JP2011149565A - Refrigerating device - Google Patents

Refrigerating device Download PDF

Info

Publication number
JP2011149565A
JP2011149565A JP2010008727A JP2010008727A JP2011149565A JP 2011149565 A JP2011149565 A JP 2011149565A JP 2010008727 A JP2010008727 A JP 2010008727A JP 2010008727 A JP2010008727 A JP 2010008727A JP 2011149565 A JP2011149565 A JP 2011149565A
Authority
JP
Japan
Prior art keywords
refrigerant
oil
temperature
compressor
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010008727A
Other languages
Japanese (ja)
Inventor
Takeshi Ito
健 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010008727A priority Critical patent/JP2011149565A/en
Publication of JP2011149565A publication Critical patent/JP2011149565A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating device having a two-stage screw compressor (hereinafter called compressor) having a discharge gas temperature lower than an allowable upper limit temperature, and capable of improving performance. <P>SOLUTION: This refrigerating device includes a refrigerant circuit configured by successively annularly connecting the compressor 1, an oil separator 2, a condenser 3, a supercooler 5 for cooling a refrigerant, an expansion valve 6 and an evaporator 7 by refrigerant pipes, an oil returning pipe conduit for returning a lubricant from the oil separator 2 to the compressor 1 through an oil cooler 9, a liquid refrigerant injection pipe conduit having an electronic expansion valve 13 for returning the liquid refrigerant from the condenser to an intermediate pressure chamber of the compressor 1 through the oil cooler 9 and controlling a flow rate of a liquid refrigerant for cooling the lubricant in the oil cooler 9, and a temperature sensor 14 detecting a temperature of a discharge-side refrigerant gas of the compressor 1. A microcomputer 12 controls opening/closing of the electronic expansion valve 13 so that an output of the temperature sensor 14 is kept at the predetermined allowable upper limit temperature and near the upper limit temperature over a range of operable condition. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、冷媒を圧縮する二段スクリュー圧縮機を有する冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus having a two-stage screw compressor that compresses a refrigerant.

二段スクリュー圧縮機を有する冷凍装置においては、吐出ガス温度の高温化に伴う冷媒と潤滑油ならびに構成部品の劣化を防止するため、吐出ガス温度がそれらの劣化に対する許容上限温度以下で運転できる冷凍サイクルを構成し、運転制御を行う。そのためには、圧縮途中の冷媒ガスを冷却する必要がある。その手段として油冷却器を冷凍装置に装備することが一般的である。油冷却器とは、圧縮機に注入する潤滑油を冷却する熱交換器のことであり、水を用いて潤滑油を冷却する水冷方式と、冷媒を用いて潤滑油を冷却する冷媒冷却方式がある。冷媒冷却方式の場合、油冷却に用いられた冷媒は油冷却器で熱交換した後にガス化し、圧縮機に注入される。その際、潤滑油冷却後の潤滑油温度または冷媒ガス過熱度が所定の値になるように温度式膨張弁を用いて冷媒量を制御する方法がある。(例えば、特許文献1参照)
図4は上記特許文献1に示された従来の二段スクリュー圧縮機を有する冷凍装置の冷媒回路図である。この種の冷媒回路については図4を用いて説明し、図4における要部Yについては図5、図6を用いて説明する。図中の矢印は冷媒および油の流れ方向を示すものである。冷媒は圧縮機1で高温高圧のガスとなり吐出され、油分離器2内で冷媒ガスと潤滑油に分離される。冷媒ガスは凝縮器3で凝縮液となり過冷却器5にて液温が下げられ、さらに膨張弁6により、低圧の湿りガスとなり蒸発器7内にて空気と熱交換することで蒸発して空気の冷却を行った後、圧縮機1の低段圧縮機構1aに注入される。また、過冷却器5にて液温が下げられた主液流れの一部はモータ冷却用膨張弁8を流れ、圧縮機1のモータ冷却のためにモータ室1dに注入される。
一方、油分離器2にて分離した潤滑油は油冷却器9にて冷却され、圧縮機1の圧縮機中間圧室1cに注入される。油冷却器9における潤滑油の冷却方式は冷媒による冷媒冷却方式である。
凝縮器3からの高圧液冷媒は、過冷却器5に至る途中で二方向に分岐され、前述の過冷却器5内で冷却される主液流れと、油冷却器用膨張弁である温度式膨張弁10にて低温で中間圧力の飽和湿りガスに変化して油分離器2からの潤滑油を油冷却器9にて冷却する流れに分かれる。膨張弁4および過冷却器5を流れる冷媒ガスと温度式膨張弁10および油冷却器9を流れる冷媒ガスは圧縮機中間圧室1cにて低段吐出ガスと混合され、高段圧縮機構1bに吸入される。
潤滑油温度を所定の値に制御する方法と冷媒ガス過熱度を所定の値に制御する方法について図5および図6を用いて説明する。
潤滑油冷却後の潤滑油温度が所定の値になるように冷媒量を制御する場合は、図5に示すように感温筒11が潤滑油冷却後の潤滑油温度を検知し、冷却後の潤滑油の温度が所定の値になるように温度式膨張弁10を用いて冷媒量を制御する。
潤滑油冷却後の冷媒ガス過熱度が所定の値になるように冷媒量を制御する場合は、図6に示すように感温筒11が潤滑油冷却後の冷媒ガス温度、均圧管17が潤滑油冷却後の冷媒ガスの圧力を検知し、潤滑油冷却後の冷媒ガス過熱度が所定の値になるように温度式膨張弁10を用いて冷媒量を制御する。
In a refrigeration system having a two-stage screw compressor, in order to prevent deterioration of refrigerant, lubricating oil, and components due to an increase in discharge gas temperature, the refrigeration that can be operated at a discharge gas temperature below an allowable upper limit temperature for such deterioration. Configure the cycle and control the operation. For this purpose, it is necessary to cool the refrigerant gas being compressed. As a means for this, it is common to equip the refrigeration apparatus with an oil cooler. The oil cooler is a heat exchanger that cools the lubricating oil injected into the compressor. There are a water cooling system that cools the lubricating oil using water and a refrigerant cooling system that cools the lubricating oil using a refrigerant. is there. In the case of the refrigerant cooling system, the refrigerant used for oil cooling is gasified after heat exchange with the oil cooler and injected into the compressor. At this time, there is a method of controlling the amount of refrigerant using a temperature type expansion valve so that the lubricating oil temperature or the refrigerant gas superheat degree after cooling the lubricating oil becomes a predetermined value. (For example, see Patent Document 1)
FIG. 4 is a refrigerant circuit diagram of a refrigeration apparatus having the conventional two-stage screw compressor disclosed in Patent Document 1. This type of refrigerant circuit will be described with reference to FIG. 4, and the main part Y in FIG. 4 will be described with reference to FIGS. The arrows in the figure indicate the flow directions of refrigerant and oil. The refrigerant is discharged as high-temperature and high-pressure gas in the compressor 1 and separated into refrigerant gas and lubricating oil in the oil separator 2. The refrigerant gas becomes a condensate in the condenser 3, and the liquid temperature is lowered in the subcooler 5. Further, the refrigerant gas becomes a low-pressure wet gas by the expansion valve 6 and is evaporated by exchanging heat with air in the evaporator 7. After cooling, the low-stage compression mechanism 1a of the compressor 1 is injected. A part of the main liquid flow whose liquid temperature has been lowered by the subcooler 5 flows through the motor cooling expansion valve 8 and is injected into the motor chamber 1 d for motor cooling of the compressor 1.
On the other hand, the lubricating oil separated by the oil separator 2 is cooled by the oil cooler 9 and injected into the compressor intermediate pressure chamber 1 c of the compressor 1. The cooling system for the lubricating oil in the oil cooler 9 is a refrigerant cooling system using a refrigerant.
The high-pressure liquid refrigerant from the condenser 3 is branched in two directions on the way to the supercooler 5, and the main liquid flow cooled in the above-described supercooler 5 and the temperature-type expansion that is the expansion valve for the oil cooler. The valve 10 is changed into a saturated wet gas having a low temperature and an intermediate pressure at a low temperature, and the lubricating oil from the oil separator 2 is cooled by the oil cooler 9. The refrigerant gas flowing through the expansion valve 4 and the subcooler 5 and the refrigerant gas flowing through the temperature-type expansion valve 10 and the oil cooler 9 are mixed with the low-stage discharge gas in the compressor intermediate pressure chamber 1c, and are fed to the high-stage compression mechanism 1b. Inhaled.
A method of controlling the lubricating oil temperature to a predetermined value and a method of controlling the refrigerant gas superheat degree to a predetermined value will be described with reference to FIGS.
When the amount of refrigerant is controlled so that the lubricating oil temperature after cooling the lubricating oil becomes a predetermined value, the temperature sensing cylinder 11 detects the lubricating oil temperature after cooling the lubricating oil as shown in FIG. The refrigerant quantity is controlled using the temperature type expansion valve 10 so that the temperature of the lubricating oil becomes a predetermined value.
When controlling the amount of refrigerant so that the degree of refrigerant gas superheat after cooling of the lubricating oil becomes a predetermined value, as shown in FIG. 6, the temperature sensing cylinder 11 is the refrigerant gas temperature after cooling the lubricating oil, and the pressure equalizing pipe 17 is lubricated. The pressure of the refrigerant gas after oil cooling is detected, and the amount of refrigerant is controlled using the temperature type expansion valve 10 so that the degree of refrigerant gas superheat after cooling the lubricating oil becomes a predetermined value.

特開2002−31420号公報(第5頁、第2図〜第5図)Japanese Patent Laid-Open No. 2002-31420 (page 5, FIGS. 2 to 5)

(1)従来技術の課題説明
上記特許文献1に記載の従来の冷凍装置においては、運転可能条件範囲が広いため、運転範囲内で最も吐出ガス温度が高くなる条件に合わせて潤滑油冷却後の潤滑油温度または冷媒ガス過熱度を設定する。また、この方法が従来の一般的な方法である。そのため、上記設定を行った条件以外では潤滑油冷却に使用され圧縮機に注入される冷媒の量が過剰になる。これにより、冷凍能力の低下、入力の増加が発生し、性能が低下するという課題があった。
(1) Description of problems in the prior art In the conventional refrigeration apparatus described in the above-mentioned Patent Document 1, since the operable condition range is wide, after cooling the lubricating oil in accordance with the condition that the discharge gas temperature is highest in the operating range. Set lubricant temperature or refrigerant gas superheat. This method is a conventional general method. For this reason, the amount of refrigerant used for cooling the lubricating oil and injected into the compressor becomes excessive except under the conditions set above. Thereby, the fall of the refrigerating capacity, the increase in input generate | occur | produced, and the subject that performance fell occurred.

また上記の過剰な冷媒量により、潤滑油が過冷却され、潤滑油に冷媒が多量に溶け込んだ場合には、油分離効率が低下して油分離器から凝縮器への潤滑油の流出量が増加する、油上がりが発生する危険性が高くなる。この油上がりの発生で冷凍機が故障する場合があった。なお、潤滑油に冷媒が多量に溶け込むと必ず油上がりが発生するわけではない。   In addition, when the lubricating oil is supercooled due to the excessive refrigerant amount and a large amount of refrigerant is dissolved in the lubricating oil, the oil separation efficiency is reduced, and the amount of lubricating oil flowing out from the oil separator to the condenser is reduced. Increased risk of oil spilling. There was a case where the refrigerator broke down due to the occurrence of oil rising. It should be noted that the oil does not always rise when a large amount of refrigerant dissolves in the lubricating oil.

(2)発明の目的の説明
この発明は上記のような課題を解決するためになされたものであり、吐出ガス温度が許容上限温度以下であって、性能向上を図ることが可能な二段スクリュー圧縮機を有する冷凍装置を得ることを目的とする。
(2) Description of the object of the invention The present invention has been made to solve the above-described problems, and is a two-stage screw capable of improving performance when the discharge gas temperature is not more than the allowable upper limit temperature. An object is to obtain a refrigeration apparatus having a compressor.

この発明に係る冷凍装置は、低段側圧縮部と高段側圧縮部とこれら両圧縮部の間に位置する中間圧室とを有する二段スクリュー圧縮機と、油分離器と、凝縮器と、冷媒を冷却する過冷却器と、膨張弁と、蒸発器とを順次冷媒管で環状に接続した冷媒回路と、潤滑油を油分離器から油冷却器を介して二段スクリュー圧縮機に戻す油戻し用管路と、凝縮器からの液冷媒を油冷却器を介して中間圧室に戻し、油冷却器にて潤滑油を冷却する液冷媒の流量を制御する流量調整機構を有する液冷媒注入用管路と、二段スクリュー圧縮機の吐出側冷媒ガスの温度を検知する温度センサーと、
この温度センサーの出力が運転可能条件範囲全般にわたり予め定めた許容上限温度以下であって、上限温度近傍になるように流量調整機構を制御する制御部と、を備えたものである。
A refrigeration apparatus according to the present invention includes a two-stage screw compressor having a low-stage compression section, a high-stage compression section, and an intermediate pressure chamber located between both compression sections, an oil separator, and a condenser. A refrigerant circuit in which a subcooler for cooling the refrigerant, an expansion valve, and an evaporator are sequentially connected in an annular manner with refrigerant pipes, and lubricating oil is returned from the oil separator to the two-stage screw compressor via the oil cooler. Liquid refrigerant having an oil return line and a flow rate adjusting mechanism for returning the liquid refrigerant from the condenser to the intermediate pressure chamber via the oil cooler and controlling the flow rate of the liquid refrigerant for cooling the lubricating oil by the oil cooler A pipe for injection, a temperature sensor for detecting the temperature of the refrigerant gas on the discharge side of the two-stage screw compressor,
And a control unit that controls the flow rate adjusting mechanism so that the output of the temperature sensor is equal to or lower than a predetermined allowable upper limit temperature over the entire operating condition range and is close to the upper limit temperature.

この発明係る冷凍装置は、低段側圧縮部と高段側圧縮部とこれら両圧縮部の間に位置する中間圧室とを有する二段スクリュー圧縮機と、油分離器と、凝縮器と、冷媒を冷却する過冷却器と、膨張弁と、蒸発器とを順次冷媒管で環状に接続した冷媒回路と、潤滑油を油分離器から油冷却器を介して二段スクリュー圧縮機に戻す油戻し用管路と、凝縮器からの液冷媒を油冷却器を介して中間圧室に戻し、油冷却器にて潤滑油を冷却する液冷媒の流量を制御する流量調整機構を有する液冷媒注入用管路と、二段スクリュー圧縮機の吐出側冷媒ガスの温度を検知する温度センサーと、この温度センサーの出力が運転可能条件範囲全般にわたり予め定めた許容上限温度以下であって、上限温度近傍になるように流量調整機構を制御する制御部と、を備えたので、従来技術では冷媒量が過剰になる運転可能条件においても過剰な冷媒の注入がなくなるため、性能の向上が図れる。   A refrigeration apparatus according to the present invention includes a two-stage screw compressor having a low-stage compression section, a high-stage compression section, and an intermediate pressure chamber positioned between both compression sections, an oil separator, a condenser, A refrigerant circuit in which a subcooler that cools the refrigerant, an expansion valve, and an evaporator are sequentially connected in a ring with a refrigerant pipe, and oil that returns lubricating oil from the oil separator to the two-stage screw compressor via the oil cooler Liquid refrigerant injection having a return line and a flow rate adjusting mechanism for controlling the flow rate of the liquid refrigerant for returning the liquid refrigerant from the condenser to the intermediate pressure chamber via the oil cooler and cooling the lubricating oil by the oil cooler Pipeline, a temperature sensor for detecting the temperature of the refrigerant gas on the discharge side of the two-stage screw compressor, and the output of this temperature sensor is below a predetermined allowable upper limit temperature over the entire operating condition range, and near the upper limit temperature And a control unit for controlling the flow rate adjusting mechanism to be Since, in the prior art since the there is no injection of excess refrigerant in the operable condition amount of refrigerant is excessive, thereby improving the performance.

本発明の実施の形態1における冷凍装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigeration apparatus in Embodiment 1 of the present invention. 本発明の実施形態1における冷凍装置の要部冷媒回路図である。It is a principal part refrigerant circuit figure of the freezing apparatus in Embodiment 1 of this invention. 本発明の実施形態2における冷凍装置の要部冷媒回路図である。It is a principal part refrigerant circuit figure of the freezing apparatus in Embodiment 2 of this invention. 従来発明の冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating device of the conventional invention. 従来発明の冷凍装置における潤滑油冷却後の潤滑油温度を所定の値に制御する方法の要部冷媒回路図である。It is a principal part refrigerant circuit figure of the method of controlling the lubricating oil temperature after the lubricating oil cooling in the refrigerating device of the conventional invention to a predetermined value. 従来発明の冷凍装置における潤滑油冷却後の冷媒ガス過熱度を所定の値に制御する方法の要部冷媒回路図である。It is a principal part refrigerant circuit figure of the method of controlling the refrigerant gas superheat degree after lubricating oil cooling in the refrigerating device of the conventional invention to a predetermined value.

以下、本発明の実施形態1を図に基づいて説明する。
全体的な冷媒回路は背景技術の欄で説明した図4とほぼ同一であるので、詳細な説明は省略し、異なる部分のみ説明する。
本発明では、図4に示す回路のうち、要部Yの部分を図2、図3に示すような冷媒回路とするものである。
Hereinafter, Embodiment 1 of the present invention will be described with reference to the drawings.
The overall refrigerant circuit is almost the same as that shown in FIG. 4 described in the background art section, so detailed description is omitted and only different parts will be described.
In the present invention, the main part Y of the circuit shown in FIG. 4 is a refrigerant circuit as shown in FIGS.

実施の形態1.
(1.1)構成の詳細な説明
図1は、本発明の実施の形態1における冷凍装置を示す冷媒回路図である。
図において、図4と同符合は同一または相当部分を示す。図1の全体的な冷媒回路は背景技術の欄で説明した図4とほぼ同一であるので、詳細な説明は省略し、異なる部分のみ説明する。
図2は、本発明の実施形態1における冷凍装置の要部冷媒回路図である。吐出ガス温度を温度センサー14にて検知し、吐出ガス温度が許容上限温度以下であって、上限温度近傍になるようにマイクロコンピュータ(以下、マイコンと呼ぶ。このマイコンは制御部を構成する)12が電子膨張弁13に信号を送り、潤滑油冷却に用いられる冷媒量を制御する。
なお、電子膨張弁13は冷媒の流量を調整する流量調整機構を構成する。
Embodiment 1 FIG.
(1.1) Detailed Description of Configuration FIG. 1 is a refrigerant circuit diagram illustrating a refrigeration apparatus according to Embodiment 1 of the present invention.
In the figure, the same reference numerals as those in FIG. The overall refrigerant circuit of FIG. 1 is almost the same as that of FIG. 4 described in the background art section, so detailed description is omitted and only different parts will be described.
FIG. 2 is a principal refrigerant circuit diagram of the refrigeration apparatus in Embodiment 1 of the present invention. The temperature of the discharge gas is detected by the temperature sensor 14, and the microcomputer (hereinafter referred to as a microcomputer. This microcomputer constitutes a control unit) 12 so that the discharge gas temperature is equal to or lower than the allowable upper limit temperature and close to the upper limit temperature. Sends a signal to the electronic expansion valve 13 to control the amount of refrigerant used for cooling the lubricating oil.
The electronic expansion valve 13 constitutes a flow rate adjusting mechanism that adjusts the flow rate of the refrigerant.

(1.2)動作及び効果の詳細な説明
このように構成された冷凍装置においては、吐出ガス温度を検知し、吐出ガス温度が許容上限温度以下であって、上限温度近傍になるように、マイコン12が電子膨張弁13の開閉を制御することで、潤滑油冷却に用いられる冷媒量を制御する。
これにより、本実施の形態1によれば、従来の潤滑油冷却後の潤滑油温度または冷媒ガス過熱度を所定の値になるよう温度式膨張弁を用いて冷媒量を制御する方法に比べ、運転可能条件範囲全般にわたり過剰に冷媒を注入することがなくなり、冷凍装置の性能が向上する。
また、潤滑油の過冷却を抑制することができるため、潤滑油に冷媒が多量に溶け込みにくく、油上がりが発生する危険性が低くなる。これにより、油上がりによる冷凍装置の故障を防ぐことができ、信頼性の高い冷凍装置を得ることができる。
(1.2) Detailed Description of Operation and Effect In the refrigeration apparatus configured as described above, the discharge gas temperature is detected, and the discharge gas temperature is equal to or lower than the allowable upper limit temperature and is close to the upper limit temperature. The microcomputer 12 controls the opening and closing of the electronic expansion valve 13 to control the amount of refrigerant used for cooling the lubricating oil.
Thereby, according to this Embodiment 1, compared with the conventional method of controlling the amount of refrigerant using a temperature type expansion valve so that the lubricating oil temperature after cooling the lubricating oil or the refrigerant gas superheat degree becomes a predetermined value, The refrigerant is not excessively injected over the entire operable condition range, and the performance of the refrigeration apparatus is improved.
Moreover, since overcooling of the lubricating oil can be suppressed, a large amount of refrigerant is difficult to dissolve in the lubricating oil, and the risk of oil rising is reduced. Thereby, failure of the refrigeration apparatus due to oil rising can be prevented, and a highly reliable refrigeration apparatus can be obtained.

実施の形態2.
(2.1)構成の詳細な説明
本実施の形態2では、図1において、要部の構成が図2の構成から図3の構成に変わったこと以外は同じである。
図3に実施の形態2の要部冷媒回路を示す。実施形態1ではマイコン12が電子膨張弁13を用いて制御するのに対し、実施形態2ではマイコン12がキャピラリーチューブ15と電磁弁16とからなる組を少なくとも1組用いて制御する。
温度センサー14は吐出ガス温度を検知し、吐出ガス温度が許容上限温度以下であって、上限温度近傍になるように、マイコン12が少なくとも1つの電磁弁16の開閉を制御することで、キャピラリーチューブ15を流れ、潤滑油冷却に用いられる冷媒量を制御する。
(2.2)効果
この実施の形態2によれば、実施の形態1と同様の効果を奏する。
なお、電磁弁16とキャピラリーチューブ15は冷媒の流量を調整する流量調整機構を構成する。
Embodiment 2. FIG.
(2.1) Detailed Description of Configuration In the second embodiment, the configuration of the main part in FIG. 1 is the same except that the configuration of FIG. 2 is changed to the configuration of FIG.
FIG. 3 shows a main refrigerant circuit according to the second embodiment. In the first embodiment, the microcomputer 12 is controlled using the electronic expansion valve 13, whereas in the second embodiment, the microcomputer 12 is controlled using at least one set of the capillary tube 15 and the electromagnetic valve 16.
The temperature sensor 14 detects the discharge gas temperature, and the microcomputer 12 controls the opening and closing of at least one electromagnetic valve 16 so that the discharge gas temperature is equal to or lower than the allowable upper limit temperature and close to the upper limit temperature, whereby the capillary tube 15 and controls the amount of refrigerant used for cooling the lubricating oil.
(2.2) Effect According to the second embodiment, the same effect as in the first embodiment is obtained.
The solenoid valve 16 and the capillary tube 15 constitute a flow rate adjusting mechanism that adjusts the flow rate of the refrigerant.

1 圧縮機、1a 低段圧縮機構、1b 高段圧縮機構、1c 圧縮機中間圧室、1d モータ室、2 油分離機、3 凝縮器、4 中間冷却器用膨張弁、5 過冷却器、6 主液膨張弁、7 蒸発器、8 モータ冷却用膨張弁、9 油冷却器、10 温度式膨張弁、11 感温筒、12 マイコン、13 電子膨張弁、14 温度センサー、15 キャピラリーチューブ、16 電磁弁、17 均圧管。   1 Compressor, 1a Low stage compression mechanism, 1b High stage compression mechanism, 1c Compressor intermediate pressure chamber, 1d Motor chamber, 2 Oil separator, 3 Condenser, 4 Intercooler expansion valve, 5 Supercooler, 6 Main Liquid expansion valve, 7 Evaporator, 8 Motor cooling expansion valve, 9 Oil cooler, 10 Temperature type expansion valve, 11 Temperature sensitive cylinder, 12 Microcomputer, 13 Electronic expansion valve, 14 Temperature sensor, 15 Capillary tube, 16 Solenoid valve 17 Pressure equalizing pipe.

Claims (3)

低段側圧縮部と高段側圧縮部とこれら両圧縮部の間に位置する中間圧室とを有する二段スクリュー圧縮機と、油分離器と、凝縮器と、冷媒を冷却する過冷却器と、膨張弁と、蒸発器とを順次冷媒管で環状に接続した冷媒回路と、
潤滑油を前記油分離器から油冷却器を介して前記二段スクリュー圧縮機に戻す油戻し用管路と、
前記凝縮器からの液冷媒を前記油冷却器を介して前記中間圧室に戻し、前記油冷却器にて前記潤滑油を冷却する液冷媒の流量を制御する流量調整機構を有する液冷媒注入用管路と、
前記二段スクリュー圧縮機の吐出側冷媒ガスの温度を検知する温度センサーと、
この温度センサーの出力が運転可能条件範囲全般にわたり予め定めた許容上限温度以下であって、上限温度近傍になるように前記流量調整機構を制御する制御部と、を備えたことを特徴とする冷凍装置。
A two-stage screw compressor having a low-stage compression section, a high-stage compression section, and an intermediate pressure chamber located between these compression sections, an oil separator, a condenser, and a supercooler that cools the refrigerant A refrigerant circuit in which an expansion valve and an evaporator are sequentially connected in a ring shape with a refrigerant pipe,
An oil return line for returning lubricating oil from the oil separator to the two-stage screw compressor via an oil cooler;
Liquid refrigerant from the condenser is returned to the intermediate pressure chamber via the oil cooler, and liquid refrigerant injection has a flow rate adjusting mechanism for controlling the flow rate of the liquid refrigerant that cools the lubricating oil by the oil cooler. A pipeline,
A temperature sensor for detecting the temperature of the refrigerant gas on the discharge side of the two-stage screw compressor;
A control unit that controls the flow rate adjusting mechanism so that the output of the temperature sensor is equal to or lower than a predetermined allowable upper limit temperature over the entire operating condition range and close to the upper limit temperature. apparatus.
前記流量調整機構は電子膨張弁であり、前記制御部は前記電子膨張弁の開閉を制御することを特徴とする請求項1記載の冷凍装置。   The refrigeration apparatus according to claim 1, wherein the flow rate adjusting mechanism is an electronic expansion valve, and the control unit controls opening and closing of the electronic expansion valve. 前記流量調整機構は、電磁弁とキャピラリーチューブとで成る組を少なくとも1組備えたものであり、前記制御部は前記少なくとも1つの電磁弁の開閉を制御することを特徴とする請求項1記載の冷凍装置。   2. The flow rate adjusting mechanism includes at least one set of a solenoid valve and a capillary tube, and the control unit controls opening and closing of the at least one solenoid valve. Refrigeration equipment.
JP2010008727A 2010-01-19 2010-01-19 Refrigerating device Pending JP2011149565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010008727A JP2011149565A (en) 2010-01-19 2010-01-19 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010008727A JP2011149565A (en) 2010-01-19 2010-01-19 Refrigerating device

Publications (1)

Publication Number Publication Date
JP2011149565A true JP2011149565A (en) 2011-08-04

Family

ID=44536713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010008727A Pending JP2011149565A (en) 2010-01-19 2010-01-19 Refrigerating device

Country Status (1)

Country Link
JP (1) JP2011149565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317853A1 (en) 2022-08-03 2024-02-07 Panasonic Intellectual Property Management Co., Ltd. Vapor compression refrigeration cycle device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268471A (en) * 1988-09-03 1990-03-07 Fuji Electric Co Ltd Refrigerator
JPH0379959A (en) * 1989-08-22 1991-04-04 Daikin Ind Ltd Refrigeration apparatus
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JP2003130477A (en) * 2001-10-30 2003-05-08 Hitachi Ltd Refrigeration device
JP2008281265A (en) * 2007-05-10 2008-11-20 Hitachi Appliances Inc Refrigerating device
JP2009156520A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Refrigerating air-conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0268471A (en) * 1988-09-03 1990-03-07 Fuji Electric Co Ltd Refrigerator
JPH0379959A (en) * 1989-08-22 1991-04-04 Daikin Ind Ltd Refrigeration apparatus
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JP2003130477A (en) * 2001-10-30 2003-05-08 Hitachi Ltd Refrigeration device
JP2008281265A (en) * 2007-05-10 2008-11-20 Hitachi Appliances Inc Refrigerating device
JP2009156520A (en) * 2007-12-27 2009-07-16 Mitsubishi Electric Corp Refrigerating air-conditioning device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317853A1 (en) 2022-08-03 2024-02-07 Panasonic Intellectual Property Management Co., Ltd. Vapor compression refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5355016B2 (en) Refrigeration equipment and heat source machine
JP2007139225A (en) Refrigerating device
JP2011117626A (en) Air conditioner
JP2011208860A (en) Air conditioner
JP5264874B2 (en) Refrigeration equipment
JP2013257121A (en) Refrigerating device
JP2007255864A (en) Two-stage compression type refrigerating device
JP6264688B2 (en) Refrigeration equipment
JP2013142487A (en) Refrigeration device and refrigeration unit
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
JP5433158B2 (en) Refrigeration cycle equipment
JP2013024538A (en) Refrigeration unit
JP2010002173A (en) Refrigerator
JP2009186033A (en) Two-stage compression type refrigerating device
JP6253370B2 (en) Refrigeration cycle equipment
JP2008281265A (en) Refrigerating device
JP2011149565A (en) Refrigerating device
KR102017406B1 (en) Heat pump
CN110195949B (en) Refrigeration system and method
JP2014102008A (en) Refrigeration apparatus
JP2005274085A (en) Refrigerating device
EP2525168B1 (en) Supercritical steam compression heat pump and hot-water supply unit
JP2021134953A (en) Freezer
JPH07294073A (en) Refrigeration device
JP2015105783A (en) Turbo refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140218