JP5414482B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5414482B2
JP5414482B2 JP2009273463A JP2009273463A JP5414482B2 JP 5414482 B2 JP5414482 B2 JP 5414482B2 JP 2009273463 A JP2009273463 A JP 2009273463A JP 2009273463 A JP2009273463 A JP 2009273463A JP 5414482 B2 JP5414482 B2 JP 5414482B2
Authority
JP
Japan
Prior art keywords
compressor
oil
expansion valve
electronic expansion
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009273463A
Other languages
Japanese (ja)
Other versions
JP2011117626A (en
Inventor
崇雄 清
良樹 畑
真一 小杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009273463A priority Critical patent/JP5414482B2/en
Publication of JP2011117626A publication Critical patent/JP2011117626A/en
Application granted granted Critical
Publication of JP5414482B2 publication Critical patent/JP5414482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、1台の室外ユニットと複数台の室内ユニットを組み合わせた空気調和機に関し、特に、空気調和機の冷凍サイクル内を循環する冷凍機油を分離して、その冷凍機油を圧縮機に戻すことで、圧縮機内の冷凍機油の量を適正にする油量調整機能を備えた空気調和機に関する。   The present invention relates to an air conditioner in which one outdoor unit and a plurality of indoor units are combined. In particular, the refrigerating machine oil circulating in the refrigerating cycle of the air conditioner is separated, and the refrigerating machine oil is returned to the compressor. It is related with the air conditioner provided with the oil quantity adjustment function which makes the quantity of the refrigerating machine oil in a compressor appropriate.

一般に、空気調和機には、圧縮機の潤滑のために冷凍機油が封入されている。冷凍機油の必要量は、使用される冷媒配管の配管長により異なり、冷媒配管の長さに比べ、冷凍機油量が少ない場合、油不足になってしまう。このため、空気調和機の室外ユニットを製作する場合には、予想される最大配管長の場合でも油量不足とならない十分な油量を封入していた。   Generally, refrigerating machine oil is enclosed in an air conditioner for lubrication of a compressor. The required amount of refrigerating machine oil varies depending on the length of the refrigerant pipe to be used. When the amount of refrigerating machine oil is small compared to the length of the refrigerant pipe, the oil becomes insufficient. For this reason, when an outdoor unit of an air conditioner is manufactured, a sufficient amount of oil that does not cause a shortage of oil is sealed even in the case of the expected maximum pipe length.

また、他の従来技術としては特許文献1に記載のものなどがある。この文献のものは、圧縮機内の油面高さを検知するセンサを設けると共に、油分離器と圧縮機を接続する油戻し配管に開閉弁と絞りを設け、前記開閉弁の開閉制御と前記絞りにより、各圧縮機への油の戻り制御を行なうものである。   Another conventional technique is described in Patent Document 1. In this document, a sensor for detecting the oil level in the compressor is provided, and an open / close valve and a throttle are provided in an oil return pipe connecting the oil separator and the compressor. Thus, the return control of oil to each compressor is performed.

特開2001−349644号公報JP 2001-349644 A

上述したように、従来のものでは、空気調和機を構成する室外ユニットにおける冷凍機油の封入量は、前記最大配管長の時でも油量不足にならないような十分な油量とされている。このため、配管長が短いときには常に冷凍機油が過多の状態となり、多量の冷凍機油がサイクル配管内に排出されてしまい、低圧側の熱交換器に油が溜まって、配管内に油膜を作る。これにより、熱交換器の伝熱性能を低下させ、冷房能力及び暖房能力を低下させていた。   As described above, in the conventional one, the amount of the refrigerating machine oil enclosed in the outdoor unit constituting the air conditioner is set to a sufficient oil amount so that the oil amount does not become insufficient even at the maximum pipe length. For this reason, when the pipe length is short, the amount of refrigeration oil is always excessive, a large amount of refrigeration oil is discharged into the cycle pipe, and the oil is accumulated in the heat exchanger on the low pressure side to form an oil film in the pipe. Thereby, the heat transfer performance of the heat exchanger was reduced, and the cooling capacity and the heating capacity were reduced.

また、圧縮機に戻る油量を適切に制御できないと、多量の冷凍機油が圧縮機内に戻ることになり、冷凍機油による液圧縮を起こし、圧縮機入力の増加や圧縮機の故障の原因ともなっていた。   In addition, if the amount of oil that returns to the compressor cannot be controlled properly, a large amount of refrigeration oil will return to the compressor, causing liquid compression by the refrigeration oil, leading to increased compressor input and compressor failure. It was.

更に、上記特許文献1のものでは、圧縮機から排出された冷凍機油は油分離器で冷媒と分離され、圧縮機に戻る構造となっている。しかし、冷凍機油の戻り量の制御は電磁弁による開閉制御であり、冷凍機油の戻り量の微調整による圧縮機内油量の最適化は困難であった。   Furthermore, in the thing of the said patent document 1, the refrigerating machine oil discharged | emitted from the compressor is isolate | separated from a refrigerant | coolant with an oil separator, and has a structure which returns to a compressor. However, the control of the return amount of the refrigeration oil is an open / close control by a solenoid valve, and it is difficult to optimize the amount of oil in the compressor by finely adjusting the return amount of the refrigeration oil.

また、起動時や室数切替時(空調する室数の変更時)等の過渡的なサイクル状態のときは、一時的に圧縮機内の冷凍機油が冷凍サイクル内に流出してしまうため、圧縮機内の冷凍機油が不足することになる。しかし、室外ユニットの運転状態に応じて、圧縮機内の冷凍機油を常に一定に保持するような油量制御についての配慮も従来為されていなかった。   In addition, during a transitional cycle such as when starting or switching the number of rooms (when changing the number of air-conditioned rooms), the refrigeration oil in the compressor will temporarily flow into the refrigeration cycle. Of refrigeration oil. However, conventionally, no consideration has been given to oil amount control that keeps the refrigerating machine oil in the compressor constant according to the operating state of the outdoor unit.

本発明の目的は、圧縮機から冷凍機油が冷凍サイクルに放出される、所謂、油上がりによる圧縮機内の油量不足を防止すると共に、圧縮機内の油量を適切に維持して圧縮機の信頼性向上を図れる空気調和機を得ることにある。   An object of the present invention is to prevent so-called oil shortage in the compressor due to oil rising, in which refrigeration oil is discharged from the compressor to the refrigeration cycle, and to maintain the oil amount in the compressor appropriately to ensure the reliability of the compressor. It is to obtain an air conditioner capable of improving the performance.

本発明の他の目的は、冷凍サイクル内に冷凍機油が多量に放出されて、冷凍サイクル中の冷媒配管や熱交換器に冷凍機油が大量に滞留するのを防止し、冷房能力及び暖房能力が低下することを防止できる空気調和機を得ることにある。   Another object of the present invention is to prevent a large amount of refrigerating machine oil from being released into the refrigerating cycle, and to prevent a large amount of refrigerating machine oil from staying in the refrigerant pipes and heat exchangers in the refrigerating cycle. The object is to obtain an air conditioner that can prevent a drop.

上記目的を達成するために、本発明は、圧縮機、四方弁、室外熱交換器及び室外膨張弁を備える室外ユニットと、熱交換器及び室内膨張弁を備える室内ユニットと、前記室外ユニットと前記室内ユニットを接続する冷媒配管とを備えた空気調和機において、前記圧縮機の吐出側に設けられた油分離器と、前記四方弁と前記圧縮機との間の低圧配管と前記油分離器とを接続する油戻し配管と、この油戻し配管に設けられた電子膨張弁と、少なくとも前記圧縮機から吐出される吐出ガススーパーヒートに基づいて前記油戻し配管の電子膨張弁の開度を調整して前記圧縮機内油量を制御する制御装置を備え、前記制御装置は、圧縮機からの吐出ガス温度又は圧縮機頂部など圧縮機吐出配管に近い部分の高温部の温度を検出する圧縮機温度センサ及び圧縮機吐出側の圧力センサによる検出値に基づいて圧縮機吐出ガスのスーパーヒートを算出し、この算出されたスーパーヒートに基づいて前記油戻し回路の電子膨張弁の開度を制御すると共に、前記算出されたスーパーヒートが許容範囲であれば、前記電子膨張弁の開度を維持し、前記スーパーヒートが許容範囲より低い場合には前記電子膨張弁の開度を指定パルス分だけ更に開き、前記スーパーヒートが許容範囲より高い場合には前記電子膨張弁の開度を指定パルス分だけ閉じ、その後一定時間経過毎にスーパーヒートを算出して前記電子膨張弁開度を制御することを特徴とする。 To achieve the above object, the present invention provides an outdoor unit comprising a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve, an indoor unit comprising a heat exchanger and an indoor expansion valve, the outdoor unit and the In an air conditioner including a refrigerant pipe connecting an indoor unit, an oil separator provided on the discharge side of the compressor, a low-pressure pipe between the four-way valve and the compressor, and the oil separator and oil connecting return pipe, the adjustment and the electronic expansion valve provided in the oil return pipe, the opening degree of the electronic expansion valve of the oil return pipe based on the discharge gas super heater preparative discharged from at least the compressor A control device for controlling the amount of oil in the compressor , and the control device detects the temperature of the discharge gas from the compressor or the temperature of the high-temperature portion near the compressor discharge pipe such as the top of the compressor. Sensors and Calculate the superheat of the compressor discharge gas based on the detection value by the pressure sensor on the compressor discharge side, control the opening degree of the electronic expansion valve of the oil return circuit based on the calculated superheat, and If the calculated superheat is in an allowable range, the opening degree of the electronic expansion valve is maintained, and if the superheat is lower than the allowable range, the opening degree of the electronic expansion valve is further opened by a specified pulse, When the superheat is higher than the allowable range, the opening degree of the electronic expansion valve is closed by a specified pulse, and thereafter the superheat is calculated every time a predetermined time elapses to control the electronic expansion valve opening degree. .

ここで、前記圧縮機の吸入側の低圧配管にアキュームレータを設け、前記油戻し配管は、前記四方弁と前記アキュームレータとの間の前記低圧配管に接続と良い。また、前記油戻し配管を、前記低圧配管に設けられたアキュームレータに直接接続するようにしても良い。   Here, an accumulator may be provided in the low-pressure pipe on the suction side of the compressor, and the oil return pipe may be connected to the low-pressure pipe between the four-way valve and the accumulator. Further, the oil return pipe may be directly connected to an accumulator provided in the low pressure pipe.

更に、前記油戻し配管は、前記四方弁と前記アキュームレータとの間の前記低圧配管と前記油分離器とを接続する油戻し配管と、前記アキュームレータと前記圧縮機との間の吸入配管と前記油分離器とを接続する油戻し配管とを備え、前記それぞれの油戻し配管に電子膨張弁を設けるようにしても良い。   Further, the oil return pipe includes an oil return pipe connecting the low pressure pipe between the four-way valve and the accumulator and the oil separator, a suction pipe between the accumulator and the compressor, and the oil. An oil return pipe connecting the separator may be provided, and an electronic expansion valve may be provided in each of the oil return pipes.

前記圧縮機は、並列に複数台設けられ、前記油戻し配管は、前記各圧縮機の吸入配管と前記油分離器とを接続するように複数本設けられて、これら複数本の油戻し配管のそれぞれに前記電子膨張弁を備え、前記制御装置は、少なくとも前記各圧縮機から吐出される吐出ガススーパーヒートに基づいて前記各油戻し配管の電子膨張弁の開度を調整して前記各圧縮機内油量を制御するようにすれば、圧縮機を複数台設けた場合にも各圧縮機における油量を適切に制御することが可能になる。 A plurality of the compressors are provided in parallel, and a plurality of the oil return pipes are provided so as to connect the suction pipes of the compressors and the oil separator. each provided with the electronic expansion valve, wherein the control device adjusts the opening degree of the electronic expansion valve of each oil return pipes on the basis of the discharge gas super heater preparative discharged from at least the respective compressor each compression If the in-machine oil amount is controlled, the oil amount in each compressor can be appropriately controlled even when a plurality of compressors are provided.

上記において、室外ユニットに設置されている室外ユニットの各構成要素を制御する制御装置により、前記油戻し配管の電子膨張弁の開度制御を行うようにすると制御装置を共用できる。   In the above, the control device can be shared by controlling the opening degree of the electronic expansion valve of the oil return pipe by the control device that controls each component of the outdoor unit installed in the outdoor unit.

また、前記圧縮機内の油面高さを検知する油面高さセンサを備えると共に、この油面高さセンサは、最適油量となる油面の中間位置と、これ以上油量が少なくなると圧縮機の故障の原因となる油面の下限位置を検出するものであって、この油面高さセンサにより圧縮機内の油量が過多或いは過少にならないように制御して、圧縮機内の油面を適正な所定範囲に保つようにすると、圧縮機内の油量変動の小さい空気調和機が得られる。 Moreover, the includes a compressor oil level sensor for detecting the oil level height of Rutotomoni, the oil level sensor, and an intermediate position of the oil surface of the optimum oil amount, more when the oil amount is reduced It detects the lower limit position of the oil level that will cause the compressor failure, and the oil level sensor controls the oil level in the compressor so that the amount of oil in the compressor does not become excessive or excessive. Is maintained in an appropriate predetermined range, an air conditioner having a small oil amount fluctuation in the compressor can be obtained.

なお、前記スーパーヒートが許容範囲より低い場合でも前記電子膨張弁開度が既に上限開度である場合、或いは前記スーパーヒートが許容範囲より高い場合でも前記電子膨張弁開度が既に下限開度である場合には、電子膨張弁の開度を更に開閉する制御を行わないようにすることが好ましい。   Even if the superheat is lower than the allowable range, the electronic expansion valve opening is already the upper limit opening, or even if the superheat is higher than the allowable range, the electronic expansion valve opening is already the lower limit opening. In some cases, it is preferable not to perform control to further open and close the opening of the electronic expansion valve.

本発明によれば、圧縮機から冷凍機油が冷凍サイクルに放出される、所謂、油上がりによる圧縮機内の油量不足を防止することができると共に、圧縮機内の油量を適切に維持できるから、圧縮機の信頼性向上を図れる。また、冷凍サイクル内に冷凍機油が多量に放出されて、冷凍サイクル中の冷媒配管や熱交換器に冷凍機油が大量に滞留するのも抑制できるから、冷房能力及び暖房能力が低下することも防止できる空気調和機を得ることができる効果がある。   According to the present invention, refrigeration oil is released from the compressor into the refrigeration cycle, so-called oil shortage due to rising oil can be prevented, and the amount of oil in the compressor can be appropriately maintained. The reliability of the compressor can be improved. In addition, since a large amount of refrigerating machine oil is released into the refrigeration cycle and a large amount of refrigerating machine oil stays in the refrigerant piping and heat exchanger in the refrigeration cycle, it is possible to prevent the cooling capacity and heating capacity from deteriorating. There is an effect that an air conditioner that can be obtained can be obtained.

本発明の空気調和機の実施例1を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows Example 1 of the air conditioner of this invention. 本発明の空気調和機の実施例1の他の例を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the other example of Example 1 of the air conditioner of this invention. 本発明の空気調和機の実施例1における制御を説明するフローチャートである。It is a flowchart explaining the control in Example 1 of the air conditioner of this invention. 本発明の空気調和機の実施例2における制御を説明するフローチャートである。It is a flowchart explaining the control in Example 2 of the air conditioner of this invention. 本発明の空気調和機の実施例3における制御を説明するフローチャートである。It is a flowchart explaining the control in Example 3 of the air conditioner of this invention. 本発明の空気調和機に対する参考例を示す冷凍サイクル構成図である。It is a refrigerating cycle block diagram which shows the reference example with respect to the air conditioner of this invention.

本発明の実施例を説明する前に、まず、本発明に対する参考例を図6により説明する。   Before describing an embodiment of the present invention, a reference example for the present invention will be described with reference to FIG.

図6に示すものは、圧縮機1の吐出側に油分離器7を設け、この油分離器7から油戻し配管21を介して油をアキュムレータ8に送り、このアキュームレータ8を経由して圧縮機1に油を戻す参考例である。前記油戻し配管21には電磁弁10aが設けられ、開閉制御により油量調整を行うと共に、高圧を減圧するためにキャピラリチューブ17が設けられている。なお、図6において、Aは室外ユニット、B1,B2は室内ユニット、2は四方弁、3は室外熱交換器、4は室外膨張弁、5は室内熱交換器、6は室内膨張弁、9はレシーバタンク、10は電磁弁、11は逆止弁、12はガス阻止弁、13は液阻止弁、15は制御装置、16は冷媒配管である。   6 is provided with an oil separator 7 on the discharge side of the compressor 1, oil is sent from the oil separator 7 through an oil return pipe 21 to the accumulator 8, and the compressor is passed through the accumulator 8. This is a reference example for returning oil to 1. The oil return pipe 21 is provided with an electromagnetic valve 10a, and an oil amount is adjusted by opening / closing control, and a capillary tube 17 is provided to reduce the high pressure. In FIG. 6, A is an outdoor unit, B1 and B2 are indoor units, 2 is a four-way valve, 3 is an outdoor heat exchanger, 4 is an outdoor expansion valve, 5 is an indoor heat exchanger, 6 is an indoor expansion valve, 9 Is a receiver tank, 10 is a solenoid valve, 11 is a check valve, 12 is a gas blocking valve, 13 is a liquid blocking valve, 15 is a control device, and 16 is a refrigerant pipe.

しかし、この参考例のものでも、電磁弁10aでは単に全開,全閉の開閉制御を行うだけで、細かな冷凍機油量の調整はできず、起動時や室内ユニットの室数切替時等の過渡的なサイクル状態では、冷凍機油の圧縮機への戻り量を最適に制御することは困難である。   However, even in this reference example, the solenoid valve 10a simply performs opening / closing control of full open / close, and fine adjustment of the amount of refrigeration oil cannot be made. In a typical cycle state, it is difficult to optimally control the amount of refrigerating machine oil returned to the compressor.

これに対し本発明は、冷凍機油の圧縮機への戻り油量、或いは圧縮機内の冷凍機油の量を適切に制御できるようにしたもので、これにより、冷房性能及び暖房性能の向上、圧縮機の信頼性向上を図るものである。
以下、本発明の実施例を図1〜図5により説明する。
On the other hand, the present invention can appropriately control the amount of refrigerating machine oil returned to the compressor or the quantity of refrigerating machine oil in the compressor, thereby improving the cooling performance and heating performance. It is intended to improve the reliability.
Embodiments of the present invention will be described below with reference to FIGS.

図1は、本発明の空気調和機の実施例1を示す冷凍サイクル構成図で、空気調和機としてツインタイプエアコンディショナー(1台の室外ユニットに対して2台の室内ユニットを備えたもの)に本発明を適用した場合の例を示す。なお、本実施例において、室内ユニットの数は2台に限られず、3台以上でも、或いは1台であっても、本発明は同様に適用できるものである。   FIG. 1 is a refrigeration cycle configuration diagram showing Embodiment 1 of an air conditioner of the present invention. As an air conditioner, a twin-type air conditioner (with two indoor units for one outdoor unit) is used. An example when the present invention is applied will be described. In the present embodiment, the number of indoor units is not limited to two, and the present invention can be similarly applied to three or more indoor units or one.

図において、Aは室外ユニット、B1,B2は前記室外ユニットAに冷媒配管16により接続されている室内ユニットである。前記室外ユニットAにおいて、1は、低温,低圧の冷媒蒸気を圧縮して高温,高圧の冷媒蒸気にする圧縮機で、この実施例では複数台の圧縮機1が並列に設けられている。2は冷房時と暖房時で冷媒の流れを逆転させるための四方弁、3は、冷房時は凝縮器、暖房時は蒸発器となる室外熱交換器で、この実施例では1つの室外ユニットAに2個の室外熱交換器3が設けられており、それぞれの室外熱交換器3には冷凍サイクルの冷媒配管内を流れる冷媒流量を制御するための室外膨張弁4が設けれられている。7は、前記圧縮機1の吐出側に設けられ、圧縮機からの吐出冷媒に混合されている冷凍機油を分離するための油分離器、8は、前記圧縮機1の吸入側に設けられ、気液混合冷媒から液冷媒を分離するためのアキュムレータ、12はガス阻止弁、13は液阻止弁で、これらガス阻止弁12及び液阻止弁13により、冷凍サイクル内の冷媒及び冷凍機油を室外ユニットAに密封することができるようになっている。   In the figure, A is an outdoor unit, and B1 and B2 are indoor units connected to the outdoor unit A by a refrigerant pipe 16. In the outdoor unit A, reference numeral 1 denotes a compressor that compresses low-temperature and low-pressure refrigerant vapor into high-temperature and high-pressure refrigerant vapor. In this embodiment, a plurality of compressors 1 are provided in parallel. 2 is a four-way valve for reversing the refrigerant flow during cooling and heating, and 3 is an outdoor heat exchanger that functions as a condenser during cooling and an evaporator during heating. In this embodiment, one outdoor unit A Two outdoor heat exchangers 3 are provided, and each outdoor heat exchanger 3 is provided with an outdoor expansion valve 4 for controlling the flow rate of the refrigerant flowing in the refrigerant pipe of the refrigeration cycle. 7 is provided on the discharge side of the compressor 1 and is an oil separator for separating refrigeration oil mixed with refrigerant discharged from the compressor, and 8 is provided on the suction side of the compressor 1. An accumulator for separating the liquid refrigerant from the gas-liquid mixed refrigerant, 12 is a gas blocking valve, 13 is a liquid blocking valve, and the gas blocking valve 12 and the liquid blocking valve 13 allow the refrigerant and refrigeration oil in the refrigeration cycle to be supplied to the outdoor unit. A can be sealed.

前記室内ユニットB1,B2において、5は、冷房時は蒸発器、暖房時は凝縮器となる室内熱交換器、6は冷凍サイクルの冷媒配管内を流れる冷媒の流量を調整する室内膨張弁である。   In the indoor units B1 and B2, 5 is an indoor heat exchanger that becomes an evaporator during cooling and a condenser during heating, and 6 is an indoor expansion valve that adjusts the flow rate of the refrigerant flowing in the refrigerant piping of the refrigeration cycle. .

また、前記室外ユニットAには、室内外ユニットの膨張弁、電磁弁、圧縮機及びファンなどの各機器を制御する制御装置15が設けられている。   Further, the outdoor unit A is provided with a control device 15 that controls each device such as an expansion valve, a solenoid valve, a compressor, and a fan of the indoor / outdoor unit.

前記室外ユニットAと室内ユニットB1,B2とは、現地の施工条件に合わせて、空気調和機を設置する現地の冷媒配管16により接続されている。   The outdoor unit A and the indoor units B1 and B2 are connected by a local refrigerant pipe 16 in which an air conditioner is installed in accordance with the local construction conditions.

21は油戻し配管で、この油戻し配管21は前記油分離器7と、前記アキュムレータ8の上流側(アキュームレータと四方弁の間)の低圧配管22とを接続し、この油戻し配管21には電子膨張弁14が設けられている。なお、この油戻し配管21は前記アキュームレータ8に直接接続するようにしても良い。   Reference numeral 21 denotes an oil return pipe. The oil return pipe 21 connects the oil separator 7 and a low-pressure pipe 22 upstream of the accumulator 8 (between the accumulator and the four-way valve). An electronic expansion valve 14 is provided. The oil return pipe 21 may be directly connected to the accumulator 8.

本実施例のように、油戻し配管21に絞り装置である電子膨張弁14を設けることで、弁開度を微調整することが可能となり、適正な油量を圧縮機内に戻すことができるから、常に一定の油量を圧縮機内に保有させることが可能となる。従って、本実施例によれば、空気調和機の起動時や室内ユニットの運転台数が変化した場合など、過渡的なサイクル運転条件においても、圧縮機内の冷凍機油量を適正に保つことができ、油量低下による潤滑不足や、多量の冷凍機油が圧縮機内に戻ることによる液圧縮などを引き起こすこともなくなり、圧縮機1の故障を防止することが可能となる。また、圧縮機から冷凍サイクル配管内に排出される油量も最小限に抑えることができ、熱交換器への冷凍機油滞留による伝熱性能の低下や、それに伴なう冷房能力及び暖房能力の低下を抑えることもできる。電子膨張弁14の制御も前記制御装置15で制御することができる。   As in this embodiment, by providing the electronic expansion valve 14 that is a throttle device in the oil return pipe 21, it becomes possible to finely adjust the valve opening, and an appropriate amount of oil can be returned to the compressor. Therefore, it becomes possible to always keep a certain amount of oil in the compressor. Therefore, according to the present embodiment, the amount of refrigeration oil in the compressor can be appropriately maintained even under transient cycle operation conditions such as when the air conditioner is started up or when the number of indoor units operated changes. Insufficient lubrication due to a decrease in the amount of oil and liquid compression due to the return of a large amount of refrigerating machine oil into the compressor can be prevented, and failure of the compressor 1 can be prevented. In addition, the amount of oil discharged from the compressor into the refrigeration cycle piping can be minimized, and heat transfer performance is reduced due to refrigeration oil stagnation in the heat exchanger, and the cooling capacity and heating capacity associated therewith are reduced. The decline can also be suppressed. The control of the electronic expansion valve 14 can also be controlled by the control device 15.

また、図1において、18は各圧縮機1内の油面高さ(油量)を検出するための油面高さセンサ、19は圧縮機からの吐出ガス温度又は圧縮機頂部など圧縮機吐出配管に近い部分の高温部の温度を検出する圧縮機温度センサ、20aは高圧配管23に設けられ圧縮機吐出側の圧力を検出するための圧力センサ、20bは低圧配管22に設けられ圧縮機吸込側の圧力を検出するための圧力センサである。   In FIG. 1, 18 is an oil level sensor for detecting the oil level (oil amount) in each compressor 1, and 19 is a compressor discharge such as a discharge gas temperature from the compressor or the top of the compressor. Compressor temperature sensor for detecting the temperature of the high-temperature portion near the pipe, 20a is a pressure sensor for detecting the pressure on the discharge side of the compressor provided in the high-pressure pipe 23, and 20b is provided in the low-pressure pipe 22 for suctioning the compressor This is a pressure sensor for detecting the side pressure.

なお、24は前記油分離器7下流側の前記高圧配管23とレシーバタンク9が設けられている液管25とを接続するバイパス配管で、このバイパス配管24には電磁弁10と逆止弁11が設けられている。26は前記複数の室外熱交換器3にそれぞれ設けられている前記室外膨張弁4のそれぞれと並列に設けた逆止弁である。   Reference numeral 24 denotes a bypass pipe that connects the high-pressure pipe 23 downstream of the oil separator 7 and the liquid pipe 25 provided with the receiver tank 9. The bypass pipe 24 includes a solenoid valve 10 and a check valve 11. Is provided. Reference numeral 26 denotes a check valve provided in parallel with each of the outdoor expansion valves 4 provided in each of the plurality of outdoor heat exchangers 3.

図2は図1の変形例を示すもので、この例において図1と同一符号を付した部分は同一又は相当する部分を示している。本実施例に示すように、1台の室外ユニットAにおいて複数の圧縮機1を使用している場合、各圧縮機1毎に運転条件が異なるため、各圧縮機1内の必要とされる冷凍機油量も異なる。即ち、一方の圧縮機の油量が適正な場合であっても、他方の圧縮機の油量が過多であったり、過少状態となれば、上述したように、圧縮機の故障や冷凍サイクルの性能低下に繋がる。   FIG. 2 shows a modified example of FIG. 1, and in this example, the same reference numerals as those in FIG. 1 denote the same or corresponding parts. As shown in the present embodiment, when a plurality of compressors 1 are used in one outdoor unit A, the operating conditions are different for each compressor 1, so that the required refrigeration in each compressor 1 is used. The machine oil amount is also different. That is, even when the oil amount of one compressor is appropriate, if the oil amount of the other compressor is excessive or too low, as described above, the compressor failure or refrigeration cycle may occur. It leads to performance degradation.

この図2に示す例は、前記複数台の圧縮機の何れもが適正油量となるようにしたもので、この例では、油分離器7と、それぞれの圧縮機の吸入配管22a,22bとを複数の油戻し配管21a,21bで接続し、これら油戻し配管21a,21bのそれぞれに電子膨張弁14を設けている。これにより、各圧縮機毎に油の戻り量をそれぞれの圧縮機の運転状態に応じてコントロールできるから。各圧縮機内の油面を一定に保つことが可能となる。   The example shown in FIG. 2 is such that all of the plurality of compressors have an appropriate oil amount. In this example, the oil separator 7 and the suction pipes 22a and 22b of the respective compressors are used. Are connected by a plurality of oil return pipes 21a and 21b, and an electronic expansion valve 14 is provided in each of the oil return pipes 21a and 21b. Thereby, the return amount of oil can be controlled for each compressor according to the operating state of each compressor. It becomes possible to keep the oil level in each compressor constant.

図1に示す実施例では、油戻し配管21はアキュムレータ8上流の低圧配管22に接続されているため、冷媒循環量やアキュムレータ8内の液冷媒の量によっては、アキュムレータ8から圧縮機1に十分な量の油を戻せない場合がある。これに対し、図2に示す例では、油分離器7から直接各圧縮機1の吸入配管22a,22bに、それぞれの油戻し配管21a,21bを介して戻すので、冷媒循環量やアキュムレータ8の状態や特性に影響されず、それぞれの電子膨張弁14の開度制御により適正な冷凍機油量をそれぞれの圧縮機内に戻すことができる。   In the embodiment shown in FIG. 1, the oil return pipe 21 is connected to the low-pressure pipe 22 upstream of the accumulator 8, so that depending on the refrigerant circulation amount and the amount of liquid refrigerant in the accumulator 8, the accumulator 8 is sufficient for the compressor 1. It may not be possible to return the correct amount of oil. On the other hand, in the example shown in FIG. 2, since the oil separator 7 returns directly to the suction pipes 22a and 22b of the compressor 1 via the oil return pipes 21a and 21b, the refrigerant circulation amount and the accumulator 8 An appropriate amount of refrigerating machine oil can be returned into each compressor by controlling the opening of each electronic expansion valve 14 without being affected by the state or characteristics.

なお、図2の例において、図1に示す油戻し配管21と電子膨張弁14を併設することも可能である。即ち、前記四方弁2と前記アキュームレータ8との間の前記低圧配管22と前記油分離器7とを接続する油戻し配管と、前記アキュームレータ8と前記圧縮機1との間の吸入配管22a,22bと前記油分離器7とを接続する油戻し配管とを設け、それぞれの油戻し配管に電子膨張弁14を設けるようにしても良い。   In the example of FIG. 2, the oil return pipe 21 and the electronic expansion valve 14 shown in FIG. That is, an oil return pipe for connecting the low pressure pipe 22 between the four-way valve 2 and the accumulator 8 and the oil separator 7, and suction pipes 22 a and 22 b between the accumulator 8 and the compressor 1. And an oil return pipe for connecting the oil separator 7 and an electronic expansion valve 14 may be provided in each oil return pipe.

次に、圧縮機内の油量制御の具体例を図3のフローチャートで説明する。この制御例は圧縮機の周波数に基づいて前記電子膨張弁14の開度制御をすることを基本とし、更に圧縮内の油量を検出して前記電子膨張弁14の開度を補正するように制御する例を示している。   Next, a specific example of the oil amount control in the compressor will be described with reference to the flowchart of FIG. This control example is based on controlling the opening of the electronic expansion valve 14 based on the frequency of the compressor, and further detecting the amount of oil in the compression to correct the opening of the electronic expansion valve 14. An example of control is shown.

この例では、圧縮機内の油量を常に検出して常に一定の油量に保つことができるように、圧縮機1に油面高さセンサ18(図1、図2参照)を取り付ける。即ち、圧縮機1の容器に穴を設けておき、容器の外側から前記油面高さセンサ18の検知部を容器内に挿入し、センサ本体は圧縮機1の容器外に設置する。油面高さセンサ18の取付位置は、圧縮機内の油量が過多或いは過少にならないように制御するため、最適油量となる中間の位置と、これ以上油量が少なくなると圧縮機の故障の原因となる下限の位置に、それぞれ油面高さセンサ18を設置する。   In this example, an oil level sensor 18 (see FIGS. 1 and 2) is attached to the compressor 1 so that the amount of oil in the compressor can always be detected and kept constant. That is, a hole is provided in the container of the compressor 1, the detection part of the oil level sensor 18 is inserted into the container from the outside of the container, and the sensor body is installed outside the container of the compressor 1. The mounting position of the oil level sensor 18 is controlled so that the amount of oil in the compressor does not become excessive or too small. Therefore, if the oil amount becomes smaller than this, the compressor will fail. An oil level sensor 18 is installed at each of the lower limit positions causing the problem.

次に、図3のフローチャートに沿って、この実施例における圧縮機内油面高さ制御について説明する。
初めに、空気調和機の電源を投入する(ステップS1)。電源が投入されると、油戻り量を制御する電子膨張弁14の正確な開度を検出するため、ゼロリセット(基準点調整)が行なわれる(ステップS2)。次に室外ユニットの圧縮機1が起動する(ステップS3)。圧縮機が起動すると、一時的に圧縮機内の冷凍機油が冷凍サイクル配管内に排出され油量不足となるため、この油量不足を防ぐために電子膨張弁14の開度を全開とし圧縮機1内の油量を増やす(ステップS4)。次に、タイマーを0秒に設定し、A秒経過後ステップS7に移行する(ステップS5,S6)。ステップS7では圧縮機の周波数を検知し、この検知された圧縮機周波数に基づいて、予め求めておいた「圧縮機周波数−膨張弁開度特性図(a)」から、電子膨張弁14の開度Xplsを算出(ステップS8)し、電子膨張弁14の開度をXplsに制御する(ステップS9)。
Next, the control of the oil level in the compressor in this embodiment will be described along the flowchart of FIG.
First, the air conditioner is turned on (step S1). When the power is turned on, zero reset (reference point adjustment) is performed in order to detect the exact opening degree of the electronic expansion valve 14 that controls the oil return amount (step S2). Next, the compressor 1 of the outdoor unit is started (step S3). When the compressor is started, the refrigeration oil in the compressor is temporarily discharged into the refrigeration cycle piping and the amount of oil becomes insufficient, so that the opening of the electronic expansion valve 14 is fully opened to prevent the oil amount from being insufficient. The amount of oil is increased (step S4). Next, the timer is set to 0 seconds, and after a lapse of A seconds, the process proceeds to step S7 (steps S5 and S6). In step S7, the frequency of the compressor is detected, and based on the detected compressor frequency, the electronic expansion valve 14 is opened from the "compressor frequency-expansion valve opening characteristic diagram (a)" obtained in advance. The degree Xpls is calculated (step S8), and the opening degree of the electronic expansion valve 14 is controlled to Xpls (step S9).

次に、油面高さセンサ18で検出された圧縮機内の油面が、下限値より低ければ、前記ステップS4に戻って膨張弁14の開度は全開とされ、下限値より高くなった場合にはステップS11に移行する。ステップS11では、油面高さが中間値と下限値の間であれば、この状態が最適油量となるため電子膨張弁14の開度は現状の開度に維持される。ステップS11で、油面が中間値以上となった場合はステップS12に移行し、電子膨張弁14の開度を指定パルスYplsだけ閉じて、圧縮機内へ導入される油量を減らし、ステップS5に戻る。
上記のように制御することで、圧縮機内の油面を適正な所定範囲に保つことができる。
Next, if the oil level in the compressor detected by the oil level sensor 18 is lower than the lower limit value, the process returns to step S4 and the opening degree of the expansion valve 14 is fully opened, and becomes higher than the lower limit value. To step S11. In step S11, if the oil level height is between the intermediate value and the lower limit value, this state is the optimum oil amount, and the opening degree of the electronic expansion valve 14 is maintained at the current opening degree. In step S11, when the oil level becomes equal to or greater than the intermediate value, the process proceeds to step S12, the opening of the electronic expansion valve 14 is closed by the designated pulse Ypls, and the amount of oil introduced into the compressor is reduced, and the process proceeds to step S5. Return.
By controlling as described above, the oil level in the compressor can be maintained within an appropriate predetermined range.

一般に、空気調和機では圧縮機の運転周波数を上昇させることで冷媒循環量を増加させ、これによって、冷暖房の能力向上を図っている。しかし、冷媒循環量が多くなると、圧縮機から流出する冷凍機油量も多くなり、結果的に圧縮機内の油量が減少する。本実施例では、予め圧縮機周波数に対する電子膨張弁14の開度による圧縮機への給油量の関係を求めておき(図3の「圧縮機周波数−膨張弁開度特性図(a)」参照)、圧縮機の運転周波数が高いときは、電子膨張弁14の開度を大きくして、圧縮機への冷凍機油の供給量を増大させ、圧縮機運転周波数が低いときは、電子膨張弁14の開度を小さくして、圧縮機への冷凍機油の供給量を減少させるように制御することで、圧縮機への給油量を運転周波数の変化に応じて迅速に対応できるようにしている。   Generally, in an air conditioner, the refrigerant circulation rate is increased by increasing the operating frequency of the compressor, thereby improving the cooling / heating capacity. However, when the refrigerant circulation amount increases, the amount of refrigeration oil flowing out from the compressor also increases, and as a result, the amount of oil in the compressor decreases. In this embodiment, the relationship of the amount of oil supplied to the compressor according to the opening degree of the electronic expansion valve 14 with respect to the compressor frequency is obtained in advance (see “compressor frequency-expansion valve opening characteristic diagram (a)” in FIG. 3). ) When the operating frequency of the compressor is high, the opening degree of the electronic expansion valve 14 is increased to increase the supply amount of refrigeration oil to the compressor. When the operating frequency of the compressor is low, the electronic expansion valve 14 The amount of oil supplied to the compressor can be quickly accommodated in accordance with the change in the operating frequency by controlling the amount of refrigerating oil supplied to the compressor to be decreased by reducing the opening of the compressor.

本実施例によれば、圧縮機周波数に基づいて電子膨張弁14の開度を適切な開度に制御すると共に、圧縮機内の油面を検知して前記開度を修正するように構成しているので、圧縮機1から冷凍機油が冷凍サイクルに放出される、所謂、油上がりによる圧縮機内の油量不足を防止することができると共に、圧縮機内の油量を適切に維持できるから、圧縮機の信頼性向上を図れ、且つ冷凍サイクル内に冷凍機油が多量に放出されるのを防止し、冷房能力及び暖房能力が低下することも防止できる。   According to the present embodiment, the opening degree of the electronic expansion valve 14 is controlled to an appropriate opening degree based on the compressor frequency, and the opening degree is corrected by detecting the oil level in the compressor. Therefore, the compressor oil can be prevented from being discharged from the compressor 1 to the refrigeration cycle, that is, the amount of oil in the compressor due to rising oil can be prevented, and the amount of oil in the compressor can be appropriately maintained. In addition, it is possible to prevent a large amount of refrigerating machine oil from being released into the refrigeration cycle, and to prevent cooling capacity and heating capacity from being lowered.

次に、本発明の実施例2を図4のフローチャートにより説明する。この実施例において、空気調和機の基本構成は図1や図2に示すものと同様であり、電子膨張弁14の開度制御の手法のみ異なるものである。   Next, a second embodiment of the present invention will be described with reference to the flowchart of FIG. In this embodiment, the basic configuration of the air conditioner is the same as that shown in FIGS. 1 and 2, and only the method of controlling the opening degree of the electronic expansion valve 14 is different.

この実施例は、圧縮機吐出ガススーパーヒート(過熱度)を用いて電子膨張弁14の開度制御をするものである。圧縮機吐出ガススーパーヒートTdSHは、圧縮機の頂部に設けられた圧縮機温度センサ19から得られた温度と、圧縮機の吐出側に設けられた圧力センサ20aから得られた圧力から算出することができる。圧縮機吐出ガススーパーヒートTdSHが低い場合は、通常圧縮機温度が低下しているため、圧縮機下部の冷凍機油が溜まっている部位の温度も低下している。このため、圧縮機内の液冷媒量が増加して圧縮機内の冷凍機油に液冷媒が多量に混入する。このため、冷凍機油の粘度が低下するので、電子膨張弁14の開度を制御して圧縮機内に冷凍機油をより多く供給する必要がある。   In this embodiment, the opening degree of the electronic expansion valve 14 is controlled using the compressor discharge gas superheat (superheat degree). The compressor discharge gas superheat TdSH is calculated from the temperature obtained from the compressor temperature sensor 19 provided at the top of the compressor and the pressure obtained from the pressure sensor 20a provided on the discharge side of the compressor. Can do. When the compressor discharge gas superheat TdSH is low, since the compressor temperature is usually lowered, the temperature of the portion where the refrigerating machine oil is accumulated at the lower part of the compressor is also lowered. For this reason, the amount of liquid refrigerant in the compressor increases, and a large amount of liquid refrigerant is mixed into the refrigeration oil in the compressor. For this reason, since the viscosity of refrigerating machine oil falls, it is necessary to control the opening degree of the electronic expansion valve 14 and supply more refrigerating machine oil in a compressor.

以下、本実施例の制御を図4のフローチャートに沿って説明する。
図4のフローチャートにおいて、ステップS1からステップS6までは図3に示す実施例と同じであるので、説明を省略する。本実施例において、ステップS7,S8では、室外ユニットの圧縮機温度センサ19と圧縮機の吐出側に設けた圧力センサ20aからの検出値に基づいて、制御装置15により、圧縮機吐出温度と吐出圧力を検知すると共に、圧縮機吐出ガススーパーヒートTdSHを算出する。その算出された圧縮機吐出ガススーパーヒートTdSHが、目標温度に対して許容範囲かどうかをステップS9で演算し、許容範囲であれば、油戻り量を制御する電子膨張弁14の開度を現状維持させ、ステップS5に戻る。また、ステップS9で圧縮機吐出ガススーパーヒートが目標温度の許容範囲外の場合にはステップS10に移行する。
Hereinafter, the control of this embodiment will be described with reference to the flowchart of FIG.
In the flowchart of FIG. 4, steps S1 to S6 are the same as those of the embodiment shown in FIG. In this embodiment, in steps S7 and S8, the controller discharge temperature and discharge are controlled by the control device 15 based on the detected values from the compressor temperature sensor 19 of the outdoor unit and the pressure sensor 20a provided on the discharge side of the compressor. While detecting the pressure, the compressor discharge gas superheat TdSH is calculated. In step S9, it is calculated whether or not the calculated compressor discharge gas superheat TdSH is within an allowable range with respect to the target temperature. If the calculated temperature is within the allowable range, the opening degree of the electronic expansion valve 14 that controls the oil return amount is calculated. Maintain and return to step S5. If the compressor discharge gas superheat is outside the allowable range of the target temperature in step S9, the process proceeds to step S10.

ステップS10では、算出された圧縮機吐出ガススーパーヒートTdSHが目標温度TdSHより許容範囲以上低いとき(Yesの場合)にはステップS11に移行し、電子膨張弁14の開度を指定パルスYpls分だけ更に開いてステップ5に戻る。このとき、前記電子膨張弁開度が既に上限開度である場合には、電子膨張弁開度を更に開く制御は行なわず、その上限開度を維持する。   In step S10, when the calculated compressor discharge gas superheat TdSH is lower than the target temperature TdSH by an allowable range or more (in the case of Yes), the process proceeds to step S11, and the opening degree of the electronic expansion valve 14 is set by the designated pulse Ypls. Further open and return to step 5. At this time, when the electronic expansion valve opening is already the upper limit opening, control for further opening the electronic expansion valve opening is not performed, and the upper opening is maintained.

一方、算出された圧縮機吐出ガススーパーヒートTdSHが目標温度TdSHより許容範囲以上高いとき(Noの場合)はステップS12へ移行し、電子膨張弁14の開度が下限開度より大(Yesの場合)であればステップS13に移行して電子膨張弁14の開度を指定パルスZpls分だけ閉じる。ステップS12で膨張弁開度が下限開度以下の場合(Noの場合)にはその開度を維持してステップS5に戻る。   On the other hand, when the calculated compressor discharge gas superheat TdSH is higher than the target temperature TdSH by an allowable range or more (in the case of No), the process proceeds to step S12, and the opening of the electronic expansion valve 14 is larger than the lower limit opening (Yes) If so, the process proceeds to step S13 and the opening of the electronic expansion valve 14 is closed by the designated pulse Zpls. If the expansion valve opening is not more than the lower limit opening in step S12 (in the case of No), the opening is maintained and the process returns to step S5.

ここで、電子膨張弁14の開閉制御の速度に対し、圧縮機吐出ガススーパーヒートTdSHの温度変化の速度は小さいために、電子膨張弁14の開度が過剰に開閉されてしまい、圧縮機内の油量が過大または過少になってしまうことが考えられる。このため、本実施例では、ステップS5,S6に設定されたタイマーを利用して制御することで、圧縮機内油量が過大または過少になることを防止している。   Here, since the speed of the temperature change of the compressor discharge gas superheat TdSH is smaller than the speed of the opening / closing control of the electronic expansion valve 14, the opening degree of the electronic expansion valve 14 is excessively opened and closed, and the inside of the compressor It is conceivable that the amount of oil becomes excessive or excessive. For this reason, in this embodiment, the amount of oil in the compressor is prevented from becoming excessive or low by controlling using the timer set in steps S5 and S6.

本実施例によれば、圧縮機吐出ガススーパヒートに基づいて電子膨張弁14の開度制御をするので、サイクル運転状態が変動しても、圧縮機吐出ガススーパヒートに対応して圧縮機内の冷凍機油量を適正量に制御することができる。従って、圧縮機の信頼性向上を図れると共に、冷凍サイクル内に冷凍機油が多量に放出されるのを防止して冷房能力及び暖房能力を確保することができる。   According to the present embodiment, since the opening degree of the electronic expansion valve 14 is controlled based on the compressor discharge gas superheat, even if the cycle operation state fluctuates, the compressor discharge gas superheat is accommodated in the compressor. The amount of refrigerating machine oil can be controlled to an appropriate amount. Therefore, it is possible to improve the reliability of the compressor, and to prevent a large amount of refrigeration oil from being released into the refrigeration cycle, thereby ensuring the cooling capacity and the heating capacity.

本発明の実施例3を図5のフローチャートにより説明する。この実施例においても、空気調和機の基本構成は図1や図2に示すものと同様であり、電子膨張弁14の開度制御の手法のみ異なるものである。   A third embodiment of the present invention will be described with reference to the flowchart of FIG. Also in this embodiment, the basic configuration of the air conditioner is the same as that shown in FIGS. 1 and 2, and only the method of controlling the opening degree of the electronic expansion valve 14 is different.

この実施例は、圧縮機1の吐出圧力と吸込圧力との比である圧力比を用いて電子膨張弁14の開度制御をするものである。   In this embodiment, the opening degree of the electronic expansion valve 14 is controlled by using a pressure ratio which is a ratio between the discharge pressure and the suction pressure of the compressor 1.

圧縮機1の吐出圧力と吸込圧力との比である圧力比は、圧縮機1の品質確保のため運転範囲に制限がある。例えば、暖房期の外気低温時には圧縮機の吸入圧力が低下するので高圧力比運転になる。また、冷房期の外気低温時には圧縮機の吐出圧力が減少するので低圧力比運転になる。   The pressure ratio, which is the ratio between the discharge pressure and the suction pressure of the compressor 1, has a limited operating range for ensuring the quality of the compressor 1. For example, when the outside air temperature is low during the heating period, the suction pressure of the compressor is reduced, so that the high pressure ratio operation is performed. Further, since the discharge pressure of the compressor is reduced when the outside air temperature is low during the cooling period, the operation is performed at a low pressure ratio.

高圧力比運転時には、圧縮機の周波数を減少させて高圧力比運転を回避するが、油上がりが小さくなるため、圧縮機内の冷凍機油の油量が過大となる。また、圧力比が低い場合は、圧縮機の周波数を上昇させて低圧力比運転を回避するが、結果的に油上がりが大きくなり、圧縮機内の冷凍機油の油量不足を引き起こす。   During high pressure ratio operation, the frequency of the compressor is decreased to avoid high pressure ratio operation. However, since oil rise is reduced, the amount of refrigeration oil in the compressor becomes excessive. Further, when the pressure ratio is low, the frequency of the compressor is increased to avoid the low pressure ratio operation, but as a result, the oil rise increases and the amount of refrigeration oil in the compressor is insufficient.

そこで、本実施例では、図5のフローチャートに示すように、圧力比に基づいて油戻し配管21の電子膨張弁14を制御する。
図5のフローチャートにおいて、ステップS1からステップS6までは図3,図4に示す実施例と同じであるので、説明を省略する。
Therefore, in this embodiment, as shown in the flowchart of FIG. 5, the electronic expansion valve 14 of the oil return pipe 21 is controlled based on the pressure ratio.
In the flowchart of FIG. 5, steps S1 to S6 are the same as those in the embodiment shown in FIGS.

本実施例において、ステップS7,S8では、室外ユニットの圧縮機の吐出側の圧力センサ20aと吸込側の圧力センサ20bからの検出値に基づいて、制御装置15により、圧縮機吐出圧力Pdと吸入圧力Psを検知し、圧力比εを算出する。圧力比εを算出後次のステップに移行する。算出された圧力比εが、予め定めた圧縮機の運転範囲、即ち、圧力比εが下限値β1と上限値β2の範囲内かどうかをステップS9とS10で確認する。圧力比εが、「β1≦ε≦β2」であれば、電子膨張弁14の開度はそのまま維持してステップS10からステップS5に戻る。   In this embodiment, in steps S7 and S8, the compressor discharge pressure Pd and the suction are controlled by the control device 15 based on the detected values from the discharge side pressure sensor 20a and the suction side pressure sensor 20b of the compressor of the outdoor unit. The pressure Ps is detected and the pressure ratio ε is calculated. After calculating the pressure ratio ε, the process proceeds to the next step. It is confirmed in steps S9 and S10 whether the calculated pressure ratio ε is within a predetermined compressor operating range, that is, whether the pressure ratio ε is within the range between the lower limit value β1 and the upper limit value β2. If the pressure ratio ε is “β1 ≦ ε ≦ β2,” the opening degree of the electronic expansion valve 14 is maintained and the process returns from step S10 to step S5.

ステップS9及びS10で圧力比εが圧力比の上限値β2よりも大きい場合には、ステップS11に移行し、現在の電子膨張弁14の開度がその電子膨張弁の下限開度より大である場合には、ステップS12に移行して、電子膨張弁14の開度を予め設定してあるBパルス分だけ閉め、ステップS5に戻る。ステップS11で現在の電子膨張弁14の開度がその電子膨張弁の下限開度以下である場合には、その開度を維持してステップS5に戻る。   When the pressure ratio ε is larger than the upper limit value β2 of the pressure ratio in steps S9 and S10, the process proceeds to step S11, and the current opening degree of the electronic expansion valve 14 is larger than the lower limit opening degree of the electronic expansion valve. In this case, the process proceeds to step S12, the opening of the electronic expansion valve 14 is closed by a preset B pulse, and the process returns to step S5. If the current opening degree of the electronic expansion valve 14 is not more than the lower limit opening degree of the electronic expansion valve in step S11, the opening degree is maintained and the process returns to step S5.

前記ステップS9において、算出した圧力比εが下限開度β1未満の場合にはステップS13に移行する。ステップS13で、電子膨張弁14の開度が上限開度未満であれば、ステップS14に移行し、電子膨張弁14の開度を予め定め設定してあるCパルス分だけ開いた後、ステップS5に戻る。ステップS13で電子膨張弁14の開度が上限開度以上の場合には、その開度を維持してステップS5に戻る。   In step S9, when the calculated pressure ratio ε is less than the lower limit opening β1, the process proceeds to step S13. If the opening degree of the electronic expansion valve 14 is less than the upper limit opening degree in step S13, the process proceeds to step S14, and after opening the opening degree of the electronic expansion valve 14 by a predetermined C pulse, step S5 is performed. Return to. If the opening of the electronic expansion valve 14 is greater than or equal to the upper limit opening in step S13, the opening is maintained and the process returns to step S5.

本実施例において、電子膨張弁14の開閉制御の速度に対し、圧縮機の圧力比の変化速度は小さいために、電子膨張弁14の開度が過剰に開閉されてしまい、圧縮機内の油量が過大または過少になってしまうことが考えられる。このため、本実施例においても、ステップS5,S6に設定されたタイマーを利用して制御することで、圧縮機内油量が過大または過少になることを防止している。   In this embodiment, since the change rate of the pressure ratio of the compressor is small relative to the opening / closing control speed of the electronic expansion valve 14, the opening degree of the electronic expansion valve 14 is excessively opened and closed, and the amount of oil in the compressor May be too large or too small. For this reason, also in the present embodiment, the amount of oil in the compressor is prevented from becoming excessive or low by controlling using the timer set in steps S5 and S6.

本実施例によれば、圧力比に基づいて電子膨張弁14の開度制御をするので、圧力比が変化して許容運転範囲外の圧力比になっても、圧力比の変化に対応して圧縮機内の冷凍機油量を適正量に制御することができる。従って、圧縮機の信頼性向上を図れると共に、冷凍サイクル内に冷凍機油が多量に放出されるのを防止して冷房能力及び暖房能力を確保することができる。   According to the present embodiment, since the opening degree of the electronic expansion valve 14 is controlled based on the pressure ratio, even if the pressure ratio changes and becomes a pressure ratio outside the allowable operation range, the pressure ratio changes. The amount of refrigerating machine oil in the compressor can be controlled to an appropriate amount. Therefore, it is possible to improve the reliability of the compressor, and to prevent a large amount of refrigeration oil from being released into the refrigeration cycle, thereby ensuring the cooling capacity and the heating capacity.

以上述べたように、上述した各本実施例によれば、室内外配管長の長短によらず、常に適正な冷凍機油を圧縮機に供給することができる。また、短配管時の冷凍機油が過多の状態でも冷房能力及び暖房能力の低下を防止することができると共に、圧縮機入力増加を抑制することもできる。更に、起動時や室数切替時等の過渡的なサイクル状態に対しても、圧縮機内の冷凍機油量を一定に保つことができるようになり、圧縮機の信頼性を向上することができる。また、冷凍機油を最適に制御できるため、全体の油量を低減することも可能になる。   As described above, according to each of the above-described embodiments, appropriate refrigeration oil can always be supplied to the compressor regardless of the length of the indoor / outdoor piping. Further, even when the amount of refrigeration oil in the short pipe is excessive, it is possible to prevent the cooling capacity and the heating capacity from being lowered, and it is possible to suppress an increase in compressor input. Furthermore, the amount of refrigerating machine oil in the compressor can be kept constant even in a transient cycle state such as when starting or switching the number of rooms, and the reliability of the compressor can be improved. Further, since the refrigerating machine oil can be optimally controlled, the total oil amount can be reduced.

1 圧縮機
2 四方弁
3 室外熱交換器
4 室外膨張弁
5 室内熱交換器
6 室内膨張弁
7 油分離器
8 アキュムレータ
9 レシーバタンク
10 電磁弁
11 逆止弁
12 ガス阻止弁
13 液阻止弁
14 電子膨張弁
15 制御装置
16 冷媒配管
17 キャピラリチューブ
18 油面高さセンサ
19 圧縮機温度センサ
20a,20b 圧力センサ
21 油戻し配管
22 低圧配管(22a,22b…圧縮機の吸入配管)
23 高圧配管
24 バイパス配管
25 液管
A 室外ユニット
B1,B2 室内ユニット。
DESCRIPTION OF SYMBOLS 1 Compressor 2 Four-way valve 3 Outdoor heat exchanger 4 Outdoor expansion valve 5 Indoor heat exchanger 6 Indoor expansion valve 7 Oil separator 8 Accumulator 9 Receiver tank 10 Electromagnetic valve 11 Check valve 12 Gas blocking valve 13 Liquid blocking valve 14 Electron Expansion valve 15 Control device 16 Refrigerant piping 17 Capillary tube 18 Oil level sensor 19 Compressor temperature sensors 20a, 20b Pressure sensor 21 Oil return piping 22 Low pressure piping (22a, 22b ... compressor suction piping)
23 High pressure piping 24 Bypass piping 25 Liquid pipe A Outdoor unit B1, B2 Indoor unit.

Claims (7)

圧縮機、四方弁、室外熱交換器及び室外膨張弁を備える室外ユニットと、熱交換器及び室内膨張弁を備える室内ユニットと、前記室外ユニットと前記室内ユニットを接続する冷媒配管とを備えた空気調和機において、
前記圧縮機の吐出側に設けられた油分離器と、
前記四方弁と前記圧縮機との間の低圧配管と前記油分離器とを接続する油戻し配管と、
この油戻し配管に設けられた電子膨張弁と、
少なくとも前記圧縮機から吐出される吐出ガススーパーヒートに基づいて前記油戻し配管の電子膨張弁の開度を調整して前記圧縮機内油量を制御する制御装置を備え、
前記制御装置は、圧縮機からの吐出ガス温度又は圧縮機頂部など圧縮機吐出配管に近い部分の高温部の温度を検出する圧縮機温度センサ及び圧縮機吐出側の圧力センサによる検出値に基づいて圧縮機吐出ガスのスーパーヒートを算出し、この算出されたスーパーヒートに基づいて前記油戻し回路の電子膨張弁の開度を制御すると共に、
前記算出されたスーパーヒートが許容範囲であれば、前記電子膨張弁の開度を維持し、前記スーパーヒートが許容範囲より低い場合には前記電子膨張弁の開度を指定パルス分だけ更に開き、前記スーパーヒートが許容範囲より高い場合には前記電子膨張弁の開度を指定パルス分だけ閉じ、その後一定時間経過毎にスーパーヒートを算出して前記電子膨張弁開度を制御する
ことを特徴とする空気調和機。
Air having an outdoor unit including a compressor, a four-way valve, an outdoor heat exchanger and an outdoor expansion valve, an indoor unit including a heat exchanger and an indoor expansion valve, and a refrigerant pipe connecting the outdoor unit and the indoor unit In the harmony machine,
An oil separator provided on the discharge side of the compressor;
An oil return pipe connecting the low pressure pipe between the four-way valve and the compressor and the oil separator;
An electronic expansion valve provided in the oil return pipe;
A control device for controlling the compressor oil amount by adjusting the opening degree of the electronic expansion valve of the oil return pipe based on the discharge gas super heater preparative discharged from at least said compressor,
The control device is based on a detected value by a compressor temperature sensor for detecting a temperature of a discharge gas from the compressor or a temperature of a high temperature portion near the compressor discharge pipe such as a compressor top and a pressure sensor on the compressor discharge side. Calculate the superheat of the compressor discharge gas, and control the opening of the electronic expansion valve of the oil return circuit based on the calculated superheat,
If the calculated superheat is in an allowable range, the opening degree of the electronic expansion valve is maintained, and if the superheat is lower than the allowable range, the opening degree of the electronic expansion valve is further opened by a specified pulse, When the superheat is higher than an allowable range, the opening of the electronic expansion valve is closed by a specified pulse, and then the electronic expansion valve opening is controlled by calculating the superheat every predetermined time. Air conditioner to do.
請求項1に記載の空気調和機において、前記圧縮機の吸入側の低圧配管にはアキュームレータが設けられ、前記油戻し配管は、前記四方弁と前記アキュームレータとの間の前記低圧配管に接続されていることを特徴とする空気調和機。 The air conditioner according to claim 1 , wherein an accumulator is provided in the low-pressure pipe on the suction side of the compressor, and the oil return pipe is connected to the low-pressure pipe between the four-way valve and the accumulator. air conditioner, characterized in that there. 請求項に記載の空気調和機において、前記油戻し配管は、前記低圧配管に設けられたアキュームレータに直接接続されていることを特徴とする空気調和機。 The air conditioner according to claim 2 , wherein the oil return pipe is directly connected to an accumulator provided in the low pressure pipe . 請求項に記載の空気調和機において、前記油戻し配管は、前記四方弁と前記アキュームレータとの間の前記低圧配管と前記油分離器とを接続する油戻し配管と、前記アキュームレータと前記圧縮機との間の吸入配管と前記油分離器とを接続する油戻し配管とを備え、前記それぞれの油戻し配管に電子膨張弁が設けられていることを特徴とする空気調和機。 The air conditioner according to claim 2 , wherein the oil return pipe includes an oil return pipe connecting the low pressure pipe between the four-way valve and the accumulator and the oil separator, the accumulator, and the compressor. And an oil return pipe that connects the oil separator to each other, and an electronic expansion valve is provided in each of the oil return pipes . 請求項に記載の空気調和機において、前記圧縮機は、並列に複数台設けられ、前記油戻し配管は、前記各圧縮機の吸入配管と前記油分離器とを接続するように複数本設けられて、これら複数本の油戻し配管のそれぞれに前記電子膨張弁が設けられ、前記制御装置は、少なくとも前記各圧縮機から吐出される吐出ガススーパーヒートに基づいて前記各油戻し配管の電子膨張弁の開度を調整して前記各圧縮機内油量を制御することを特徴とする空気調和機。 The air conditioner according to claim 1 , wherein a plurality of the compressors are provided in parallel, and a plurality of the oil return pipes are provided so as to connect the suction pipes of the compressors and the oil separator. In addition, each of the plurality of oil return pipes is provided with the electronic expansion valve, and the control device performs electronic expansion of each of the oil return pipes based on at least a discharge gas superheat discharged from each of the compressors. An air conditioner characterized in that the amount of oil in each compressor is controlled by adjusting the opening of a valve . 請求項1〜5の何れかに記載の空気調和機において、圧縮機内の油面高さを検知する油面高さセンサを備えると共に、この油面高さセンサは、最適油量となる油面の中間位置と、これ以上油量が少なくなると圧縮機の故障の原因となる油面の下限位置を検出するものであって、この油面高さセンサにより圧縮機内の油量が過多或いは過少にならないように制御して、圧縮機内の油面を適正な所定範囲に保つようにしたことを特徴とする空気調和機。 In the air conditioner in any one of Claims 1-5, while providing the oil level height sensor which detects the oil level height in a compressor, this oil level height sensor is an oil level used as the optimal oil amount. The lower position of the oil level that will cause a compressor failure when the oil amount decreases more than this, and the oil level in the compressor is excessive or too small by this oil level height sensor. The air conditioner is characterized in that the oil level in the compressor is maintained within an appropriate predetermined range by controlling so as not to occur. 請求項に記載の空気調和機において、前記スーパーヒートが許容範囲より低い場合でも前記電子膨張弁開度が既に上限開度である場合、或いは前記スーパーヒートが許容範囲より高い場合でも前記電子膨張弁開度が既に下限開度である場合には、電子膨張弁の開度を更に開閉する制御を行わないことを特徴とする空気調和機。 2. The air conditioner according to claim 1 , wherein even when the superheat is lower than an allowable range, the electronic expansion valve opening is already an upper limit opening, or even when the superheat is higher than an allowable range, the electronic expansion is performed. When the valve opening degree is already the lower limit opening degree, the air conditioner is characterized in that control for further opening and closing the opening degree of the electronic expansion valve is not performed .
JP2009273463A 2009-12-01 2009-12-01 Air conditioner Expired - Fee Related JP5414482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009273463A JP5414482B2 (en) 2009-12-01 2009-12-01 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009273463A JP5414482B2 (en) 2009-12-01 2009-12-01 Air conditioner

Publications (2)

Publication Number Publication Date
JP2011117626A JP2011117626A (en) 2011-06-16
JP5414482B2 true JP5414482B2 (en) 2014-02-12

Family

ID=44283160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009273463A Expired - Fee Related JP5414482B2 (en) 2009-12-01 2009-12-01 Air conditioner

Country Status (1)

Country Link
JP (1) JP5414482B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242996B (en) * 2011-07-05 2013-06-12 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
WO2013073065A1 (en) * 2011-11-18 2013-05-23 三洋電機株式会社 Refrigeration unit
JP2013122361A (en) * 2011-12-12 2013-06-20 Daikin Industries Ltd Air conditioning device
CN102650485B (en) * 2012-04-18 2015-04-22 Tcl空调器(中山)有限公司 Frequency-conversion multi-online system and control method of lubricating oil of compressor thereof
JP2013257121A (en) * 2012-06-14 2013-12-26 Mitsubishi Electric Corp Refrigerating device
JP6076173B2 (en) * 2013-03-29 2017-02-08 三菱電機株式会社 Refrigeration equipment
CN104180563B (en) 2013-05-27 2017-06-20 珠海格力电器股份有限公司 Oil return method when multiple on-line system is heated
JP6143633B2 (en) * 2013-10-15 2017-06-07 住友重機械工業株式会社 Compressor and compressor oil quantity management system
JP6340681B2 (en) * 2014-02-06 2018-06-13 パナソニックIpマネジメント株式会社 Refrigeration circuit
JP6334320B2 (en) * 2014-08-22 2018-05-30 株式会社Nttファシリティーズ Vapor compression refrigeration cycle
JP6459800B2 (en) * 2015-06-26 2019-01-30 株式会社富士通ゼネラル Air conditioner
CN105066537B (en) * 2015-07-15 2017-09-29 宁波奥克斯电气股份有限公司 Multi-connected machine heats method for controlling oil return
JP6390688B2 (en) * 2016-11-24 2018-09-19 ダイキン工業株式会社 Refrigeration equipment
CN106871485B (en) * 2017-04-13 2019-08-27 青岛海信日立空调系统有限公司 A kind of heat pump system and its control method
JP7007636B2 (en) * 2017-09-27 2022-01-24 株式会社アイシン Air conditioner
CN111076343A (en) * 2018-10-22 2020-04-28 广州松下空调器有限公司 Control method and device of air conditioner and air conditioner
WO2020202519A1 (en) * 2019-04-04 2020-10-08 三菱電機株式会社 Refrigeration cycle device
CN112664455B (en) * 2019-10-15 2023-02-21 广东芬尼克兹节能设备有限公司 Lubrication adjusting method and device for compressor, electronic equipment and storage medium
CN111076367B (en) * 2019-12-05 2020-11-24 珠海格力电器股份有限公司 Electronic expansion valve opening control method, computer readable storage medium and air conditioner
US20240085049A1 (en) 2021-02-26 2024-03-14 Mitsubishi Electric Corporation Air conditioning apparatus
CN113339963B (en) * 2021-05-12 2022-09-02 广东Tcl智能暖通设备有限公司 Compressor oil return control method and system and air conditioner
CN113483449B (en) * 2021-07-09 2022-09-06 青岛海尔空调器有限总公司 Oil return control method for indoor unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63197856A (en) * 1987-02-12 1988-08-16 松下冷機株式会社 Air conditioner
JPS63290351A (en) * 1987-05-21 1988-11-28 松下冷機株式会社 Heat pump type air conditioner
JPH01302072A (en) * 1988-05-30 1989-12-06 Matsushita Refrig Co Ltd Heat pump type air conditioner
JPH06288656A (en) * 1993-04-01 1994-10-18 Mitsubishi Electric Corp Refrigeration cycle in air conditioner
JPH1019397A (en) * 1996-07-05 1998-01-23 Matsushita Refrig Co Ltd Air conditioner
JP3468174B2 (en) * 1999-09-14 2003-11-17 三菱電機株式会社 Refrigeration and air conditioning cycle equipment
JP2001324231A (en) * 2000-05-18 2001-11-22 Daikin Ind Ltd Refrigerating apparatus
US20050150246A1 (en) * 2002-03-29 2005-07-14 Masaaki Takegami Refrigerating equipment
JP2004085029A (en) * 2002-08-26 2004-03-18 Fujitsu General Ltd Air conditioner
JP4301546B2 (en) * 2003-04-17 2009-07-22 日立アプライアンス株式会社 Refrigeration equipment
JP5114186B2 (en) * 2007-12-22 2013-01-09 三星電子株式会社 Oil leveling mechanism

Also Published As

Publication number Publication date
JP2011117626A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
JP5414482B2 (en) Air conditioner
US10088206B2 (en) Air-conditioning apparatus
US9151522B2 (en) Air conditioner and control method thereof
JP4725387B2 (en) Air conditioner
JP5054935B2 (en) Air conditioner
EP2375188B1 (en) Air conditioner
EP1826513A1 (en) Refrigerating air conditioner
JP2011208860A (en) Air conditioner
CN107990609B (en) Control method of electronic expansion valve and refrigerant circulating system
EP3267130B1 (en) Refrigeration cycle device
US20170167762A1 (en) Refrigeration cycle apparatus
JP2010127531A (en) Refrigeration air conditioner
JP6403907B2 (en) Refrigeration cycle equipment
JP2016003848A (en) Air conditioning system and control method for the same
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
CN113587388B (en) Multi-split air conditioner and multi-split air conditioner system
US8205463B2 (en) Air conditioner and method of controlling the same
US20180363961A1 (en) Air conditioner
CN110671799B (en) Air conditioning system and refrigerant flow control method
JP2012149834A (en) Heat pump
JP7236606B2 (en) refrigeration cycle equipment
JPH04222341A (en) Operation controller for air conditioner
US20220186993A1 (en) Air-conditioning apparatus
WO2024116246A1 (en) Refrigeration cycle device
JP2009186035A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131015

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131112

LAPS Cancellation because of no payment of annual fees