JP3291753B2 - Refrigerant charging amount detection device for refrigeration equipment - Google Patents

Refrigerant charging amount detection device for refrigeration equipment

Info

Publication number
JP3291753B2
JP3291753B2 JP08692492A JP8692492A JP3291753B2 JP 3291753 B2 JP3291753 B2 JP 3291753B2 JP 08692492 A JP08692492 A JP 08692492A JP 8692492 A JP8692492 A JP 8692492A JP 3291753 B2 JP3291753 B2 JP 3291753B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
electric expansion
heat exchanger
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08692492A
Other languages
Japanese (ja)
Other versions
JPH05288438A (en
Inventor
政樹 山本
幸生 北出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP08692492A priority Critical patent/JP3291753B2/en
Publication of JPH05288438A publication Critical patent/JPH05288438A/en
Application granted granted Critical
Publication of JP3291753B2 publication Critical patent/JP3291753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍装置の冷媒回路に
充填される冷媒の充填量の不足を検知するようした冷凍
装置の冷媒充填量検知装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for detecting the amount of refrigerant in a refrigeration system for detecting an insufficient amount of refrigerant to be charged in a refrigerant circuit of the refrigeration system.

【0002】[0002]

【従来の技術】従来より、例えば実開昭63−1137
843号公報に開示される如く、冷媒回路の低圧側圧力
を検知する圧力センサを配設し、冷凍装置の運転中にこ
の低圧センサで検出される低圧側圧力が所定値以下にな
る状態が一定時間以上継続すると、冷媒の欠乏状態と判
定することにより、マルチ形空気調和装置における冷媒
配管の誤配線を検知するようにしたものは公知の技術で
ある。
2. Description of the Related Art Conventionally, for example, Japanese Utility Model Application Laid-Open No. 63-1137.
As disclosed in Japanese Patent No. 843, a pressure sensor for detecting the low pressure side pressure of the refrigerant circuit is provided, and the state where the low pressure side pressure detected by the low pressure sensor during operation of the refrigeration apparatus becomes a predetermined value or less is constant. It is a known technique to detect a refrigerant shortage in a multi-type air conditioner by detecting a refrigerant deficiency state if it continues for more than a time.

【0003】また、冷凍装置の冷媒回路に充填される冷
媒量をチェックするための冷媒充填量検知装置として、
特開平2−208469号公報に開示されるごとく、圧
縮機、凝縮器、電動膨張弁及び蒸発器を順次接続してな
る冷媒回路を備えた冷凍装置において、電動膨張弁の開
度を過熱度一定制御により調節する一方、電動膨張弁の
開度が最大で、かつ冷媒の過熱度が制御目標値から高く
外れる状態が一定時間以上継続したときに、冷媒不足信
号を出力するか、複数の利用側熱交換器を配置したもの
では利用側熱交換器が蒸発器となるサイクルで各利用側
電動膨張弁の開度を過熱度一定制御し、いずれか一つの
電動膨張弁の開度が最大で、かつ過熱度が目標値よりも
所定値以上高い状態が一定時間以上継続したときに、冷
媒不足信号を出力することにより、圧力変動による誤検
知を招くことなく冷媒不足状態を検知するようにしたも
のも公知の技術である。
[0003] Further, as a refrigerant charged amount detecting device for checking the amount of refrigerant charged in the refrigerant circuit of the refrigeration system,
As disclosed in Japanese Patent Application Laid-Open No. 2-208469, in a refrigeration system including a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected, the degree of opening of the electric expansion valve is set to a constant degree of superheat. On the other hand, when the degree of opening of the electric expansion valve is maximum and the degree of superheat of the refrigerant deviates from the control target value to a high level for a certain period of time, a refrigerant shortage signal is output, In the case where the heat exchanger is arranged, the opening degree of each usage-side electric expansion valve is controlled to a constant superheat degree in a cycle in which the usage-side heat exchanger becomes an evaporator, and the opening degree of any one of the electric expansion valves is the maximum. In addition, when a state in which the degree of superheat is higher than a target value by a predetermined value or more continues for a predetermined time or more, a refrigerant shortage signal is output to detect a refrigerant shortage state without causing erroneous detection due to pressure fluctuation. Also known technology That.

【0004】[0004]

【発明が解決しようとする課題】上記後者の公報の装置
は、前者の公報の装置を冷媒充填量のチェックのために
応用すると、冷媒回路の低圧側圧力は冷媒の脈動や応答
遅れによって変動するため、かかる低圧側圧力の一時的
な変動の影響を排除して、より正確に冷媒の不足状態を
検知するようにしたものである。
When the apparatus disclosed in the above-mentioned publication is applied to check the amount of charged refrigerant, the low-pressure side pressure of the refrigerant circuit fluctuates due to pulsation of the refrigerant and a response delay. Therefore, the influence of the temporary fluctuation of the low pressure side pressure is eliminated, and the refrigerant shortage state is detected more accurately.

【0005】しかしながら、上記後者の公報の装置にお
いても、冷凍装置が運転されて、冷媒が最も必要な条件
下で冷媒欠乏信号が出力されるまで待たなければなら
ず、特に外気温度等の条件で冷媒の循環状態が異なるた
めに、そのまま冷凍装置の据付時における冷媒充填量の
チェックに使用するには問題があった。
However, in the apparatus disclosed in the latter publication, the refrigeration system must be operated and wait until the refrigerant deficiency signal is output under the condition where the refrigerant is most necessary, especially under conditions such as the outside air temperature. Since the circulation state of the refrigerant is different, there is a problem in directly using the refrigerant for checking the amount of refrigerant when the refrigeration apparatus is installed.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、液ラインに液冷媒が満たされた状態
つまり最も冷媒量が必要となる状態を作り出し、その状
態で冷媒の欠乏を検知する手段を講ずることにより、冷
凍装置の据付時における冷媒の充填量の最適化を図るこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object of the present invention is to create a state in which a liquid refrigerant is filled in a liquid line, that is, a state in which the amount of the refrigerant is required most, and in this state, a deficiency of the refrigerant is caused. The purpose of the present invention is to optimize the amount of refrigerant to be charged at the time of installation of the refrigeration system by taking a means for detecting the temperature.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明の第1の解決手段は、リキッドインジェクシ
ョンバイパス路を利用し、冷媒回路をポンプダウン運転
状態として液ラインに液冷媒を集めた状態で、インジェ
クションされる冷媒の有無から、冷媒の充填量が不足し
ていることを検知することにある。
In order to attain the above object, a first solution of the present invention is to use a liquid injection bypass passage, and set a refrigerant circuit in a pump down operation state to collect liquid refrigerant in a liquid line. In the state, it is to detect from the presence or absence of the refrigerant to be injected that the refrigerant charging amount is insufficient.

【0008】具体的に、請求項1の発明の講じた手段
は、図1に示すように、圧縮機(1)、凝縮器(6)、
電動膨張弁(13)及び蒸発器(12)を冷媒配管で順
次接続してなる冷媒回路(14)を備えた冷凍装置を前
提とする。
Specifically, as shown in FIG. 1, means taken by the invention of claim 1 includes a compressor (1), a condenser (6),
It is assumed that a refrigerating apparatus includes a refrigerant circuit (14) in which an electric expansion valve (13) and an evaporator (12) are sequentially connected by a refrigerant pipe.

【0009】そして、上記凝縮器(6)−電動膨張弁
(13)間の液管と圧縮機(1)の吸入側とを減圧機構
(41)を介してバイパス接続するバイパス路(40)
と、該バイパス路(40)を開閉する開閉機構(42)
とを設ける。
The condenser (6) -electric expansion valve
A bypass path (40) for bypass-connecting the liquid pipe between (13) and the suction side of the compressor (1) via a pressure reducing mechanism (41);
And an opening and closing mechanism (42) for opening and closing the bypass path (40).
Are provided.

【0010】さらに、冷凍装置の冷媒充填量検知装置と
して、上記バイパス路(40)の減圧機構(41)下流
側を流通する冷媒の温度を検出する注入温度検出手段
(Th8)と、冷媒の蒸発圧力相当飽和温度を検出する蒸
発温度検出手段(P2)と、上記電動膨張弁(13)を
閉じるとともに、バイパス路(40)の開閉機構(4
2)を開くよう制御するチェック運転制御手段(51
A)と、該チェック運転制御手段(51A)による運転
中に、上記注入温度検出手段(Th8)の検出値が上記蒸
発温度検出手段(P2)の検出値よりも所定値以上高く
なると、冷媒不足信号を出力する信号出力手段(52
A)とを設ける構成としたものである。
Further, as a refrigerant charging amount detecting device of the refrigerating device, an injection temperature detecting means (Th8) for detecting a temperature of the refrigerant flowing downstream of the pressure reducing mechanism (41) of the bypass path (40), An evaporating temperature detecting means (P2) for detecting a pressure-equivalent saturation temperature, the electric expansion valve (13) is closed, and an opening / closing mechanism (4
Check operation control means (51) for controlling to open 2)
A), if the detected value of the injection temperature detecting means (Th8) becomes higher than the detected value of the evaporation temperature detecting means (P2) by a predetermined value or more during the operation by the check operation control means (51A), the refrigerant runs short. Signal output means for outputting a signal (52
A).

【0011】請求項2の発明の講じた手段は、図1の破
線部分に示すように、上記請求項1の発明において、吐
出冷媒温度を検出する吐出温度検出手段(Th4)を設
け、信号出力手段(52A)を、注入温度検出手段(T
h8)の検出値が蒸発圧力相当飽和温度より所定値以上高
くないときでも、上記吐出温度検出手段(Th4)の検出
値が一定値を越えると、冷媒不足信号を出力するように
構成したものである。
The means adopted in the second aspect of the present invention is, as shown by the broken line in FIG. 1, provided with a discharge temperature detecting means (Th4) for detecting the temperature of the discharged refrigerant in the first aspect of the present invention. Means (52A) is connected to the injection temperature detecting means (T
Even when the detected value of h8) is not higher than the saturation temperature corresponding to the evaporating pressure by a predetermined value or more, if the detected value of the discharge temperature detecting means (Th4) exceeds a certain value, a refrigerant shortage signal is output. is there.

【0012】また、第2の解決手段は、複数の利用側熱
交換器を有する冷凍装置の場合、熱源側熱交換器が蒸発
器となるサイクルで、一台の利用側熱交換器のみが能力
を出す状態として、液冷媒を液ラインに集め、熱源側電
動膨張弁と過熱度から冷媒の不足を検知することにあ
る。
A second solution is that in the case of a refrigeration system having a plurality of use-side heat exchangers, only one use-side heat exchanger has a capacity in a cycle in which the heat source-side heat exchanger becomes an evaporator. Is to collect the liquid refrigerant in the liquid line and detect the shortage of the refrigerant from the heat source side electric expansion valve and the degree of superheat.

【0013】具体的に、請求項3の発明の講じた手段
は、図5に示すように、圧縮機(1)、熱源側熱交換器
(6)及び熱源側電動膨張弁(8)に対して、利用側熱
交換器(12)及び利用側電動膨張弁(13)の複数組
を冷媒配管で並列に接続してなる冷凍装置を前提とす
る。
More specifically, as shown in FIG. 5, the means adopted in the third aspect of the present invention relates to a compressor (1), a heat source side heat exchanger (6) and a heat source side electric expansion valve (8). Therefore, it is assumed that the refrigerating apparatus is configured by connecting a plurality of sets of the use-side heat exchanger (12) and the use-side electric expansion valve (13) in parallel by a refrigerant pipe.

【0014】そして、冷凍装置の冷媒充填量検知装置と
して、吸入冷媒の過熱度を検出する過熱度検出手段(5
5)と、上記熱源側熱交換器(6)が蒸発器となるサイ
クルで、上記過熱度検出手段(55)で検出される過熱
度が一定値になるよう上記熱源側電動膨張弁(8)を制
御しながら、一の利用側電動膨張弁(13)のみを大開
度に開き他の利用側電動膨張弁(13)は微小開度以下
閉じるよう制御するチェック運転制御手段(51B)
と、該チェック運転制御手段(51B)による運転中
に、熱源側電動膨張弁(8)の開度が最大で、かつ過熱
度検出手段(55)で検出される吸入冷媒の過熱度が所
定値を越える状態が一定時間以上継続すると、冷媒不足
信号を出力する信号出力手段(52B)とを設ける構成
としたものである。
As a refrigerant charging amount detecting device of the refrigerating device, a superheat degree detecting means (5) for detecting a superheat degree of the suction refrigerant.
5) and in the cycle in which the heat source side heat exchanger (6) becomes an evaporator, the heat source side electric expansion valve (8) so that the superheat degree detected by the superheat degree detection means (55) becomes a constant value. Check operation control means (51B) for controlling only one use-side electric expansion valve (13) to open to a large opening and closing the other use-side electric expansion valve (13) to a small opening or less while controlling
During the operation by the check operation control means (51B), the opening degree of the heat source side electric expansion valve (8) is maximum and the superheat degree of the suction refrigerant detected by the superheat degree detection means (55) is a predetermined value. And a signal output means (52B) for outputting a refrigerant shortage signal when the state of exceeding the predetermined time exceeds a predetermined time.

【0015】請求項4の発明の講じた手段は、上記請求
項3の発明において、チェック運転制御手段(51B)
により開かれる利用側電動膨張弁(13)に対応する利
用側熱交換器(12)を最小容量のものとしたものであ
る。
The means adopted by the invention of claim 4 is the check operation control means (51B) according to the invention of claim 3 described above.
The use-side heat exchanger (12) corresponding to the use-side electric expansion valve (13) opened by means of the minimum capacity.

【0016】[0016]

【作用】以上の構成により、請求項1の発明では、チェ
ック運転制御手段(51A)により、電動膨張弁(1
3)を全閉にして運転されることにより、ポンプダウン
状態となり、冷媒回路(14)の液ラインに液冷媒が貯
溜された状態となる。そして、この状態でバイパス路
(40)の開閉機構(42)が開かれるので、液ライン
に液冷媒が十分あるときには、バイパス路(40)に冷
媒が流れ、減圧機構(41)における蒸発作用によって
冷却されて、注入温度検出手段(Th8)の検出値は冷媒
回路(14)の蒸発圧力相当飽和温度と同じ程度の温度
に維持されるが、液ラインに液冷媒が満たされていない
と、バイパス路(40)に流れる冷媒量はほとんどなく
なるので、注入温度検出手段(Th8)の検出値が上昇
し、蒸発圧力相当飽和温度よりも高くなる。
According to the above construction, in the first aspect of the invention, the check operation control means (51A) controls the electric expansion valve (1).
By operating with 3) fully closed, the pump is in a pump-down state, and a liquid refrigerant is stored in the liquid line of the refrigerant circuit (14). Then, in this state, the opening / closing mechanism (42) of the bypass passage (40) is opened, so that when the liquid refrigerant is sufficiently in the liquid line, the refrigerant flows through the bypass passage (40) and is evaporated by the evaporating action in the pressure reducing mechanism (41). After being cooled, the detected value of the injection temperature detecting means (Th8) is maintained at the same temperature as the saturation temperature corresponding to the evaporating pressure of the refrigerant circuit (14), but if the liquid line is not filled with the liquid refrigerant, the bypass is set. Since the amount of refrigerant flowing through the passage (40) almost disappears, the value detected by the injection temperature detecting means (Th8) increases, and becomes higher than the saturation temperature corresponding to the evaporation pressure.

【0017】このように、液ラインに液冷媒を貯溜させ
ることで、冷媒量を最も必要とする状態が作り出され、
その状態で注入温度検出手段(Th8)の検出値が蒸発圧
力相当飽和温度よりも所定値以上高くなると、信号出力
手段(52A)により冷媒不足信号が出力されるので、
インジェクション冷媒の有無から冷媒充填量の不足が検
知される。したがって、冷媒回路(14)に冷媒を充填
する際、冷媒を目分量で多い目に充填する必要がなく、
しかも、冷媒充填量の不足で冷凍装置の運転に支障をき
たすような事態が未然に防止され、冷媒充填量を適正量
とすることが可能になる。
As described above, by storing the liquid refrigerant in the liquid line, a state where the refrigerant amount is most required is created,
In this state, when the detected value of the injection temperature detecting means (Th8) becomes higher than the saturation temperature corresponding to the evaporating pressure by a predetermined value or more, the signal output means (52A) outputs a refrigerant shortage signal.
Insufficient refrigerant charge is detected from the presence or absence of the injection refrigerant. Therefore, when the refrigerant circuit (14) is charged with the refrigerant, it is not necessary to charge the refrigerant with a large amount per unit amount.
In addition, a situation in which the operation of the refrigeration apparatus is hindered due to the shortage of the refrigerant charge is prevented beforehand, and the refrigerant charge can be set to an appropriate amount.

【0018】請求項2の発明では、バイパス路(40)
に少しでも冷媒が流れると減圧機構(41)の減圧作用
で冷媒が蒸発し、注入温度検出手段(Th8)の検出値が
蒸発圧力相当飽和温度より所定値以上高くならないこと
が起こりうるが、かかる場合でも、吐出温度検出手段
(Th4)の検出値が一定値を越えたときに、信号出力手
段(52A)により冷媒不足信号が出力されることで、
冷媒充填量の不足がより正確に検知されることになる。
According to the second aspect of the present invention, the bypass path (40)
When a small amount of refrigerant flows, the refrigerant evaporates due to the pressure reducing action of the pressure reducing mechanism (41), and the value detected by the injection temperature detecting means (Th8) may not become higher than the saturation temperature corresponding to the evaporation pressure by more than a predetermined value. Even in this case, when the detected value of the discharge temperature detecting means (Th4) exceeds a certain value, the signal output means (52A) outputs a refrigerant shortage signal,
Insufficient refrigerant charge is more accurately detected.

【0019】請求項3の発明では、チェック運転制御手
段(51B)により、熱源側熱交換器(6)が蒸発器と
なるサイクルで熱源側電動膨張弁(8)の開度を過熱度
一定制御しながら、一の利用側電動膨張弁(13)のみ
が大開度に開かれ、他の利用側電動膨張弁(13)が微
小開度以下に閉じられる。このような運転条件では、冷
媒状態が運転可能な適正状態に保持されるとともに、閉
じられた利用側電動膨張弁(13)の分岐管から熱源側
電動膨張弁(8)手前の液ラインに液冷媒が貯溜した状
態となり、冷媒量が最も必要な条件となっている。そし
て、この状態で熱源側電動膨張弁(8)の開度が最大で
しかも冷媒の過熱度が大きい状態が一定時間以上継続し
たときに、信号出力手段(52B)から冷媒不足信号が
出力される。したがって、室外電動膨張弁(8)の開度
を過熱度一定制御する際に、最も冷媒が不足しやすい状
態が作り出され、この条件下で冷媒の不足状態が検知さ
れるので、複数の利用側熱交換器(12),…を備えた
マルチ形の冷凍装置についても、冷媒の充填量の適正な
調整が可能になる。
According to the third aspect of the present invention, the opening degree of the heat source side electric expansion valve (8) is controlled by the check operation control means (51B) to maintain the degree of superheat constant in the cycle in which the heat source side heat exchanger (6) becomes an evaporator. Meanwhile, only one use-side electric expansion valve (13) is opened to a large opening, and the other use-side electric expansion valve (13) is closed to a small opening or less. Under such operating conditions, the refrigerant state is maintained in an operable proper state, and the liquid flows from the closed branch pipe of the use-side electric expansion valve (13) to the liquid line in front of the heat-source-side electric expansion valve (8). The refrigerant is stored, and the amount of the refrigerant is the most necessary condition. Then, in this state, when the state in which the opening degree of the heat source side electric expansion valve (8) is maximum and the degree of superheat of the refrigerant is large continues for a certain period of time or more, the signal output means (52B) outputs a refrigerant shortage signal. . Therefore, when the opening degree of the outdoor electric expansion valve (8) is controlled to be constant at the degree of superheat, a state in which the refrigerant is most likely to be insufficient is created. Under this condition, the refrigerant shortage state is detected. With respect to the multi-type refrigeration apparatus including the heat exchangers (12),...

【0020】請求項4の発明では、上記請求項3の発明
において、開かれる利用側電動膨張弁(13)に対応す
る利用側熱交換器(12)は最小容量であるので、分岐
管及び液ラインに貯溜される液冷媒が最大となる条件下
で、冷媒充填量の不足がより正確に検知されることにな
る。
According to a fourth aspect of the present invention, in the third aspect of the present invention, since the use side heat exchanger (12) corresponding to the open use side electric expansion valve (13) has the minimum capacity, the branch pipe and the liquid Under the condition that the liquid refrigerant stored in the line becomes the maximum, the shortage of the refrigerant charge is more accurately detected.

【0021】[0021]

【実施例】以下、本発明の実施例について、図2以下の
図面に基づき説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0022】まず、請求項1及び2の発明に係る第1実
施例について説明する。図2は、セパレート形空気調和
装置の室外ユニット(A)の冷媒配管系統を示し、室外
ユニット(A)の内部には、出力周波数を30〜70H
z の範囲で10Hz 毎に可変に切換えられるインバータ
(2a )により容量が調整される第1圧縮機(1a )
と、パイロット圧の高低で差動するアンローダ(2b )
により容量がフルロード(100%)およびアンロード
(50%)状態の2段階に調整される第2圧縮機(1b
)とを逆止弁(1e )を介して並列に接続して構成さ
れる容量可変な圧縮機(1)と、上記第1,第2圧縮機
(1a ),(1b )から吐出されるガス中の油を分離す
る油分離器(4)と、冷房運転時には図中実線の如く切
換わり暖房運転時には図中破線の如く切換わる四路切換
弁(5)と、冷房運転時に凝縮器、暖房運転時に蒸発器
となる室外熱交換器(6)および該室外熱交換器(6)
に付設された2台の室外ファン(6a),(6b)と、
冷房運転時には冷媒流量を調節し、暖房運転時には冷媒
の絞り作用を行う熱源側電動膨張弁である室外電動膨張
弁(8)と、液化した冷媒を貯蔵するレシーバ(9)
と、アキュムレータ(10)とが主要機器として内蔵さ
れていて、該各機器(1)〜(10)は各々冷媒配管
(11)で冷媒の流通可能に接続されている。
First, a first embodiment according to the first and second aspects of the present invention will be described. FIG. 2 shows a refrigerant piping system of the outdoor unit (A) of the separate type air conditioner, and the output frequency is 30 to 70H inside the outdoor unit (A).
The first compressor (1a) whose capacity is adjusted by an inverter (2a) variably switched every 10 Hz in the range of z.
And the unloader that differentials depending on the pilot pressure (2b)
The second compressor (1b) whose capacity is adjusted to two stages of full load (100%) and unload (50%)
) Are connected in parallel via a check valve (1e), and the compressor (1) having a variable capacity and gas discharged from the first and second compressors (1a) and (1b). An oil separator (4) for separating oil from the inside, a four-way switching valve (5) for switching as shown by a solid line in the drawing for cooling operation and for switching as shown by a broken line in the heating operation, a condenser and heating for cooling operation An outdoor heat exchanger (6) that becomes an evaporator during operation and the outdoor heat exchanger (6)
Two outdoor fans (6a) and (6b) attached to
An outdoor electric expansion valve (8), which is a heat-source-side electric expansion valve that adjusts the flow rate of the refrigerant during the cooling operation and performs a throttling operation of the refrigerant during the heating operation, and a receiver (9) that stores the liquefied refrigerant.
And an accumulator (10) are incorporated as main devices, and each of the devices (1) to (10) is connected to a refrigerant pipe (11) so that a refrigerant can flow therethrough.

【0023】また、図3は室内ユニット(B)の冷媒配
管系統を示し、該室内ユニット(B)には、冷房運転時
には蒸発器、暖房運転時には凝縮器となる室内熱交換器
(12)及びそのファン(12a )が配設されていると
ともに、室内熱交換器(12)の液管側には、暖房運転
時に冷媒流量を調節し、冷房運転時に冷媒の絞り作用を
行う利用側電動膨張弁である室内電動膨張弁(13)が
介設され、手動閉鎖弁(17a),(17b)を介し連
絡配管によって室外ユニット(A)との間を接続されて
いる。すなわち、以上の各機器は冷媒配管(11)によ
り、冷媒の流通可能に接続されていて、室外空気との熱
交換により得た熱を室内空気に放出するようにした主冷
媒回路(14)が構成されている。
FIG. 3 shows a refrigerant piping system of the indoor unit (B). The indoor unit (B) includes an indoor heat exchanger (12) that becomes an evaporator during a cooling operation and a condenser during a heating operation. The fan (12a) is provided, and a use-side electric expansion valve that adjusts the flow rate of the refrigerant during the heating operation and throttles the refrigerant during the cooling operation is provided on the liquid pipe side of the indoor heat exchanger (12). The indoor electric expansion valve (13) is interposed, and is connected to the outdoor unit (A) by a communication pipe via manual closing valves (17a) and (17b). That is, each of the above devices is connected by a refrigerant pipe (11) so that refrigerant can flow therethrough, and a main refrigerant circuit (14) configured to release heat obtained by heat exchange with outdoor air to indoor air is provided. It is configured.

【0024】次に、室外ユニット(A)において、(1
1e )は、吐出管と液管側とを吐出ガス(ホットガス)
のバイパス可能に接続する暖房過負荷制御用バイパス路
であって、該バイパス路(11e )には、室外熱交換器
(6)と共通の空気通路に設置された補助熱交換器(2
2)、キャピラリチューブ(28)及び冷媒の高圧時に
開作動する過負荷制御開閉弁(24)が順次直列にかつ
室外熱交換器(6)とは並列に接続されており、冷房運
転時には常時、暖房運転時には高圧が過上昇時に、上記
過負荷制御開閉弁(24)がオンつまり開状態になっ
て、吐出ガスの一部を主冷媒回路(14)から暖房過負
荷制御用バイパス路(11e)にバイパスするようにし
ている。このとき、吐出ガスの一部を補助熱交換器(2
2)で凝縮させて室外熱交換器(6)の能力を補助する
とともに、キャピラリチューブ(28)で室外熱交換器
(6)側の圧力損失とのバランスを取るようになされて
いる。
Next, in the outdoor unit (A), (1)
1e) Discharge gas (hot gas) between discharge pipe and liquid pipe side
A bypass path for heating overload control, which is connected to the outdoor heat exchanger (6e) in a common air passage with the outdoor heat exchanger (6).
2), a capillary tube (28) and an overload control opening / closing valve (24) that opens when the refrigerant is at a high pressure are sequentially connected in series and in parallel with the outdoor heat exchanger (6). During the heating operation, when the high pressure rises excessively, the overload control on-off valve (24) is turned on or opened, and a part of the discharge gas is transferred from the main refrigerant circuit (14) to the heating overload control bypass passage (11e). I try to bypass. At this time, a part of the discharge gas is transferred to the auxiliary heat exchanger (2
Condensation is performed in 2) to assist the capacity of the outdoor heat exchanger (6), and the capillary tube (28) balances the pressure loss on the outdoor heat exchanger (6) side.

【0025】また、(31)は、吸入管(11)中の吸
入冷媒と液管(11)中の液冷媒との熱交換により吸入
冷媒を冷却させて、連絡配管(11b)における冷媒の
過熱度の上昇を補償するための吸入管熱交換器である。
Further, (31) cools the suction refrigerant by heat exchange between the suction refrigerant in the suction pipe (11) and the liquid refrigerant in the liquid pipe (11), and superheats the refrigerant in the communication pipe (11b). It is a suction pipe heat exchanger for compensating for the rise in temperature.

【0026】さらに、(40a ),(40b )は上記主
冷媒回路(14)の室外電動膨張弁(42a)−レシー
バ(9)間の液管と各圧縮機(1a ),(1b )の吸入
側との間を接続し、冷暖房運転時に吸入ガスの過熱度を
調節するためのリキッドインジェクションバイパス路で
あって、該各バイパス路(40a ),(40b )には圧
縮機(1)のオン・オフと連動して開閉するインジェク
ション開閉弁(42a),(42b )と、キャピラリチ
ューブ(41a ),(41b )とがそれぞれ介設されて
いる。
Further, (40a) and (40b) denote a liquid pipe between the outdoor electric expansion valve (42a) and the receiver (9) of the main refrigerant circuit (14) and suction of the compressors (1a) and (1b). And a liquid injection bypass passage for controlling the degree of superheat of the intake gas during the cooling and heating operation. Each of the bypass passages (40a) and (40b) has a compressor (1) on / off. Injection on-off valves (42a) and (42b) that open and close in conjunction with turning off, and capillary tubes (41a) and (41b) are interposed respectively.

【0027】なお、上記各主要機器以外に補助用の諸機
器が設けられている。(1f )は第2圧縮機(1b )の
バイパス路(11c )に介設されて、第2圧縮機(1b
)の停止時およびアンロード状態時に「開」となり、
フルロード状態で「閉」となるアンローダ用開閉弁、
(1g)は上記バイパス路(11c )に介設されたキャ
ピラリチューブ、(21)は吐出管と吸入管とを接続す
る均圧ホットガスバイパス路(11d )に介設されて、
サーモオフ状態等による圧縮機(1)の停止時、再起動
前に一定時間開作動する均圧用開閉弁、(33)はキャ
ピラリチューブ(32)を介して上記油分離器(4)か
第1,第2圧縮機(1a ),(1b )に油を戻すため
の油戻し管である。
It should be noted that auxiliary devices are provided in addition to the main devices. (1f) is provided in the bypass path (11c) of the second compressor (1b) and is connected to the second compressor (1b).
) Is open when stop and unload state,
On-off valve for unloader that closes when fully loaded,
(1g) is a capillary tube provided in the bypass passage (11c), and (21) is provided in a pressure equalizing hot gas bypass passage (11d) connecting the discharge pipe and the suction pipe.
Time of stopping the thermostat-off status, etc. compressor according (1), a pressure equalizing off valve for a predetermined time opening operation before restarting, (33) calibration
The oil separator (4) is connected via a spiral tube (32).
Et first, second compressor (1a), an oil return pipe for returning the oil (1b).

【0028】ここで、装置には多くのセンサ類が配置さ
れていて、(Th1)は室内温度を検出する室温サーモス
タット、(Th2)および(Th3)はそれぞれ室内熱交換
器(12)の液側およびガス側配管における冷媒の温度
を検出する室内液温センサ及び室内ガス温センサ、(T
h4a ),(Th4b )はそれぞれ各圧縮機(1a ),(1
b )の吐出管温度T4a,T4bを検出する吐出管センサ、
(Th5)は室外熱交換器(6)の液管温度を検出する外
熱交センサ、(Th6)は上記吸入管熱交換器(31)の
下流側の吸入管に配置され、吸入管温度を検出する吸入
管センサ、(Th7)は室外熱交換器(6)の空気吸込口
に配置され、吸込空気温度を検出する外気温センサ、
(Th8a ),(Th8b )はそれぞれ各リキッドインジェ
クションバイパス路(40a ),(40b )の圧縮機
(1a ),(1b )直上流側に配設され、インジェクシ
ョンされる冷媒の温度T8a,T8bを検出する注入温度検
出手段としての注入温センサ、(P1)は冷房運転時に
は冷媒回路(14)の高圧側圧力つまり凝縮圧力相当飽
和温度Tc を検出する高圧センサ、(P2)は冷媒回路
(14)の低圧側圧力つまり蒸発圧力相当飽和温度Te
を検出する低圧センサである。
Here, a number of sensors are arranged in the apparatus, (Th1) is a room temperature thermostat for detecting room temperature, and (Th2) and (Th3) are liquid sides of the indoor heat exchanger (12), respectively. And an indoor liquid temperature sensor and an indoor gas temperature sensor for detecting the temperature of the refrigerant in the gas side pipe, (T
h4a) and (Th4b) are the compressors (1a) and (1
b) a discharge pipe sensor for detecting discharge pipe temperatures T4a and T4b;
(Th5) is an external heat exchange sensor for detecting the temperature of the liquid pipe of the outdoor heat exchanger (6), and (Th6) is disposed on the suction pipe on the downstream side of the suction pipe heat exchanger (31). (Th7) is disposed at the air inlet of the outdoor heat exchanger (6), and detects an intake air temperature.
(Th8a) and (Th8b) are disposed immediately upstream of the compressors (1a) and (1b) of the liquid injection bypass paths (40a) and (40b), respectively, and detect the temperatures T8a and T8b of the refrigerant to be injected. (P1) is a high-pressure sensor for detecting the high-pressure side pressure of the refrigerant circuit (14), that is, the condensing pressure equivalent saturation temperature Tc during cooling operation, and (P2) is a high-pressure sensor for the refrigerant circuit (14). Low pressure side pressure, that is, the saturation temperature Te corresponding to the evaporation pressure
Is a low pressure sensor that detects

【0029】また、図中、(HPS)は圧縮機保護用の高
圧圧力開閉器、(SP)はサービスポート、(GP)は
ゲージポートである。
In the figure, (HPS) is a high-pressure switch for protecting the compressor, (SP) is a service port, and (GP) is a gauge port.

【0030】図2及び図3において、空気調和装置の冷
房運転時、四路切換弁(2)が図中実線側に切換わり、
圧縮機(1)で圧縮された冷媒が室外熱交換器(6)及
び補助熱交換器(22)で凝縮され、連絡配管を経て室
内ユニットに送られ、室内電動膨張弁(13)で減圧さ
れて、室内熱交換器(12)で蒸発した後、室外ユニッ
ト(A)にガス状態で戻り、圧縮機(1)に吸入される
ように循環する。
2 and 3, during the cooling operation of the air conditioner, the four-way switching valve (2) is switched to the solid line side in the drawing.
The refrigerant compressed by the compressor (1) is condensed by the outdoor heat exchanger (6) and the auxiliary heat exchanger (22), sent to the indoor unit via the communication pipe, and decompressed by the indoor electric expansion valve (13). Then, after evaporating in the indoor heat exchanger (12), it returns to the outdoor unit (A) in a gaseous state and circulates so as to be sucked into the compressor (1).

【0031】また、暖房運転時には、四路切換弁(5)
が図中破線側に切換わり、冷媒の流れは上記冷房運転時
と逆となって、圧縮機(1)で圧縮された冷媒が室内熱
交換器(12)で凝縮され、液状態で室外ユニット
(A)に流れて、室外電動膨張弁(8)により減圧さ
れ、室外熱交換器(6)で蒸発した後圧縮機(1)に戻
るように循環する。
During the heating operation, the four-way switching valve (5)
Is switched to the broken line side in the figure, and the flow of the refrigerant is opposite to that during the cooling operation, the refrigerant compressed by the compressor (1) is condensed by the indoor heat exchanger (12), and the outdoor unit is in a liquid state. It flows to (A), is decompressed by the outdoor electric expansion valve (8), evaporates in the outdoor heat exchanger (6), and circulates back to the compressor (1).

【0032】次に、上記冷凍装置の冷媒充填量チェック
運転の制御内容について、図4のフローチャートに基づ
き説明する。
Next, control contents of the refrigerant charging amount check operation of the refrigeration system will be described with reference to the flowchart of FIG.

【0033】まず、ステップST1で、室内ユニット
(B)の室内電動膨張弁(13)を閉じ、室内ファン
(12a )を停止して、ステップST2で、室外ユニッ
ト(A)の室外電動膨張弁(8)を全開の2000パル
スに開き、室外ファン(6a ),(6b )の風量を標準
風量「H+ON」に、インジェクション用開閉弁(42
a),(42b )を開き、過負荷制御開閉弁(24)及び
均圧用開閉弁(21)を閉じて、第1圧縮機(1a )を
60Hzに第2圧縮機(1b )を停止させた状態でチェ
ック運転を開始し、ステップST3で、冷媒量チェック
タイマ(図示せず)をセットすると同時にカウントを開
始する。
First, in step ST1, the indoor electric expansion valve (13) of the indoor unit (B) is closed and the indoor fan (12a) is stopped, and in step ST2, the outdoor electric expansion valve (of the outdoor unit (A)). 8) is opened at 2000 pulses of full opening, and the air volume of the outdoor fans (6a) and (6b) is set to the standard air volume "H + ON", and the injection on-off valve (42)
a) and (42b) were opened, the overload control on-off valve (24) and the equalizing on-off valve (21) were closed, and the first compressor (1a) was stopped at 60 Hz and the second compressor (1b) was stopped. In this state, the check operation is started, and in step ST3, a refrigerant amount check timer (not shown) is set and starts counting at the same time.

【0034】そして、ステップST4で、上記リキッド
インジェクションバイパス路(40a ),(40b )の
注入温センサ(Th8a ),(Th8b )の検出値T8a,T
8bのいずれか(T8とする)が、上記低圧センサ(P
2)で検出される蒸発圧力相当飽和温度Te に所定値α
を加算した値(Te +α)以上か否かを判別し、T8≧
Te +αになるまでは、ステップST5以下の制御を行
う。すなわち、ステップST5で、湿り判断タイマがカ
ウント中か否かを判別し、カウント中であればそのまま
で、カウント中でなければステップST6で湿り判断タ
イマをリセットすると同時にカウントを開始した後、そ
れぞれステップST7に進んで、湿り判断タイマがカウ
ントアップするまで待ってから、ステップST8に進
み、冷媒量チェックタイマがカウントアップするまで
は、上記ステップST4〜ST7の制御を繰り返す。
Then, in step ST4, the detected values T8a, T8 of the injection temperature sensors (Th8a), (Th8b) of the liquid injection bypass paths (40a), (40b).
8b (referred to as T8) is the low-pressure sensor (P
The saturation temperature Te corresponding to the evaporation pressure detected in 2) is set to a predetermined value α.
Is determined to be not less than the value (Te + α) obtained by adding
Until Te + α, the control from step ST5 is performed. That is, it is determined in step ST5 whether or not the wetness determination timer is counting. If the count is in progress, the count is not changed. If not, the wetness determination timer is reset in step ST6 and counting is started. The process proceeds to ST7 and waits until the wetness determination timer counts up, and then proceeds to step ST8 to repeat the control of steps ST4 to ST7 until the refrigerant amount check timer counts up.

【0035】そして、上記ステップST8の判別で、冷
媒量チェックタイマがカウントアップすると、ステップ
ST9に進み、さらに運転している第1圧縮機(1a )
の吐出管センサ(Th4a )の検出値T4aと一定値βとを
比較し、T4a>βでなければステップST10に進ん
で、冷媒充足信号を出力する一方、T4a>βであれば、
ステップST11に移行して、冷媒不足信号を出力す
る。
When it is determined in step ST8 that the refrigerant amount check timer has counted up, the process proceeds to step ST9, in which the first compressor (1a) that is further operating is operated.
The detected value T4a of the discharge pipe sensor (Th4a) is compared with a constant value β. If T4a> β, the process proceeds to step ST10, where a refrigerant sufficiency signal is output, while if T4a> β,
The process proceeds to step ST11 to output a refrigerant shortage signal.

【0036】一方、上記ステップST4の判別で、T8
≧Te +αになると、リキッドインジェクションバイパ
ス路(40a,),(40b )の冷媒流通量が極めて少な
いつまり冷媒充填量が不足していると判断し、ステップ
ST12に移行して、冷媒量チェックタイマがカウント
アップするまで待ってから、ステップST13に進ん
で、冷媒不足信号を出力する。
On the other hand, at step ST4, T8
If ≧ Te + α, it is determined that the amount of refrigerant flowing through the liquid injection bypass passages (40a, 40b) is extremely small, that is, the amount of charged refrigerant is insufficient. After waiting for the counting up, the process proceeds to step ST13 to output a refrigerant shortage signal.

【0037】上記フローにおいて、ステップST1及び
ST2の制御により、請求項1の発明にいうチェック運
転制御手段(51A)が構成され、ステップST4から
ST13に進む制御により、請求項1の発明にいう信号
出力手段(52A)が構成されている。
In the above flow, the check operation control means (51A) according to the first aspect of the present invention is constituted by the control of steps ST1 and ST2, and the signal according to the first aspect of the invention is controlled by the control proceeding from step ST4 to ST13. Output means (52A) is configured.

【0038】また、ステップST4からステップST9
を経てST11に至る制御により、請求項2の発明にお
ける信号出力手段(52A)の機能が構成されている。
Further, from step ST4 to step ST9
The function of the signal output means (52A) according to the second aspect of the present invention is configured by the control that goes to ST11 through the above.

【0039】したがって、上記第1実施例では、チェッ
ク運転制御手段(51A)により、室内電動膨張弁(1
3)を全閉にして運転されることにより、ポンプダウン
状態となり、冷媒回路(14)の液ラインに液冷媒が貯
溜された状態となる。そして、この状態でリキッドイン
ジェクションバイパス路(40a ),(40b )の各イ
ンジェクション開閉弁(42a ),(42b )が開かれ
るので、液ラインに液冷媒が十分あるときには、リキッ
ドインジェクションバイパス路(40a ),(40b )
に冷媒が流れ、各キャピラリチューブ(41a ),(4
1b )における蒸発作用によって冷却されるので、注入
温センサ(Th8a ),(Th8b )の検出値T8a,T8bは
冷媒回路(14)の蒸発圧力相当飽和温度Te と同じ程
度の温度に維持される。
Therefore, in the first embodiment, the indoor operation expansion valve (1) is controlled by the check operation control means (51A).
By operating with 3) fully closed, the pump is in a pump-down state, and a liquid refrigerant is stored in the liquid line of the refrigerant circuit (14). Then, in this state, the respective injection on-off valves (42a) and (42b) of the liquid injection bypass passages (40a) and (40b) are opened, so that when there is sufficient liquid refrigerant in the liquid line, the liquid injection bypass passage (40a). , (40b)
The refrigerant flows through each of the capillary tubes (41a), (4
1b), the detected values T8a and T8b of the injection temperature sensors (Th8a) and (Th8b) are maintained at the same temperature as the saturation temperature Te corresponding to the evaporation pressure of the refrigerant circuit (14).

【0040】一方、液ラインに液冷媒が満たされていな
いと、リキッドインジェクションバイパス路(40a
),(40b )に流れる冷媒量はほとんどなくなるの
で、注入温センサ(Th8a ),(Th8b )の検出値T8
a,T8bが上昇し、蒸発圧力相当飽和温度Te よりも高
くなる。そして、その検出値T8a又はT8b(T8)が蒸
発圧力相当飽和温度Te よりも所定値α以上高くなる
と、信号出力手段(52A)により冷媒不足信号が出力
される。このように、液ラインに液冷媒を貯溜させるこ
とで、冷媒が最も必要な状態を作り出し、この状態でイ
ンジェクション冷媒の有無から冷媒充填量の不足を検知
するようにしているので、冷媒を目分量で多い目に充填
する必要がなく、しかも、冷媒充填量の不足で冷凍装置
の運転に支障をきたすような事態を未然に防止すること
ができ、よって、冷媒充填量の適正化を図ることができ
るのである。
On the other hand, if the liquid line is not filled with the liquid refrigerant, the liquid injection bypass passage (40a
) And (40b), the amount of refrigerant flowing almost disappears, so that the detected values T8 of the injection temperature sensors (Th8a) and (Th8b)
a and T8b rise and become higher than the evaporation pressure equivalent saturation temperature Te. Then, when the detected value T8a or T8b (T8) becomes higher than the saturation pressure Te corresponding to the evaporating pressure by a predetermined value α or more, the signal output means (52A) outputs a refrigerant shortage signal. In this way, by storing the liquid refrigerant in the liquid line, the most necessary state of the refrigerant is created, and in this state, the shortage of the refrigerant charge is detected based on the presence or absence of the injection refrigerant. Therefore, it is possible to prevent the refrigeration system from running out of operation due to the shortage of the refrigerant charge, and thus to optimize the refrigerant charge. You can.

【0041】また、リキッドインジェクションバイパス
路(40a ),(40b )に少しでも冷媒が流れるとキ
ャピラリチューブ(41a ),(41b )の減圧作用で
冷媒が蒸発し、注入温センサ(Th8a ),(Th8b )の
検出値T8a,T8bが蒸発圧力相当飽和温度Te より所定
値α以上高くならないことが起こりうるが、かかる場合
でも、吐出管センサ(Th4a )の検出値T4aが一定値β
を越えたときに、信号出力手段(52A)により冷媒不
足信号を出力することで、冷媒充填量の不足をより正確
に検知することができる。
When a small amount of refrigerant flows through the liquid injection bypass passages (40a) and (40b), the refrigerant evaporates due to the depressurizing action of the capillary tubes (41a) and (41b), and the injection temperature sensors (Th8a) and (Th8b) It is possible that the detected values T8a and T8b) do not become higher than the saturation temperature Te corresponding to the evaporating pressure by a predetermined value α or more. However, even in such a case, the detected value T4a of the discharge pipe sensor (Th4a) becomes a constant
When the signal exceeds the threshold, the signal output means (52A) outputs a refrigerant shortage signal, whereby the shortage of the refrigerant charge can be detected more accurately.

【0042】なお、上記第1実施例では、冷房サイクル
でチェック運転を行ったが、暖房サイクルで行ってもよ
い。そして、電動膨張弁は室内外にある必要はなく、い
ずれか一つだけでもよい。また、電動膨張弁の代わり
に、キャピラリチューブと液管の開閉弁とを設け、開閉
弁を閉じてチェック運転を行うようにすることも可能で
ある。
In the first embodiment, the check operation is performed in the cooling cycle, but may be performed in the heating cycle. The electric expansion valve does not need to be located indoors and outdoors, and may be only one. Instead of the electric expansion valve, a capillary tube and a liquid tube open / close valve may be provided, and the check operation may be performed by closing the open / close valve.

【0043】次に、請求項3及び4の発明に係る第2実
施例について説明する。第2実施例では、室外ユニット
(A)の構成は上記第1実施例における図2に示すもの
と同様である。また、室内ユニット(B)の構成も上記
第1実施例における図3に示すものと同様であるが、一
台の室外ユニット(A)に対し、複数の室内ユニット
(B),…が接続されたマルチ形空気調和装置となって
いる。つまり、冷房運転時には、圧縮機(1)で圧縮さ
れた冷媒が室外熱交換器(6)及び補助熱交換器(2
2)で凝縮され、連絡配管(11b )を経て各室内ユニ
ット(B),…に分岐して送られ、各室内ユニット
(B),…の各室内電動膨張弁(13),…で減圧さ
れ、各室内熱交換器(12),…で蒸発した後合流し
て、室外ユニット(A)にガス状態で戻り、圧縮機
(1)に吸入されるように循環する。また、暖房運転時
には、圧縮機(1)で圧縮された冷媒が各室内熱交換器
(12),…で凝縮され、合流して液状態で室外ユニッ
ト(A)に流れ、室外電動膨張弁(8)により減圧さ
れ、室外熱交換器(6)で蒸発した後圧縮機(1)に戻
るように循環する。
Next, a second embodiment according to the third and fourth aspects of the present invention will be described. In the second embodiment, the configuration of the outdoor unit (A) is the same as that shown in FIG. 2 in the first embodiment. The configuration of the indoor unit (B) is the same as that shown in FIG. 3 in the first embodiment, but a plurality of indoor units (B),... Are connected to one outdoor unit (A). It is a multi-type air conditioner. That is, during the cooling operation, the refrigerant compressed by the compressor (1) is supplied to the outdoor heat exchanger (6) and the auxiliary heat exchanger (2).
Are condensed in 2), branched and sent to each indoor unit (B),... Via the connecting pipe (11b), and decompressed in each indoor electric expansion valve (13),. After being evaporated in each of the indoor heat exchangers (12), they merge and return to the outdoor unit (A) in a gaseous state, and circulate so as to be sucked into the compressor (1). During the heating operation, the refrigerant compressed by the compressor (1) is condensed in each of the indoor heat exchangers (12), ..., merges and flows in a liquid state to the outdoor unit (A), and the outdoor electric expansion valve ( The pressure is reduced by 8), and after evaporating in the outdoor heat exchanger (6), it circulates back to the compressor (1).

【0044】ここで、本第2実施例では、上記外熱交セ
ンサ(Th5)及び吸入管センサ(Th6)の検出値の差か
ら冷媒の過熱度Sh を検出するようにしており、該両セ
ンサ(Th5),(Th7)により請求項3の発明にいう過
熱度検出手段(55)が構成されている。
In the second embodiment, the superheat degree Sh of the refrigerant is detected from the difference between the detection values of the external heat exchange sensor (Th5) and the suction pipe sensor (Th6). (Th5) and (Th7) constitute the superheat detecting means (55) according to the third aspect of the present invention.

【0045】図6は、第2実施例における冷媒充填量の
チェック運転制御の内容を示し、まず、四路切換弁
(5)を暖房サイクル側に切換えた状態で、ステップS
S1で、各室内ユニット(B),…のうち一台のみ運転
状態とし、運転中の室内ユニット(B)では室内電動膨
張弁(8)を全開(2000パルス)にかつ室内ファン
(12a)の風量を標準風量「H」に、その他の室内ユ
ニット(B)の室内電動膨張弁(13)の開度を微小開
度(240パルス)に室内ファン(12a)の風量を微
風量「LL」に設定し、ステップSS2で、室外ユニッ
ト(A)の機器について、室外電動膨張弁(8)の開度
を過熱度一定制御に基づき制御しながら、室外ファン
(6a),(6b)の風量を「H+ON」に、インジェ
クション開閉弁(42a),(42b )を吐出管温度T8
a,T8bに応じて開閉し、過負荷制御開閉弁(24)及
び均圧用開閉弁(21)を閉じて、圧縮機(1)の容量
を高圧Tc一定制御により調節する。そして、ステップ
SS3で、冷媒量チェックタイマ(図示せず)をセット
すると同時にカウントを開始する。
FIG. 6 shows the contents of the check operation control of the refrigerant charging amount in the second embodiment. First, in a state where the four-way switching valve (5) is switched to the heating cycle side, step S is performed.
In S1, only one of the indoor units (B),... Is in the operating state, and in the operating indoor unit (B), the indoor electric expansion valve (8) is fully opened (2000 pulses) and the indoor fan (12a) is turned on. The air volume is set to the standard air volume “H”, the opening of the indoor electric expansion valve (13) of the other indoor unit (B) is set to the minute opening (240 pulses), and the air volume of the indoor fan (12a) is set to the small air volume “LL”. In step SS2, the air volume of the outdoor fans (6a) and (6b) is set to "1" while controlling the degree of opening of the outdoor electric expansion valve (8) based on the superheat constant control for the equipment of the outdoor unit (A). H + ON ”, the injection on-off valves (42a) and (42b) are set to the discharge pipe temperature T8.
Open / close according to a and T8b, close the overload control on / off valve (24) and the equalizing on / off valve (21), and adjust the capacity of the compressor (1) by high pressure Tc constant control. Then, in step SS3, a refrigerant amount check timer (not shown) is set and starts counting at the same time.

【0046】次に、ステップSS4で、室外電動膨張弁
(8)が全開(2000パルス)でかつ過熱度検出手段
(55)で検出される冷媒の過熱度Sh が所定値γより
高いか否かを判別し、判別結果がNOであればステップ
SS5に進んで、冷媒充足信号を出力し、ステップSS
6で冷媒チェックタイマがカウントアップするまでは、
ステップSS4に戻って、ステップSS4以下の制御を
繰り返す。
Next, at step SS4, it is determined whether or not the outdoor electric expansion valve (8) is fully opened (2000 pulses) and the superheat degree Sh of the refrigerant detected by the superheat degree detection means (55) is higher than a predetermined value γ. Is determined, and if the determination result is NO, the process proceeds to Step SS5, and a refrigerant sufficiency signal is output.
Until the refrigerant check timer counts up at 6,
Returning to step SS4, the control of step SS4 and subsequent steps is repeated.

【0047】一方、上記ステップSS4〜SS6の制御
を繰り返しているうちにステップSS4における判別
結果がYESになると、冷媒の充填量が不足している可
能性があると判断し、ステップSS7及びSS8で冷媒
の乾き状態を判断するための乾き判断タイマがカウント
していなければカウントを開始して、ステップSS9
で、乾き判断タイマがタイムアップするまで待って、ス
テップSS10に進み、ステップSS10で冷媒不足信
号を出力する。
On the other hand, if the result of the determination in step SS4 is YES while repeating the control in steps SS4 to SS6, it is determined that there is a possibility that the refrigerant charge is insufficient, and steps SS7 and SS8 are performed. If the dry judgment timer for judging the dry state of the refrigerant has not counted in step S10, the counting is started, and step SS9 is started.
Then, the flow waits until the drying determination timer times out, and then proceeds to step SS10, where a refrigerant shortage signal is output in step SS10.

【0048】上記フローにおいて、ステップSS1及び
SS2の制御により、請求項3の発明にいうチェック運
転制御手段(51B)が構成され、ステップSS4から
SS10に進む制御により、請求項3の発明にいう信号
出力手段(52B)が構成されている。
In the above flow, the check operation control means (51B) according to the third aspect of the invention is constituted by the control of steps SS1 and SS2, and the signal according to the third aspect of the invention is controlled by proceeding from step SS4 to SS10. Output means (52B) is configured.

【0049】したがって、上記第2実施例では、チェッ
ク運転制御手段(51B)により、複数の室内ユニット
(B),…のうち一台の室内ユニット(B)の室内電動
膨張弁(13)のみを大開度(全開)に開き、他の室内
ユニット(B)の室内電動膨張弁(13)は微小開度
(上記第2実施例では240パルス)に開いて暖房サイ
クルで運転が行われる。つまり、このような運転条件で
は、冷媒回路(14)の冷媒状態が運転可能な適正状態
に保持されるとともに、閉じられた室内電動膨張弁(1
3)の分岐管から室外電動膨張弁(8)手前の液ライン
に液冷媒が貯溜した状態となり、冷媒量が最も必要な条
件となっている。そして、この状態で室外電動膨張弁
(8)の開度が最大でしかも冷媒の過熱度Sh が大きい
状態が一定時間以上継続すると、信号出力手段(52
B)により、冷媒不足信号が出力される。つまり、室外
電動膨張弁(8)の開度を過熱度一定制御する際に、冷
媒が最も不足しやすい条件を作り出し、この条件下で、
冷媒の不足状態を検知することにより、マルチ形空気調
和装置における冷媒の充填量を適正に調整することが可
能になるのである。
Therefore, in the second embodiment, only the indoor electric expansion valve (13) of one indoor unit (B) of the plurality of indoor units (B),... Is controlled by the check operation control means (51B). The indoor electric expansion valve (13) of the other indoor unit (B) opens to a very small opening (240 pulses in the second embodiment) and is operated in a heating cycle. That is, under such operating conditions, the refrigerant state of the refrigerant circuit (14) is maintained at an appropriate operable state, and the closed indoor electric expansion valve (1) is closed.
The liquid refrigerant is stored in the liquid line before the outdoor electric expansion valve (8) from the branch pipe of 3), and the refrigerant amount is the most necessary condition. In this state, if the state in which the degree of opening of the outdoor electric expansion valve (8) is maximum and the degree of superheat Sh of the refrigerant is large continues for a predetermined time or more, the signal output means (52)
By B), a refrigerant shortage signal is output. That is, when the opening degree of the outdoor electric expansion valve (8) is controlled so as to maintain the degree of superheat constant, a condition in which the refrigerant is most likely to be insufficient is created.
By detecting the shortage state of the refrigerant, it becomes possible to appropriately adjust the refrigerant charging amount in the multi-type air conditioner.

【0050】特に、その場合、開かれる室外電動膨張弁
(13)に対応する室内熱交換器(12)を最小容量の
ものとすることで、分岐管及び液ラインに液冷媒が最大
限貯溜される状態を作り出すことができ、よって、充填
量の不足状態をより正確に検知することができるのであ
る。
In particular, in this case, by making the indoor heat exchanger (12) corresponding to the open outdoor electric expansion valve (13) the minimum capacity, the liquid refrigerant can be stored in the branch pipe and the liquid line to the maximum extent. Therefore, a state where the filling amount is insufficient can be more accurately detected.

【0051】なお、上記第2実施例では、一の室内電動
膨張弁(13)を全開としたが、全開でなくても大開度
であればよいのはいうまでもなく、他の室内電動膨張弁
(13)の条件によっては全開とすることも可能であ
る。
In the second embodiment, one indoor electric expansion valve (13) is fully opened. However, it is needless to say that the indoor electric expansion valve (13) does not have to be fully opened, and the other indoor electric expansion valve (13) can be used. Depending on the condition of the valve (13), it can be fully opened.

【0052】また、上記各実施例では、空気調和装置と
して使用される冷凍装置に本発明を適用した例について
説明したが、本発明はかかる実施例に限定されるもので
はなく、例えばチラー,温湯供給装置、コンテナ冷凍機
等に使用される冷凍装置の据付時に冷媒充填量をチェッ
クするために適用することができる。
Further, in each of the above embodiments, an example in which the present invention is applied to a refrigerating apparatus used as an air conditioner has been described. However, the present invention is not limited to such an example. The present invention can be applied to check a refrigerant charging amount at the time of installation of a refrigeration device used for a supply device, a container refrigerator, or the like.

【0053】[0053]

【発明の効果】請求項1の発明によれば、圧縮機、凝縮
器、電動膨張弁及び蒸発器を順次接続してなる冷媒回路
を備えた冷凍装置の冷媒充填量検知装置として、電動膨
張弁−蒸発器間の液管と圧縮機の吸入側とをバイパス接
続するバイパス路を設け、バイパス路に開閉機構と減圧
機構とを介設するとともに、電動膨張弁を全閉にして液
ラインに液冷媒を貯溜した状態でバイパス路の開閉機構
を開き、バイパス路の減圧機構下流側における冷媒の温
度が冷媒回路の蒸発圧力相当飽和温度よりも所定値以上
高いときに冷媒充填量が不足していると判断するように
したので、冷媒量が最も要求される状態でインジェクシ
ョン冷媒の有無から冷媒充填量の不足を正確に検知する
ことができ、よって、冷媒回路への冷媒充填量の適正化
を図ることができる。
According to the first aspect of the present invention, an electric expansion valve is provided as a refrigerant charging amount detecting device for a refrigeration system having a refrigerant circuit in which a compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected. -A bypass is provided for bypassing the liquid pipe between the evaporator and the suction side of the compressor, an opening / closing mechanism and a pressure reducing mechanism are interposed in the bypass, and the electric expansion valve is fully closed and the liquid is supplied to the liquid line. In the state where the refrigerant is stored, the opening / closing mechanism of the bypass passage is opened, and when the temperature of the refrigerant downstream of the pressure reducing mechanism of the bypass passage is higher than the saturation temperature corresponding to the evaporation pressure of the refrigerant circuit by a predetermined value or more, the refrigerant charging amount is insufficient. In the state where the refrigerant amount is most required, it is possible to accurately detect the shortage of the refrigerant charge from the presence or absence of the injection refrigerant, and thus to optimize the refrigerant charge in the refrigerant circuit. It is possible .

【0054】請求項2の発明によれば、上記請求項1の
発明において、バイパス路を流通する冷媒の温度が蒸発
圧力相当飽和温度より所定値以上高くないときにも、圧
縮機からの吐出冷媒温度が一定値を越えたときに、冷媒
充填量が不足していると判断するようにしたので、冷媒
充填量の不足をより正確に検知することができる。
According to a second aspect of the present invention, in the first aspect of the present invention, even when the temperature of the refrigerant flowing through the bypass is not higher than the saturation temperature corresponding to the evaporating pressure by a predetermined value or more, the refrigerant discharged from the compressor can be used. When the temperature exceeds a certain value, it is determined that the refrigerant charge is insufficient, so that the refrigerant charge shortage can be more accurately detected.

【0055】請求項3の発明によれば、圧縮機、熱源側
熱交換器及び熱源側電動膨張弁に対して、利用側熱交換
器及び利用側電動膨張弁の複数組を並列に接続してなる
冷媒回路を備えた冷凍装置において、熱源側熱交換器が
蒸発器となるサイクルで熱源側電動膨張弁の開度を過熱
度一定制御しながら運転を行い、一の利用側電動膨張弁
のみを大開度に開き、他の利用側電動膨張弁を微小開度
以下に閉じて、利用側電動膨張弁の開度が最大でしかも
冷媒の過熱度が大きいときに冷媒充填量が不足している
と判断するようにしたので、分岐管及び液ラインに液冷
媒が貯溜され、冷媒量が最も必要な条件下で冷媒の充填
量の不足を正確に検知することができ、よって、複数の
利用側熱交換器を備えたマルチ形の冷凍装置について
も、冷媒の充填量の適正化を図ることができる。
According to the third aspect of the present invention, a plurality of sets of the use side heat exchanger and the use side electric expansion valve are connected in parallel to the compressor, the heat source side heat exchanger and the heat source side electric expansion valve. In the refrigerating apparatus provided with the refrigerant circuit, the heat source side heat exchanger is operated while the degree of superheat is controlled to be constant in the cycle in which the heat source side heat exchanger becomes an evaporator, and only one utilization side electric expansion valve is used. Opening to a large opening, closing the other use-side electric expansion valve to a minute opening or less, and when the refrigerant charge is insufficient when the opening of the use-side electric expansion valve is maximum and the superheat degree of the refrigerant is large. Since the judgment is made, the liquid refrigerant is stored in the branch pipe and the liquid line, and it is possible to accurately detect the shortage of the refrigerant filling amount under the condition where the refrigerant amount is the most necessary. For a multi-type refrigeration system equipped with an exchanger, Rationalizing can be achieved.

【0056】請求項4の発明によれば、上記請求項3の
発明において、開かれる利用側電動膨張弁に対応する利
用側熱交換器を最小容量の利用側熱交換器としたので、
分岐管及び液ラインに貯溜される液冷媒が最大となる条
件下で、充填量の不足状態をより正確に検知することが
できる。
According to the fourth aspect of the present invention, in the third aspect of the present invention, the use-side heat exchanger corresponding to the open use-side electric expansion valve is the use-side heat exchanger having the minimum capacity.
Under the condition that the liquid refrigerant stored in the branch pipe and the liquid line is maximized, it is possible to more accurately detect the state of insufficient filling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1及び2の発明の構成を示す図である。FIG. 1 is a diagram showing a configuration of the first and second aspects of the present invention.

【図2】実施例に係る室外ユニットの冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of the outdoor unit according to the embodiment.

【図3】実施例に係る室内ユニットの冷媒配管系統図で
ある。
FIG. 3 is a refrigerant piping system diagram of the indoor unit according to the embodiment.

【図4】第1実施例のチェック運転の制御内容を示すフ
ローチャート図である。
FIG. 4 is a flowchart illustrating the control contents of a check operation according to the first embodiment.

【図5】請求項3及び4の発明の構成を示す図である。FIG. 5 is a diagram showing a configuration according to the third and fourth aspects of the present invention.

【図6】第2実施例のチェック運転の制御内容を示すフ
ローチャート図である。
FIG. 6 is a flowchart illustrating control contents of a check operation according to a second embodiment.

【符号の説明】[Explanation of symbols]

1a,1b 第1,第2圧縮機 6 室外熱交換器(熱源側熱交換器) 8 室外電動膨張弁(熱源側電動膨張弁) 12 室内熱交換器(利用側熱交換器) 13 室内電動膨張弁(利用側電動膨張弁) 14 主冷媒回路 40 リキッドインジェクションバイパス路 41 キャピラリチューブ(減圧機構) 42 インジェクション開閉弁(開閉機構) 51 チェック運転制御手段 52 信号出力手段 55 過熱度検出手段 P2 低圧センサ(蒸発温度検出手段) Th4a,Th4b 注入温センサ(注入温度検出手段) Th8a,Th8b 吐出管センサ(吐出温度検出手段) 1a, 1b First and second compressors 6 Outdoor heat exchanger (heat source side heat exchanger) 8 Outdoor electric expansion valve (heat source side electric expansion valve) 12 Indoor heat exchanger (use side heat exchanger) 13 Indoor electric expansion Valve (use-side electric expansion valve) 14 Main refrigerant circuit 40 Liquid injection bypass passage 41 Capillary tube (decompression mechanism) 42 Injection opening / closing valve (opening / closing mechanism) 51 Check operation control means 52 Signal output means 55 Superheat degree detection means P2 Low pressure sensor ( Evaporation temperature detection means) Th4a, Th4b Injection temperature sensor (injection temperature detection means) Th8a, Th8b Discharge pipe sensor (discharge temperature detection means)

フロントページの続き (56)参考文献 特開 昭63−6369(JP,A) 特開 平2−208469(JP,A) 実開 昭52−41556(JP,U) (58)調査した分野(Int.Cl.7,DB名) F25B 43/00 - 49/04 Continuation of front page (56) References JP-A-63-6369 (JP, A) JP-A-2-208469 (JP, A) JP-A-52-41556 (JP, U) (58) Fields studied (Int .Cl. 7 , DB name) F25B 43/00-49/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機(1)、凝縮器(6)、電動膨張
弁(13)及び蒸発器(12)を冷媒配管で順次接続し
てなる冷媒回路(14)を備えた冷凍装置において、 上記凝縮器(6)−電動膨張弁(13)間の液管と圧縮
機(1)の吸入側とを減圧機構(41)を介してバイパ
ス接続するバイパス路(40)と、該バイパス路(4
0)を開閉する開閉機構(42)とを備えるとともに、 上記バイパス路(40)の減圧機構(41)下流側を流
通する冷媒の温度を検出する注入温度検出手段(Th8)
と、 冷媒の蒸発圧力相当飽和温度を検出する蒸発温度検出手
段(P2)と、 上記電動膨張弁(13)を閉じるとともに、バイパス路
(40)の開閉機構(42)を開くよう制御するチェッ
ク運転制御手段(51A)と、 該チェック運転制御手段(51A)による運転中に、上
記注入温度検出手段(Th8)の検出値が上記蒸発温度検
出手段(P2)の検出値よりも所定値以上高くなると、
冷媒不足信号を出力する信号出力手段(52A)とを備
えたことを特徴とする冷凍装置の冷媒充填量検知装置。
1. A refrigeration system including a refrigerant circuit (14) in which a compressor (1), a condenser (6), an electric expansion valve (13), and an evaporator (12) are sequentially connected by refrigerant piping. A bypass passage (40) for bypass-connecting the liquid pipe between the condenser (6) and the electric expansion valve (13) and the suction side of the compressor (1) via a pressure reducing mechanism (41); 4
And an opening / closing mechanism (Th8) for opening and closing the bypass passage (0), and an injection temperature detecting means (Th8) for detecting the temperature of the refrigerant flowing downstream of the pressure reducing mechanism (41) of the bypass path (40).
Evaporating temperature detecting means (P2) for detecting a saturation temperature corresponding to the evaporating pressure of the refrigerant; and a check operation for controlling the electric expansion valve (13) to be closed and the opening / closing mechanism (42) of the bypass passage (40) to be opened. During operation by the control means (51A) and the check operation control means (51A), if the detected value of the injection temperature detecting means (Th8) is higher than the detected value of the evaporation temperature detecting means (P2) by a predetermined value or more. ,
And a signal output means (52A) for outputting a refrigerant shortage signal.
【請求項2】 請求項1記載の冷凍装置の冷媒充填量検
知装置において、 吐出冷媒温度を検出する吐出温度検出手段(Th4)を備
えるとともに、 信号出力手段(52A)は、注入温度検出手段(Th8)
の検出値が蒸発圧力相当飽和温度より所定値以上高くな
いときでも、上記吐出温度検出手段(Th4)の検出値が
一定値を越えると、冷媒不足信号を出力するものである
ことを特徴とする冷凍装置の冷媒充填量検知装置。
2. The refrigerant charging amount detection device for a refrigeration system according to claim 1, further comprising: a discharge temperature detection means (Th4) for detecting a discharge refrigerant temperature; and a signal output means (52A) comprising an injection temperature detection means (Th. Th8)
When the detected value of the discharge temperature detecting means (Th4) exceeds a certain value, the refrigerant shortage signal is output even when the detected value of the pressure is not higher than the saturated temperature corresponding to the evaporating pressure by a predetermined value or more. Refrigerant charge detection device for refrigeration equipment.
【請求項3】 圧縮機(1)、熱源側熱交換器(6)及
び熱源側電動膨張弁(8)に対して、利用側熱交換器
(12)及び利用側電動膨張弁(13)の複数組を冷媒
配管で並列に接続してなる冷凍装置において、 吸入冷媒の過熱度を検出する過熱度検出手段(55)
と、 上記熱源側熱交換器(6)が蒸発器となるサイクルで、
上記過熱度検出手段(55)で検出される過熱度が一定
値になるよう上記熱源側電動膨張弁(8)を制御しなが
ら、一の利用側電動膨張弁(13)のみを大開度に開き
他の利用側電動膨張弁(13)を微小開度以下に閉じる
よう制御するチェック運転制御手段(51B)と、 該チェック運転制御手段(51B)による運転中に、熱
源側電動膨張弁(8)の開度が最大で、かつ過熱度検出
手段(55)で検出される吸入冷媒の過熱度が所定値を
越える状態が一定時間以上継続すると、冷媒不足信号を
出力する信号出力手段(52B)とを備えたことを特徴
とする冷凍装置の冷媒充填量検知装置。
3. The use-side heat exchanger (12) and the use-side electric expansion valve (13) for the compressor (1), the heat-source-side heat exchanger (6), and the heat-source-side electric expansion valve (8). In a refrigeration system in which a plurality of sets are connected in parallel by a refrigerant pipe, a superheat degree detecting means (55) for detecting a superheat degree of the suction refrigerant.
In a cycle in which the heat source side heat exchanger (6) becomes an evaporator,
While controlling the heat source side electric expansion valve (8) so that the degree of superheat detected by the superheat degree detecting means (55) becomes a constant value, only one use side electric expansion valve (13) is opened to a large opening. Close the other use side electric expansion valve (13) to a small opening or less.
As check operation control means for controlling the (51B), during the operation according to the check operation control means (51B), at the opening of the heat-source-side electric expansion valve (8) is maximum, and detected by the superheat degree detecting means (55) A signal output means (52B) for outputting a refrigerant shortage signal when a state in which the degree of superheat of the suction refrigerant exceeds a predetermined value continues for a predetermined period of time or more, a refrigerant charging amount detection device for a refrigeration system.
【請求項4】 請求項3記載の冷凍装置の冷媒充填量検
知装置において、 チェック運転制御手段(51B)により開かれる利用側
電動膨張弁(13)に対応する利用側熱交換器(12)
は、最小容量のものであることを特徴とする冷凍装置の
冷媒充填量検知装置。
4. The use-side heat exchanger (12) corresponding to the use-side electric expansion valve (13) opened by the check operation control means (51B).
Is a refrigerant capacity detection device for a refrigeration system, having a minimum capacity.
JP08692492A 1992-04-08 1992-04-08 Refrigerant charging amount detection device for refrigeration equipment Expired - Fee Related JP3291753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08692492A JP3291753B2 (en) 1992-04-08 1992-04-08 Refrigerant charging amount detection device for refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08692492A JP3291753B2 (en) 1992-04-08 1992-04-08 Refrigerant charging amount detection device for refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH05288438A JPH05288438A (en) 1993-11-02
JP3291753B2 true JP3291753B2 (en) 2002-06-10

Family

ID=13900415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08692492A Expired - Fee Related JP3291753B2 (en) 1992-04-08 1992-04-08 Refrigerant charging amount detection device for refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3291753B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100705232B1 (en) * 2005-10-28 2007-04-09 엘지전자 주식회사 Apparatus and method for operating air conditioner
JP3963192B1 (en) * 2006-03-10 2007-08-22 ダイキン工業株式会社 Air conditioner
JP2009192090A (en) * 2008-02-12 2009-08-27 Denso Corp Refrigerating cycle device
JP5176978B2 (en) * 2009-01-22 2013-04-03 富士電機株式会社 Cooling system
JP2011149565A (en) * 2010-01-19 2011-08-04 Mitsubishi Electric Corp Refrigerating device
JP5881282B2 (en) * 2010-09-30 2016-03-09 三菱重工業株式会社 Turbo refrigeration apparatus, control apparatus and control method thereof
JP6086213B2 (en) * 2013-01-30 2017-03-01 三浦工業株式会社 Chiller using refrigerator
ES2950759T3 (en) * 2019-09-09 2023-10-13 Mitsubishi Electric Corp Outdoor unit and refrigeration cycle apparatus
WO2021084713A1 (en) * 2019-10-31 2021-05-06 三菱電機株式会社 Outdoor unit and refrigeration cycle device
WO2021095115A1 (en) * 2019-11-12 2021-05-20 三菱電機株式会社 Outdoor unit and refrigeration cycle device
KR20220008582A (en) * 2020-07-14 2022-01-21 엘지전자 주식회사 Control-method and apparatus for heat-pump
CN115289728B (en) * 2022-08-08 2023-12-08 浙江科麦人工环境有限公司 Refrigerant filling system based on large-scale air conditioner after installation

Also Published As

Publication number Publication date
JPH05288438A (en) 1993-11-02

Similar Documents

Publication Publication Date Title
KR101585943B1 (en) Air conditioner and control method thereof
JP3925545B2 (en) Refrigeration equipment
AU2005252958B2 (en) Subcooling apparatus
JP3861912B2 (en) Refrigeration equipment
JP3291753B2 (en) Refrigerant charging amount detection device for refrigeration equipment
US20090077985A1 (en) Refrigerating Apparatus
AU2006273496A1 (en) Refrigeration apparatus
WO2010119705A1 (en) Heat source unit
US7171825B2 (en) Refrigeration equipment
US20220221200A1 (en) Refrigeration apparatus
KR20050086189A (en) A hotting drive method of heat pump multi-air conditioner
WO2006025524A1 (en) Freezing apparatus
CN114623558A (en) Air conditioner and control method thereof
JP3467837B2 (en) Air conditioner
JP3028008B2 (en) Air conditioner
JP3966345B2 (en) Supercooling device
JP3303689B2 (en) Binary refrigeration equipment
JPH0217358A (en) Degree of overheat control device for freezing device
JP3097468B2 (en) Control device for air conditioner
JPH02157568A (en) Refrigerant residence suppressing device for air conditioning device
JP2002277066A (en) Air conditioning equipment for vehicle
JP2976905B2 (en) Air conditioner
KR101404105B1 (en) Air conditioner
KR100748982B1 (en) Air conditioner and Control method of the same
GB2549897A (en) Air conditioning device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080329

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090329

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100329

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees