1〜図7の実施の形態と同様な作用が得られる。As a result, the performance of the refrigeration air conditioner is quickly restored after the oil leveling operation due to the fact that the comfort and performance during the oil leveling operation are small and the operation output of each heat source unit does not change. In addition, the refrigerating machine oil returned from the use side heat exchanger 12 is equally distributed to the main heat source unit 1 and the sub heat source unit 101 by the oil equalizing operation of an appropriate frequency. Therefore, although detailed description is omitted, the same operation as the embodiment of FIGS. 1 to 7 can be obtained in the embodiment of FIGS.
【0116】[0116]
【発明の効果】この発明は以上説明したように、出力制
御可能な主圧縮機、主油分離器、主熱交換器及び主油溜
部を有する主熱源機と、定出力又は出力制御可能な従圧
縮機、従油分離器、従熱交換器及び従油溜部を有する従
熱源機と、主熱源機及び従熱源機に接続された利用側熱
交換器と、主熱源機及び利用側熱交換器を接続した管路
と従熱源機及び利用側熱交換器を接続した管路とを接続
する液側合流部と、主熱源機及び利用側熱交換器を接続
した管路と従熱源機及び利用側熱交換器を接続した管路
とを接続するガス側合流部と、主油溜部及び従油溜部が
油溜管路によって連結され、油溜管路の主油溜部側開口
部は主油溜部内の液量が第一所定量以下になったときに
主油溜部内の液と接しない位置に配置され、油溜管路の
従油溜部側開口部は従油溜部内の液量が第二所定量以下
になったときに従油溜部内の液と接しない位置に配置さ
れた均油回路と、主圧縮機及び従圧縮機の圧縮機運転時
間計時手段と、この圧縮機運転時間計時手段による主圧
縮機及び従圧縮機の運転時間を前述の式1における時間
TOに対して比較して均油運転要否を判定する均油運転
要否判定手段とを設けたものである。As described above, according to the present invention, a main compressor having a controllable output, a main oil separator, a main heat exchanger and a main heat source unit having a main oil reservoir, and a constant output or an output controllable. A secondary heat source unit having a secondary compressor, a secondary oil separator, a secondary heat exchanger and a secondary oil reservoir, a main heat source unit and a use side heat exchanger connected to the secondary heat source unit, a main heat source unit and a use side heat A liquid-side junction that connects a pipe line connected to an exchanger to a pipe line connected to a slave heat source unit and a use side heat exchanger, and a pipe line connected to a main heat source unit and a use side heat exchanger and a slave heat source unit A gas-side junction connecting the pipeline connecting the use-side heat exchanger, and a main oil reservoir and a secondary oil reservoir connected by an oil reservoir, and an opening of the oil reservoir on the main oil reservoir side. The portion is disposed at a position where the liquid in the main oil reservoir does not come into contact with the liquid in the main oil reservoir when the amount of the liquid in the main oil reservoir becomes equal to or less than the first predetermined amount. When the liquid amount in the secondary oil reservoir is less than or equal to the second predetermined amount, an oil equalizing circuit disposed at a position not in contact with the liquid in the secondary oil reservoir, and the compressor operating time of the main compressor and the secondary compressor is measured. Means for determining whether oil equalizing operation is necessary by comparing the operating time of the main compressor and the slave compressor by means of the compressor operating time measuring means with respect to the time TO in the above-mentioned formula 1. Are provided.
【0117】これによって、主熱源機及び従熱源機を組
合わせて大容量の熱源手段が形成され、この熱源手段に
より冷媒回路が構成された冷凍空気調和装置において、
液側合流部、ガス側合流部における各熱源機への返油量
の偏向を考慮し、各熱源機の運転が所定時間継続した段
階で均油運転要否判定手段の判定を介して均油運転を行
う。そして、利用側熱交換器から戻る冷凍機油が適正な
頻度の均油運転によって、主熱源機及び従熱源機に均等
に配分される。したがって、冷凍空気調和の快適性や、
冷凍空気調和の性能の低下を伴うことなく、主圧縮機、
従圧縮機の動作信頼性を向上する効果がある。Thus, a large-capacity heat source means is formed by combining the main heat source unit and the auxiliary heat source unit, and in the refrigeration air conditioner in which the refrigerant circuit is constituted by this heat source unit,
Considering the deflection of the amount of oil returned to each heat source unit at the liquid-side junction and the gas-side junction, at the stage where the operation of each heat source unit has continued for a predetermined time, the oil leveling operation is determined by the oil leveling operation necessity determination means. Driving. Then, the refrigerating machine oil returned from the use-side heat exchanger is evenly distributed to the main heat source unit and the auxiliary heat source units by the oil equalizing operation of an appropriate frequency. Therefore, the comfort of frozen air conditioning,
Main compressor, without reducing the performance of refrigeration air conditioning,
This has the effect of improving the operational reliability of the slave compressor.
【0118】また、この発明は以上説明したように、均
油運転要否判定手段の均油運転要判定を介して制御され
て、運転出力が所定時間交互に増減する主圧縮機及び従
圧縮機を設けたものである。Further, as described above, the present invention is controlled by the oil equalizing operation necessity determining means of the oil equalizing operation necessity judging means, and the main compressor and the secondary compressor whose operation output alternately increases and decreases for a predetermined time. Is provided.
【0119】これによって、主熱源機及び従熱源機を組
合わせて大容量の熱源手段が形成され、この熱源手段に
より冷媒回路が構成された冷凍空気調和装置において、
液側合流部、ガス側合流部における各熱源機への返油量
の偏向を考慮し、各熱源機の運転が所定時間継続した段
階で均油運転要否判定手段の判定を介して、主熱源機及
び従熱源機の運転出力差を所定時間逆転させる均油運転
を行う。As a result, a large-capacity heat source means is formed by combining the main heat source unit and the auxiliary heat source unit. In the refrigeration air conditioner in which the refrigerant circuit is constituted by the heat source units,
Considering the deflection of the amount of oil returned to each heat source unit at the liquid side junction and the gas side junction, the operation of each heat source unit continues for a predetermined period of time, and the main oil equalization operation necessity determination unit determines The oil leveling operation for reversing the operation output difference between the heat source unit and the sub heat source unit for a predetermined time is performed.
【0120】これにより、利用側熱交換器から戻る冷凍
機油が、適正な頻度の均油運転によって主熱源機及び従
熱源機に均等に配分される。したがって、冷凍空気調和
の快適性や、冷凍空気調和の性能の低下を伴うことな
く、主圧縮機、従圧縮機の動作信頼性を向上する効果が
ある。Thus, the refrigerating machine oil returned from the use side heat exchanger is evenly distributed to the main heat source unit and the sub heat source unit by the oil equalizing operation of an appropriate frequency. Therefore, there is an effect of improving the operational reliability of the main compressor and the sub-compressor without deteriorating the comfort of the refrigeration air conditioning and the performance of the refrigeration air conditioning.
【0121】また、この発明は以上説明したように、主
熱源機の主圧縮機の吐出部と主油溜部の間のバイパス回
路に設けられて均油運転要否判定手段の均油運転要判定
を介して制御されて所定時間開放する主開閉弁と、従熱
源機の従圧縮機の吐出部と従油溜部の間のバイパス回路
に設けられて均油運転要否判定手段の均油運転要判定を
介して制御されて主開閉弁の開放時に閉成動作する従開
閉弁とを設けたものである。Further, as described above, the present invention is provided in the bypass circuit between the discharge part of the main compressor of the main heat source unit and the main oil reservoir, and the oil equalizing operation necessity of the oil equalizing operation necessity determining means is provided. A main opening / closing valve which is controlled through the determination and is opened for a predetermined time; and a leveling means which is provided in a bypass circuit between the discharge part of the secondary compressor and the secondary oil reservoir of the secondary heat source unit and which determines whether or not the oil leveling operation is necessary. And a secondary on-off valve that is controlled through the operation necessity determination and that closes when the primary on-off valve is opened.
【0122】これによって、主熱源機及び従熱源機を組
合わせて大容量の熱源手段が形成れ、この熱源手段によ
り冷媒回路が構成された冷凍空気調和装置において、液
側合流部、ガス側合流部における各熱源機への返油量の
偏向を考慮し、各熱源機の運転が所定時間継続した段階
で均油運転要否判定手段の判定を介して、バイパス回路
の主開閉弁、従開閉弁を所定時間交互に開閉させる。Thus, a large-capacity heat source means is formed by combining the main heat source unit and the auxiliary heat source unit. In the refrigeration air-conditioning apparatus in which the heat source means constitutes a refrigerant circuit, the liquid-side junction and the gas-side junction are formed. Considering the deflection of the amount of oil returned to each heat source unit in the unit, the main circuit opening and closing valve of the bypass circuit, and the secondary opening and closing The valve is opened and closed alternately for a predetermined time.
【0123】これにより、利用側熱交換器から戻る冷凍
機油が、適正な頻度の均油運転によって主熱源機及び従
熱源機に均等に配分される。したがって、冷凍空気調和
の快適性や、冷凍空気調和の性能の低下を伴うことな
く、主圧縮機、従圧縮機の動作信頼性を向上する効果が
ある。Thus, the refrigerating machine oil returned from the use side heat exchanger is evenly distributed to the main heat source unit and the auxiliary heat source units by the oil equalizing operation of an appropriate frequency. Therefore, there is an effect of improving the operational reliability of the main compressor and the sub-compressor without deteriorating the comfort of the refrigeration air conditioning and the performance of the refrigeration air conditioning.
【0124】また、この発明は以上説明したように、主
熱源機側に設けられた主低圧圧力検知手段と、従熱源機
側に設けられた従低圧圧力検知手段と、主低圧圧力検知
手段及び従低圧圧力検知手段の両者の検知値が第一所定
値に収束したときに動作する第一収束判定手段と、上記
両者の検知値が第二所定値に収束したときに動作する第
二収束判定手段と、第一収束判定手段及び第二収束判定
手段による収束時間を計時する収束時間計時手段と、主
熱交換器の主送風機の送風出力を制御する主送風出力調
整制御手段と、従熱交換器の従送風機の送風出力を制御
する従送風出力調整制御手段と、均油運転要否判定手段
の均油運転要判定を介して動作し、主送風機及び従送風
機の送風出力を主低圧圧力検知手段を介して検知した値
と従低圧圧力検知手段を介して検知した値が所定値に収
束して、収束時間計時手段の計時値が所定時間に達する
まで主送風出力調整制御手段及び従送風出力調整制御手
段を動作させる均油運転制御装置とを設けたものであ
る。Further, as described above, the present invention provides a main low pressure detecting means provided on the main heat source unit, a sub low pressure detecting unit provided on the sub heat source unit, a main low pressure detecting unit, First convergence determination means that operates when the detection values of both of the secondary low pressure detection means converge to a first predetermined value, and second convergence determination that operates when the two detection values converge to a second predetermined value Means, convergence time timer means for measuring the convergence time by the first convergence determination means and the second convergence determination means, main blast output adjustment control means for controlling the blast output of the main blower of the main heat exchanger, and auxiliary heat exchange It operates through the auxiliary air output adjustment control means for controlling the air output of the auxiliary air blower of the blower and the oil equalization operation necessity determination of the oil equalization operation necessity determination means, and detects the main air blower and the auxiliary air blower output of the main low pressure pressure. Value detected through means and low pressure detection An oil-equalizing operation control device that operates the main ventilation output adjustment control unit and the secondary ventilation output adjustment control unit until the value detected through the stage converges to a predetermined value, and the time value of the convergence time timer reaches a predetermined time; Is provided.
【0125】これによって、主熱源機及び従熱源機を組
合わせて大容量の熱源手段が形成され、この熱源手段に
より冷媒回路が構成された冷凍空気調和装置において、
液側合流部、ガス側合流部における各熱源機への返油量
の偏向を考慮し、暖房運転中に均油運転が必要となった
場合に、各熱源機の運転が所定時間継続した段階で均油
運転要否判定手段の判定を介して、主熱源機及び従熱源
機の運転出力をそのままとし各熱源機で検知した低圧に
基づいて、それぞれの低圧が各熱源機間で冷凍機油が移
動し得る値となるまで、主送風機、従送風機の送風出力
を調整する。As a result, a large-capacity heat source means is formed by combining the main heat source unit and the auxiliary heat source unit, and in the refrigeration air conditioner in which the refrigerant circuit is constituted by this heat source unit,
Considering the deflection of the amount of oil returned to each heat source unit at the liquid side junction and gas side junction, when the oil leveling operation is required during the heating operation, the operation of each heat source unit has continued for a predetermined time Through the determination of the oil equalization operation necessity determination means, the operation output of the main heat source unit and the sub heat source unit is kept as it is, and based on the low pressure detected by each heat source unit, the respective low pressure Adjust the blower output of the main blower and the slave blower until the value can be moved.
【0126】これにより、均油運転中の快適性、性能低
下が少なく、また各熱源機の運転出力変化がないことと
も相俟って均油運転後に迅速に性能回復し、かつ利用側
熱交換器から戻る冷凍機油が、適正な頻度の均油運転に
よって主熱源機及び従熱源機に均等に配分される。した
がって、冷凍空気調和の快適性や、冷凍空気調和の性能
の低下を伴うことなしに、主圧縮機、従圧縮機の動作信
頼性を向上する効果がある。As a result, the comfort and performance during the oil leveling operation are less reduced, and the performance is quickly recovered after the oil leveling operation in combination with no change in the operation output of each heat source unit. The refrigerating machine oil returned from the vessel is equally distributed to the main heat source unit and the sub heat source unit by the oil equalizing operation of appropriate frequency. Therefore, there is an effect of improving the operational reliability of the main compressor and the sub-compressor without deteriorating the comfort of the refrigeration air conditioning and the performance of the refrigeration air conditioning.
【0127】また、この発明は以上説明したように、主
熱源機側に設けられた主低圧圧力検知手段と、従熱源機
側に設けられた従低圧圧力検知手段と、主低圧圧力検知
手段及び従低圧圧力検知手段の両者の検知値が第一所定
値に収束したときに動作する第一収束判定手段と、上記
両者の検知値が第二所定値に収束したときに動作する第
二収束判定手段と、第一収束判定手段及び第二収束判定
手段による収束時間を計時する収束時間計時手段と、従
熱交換器と液側合流部の間の管路に設けられた流量制御
弁と、均油運転要否判定手段の均油運転要判定を介して
動作し、流量制御弁を主低圧圧力検知手段を介して検知
した値と従低圧圧力検知手段を介して検知した値が所定
値に収束して、収束時間計時手段の計時値が所定時間に
達するまで流量制御弁を動作させる流量制御弁調整手段
とを設けたものである。Further, as described above, the present invention provides a main low pressure detecting means provided on the main heat source unit, a sub low pressure detecting unit provided on the sub heat source unit, a main low pressure detecting unit, First convergence determination means that operates when the detection values of both of the secondary low pressure detection means converge to a first predetermined value, and second convergence determination that operates when the two detection values converge to a second predetermined value Means, a convergence time measuring means for measuring convergence time by the first convergence determining means and the second convergence determining means, a flow control valve provided in a pipeline between the slave heat exchanger and the liquid side junction, Operates through the oil equalization operation necessity judgment means of the oil operation necessity judgment means, and the value detected by the flow control valve through the main low pressure detection means and the value detected through the secondary low pressure detection means converge to a predetermined value. Flow rate control until the time value of the convergence time It is provided with a flow control valve adjusting device for operating the valve.
【0128】これによって、主熱源機及び従熱源機を組
合わせて大容量の熱源手段が形成され、この熱源手段に
より冷媒回路が構成された冷凍空気調和装置において、
液側合流部、ガス側合流部における各熱源機への返油量
の偏向を考慮し、暖房運転中に均油運転が必要となった
場合に、各熱源機の運転が所定時間継続した段階で均油
運転要否判定手段の判定を介して、主熱源機及び従熱源
機の運転出力をそのままとし各熱源機で検知した低圧に
基づいて、それぞれの低圧が各熱源機間で冷凍機油が移
動し得る値となるまで、従熱交換器と液側合流部の間に
配置された流量制御弁を調整する。As a result, a large-capacity heat source means is formed by combining the main heat source unit and the auxiliary heat source unit, and in the refrigeration air conditioner in which the refrigerant circuit is constituted by this heat source unit,
Considering the deflection of the amount of oil returned to each heat source unit at the liquid side junction and gas side junction, when the oil leveling operation is required during the heating operation, the operation of each heat source unit has continued for a predetermined time Through the determination of the oil equalizing operation necessity determination means, the operation output of the main heat source unit and the sub heat source unit is kept as it is, and based on the low pressure detected by each heat source unit, the respective low pressure Adjust the flow control valve disposed between the slave heat exchanger and the liquid-side junction until a value that can be moved is obtained.
【0129】これにより、均油運転中の快適性、性能低
下が少なく、また各熱源機の運転出力変化がないことと
も相俟って均油運転後に迅速に性能回復し、かつ利用側
熱交換器12から戻る冷凍機油が、適正な頻度の均油運
転によって主熱源機及び従熱源機に均等に配分される。
したがって、冷凍空気調和の快適性や、冷凍空気調和の
性能の低下を伴うことなしに、主圧縮機、従圧縮機の動
作信頼性を向上する効果がある。As a result, the comfort and the performance during the oil leveling operation are less reduced, and the performance is quickly recovered after the oil leveling operation, in combination with the fact that there is no change in the operation output of each heat source unit. The refrigerating machine oil returned from the unit 12 is equally distributed to the main heat source unit and the slave heat source units by the oil equalizing operation of appropriate frequency.
Therefore, there is an effect of improving the operational reliability of the main compressor and the sub-compressor without deteriorating the comfort of the refrigeration air conditioning and the performance of the refrigeration air conditioning.
【図1】 この発明の実施の形態1を示す冷媒回路図。FIG. 1 is a refrigerant circuit diagram showing Embodiment 1 of the present invention.
【図2】 図1の熱源機における油収支を概念的に示す
グラフ。FIG. 2 is a graph conceptually showing an oil balance in the heat source unit of FIG.
【図3】 図2に関連した主熱源機側の油収支関係グラ
フ。FIG. 3 is a graph showing an oil balance relationship on the main heat source unit side related to FIG. 2;
【図4】 図2に関連した従熱源機側の油収支関係グラ
フ。FIG. 4 is a graph showing an oil balance relationship on the side of the subordinate heat source device related to FIG. 2;
【図5】 図1の冷媒回路の油収支に関する返油回路
図。FIG. 5 is an oil return circuit diagram relating to the oil balance of the refrigerant circuit of FIG. 1;
【図6】 図1の冷媒回路の冷媒循環量に対する油収支
関係グラフ。FIG. 6 is a graph showing an oil balance relationship with respect to a refrigerant circulation amount in the refrigerant circuit of FIG. 1;
【図7】 図1の冷媒回路に対する制御を説明するフロ
ーチャート。FIG. 7 is a flowchart illustrating control of the refrigerant circuit of FIG. 1;
【図8】 この発明の実施の形態2を示す通常運転時に
おける均油運転の圧縮機運転出力を示すグラフ。FIG. 8 is a graph showing a compressor operation output of an oil equalizing operation during a normal operation according to the second embodiment of the present invention.
【図9】 図8に関連した他の圧縮機運転出力を示すグ
ラフ。FIG. 9 is a graph showing another compressor operation output related to FIG. 8;
【図10】 図8に関連した他の圧縮機運転出力を示す
グラフ。FIG. 10 is a graph showing another compressor operation output related to FIG. 8;
【図11】 図8に関連した他の圧縮機運転出力を示す
グラフ。FIG. 11 is a graph showing another compressor operation output related to FIG. 8;
【図12】 この発明の実施の形態3を示す図で、冷凍
空気調和装置における冷媒回路の油収支に関する返油回
路図。FIG. 12 shows the third embodiment of the present invention, and is an oil return circuit diagram relating to the oil balance of the refrigerant circuit in the refrigeration air conditioner.
【図13】 この発明の実施の形態4を示す冷媒回路
図。FIG. 13 is a refrigerant circuit diagram showing Embodiment 4 of the present invention.
【図14】 図13の冷媒回路に対する制御を説明する
フローチャート。FIG. 14 is a flowchart illustrating control of the refrigerant circuit of FIG. 13;
【図15】 この発明の実施の形態5を示す冷媒回路
図。FIG. 15 is a refrigerant circuit diagram showing a fifth embodiment of the present invention.
【図16】 図15の冷媒回路に対する制御を説明する
フローチャート。FIG. 16 is a flowchart illustrating control on the refrigerant circuit of FIG. 15;
【図17】 従来の冷凍空気調和装置を示す冷媒回路
図。FIG. 17 is a refrigerant circuit diagram showing a conventional refrigeration air conditioner.
1 主熱源機、2 主圧縮機、3 主油分離器、5 主
熱交換器、6 主送風機、7 主油溜部、101 従熱
源機、102 従圧縮機、103 従油分離器、105
従熱交換器、106 従送風機、107 従油溜部、
12 利用側熱交換器、14 液側合流部、15 ガス
側合流部、16 均油回路、201 圧縮機運転時間計
時手段、202 均油運転要否判定手段、17 主開閉
弁、117 従開閉弁、18 主低圧圧力検知手段、1
18 従低圧圧力検知手段、19第一収束判定手段、2
0 第二収束判定手段、21 収束時間計時手段、22
主送風出力調整制御手段、122 従送風出力調整制御
手段、222 均油運転制御装置、23 流量制御弁、
24 流量制御弁調整手段。REFERENCE SIGNS LIST 1 main heat source unit, 2 main compressor, 3 main oil separator, 5 main heat exchanger, 6 main blower, 7 main oil reservoir, 101 auxiliary heat source unit, 102 auxiliary compressor, 103 auxiliary oil separator, 105
Secondary heat exchanger, 106 secondary blower, 107 secondary oil reservoir,
12 use side heat exchanger, 14 liquid side merging section, 15 gas side merging section, 16 oil equalizing circuit, 201 compressor operating time measuring means, 202 oil equalizing operation necessity determining means, 17 main open / close valve, 117 secondary open / close valve , 18 main low pressure detection means, 1
18 secondary low pressure detecting means, 19 first convergence determining means, 2
0 second convergence determination means, 21 convergence time clock means, 22
Main ventilation output adjustment control means, 122 secondary ventilation output adjustment control means, 222 oil leveling operation control device, 23 flow control valve,
24 Flow control valve adjusting means.
Claims (5)
主熱交換器及び主油溜部を有する主熱源機と、従圧縮
機、従油分離器、従熱交換器及び従油溜部を有する従熱
源機と、上記主熱源機及び従熱源機に接続された利用側
熱交換器と、上記主熱源機及び利用側熱交換器を接続し
た管路と上記従熱源機及び利用側熱交換器を接続した管
路とを接続する液側合流部と、上記主熱源機及び利用側
熱交換器を接続した管路と上記従熱源機及び利用側熱交
換器を接続した管路とを接続するガス側合流部と、上記
主油溜部及び従油溜部が油溜管路によって連結され、上
記油溜管路の上記主油溜部側開口部は上記主油溜部内の
液量が第一所定量以下になったときに上記主油溜部内の
液と接しない位置に配置され、上記油溜管路の上記従油
溜部側開口部は上記従油溜部内の液量が第二所定量以下
になったときに上記従油溜部内の液と接しない位置に配
置された均油回路と、上記主圧縮機及び従圧縮機の圧縮
機運転時間計時手段と、この圧縮機運転時間計時手段に
よる上記主圧縮機及び従圧縮機の運転時間を下式におけ
る時間TOと比較して均油運転要否を判定する均油運転
要否判定手段とを備えた冷凍空気調和装置。 【数1】 ここに χ:油溜部内油量 ρ:油密度 R5:油溜部から圧縮機への返油量 R3:油分離器から油溜部への返油量An output controllable main compressor, a main oil separator,
A main heat source unit having a main heat exchanger and a main oil reservoir, a sub compressor, a sub oil separator, a sub heat exchanger having a sub heat exchanger and a sub oil reservoir, and the main heat source unit and the sub heat source unit The connected use-side heat exchanger, and a liquid-side junction connecting the pipe connecting the main heat source unit and the use-side heat exchanger and the pipe connecting the slave heat source unit and the use-side heat exchanger. A gas-side junction connecting the pipe connecting the main heat source unit and the use-side heat exchanger to the pipe connecting the slave heat source unit and the use-side heat exchanger; the main oil reservoir and the slave oil The reservoir is connected by an oil reservoir line, and the main oil reservoir side opening of the oil reservoir line is provided in the main oil reservoir when the liquid amount in the main oil reservoir becomes equal to or less than a first predetermined amount. Is disposed at a position not in contact with the liquid, and the auxiliary oil reservoir side opening of the oil reservoir pipe is provided when the liquid amount in the auxiliary oil reservoir becomes equal to or less than a second predetermined amount. An oil equalizing circuit arranged at a position not in contact with the liquid in the oil reservoir, a compressor operating time measuring means of the main compressor and the auxiliary compressor, and the main compressor and the auxiliary compressor by the compressor operating time measuring means. A refrigeration air conditioner comprising: an oil equalizing operation necessity determining unit that determines whether oil equalizing operation is necessary by comparing an operation time of the machine with a time TO in the following equation. (Equation 1) Where χ: oil amount in oil reservoir ρ: oil density R5: amount of oil returned from oil reservoir to compressor R3: amount of oil returned from oil separator to oil reservoir
を介して制御されて、運転出力が所定時間交互に増減す
る主圧縮機及び従圧縮機としたことを特徴とする請求項
1記載の冷凍空気調和装置。2. A main compressor and a sub-compressor whose operation output is alternately increased and decreased for a predetermined time, controlled by the oil equalizing operation necessity judging means by oil equalizing operation necessity judgment means. 2. The refrigerated air conditioner according to 1.
の間のバイパス回路に設けられて均油運転要否判定手段
の均油運転要判定を介して制御されて所定時間開放する
主開閉弁と、従熱源機の従圧縮機の吐出部と従油溜部の
間のバイパス回路に設けらて上記均油運転要否判定手段
の均油運転要判定を介して制御されて上記主開閉弁の開
放時に閉成する従開閉弁とを備えたことを特徴とする請
求項1記載の冷凍空気調和装置。3. A predetermined time period, which is provided in a bypass circuit between a discharge portion of a main compressor of the main heat source unit and a main oil reservoir portion and is controlled via oil equalization operation necessity determination by oil equalization operation necessity determination means for a predetermined time. The main opening / closing valve to be opened and a bypass circuit provided between the discharge part and the auxiliary oil reservoir of the auxiliary compressor of the auxiliary heat source unit are controlled through the oil equalization operation necessity determination of the oil equalization operation necessity determination means. 2. The refrigeration air conditioner according to claim 1, further comprising a slave on-off valve that is closed when the main on-off valve is opened.
手段と、従熱源機側に設けられた従低圧圧力検知手段
と、上記主低圧圧力検知手段及び従低圧圧力検知手段の
両者の検知値が第一所定値に収束したときに動作する第
一収束判定手段と、上記両者の検知値が第二所定値に収
束したときに動作する第二収束判定手段と、上記第一収
束判定手段及び第二収束判定手段による収束時間を計時
する収束時間計時手段と、主熱交換器の主送風機の送風
出力を制御する主送風出力調整制御手段と、従熱交換器
の従送風機の送風出力を制御する従送風出力調整制御手
段と、均油運転要否判定手段の均油運転要判定を介して
動作し、上記主送風機及び従送風機の送風出力を上記主
低圧圧力検知手段を介して検知した値と上記従低圧圧力
検知手段を介して検知した値が所定値に収束して、上記
収束時間計時手段の計時値が所定時間に達するまで上記
主送風出力調整制御手段及び従送風出力調整制御手段を
動作させる均油運転制御装置とを備えたことを特徴とす
る請求項1記載の冷凍空気調和装置。4. A main low pressure detecting means provided on the main heat source unit side, a low low pressure detecting unit provided on the sub heat source unit side, and both of the main low pressure detecting unit and the low low pressure detecting unit. A first convergence determining unit that operates when the detected value converges to a first predetermined value; a second convergence determining unit that operates when both of the detected values converge to a second predetermined value; Means and a convergence time measuring means for measuring a convergence time by the second convergence determining means, a main blower output adjusting control means for controlling a blower output of a main blower of a main heat exchanger, and a blower output of a slave blower of a slave heat exchanger. Operating through the auxiliary blower output adjustment control means and the oil equalization operation necessity determination means of the oil equalization operation necessity determination means, and detects the blower output of the main blower and the slave blower through the main low pressure detection means. And the detected value via the low pressure detection means And an oil-equalizing operation control device that operates the main airflow output adjustment control means and the auxiliary airflow output adjustment control means until the time value of the convergence time clocking means reaches a predetermined time. The refrigeration air conditioner according to claim 1, wherein:
手段と、従熱源機側に設けられた従低圧圧力検知手段
と、上記主低圧圧力検知手段及び従低圧圧力検知手段の
両者の検知値が第一所定値に収束したときに動作する第
一収束判定手段と、上記両者の検知値が第二所定値に収
束したときに動作する第二収束判定手段と、上記第一収
束判定手段及び第二収束判定手段による収束時間を計時
する収束時間計時手段と、従熱交換器と液側合流部の間
の管路に設けられた流量制御弁と、均油運転要否判定手
段の均油運転要判定を介して動作し、上記流量制御弁を
上記主低圧圧力検知手段を介して検知した値と上記従低
圧圧力検知手段を介して検知した値が所定値に収束し
て、上記収束時間計時手段の計時値が所定時間に達する
まで上記流量制御弁を動作させる流量制御弁調整手段と
を備えたことを特徴とする請求項1記載の冷凍空気調和
装置。5. A main low pressure detecting means provided on a main heat source unit side, a sub low pressure detecting unit provided on a sub heat source unit side, and both of the main low pressure detecting unit and the sub low pressure detecting unit. A first convergence determining unit that operates when the detected value converges to a first predetermined value; a second convergence determining unit that operates when both of the detected values converge to a second predetermined value; Means and a convergence time measuring means for measuring the convergence time by the second convergence determination means, a flow control valve provided in a pipe line between the slave heat exchanger and the liquid-side junction, and an oil equalization operation necessity determination means. Operated through the oil equalizing operation required judgment, the value detected by the main low pressure detection means and the value detected by the sub low pressure detection means of the flow control valve converge to a predetermined value, Operate the flow control valve until the time value of the convergence time timer reaches a predetermined time. 2. The refrigeration air conditioner according to claim 1, further comprising a flow control valve adjusting unit that operates.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30554597A JPH11142002A (en) | 1997-11-07 | 1997-11-07 | Refrigerating air conditioning device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30554597A JPH11142002A (en) | 1997-11-07 | 1997-11-07 | Refrigerating air conditioning device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11142002A true JPH11142002A (en) | 1999-05-28 |
Family
ID=17946458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30554597A Pending JPH11142002A (en) | 1997-11-07 | 1997-11-07 | Refrigerating air conditioning device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11142002A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7305846B2 (en) * | 2003-05-30 | 2007-12-11 | Daikin Industries, Ltd. | Freezing device |
JP2011002160A (en) * | 2009-06-18 | 2011-01-06 | Aisin Seiki Co Ltd | Air conditioner |
JP2012211763A (en) * | 2007-03-27 | 2012-11-01 | Daikin Industries Ltd | Refrigerating device |
CN104236166A (en) * | 2013-06-20 | 2014-12-24 | 珠海格力电器股份有限公司 | Compression module of air conditioning system, air conditioning system and oil balance method of compression module |
CN105066537A (en) * | 2015-07-15 | 2015-11-18 | 宁波奥克斯电气有限公司 | Heating and oil returning control method for multi-connected air conditioning unit |
CN104236166B (en) * | 2013-06-20 | 2016-11-30 | 珠海格力电器股份有限公司 | Compression module of air conditioning system, air conditioning system and oil balance method of compression module |
WO2017170356A1 (en) * | 2016-03-28 | 2017-10-05 | 三菱重工サーマルシステムズ株式会社 | Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device |
EP2416089A4 (en) * | 2009-03-31 | 2018-03-28 | Mitsubishi Electric Corporation | Refrigeration device |
WO2018096655A1 (en) * | 2016-11-25 | 2018-05-31 | 三菱電機株式会社 | Refrigeration cycle device |
-
1997
- 1997-11-07 JP JP30554597A patent/JPH11142002A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7305846B2 (en) * | 2003-05-30 | 2007-12-11 | Daikin Industries, Ltd. | Freezing device |
JP2012211763A (en) * | 2007-03-27 | 2012-11-01 | Daikin Industries Ltd | Refrigerating device |
EP2416089A4 (en) * | 2009-03-31 | 2018-03-28 | Mitsubishi Electric Corporation | Refrigeration device |
JP2011002160A (en) * | 2009-06-18 | 2011-01-06 | Aisin Seiki Co Ltd | Air conditioner |
CN104236166A (en) * | 2013-06-20 | 2014-12-24 | 珠海格力电器股份有限公司 | Compression module of air conditioning system, air conditioning system and oil balance method of compression module |
CN104236166B (en) * | 2013-06-20 | 2016-11-30 | 珠海格力电器股份有限公司 | Compression module of air conditioning system, air conditioning system and oil balance method of compression module |
CN105066537A (en) * | 2015-07-15 | 2015-11-18 | 宁波奥克斯电气有限公司 | Heating and oil returning control method for multi-connected air conditioning unit |
CN105066537B (en) * | 2015-07-15 | 2017-09-29 | 宁波奥克斯电气股份有限公司 | Multi-connected machine heats method for controlling oil return |
WO2017170356A1 (en) * | 2016-03-28 | 2017-10-05 | 三菱重工サーマルシステムズ株式会社 | Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device |
JP2017180878A (en) * | 2016-03-28 | 2017-10-05 | 三菱重工サーマルシステムズ株式会社 | Multistage compression device, refrigeration cycle including the same, and operation method of multistage compression device |
WO2018096655A1 (en) * | 2016-11-25 | 2018-05-31 | 三菱電機株式会社 | Refrigeration cycle device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10544971B2 (en) | Method for controlling a vapour compression system with an ejector | |
JP5414482B2 (en) | Air conditioner | |
JP5855129B2 (en) | Outdoor unit and air conditioner | |
EP2587193B1 (en) | Air conditioner | |
US9863679B2 (en) | Air-conditioning apparatus with low outside air temperature mode | |
CN102419024B (en) | Refrigeration cycle apparatus and hot-water heating apparatus | |
US7380411B2 (en) | Heat source unit with switching means between heating and cooling | |
JP3413044B2 (en) | Air conditioner | |
JP2002195670A (en) | Transcritical vapor compression system, and suction lien heat exchanger regulating pressure of high-pressure component of refrigerant circulating in the system | |
US11156391B2 (en) | Refrigeration cycle apparatus | |
JP6341326B2 (en) | Refrigeration unit heat source unit | |
KR102688990B1 (en) | An air conditioning apparatus and control method thereof | |
CN113587388B (en) | Multi-split air conditioner and multi-split air conditioner system | |
US8205463B2 (en) | Air conditioner and method of controlling the same | |
JPH11142002A (en) | Refrigerating air conditioning device | |
JPH08254376A (en) | Air conditioner | |
JP3467837B2 (en) | Air conditioner | |
JP6087610B2 (en) | Air conditioner | |
JPH07198187A (en) | Air conditioner | |
JP2012107790A (en) | Air conditioning device | |
JP2017110820A (en) | Air conditioning device | |
US20220186993A1 (en) | Air-conditioning apparatus | |
JPH0972636A (en) | Accumulator and air conditioner utilizing this accumulator | |
JP2000146345A (en) | Refrigerator | |
JPH04222354A (en) | Operation controller for refrigerating equipment |