WO2021095115A1 - Outdoor unit and refrigeration cycle device - Google Patents

Outdoor unit and refrigeration cycle device Download PDF

Info

Publication number
WO2021095115A1
WO2021095115A1 PCT/JP2019/044280 JP2019044280W WO2021095115A1 WO 2021095115 A1 WO2021095115 A1 WO 2021095115A1 JP 2019044280 W JP2019044280 W JP 2019044280W WO 2021095115 A1 WO2021095115 A1 WO 2021095115A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow path
gas
liquid separation
condenser
Prior art date
Application number
PCT/JP2019/044280
Other languages
French (fr)
Japanese (ja)
Inventor
亮 築山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021555653A priority Critical patent/JP7150192B2/en
Priority to PCT/JP2019/044280 priority patent/WO2021095115A1/en
Publication of WO2021095115A1 publication Critical patent/WO2021095115A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present invention relates to an outdoor unit and a refrigeration cycle device.
  • the refrigerant filled in the refrigerant circuit is filled with "temperature efficiency", which is the value obtained by dividing the degree of supercooling of the refrigerant at the outlet of the supercooler by the maximum temperature difference of the supercooler.
  • temperature efficiency is the value obtained by dividing the degree of supercooling of the refrigerant at the outlet of the supercooler by the maximum temperature difference of the supercooler.
  • An object of the present invention is to provide an outdoor unit and a refrigeration cycle device capable of detecting a refrigerant shortage at an early stage.
  • the present disclosure relates to an outdoor unit of a refrigeration cycle device configured to be connected to a load device including an inflator and an evaporator.
  • the outdoor unit includes a first flow path, a compressor, a condenser, a heat exchanger, a second flow path, a first gas-liquid separation structure, a first on-off valve, a second gas-liquid separation structure, and the like. It includes a second on-off valve, a flow rate adjusting device, a refrigerant heating device, a temperature sensor, and a notification device.
  • the first flow path forms a circulation flow path through which the refrigerant circulates by being connected to the load device.
  • the compressor and condenser are arranged in the first flow path.
  • the second flow path branches from a plurality of branch points of the first flow path downstream of the condenser in the direction in which the refrigerant circulates, and then merges at the confluence, so that the refrigerant that has passed through the condenser is returned to the compressor. It is composed of.
  • the first gas-liquid separation structure is provided at the first branch point among the plurality of branch points.
  • the first on-off valve is arranged between the first gas-liquid separation structure and the confluence.
  • the second gas-liquid separation structure is provided at the second branch point among the plurality of branch points.
  • the second on-off valve is arranged between the second gas-liquid separation structure and the confluence.
  • the flow rate adjusting device and the refrigerant heating device are arranged in the second flow path in order from the confluence.
  • the temperature sensor detects the temperature of the refrigerant that has passed through the refrigerant heating device in the second flow path.
  • the notification device notifies the refrigerant shortage according to the output of the temperature sensor.
  • the outdoor unit of the present disclosure it is possible to selectively branch refrigerants having different dryness from a plurality of branch points to the refrigerant heating device and determine the refrigerant shortage, so that the refrigerant shortage can be detected at an early stage.
  • FIG. 1 It is a figure which shows the structure of the refrigerating cycle apparatus 1 which concerns on this embodiment. It is a figure for demonstrating the state in which gas-liquid separation cannot be performed in a gas-liquid separation mechanism. It is a figure for demonstrating the state in which gas-liquid separation is possible in a gas-liquid separation mechanism. It is a Moriel diagram which shows the refrigerating cycle corresponding to the refrigerating cycle apparatus shown in FIG. It is a figure which shows the relationship between the dryness of a refrigerant after passing through a bypass flow path and a refrigerant filling rate when passing through each branch part. It is a flowchart for demonstrating control in a refrigerant shortage detection mode.
  • FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to the present embodiment.
  • the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, and extension pipes 84 and 88.
  • the outdoor unit 2 of the refrigeration cycle device 1 is configured to be connected to the load device 3 by extension pipes 84 and 88.
  • the outdoor unit 2 includes a compressor 10, a condenser 20, a liquid receiver (receiver) 30, a supercooler 35, a heat exchanger 40, and pipes 80 to 83, 89.
  • the liquid receiver 30 is arranged between the pipe 81 and the condenser 20 and is configured to store the refrigerant.
  • the flow path F1 from the compressor 10 to the connection port to the load device 3 through the condenser 20, the liquid receiver 30, the supercooler 35, and the heat exchanger 40 in this order circulates the refrigerant together with the load device 3. It is configured to form a flow path.
  • this circulation flow path is also referred to as a "main circuit" of the refrigeration cycle.
  • the load device 3 includes an expansion device 50, an evaporator 60, and pipes 85, 86, 87.
  • the expansion device 50 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2.
  • the compressor 10 compresses the refrigerant sucked from the pipe 89 and discharges it to the pipe 80.
  • the compressor 10 has a suction port G1, a discharge port G2, and an intermediate pressure port G3.
  • the compressor 10 is configured to suck the refrigerant that has passed through the evaporator 60 from the suction port G1 and discharge the refrigerant from the discharge port G2 toward the condenser 20 together with the refrigerant sucked from the intermediate pressure port G3.
  • the compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the refrigerating capacity of the refrigerating cycle device 1 can be adjusted.
  • Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
  • the condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80 and flows it to the liquid receiver 30 and the pipe 81.
  • the condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat with the outside air. By this heat exchange, the heat-dissipated refrigerant condenses and changes into a liquid phase.
  • the fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure on the discharge side of the compressor 10 can be adjusted.
  • the liquid receiver 30 is arranged between the first passage H1 of the heat exchanger 40 and the condenser 20, and is configured to store the refrigerant.
  • the supercooler 35 is provided to further lower the temperature of the liquid refrigerant, which is the saturation temperature in the receiver 30, and to secure the supercooling degree SC.
  • the refrigerant passing through the supercooler 35 is further cooled by a fan (not shown) or the like.
  • the heat exchanger 40 has a first passage H1 and a second passage H2, and is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
  • the outdoor unit 2 further includes pipes 91 to 94 and an expansion valve 92.
  • the pipe 91 branches from the branch point BP4 of the pipe 83.
  • the pipe 91, the expansion valve 92, the pipe 93, the second passage H2 of the heat exchanger 40, and the pipe 94 constitute a third passage F3 for flowing the refrigerant from the branch point BP4 of the main circuit to the intermediate pressure port G3 of the compressor 10. To do.
  • the third flow path F3 is also referred to as an "injection flow path".
  • the outdoor unit 2 further includes start-up pipes 711 to 713, on-off valves V1 to V3, pipes 72, a flow rate adjusting device 73, pipes 74, and a refrigerant heating device 75.
  • on-off valves V1 to V3 for example, a solenoid valve can be used.
  • the start-up pipe 711 branches from the branch point BP1 of the pipe 81 connected to the outlet of the liquid receiver 30 of the circulation flow path, and is connected to the confluence point A of the pipe 72 via the on-off valve V1.
  • the start-up pipe 712 branches from the branch point BP2 of the pipe 82 connecting the refrigerant outlet of the supercooler 35 and the refrigerant inlet of the first passage H1 of the heat exchanger 40, and joins the pipe 72 via the on-off valve V2. Connected to point A.
  • the start-up pipe 713 branches from the branch point BP3 of the refrigerant outlet of the first passage H1 of the heat exchanger 40, and is connected to the confluence point A of the pipe 72 via the on-off valve V3.
  • the pipe 72 connects the merging point A where the refrigerants that have passed through the on-off valves V1 to V3 merge and one end of the flow rate adjusting device 73.
  • the pipe 74 connects the other end of the flow rate adjusting device 73 to the pipe 89.
  • the refrigerant heating device 75 is configured to heat the refrigerant that has passed through the flow rate adjusting device 73.
  • an electric heater can be used as the refrigerant heating device 75.
  • a capillary tube can be typically used, but any device such as an orifice in which the cross-sectional area of the flow path becomes narrow and a pressure difference occurs may be used. Further, an expansion valve may be used as the flow rate adjusting device 73.
  • the second flow path F2 that branches from the main circuit and sends the refrigerant to the compressor 10 via the flow rate adjusting device 73 is referred to as a “bypass flow path”.
  • the two-phase refrigerant mixed with the gas refrigerant is introduced into the pipe 72.
  • the bypass flow path may be connected to the intermediate pressure port G3 instead of the suction port G1 of the compressor 10.
  • the outdoor unit 2 further includes pressure sensors 110, 111, temperature sensors 120, 121, 122, and a control device 100 for controlling the outdoor unit 2.
  • the pressure sensor 110 detects the pressure PL of the suction refrigerant of the compressor 10 and outputs the detected value to the control device 100.
  • the pressure sensor 111 detects the pressure PH of the discharged refrigerant of the compressor 10 and outputs the detected value to the control device 100.
  • the temperature sensor 120 detects the temperature TA of the outside air sent to the condenser 20, and outputs the detected value to the control device 100.
  • the temperature sensor 121 detects the temperature TC of the refrigerant sent from the outlet of the condenser 20 to the liquid receiver 30, and outputs the detected value to the control device 100.
  • the temperature sensor 122 detects the temperature T1 of the refrigerant heated by the refrigerant heating device 75 after passing through the flow rate adjusting device 73, and outputs the detected value to the control device 100.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • a second flow path F2 for sending the refrigerant from any of the branch points BP3 to the suction port G1 of the compressor 10 which is the low pressure portion is provided.
  • a flow rate adjusting device 73 and a refrigerant heating device 75 are arranged in the second flow path F2.
  • a temperature sensor 122 for measuring the actual temperature of the refrigerant and a pressure sensor 110 for detecting the low pressure saturation temperature from the pressure are provided in a portion through which the refrigerant heated by the refrigerant heating device 75 passes.
  • the corresponding temperature (saturation temperature) is determined.
  • a conversion table showing the correspondence between the pressure and the saturation temperature is stored in the memory 104 of the control device 100 in advance.
  • the control device 100 obtains the saturation temperature corresponding to the pressure PL from the conversion table, and calculates the difference from the temperature T1 actually measured by the temperature sensor.
  • the saturation temperature is T0
  • the pressure at point C may be measured and converted into temperature. By obtaining the difference between the actual temperature and the low-pressure saturation temperature, the presence or absence of the superheat degree SH can be determined.
  • FIG. 2 is a diagram for explaining a state in which gas-liquid separation is not possible in the gas-liquid separation mechanism.
  • FIG. 3 is a diagram for explaining a state in which gas-liquid separation is possible in the gas-liquid separation mechanism.
  • the gas-liquid separation mechanism is composed of rising pipes 711 to 713 that rise from pipes 81 to 83, which are liquid pipes, in the directions opposite to gravity, respectively.
  • FIG. 4 is a Moriel diagram showing a refrigeration cycle corresponding to the refrigeration cycle apparatus shown in FIG.
  • the cycle when the amount of refrigerant is sufficient is shown by a solid line
  • the cycle when the amount of refrigerant is insufficient is shown by a broken line.
  • the refrigerant that has passed through the condenser 20 is a liquid refrigerant. Therefore, at any of the branch points BP1, BP2, and BP3, the state of the refrigerant is a liquid refrigerant, which is the state on the left side of the point A3 in FIG.
  • the positions of the branch point moves to the right on the Moriel diagram.
  • the paths F2 (1), F2 (2), and F2 (3) show the state change of the refrigerant flowing in the second flow path F2 when the amount of the refrigerant is reduced to a certain amount.
  • the path F2 (1) shows a path when the refrigerant flows from the branch point BP1 to the second flow path F2 when the on-off valve V1 is opened and the on-off valves V2 and V3 are closed.
  • the states of points A, B, and C in FIG. 1 are shown as points A1, B1, and C1 in FIG. 4, respectively.
  • the path F2 (2) indicates a path when the refrigerant flows from the branch point BP2 to the second flow path F2 when the on-off valve V2 is opened and the on-off valves V1 and V3 are closed.
  • the states of points A, B, and C in FIG. 1 are shown as points A2, B2, and C2 in FIG. 4, respectively.
  • Route F2 (3) indicates a route when the refrigerant flows from the branch point BP3 to the second flow path F2 when the on-off valve V3 is opened and the on-off valves V1 and V2 are closed.
  • the states of points A, B, and C in FIG. 1 are shown as points A3, B3, and C3 in FIG. 4, respectively.
  • the pressure is reduced by the flow rate adjusting device 73, the state of the refrigerant changes from points A1, A2, A3 to points B1, B2, B3, respectively.
  • the refrigerant heating device 75 the state of the refrigerant changes from points B1, B2, B3 to points C1, C2, and C3, respectively.
  • the state of the refrigerant is a two-phase state
  • the state of the refrigerant is a single-phase liquid state.
  • a certain amount of liquid refrigerant flows through the pipe 74. Therefore, even if the point moves to the right by heating, the temperature of the refrigerant does not change at the saturation temperature because it does not exceed the saturated gas line. Therefore, at points C2 and C3, the degree of superheat SH is zero.
  • the state of the refrigerant is a single-phase gas state.
  • the heat given to the refrigerant from the refrigerant heating device 75 becomes sensible heat, and the temperature of the refrigerant in the gas state is higher than the saturation temperature. It gets higher. Therefore, at point C1, the degree of superheat SH is SH> 0.
  • the degree of decrease in the amount of refrigerant in other words, the degree of refrigerant shortage can be known.
  • FIG. 5 is a diagram showing the relationship between the dryness of the refrigerant after passing through the bypass flow path and the refrigerant filling rate when passing through each branch portion.
  • the refrigerant filling rate of 100% indicates a specified filling amount that is not excessive or deficient in design, and it is assumed that the difference from 100% is the insufficient amount.
  • the refrigerant filling rate may be 105%. Then, when the amount of refrigerant leaks and decreases to less than 100%, it is determined that the refrigerant is insufficient.
  • the degree of dryness that allows gas-liquid separation is a value determined by the design of the gas-liquid separation mechanism.
  • the dryness of the gas-liquid separable limit is set to 0.05, and is shown by a broken line in FIG.
  • the degree of superheat SH > 0 when the on-off valve V1 or V2 is opened and the refrigerant flows from the branch point BP1 or BP2 into the bypass flow path.
  • the degree of superheat of the refrigerant SH 0 after passing through the bypass flow path when the on-off valve V3 is opened and the refrigerant flows through the bypass flow path.
  • the degree of superheat SH of the refrigerant after passing through the bypass flow path is SH> 0 regardless of which of the on-off valves V1, V2, and V3 is opened. From the above, by selectively opening one on-off valve V1 to V3, the degree of refrigerant shortage in three stages can be detected.
  • FIG. 6 is a flowchart for explaining the control in the refrigerant shortage detection mode.
  • the refrigerant shortage detection mode is periodically executed by a timer or the like, for example, once a day or several days.
  • the amount of the liquid refrigerant held in the liquid receiver 30 varies depending on the operating state of the refrigeration cycle device. Originally, the amount of the refrigerant should be a sufficient amount so that the liquid remains in the liquid receiver 30 even in the operating state where the liquid amount in the liquid receiver 30 is the smallest.
  • the operating state in which the amount of liquid in the receiver is most reduced is the state in which the temperature TC, which is the condensation temperature, is high (the pressure in the high-pressure part is rising due to the influence of the outside air temperature, the rotation speed of the fan, etc.) is there.
  • the density of the refrigerant in the main circuit increases and the volume decreases. Since the liquid refrigerant is discharged from the receiver 30 to the circulation circuit side by the amount of the volume reduction of the refrigerant in the main circuit, the amount of liquid in the receiver 30 is reduced.
  • the refrigerant for that amount is stored in the receiver, so it is received when all of the multiple indoor units are in operation.
  • the amount of liquid in the liquid container decreases.
  • the heat exchanger 40 in the refrigerant shortage detection mode, is connected from the outlet 30 of the receiver 30 provided with the gas-liquid separation mechanism.
  • the dryness of the portion leading to the outlet is increased as compared with the normal operation, and the refrigerant shortage detection unit provided in the bypass flow path makes it easy to detect the refrigerant shortage.
  • step S1 the control device 100 sets the operating frequency of the compressor 10 to a predetermined fixed frequency. Further, the opening degree of the expansion valve 92 of the injection flow path is also fixed.
  • control device 100 changes the rotation speed of the fan 22.
  • the rotation speed of the fan 22 is determined so that each device works efficiently.
  • the difference between the outside air and the temperature TC is set to be 10 ° C.
  • the control device 100 sets the rotation speed of the fan 22 to be equal to or lower than the minimum rotation speed that can be obtained in normal operation. For example, the rotation of the fan 22 may be stopped. As a result, the efficiency of heat exchange with the outside air in the condenser 20 is lowered, and the refrigerant is less likely to be condensed in the condenser 20. Then, the dryness of the portion provided with the gas-liquid separation mechanism increases as compared with the normal operation. That is, the ratio of gas refrigerant in the refrigerant increases as compared with the case of normal operation.
  • step S2 the control device 100 opens the on-off valve V1 and flows the refrigerant through the bypass flow path with the on-off valves V2 and V3 closed.
  • step S3 the control device 100 determines whether or not the refrigerant is insufficient.
  • the control device 100 detects whether or not the refrigerant is insufficient based on the presence or absence of the superheat degree SH at the outlet (point C) of the refrigerant heating device.
  • the control device 100 increases the dryness of the outlet of the condenser 20 and increases the circulation amount of the refrigerant in the main circuit so that the refrigerant shortage can be detected at an early stage.
  • the superheat degree SH of the point C is confirmed after setting the state close to the sky. By operating under stricter conditions than normal operating conditions, it becomes easier to determine the refrigerant shortage based on the degree of superheat SH.
  • step S3 when the refrigerant is insufficient (YES in S3), that is, when the degree of superheat SH> 0, the control device 100 determines that the refrigerant is insufficient, and proceeds to step S4.
  • step S5 when the refrigerant is insufficient (YES in S3), that is, when the degree of superheat SH> 0, the control device 100 determines that the refrigerant is further insufficient, and proceeds to step S6.
  • step S6 the control device 100 closes the on-off valve V2 and opens only the on-off valve V3 among the on-off valves V1 to V3. Then, in step S7, the control device 100 detects whether or not the refrigerant is insufficient based on the presence or absence of the superheat degree SH at the outlet (point C) of the refrigerant heating device.
  • step S7 determines that the refrigerant is further insufficient, and proceeds to step S8.
  • step S8 the control device 100 calculates the amount of the refrigerant with reference to the table stored in the memory 104 in advance. In this case, in the example shown in FIG. 5, it is calculated that the amount of the refrigerant filled is less than 84%.
  • the control device 100 After the calculation of the amount of refrigerant is executed in any of steps S8, S9, and S10, the control device 100 sends an alarm to the notification device 101 indicating that the refrigerant is insufficient in step S11. Output.
  • the notification device 101 is, for example, a display device such as a liquid crystal display, a warning lamp, or the like, and may be a device that transmits a warning signal to an external device via a communication line.
  • the control device 100 may notify the user or the service provider of the urgency or the additional encapsulation amount based on the detected shortage amount.
  • the control device 100 After notifying the user of the amount of refrigerant using the notification device 101, the control device 100 ends the processing of the refrigerant shortage detection mode.
  • the amount of refrigerant is changed in three stages by flowing the refrigerant from three branch points having different dryness of the refrigerant to the bypass flow path, thereby changing the dryness of the refrigerant flowing toward the refrigerant heating device 75 in three stages.
  • the dryness of the refrigerant may be further changed to detect the amount of the refrigerant with finer accuracy.
  • the rotation speed of the fan 22 and the operating frequency of the compressor 10 are fixed, and instead, the degree of dryness is changed by changing the opening degree of the expansion valve 92 in each of steps S8, S9, and S10 to further increase the amount of refrigerant. It may be detected with fine accuracy.
  • either the rotation speed of the fan 22 or the operating frequency of the compressor 10 is changed to open the expansion valve 92. It may be used in combination with the change of degree.
  • the refrigerant branched from the plurality of branch points BP1 and BP2 is selected by the on-off valves V1 and V2 and flows to the second flow path F2 which is a bypass flow path. Therefore, it is possible to detect the refrigerant shortage at an early stage.
  • the refrigerant branched from the plurality of branch points BP1 and BP3 is selected by the on-off valves V1 and V3 and flows to the second flow path F2 which is a bypass flow path. Therefore, it is possible to detect the refrigerant shortage at an early stage.
  • the present disclosure relates to an outdoor unit 2 of a refrigeration cycle device 1 configured to be connected to a load device 3 including an inflator 50 and an evaporator 60.
  • the outdoor unit 2 includes a first flow path F1, a compressor 10, a condenser 20, a second flow rate F2, a first gas-liquid separation structure, a first on-off valve, and a second gas-liquid separation structure.
  • the start-up pipe 711 in FIG. 1 corresponds to the "first gas-liquid separation structure”.
  • the on-off valve V1 of FIG. 1 corresponds to the "first on-off valve”.
  • the riser pipe 712 of FIG. 1 corresponds to the “second gas-liquid separation structure”.
  • the on-off valve V2 of FIG. 1 corresponds to the "second on-off valve”.
  • the first flow path F1 is connected to the load device 3 to form a circulation flow path through which the refrigerant circulates.
  • the compressor 10 and the condenser 20 are arranged in the first flow path F1.
  • the second flow path F2 branches from a plurality of branch points BP1 to BP3 of the first flow path F1 downstream of the condenser 20 in the direction in which the refrigerant circulates, and then merges at the confluence point A and passes through the condenser 20. It is configured to return the generated refrigerant to the compressor 10.
  • the first gas-liquid separation structure is provided at the first branch point among the plurality of branch points.
  • the first on-off valve is arranged between the first gas-liquid separation structure and the confluence point A.
  • the second gas-liquid separation structure is provided at the second branch point among the plurality of branch points.
  • the second on-off valve is arranged between the second gas-liquid separation structure and the confluence point A.
  • first branch point corresponds to the branch point BP1 of FIG. 1
  • second branch point corresponds to the branch point BP2 of FIG.
  • the flow rate adjusting device 73 and the refrigerant heating device 75 are arranged in the second flow path F2 in order from the confluence point A.
  • the temperature sensor 122 detects the temperature of the refrigerant that has passed through the refrigerant heating device 75 of the second flow path F2.
  • the notification device 101 notifies the refrigerant shortage according to the output of the temperature sensor 122.
  • the sensitivity for detecting the refrigerant shortage can be changed, and the refrigerant shortage can be detected at an early stage. It becomes.
  • start-up pipe 711 corresponds to the "first gas-liquid separation mechanism” and the start-up pipe 712 corresponds to the "second gas-liquid separation structure”.
  • Two of 711 to 713 may be selected to correspond to the "first gas-liquid separation mechanism” and the "second gas-liquid separation mechanism”.
  • the "first gas-liquid separation mechanism” is associated with the start-up pipe 711
  • the "second gas-liquid separation structure” is associated with the start-up pipe 713
  • the "second opening / closing" is performed.
  • the on-off valve V3 may be associated with the "valve".
  • the "first gas-liquid separation mechanism" is associated with the start-up pipe 711
  • the "second gas-liquid separation structure” is associated with the start-up pipe 712.
  • the on-off valve V2 may be associated with the on-off valve.
  • the outdoor unit 2 further includes a supercooler 35, a heat exchanger 40, a third gas-liquid separation structure, and a third on-off valve.
  • the supercooler 35 and the heat exchanger 40 are arranged in order in the first flow path F1 downstream of the condenser 20.
  • the third gas-liquid separation structure is provided at the third branch point among the plurality of branch points BP1 to BP3.
  • start-up pipe 713 in FIG. 1 corresponds to the "third gas-liquid separation structure”.
  • the on-off valve V3 of FIG. 1 corresponds to the "third on-off valve”.
  • the "third branch point” corresponds to the branch point BP3 of FIG.
  • the third on-off valve is arranged between the third gas-liquid separation structure and the confluence point A.
  • the first branch point is arranged between the refrigerant outlet of the condenser 20 and the refrigerant inlet of the supercooler 35 in the first flow path F1.
  • the second branch point is arranged between the refrigerant outlet of the supercooler 35 and the refrigerant inlet of the heat exchanger 40 in the first flow path F1.
  • the third branch point is arranged downstream of the refrigerant outlet of the heat exchanger 40 in the first flow path F1.
  • the outdoor unit 2 further includes a control device 100 that controls the on-off valves V1 to V3 and detects a refrigerant shortage based on the output of the temperature sensor 122.
  • the outdoor unit 2 has a normal mode and a refrigerant shortage detection mode as operation modes.
  • the outdoor unit 2 further includes a dryness increasing device that increases the dryness of the refrigerant after passing through the condenser 20.
  • a fan 22 corresponds to the “dryness increasing device”.
  • the control device 100 controls the dryness increasing device, and is configured to increase the dryness of the refrigerant after passing through the condenser 20 in the refrigerant shortage detection mode as compared with the normal mode.
  • the first gas-liquid separation structure and the second gas-liquid separation structure are configured to branch the first flow path to the second flow path in the direction opposite to gravity at the first branch point and the second branch point, respectively.
  • the refrigerating cycle device 1 may be used as an air conditioner or the like.
  • Refrigeration cycle device 1 Refrigeration cycle device, 2 Outdoor unit, 3 Load device, 10 Compressor, 20 Condenser, 22 Fan, 30 Recipient, 35 Supercooler, 40 Heat exchanger, 50 Expansion device, 60 Evaporator, 72,74 , 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94 piping, 73 flow control device, 75 refrigerant heating device, 84,88 extension piping, 92 expansion valve, 100 control device, 101 notification Equipment, 104 memory, 110,111 pressure sensor, 120,121,122 temperature sensor, 711,712,713 riser pipe, BP1, BP2, BP3, BP4 branch point, F1, F2, F3 flow path, G1 suction port, G2 discharge port, G3 intermediate pressure port, H1 first passage, H2 second passage, V1, V2, V3 on-off valve.

Abstract

An outdoor unit (2) comprises a first flow path (F1), a second flow path (F2), and a notification device (101). A compressor (10) and a condenser (20) are arranged in the first flow path (F1). The second flow path (F2) branches off from a plurality of branch points (BP1 to BP3) of the first flow path (F1) downstream from the condenser (20) and then merges at a confluence point (A) to return the refrigerant that has passed through the condenser (20) to the compressor (10). A first opening-closing valve (V1) is located between a first gas-liquid separation structure (711) and the confluence point (A). A second opening-closing valve (V2) is located between a second gas-liquid separation structure (712) and the confluence point (A). A flow rate adjustment device (73) and a refrigerant heating device (75) are arranged in the second flow path (F2) in order from the confluence point (A). A temperature sensor (122) detects the temperature of the refrigerant that has passed through the refrigerant heating device (75). The notification device (101) provides notification of a refrigerant shortage according to the output of the temperature sensor (122).

Description

室外ユニットおよび冷凍サイクル装置Outdoor unit and refrigeration cycle device
 この発明は、室外ユニットおよび冷凍サイクル装置に関する。 The present invention relates to an outdoor unit and a refrigeration cycle device.
 国際公開第2016/135904号には、過冷却器の出口における冷媒の過冷却度を過冷却器の最大温度差で除算した値である「温度効率」を用いて、冷媒回路に充填された冷媒量を判定する冷媒量判定部を備える冷凍装置が開示されている。 In International Publication No. 2016/135904, the refrigerant filled in the refrigerant circuit is filled with "temperature efficiency", which is the value obtained by dividing the degree of supercooling of the refrigerant at the outlet of the supercooler by the maximum temperature difference of the supercooler. A refrigerating apparatus including a refrigerant amount determining unit for determining the amount is disclosed.
国際公開第2016/135904号International Publication No. 2016/135904
 国際公開第2016/135904号に記載された方法では、冷媒量が減少し始めてから実際に冷媒不足が進行した状態に至るまで、冷媒量の減少を検知できない場合がある。 With the method described in International Publication No. 2016/135904, it may not be possible to detect the decrease in the amount of refrigerant from the time when the amount of refrigerant begins to decrease until the state in which the shortage of refrigerant actually progresses.
 この発明の目的は、冷媒不足を早期段階で検出することができる室外ユニットおよび冷凍サイクル装置を提供することである。 An object of the present invention is to provide an outdoor unit and a refrigeration cycle device capable of detecting a refrigerant shortage at an early stage.
 本開示は、膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の室外ユニットに関する。室外ユニットは、第1流路と、圧縮機、凝縮器、および熱交換器と、第2流路と、第1気液分離構造と、第1開閉弁と、第2気液分離構造と、第2開閉弁と、流量調整装置、および冷媒加熱装置と、温度センサと、報知装置とを備える。第1流路は、負荷装置に接続されることによって、冷媒が循環する循環流路を形成する。圧縮機および凝縮器は、第1流路に配置される。第2流路は、冷媒が循環する方向において、凝縮器よりも下流の第1流路の複数の分岐点から分岐した後に合流点において合流し、凝縮器を通過した冷媒を圧縮機に戻すように構成される。第1気液分離構造は、複数の分岐点のうちの第1分岐点に設けられる。第1開閉弁は、第1気液分離構造と合流点との間に配置される。第2気液分離構造は、複数の分岐点のうちの第2分岐点に設けられる。第2開閉弁は、第2気液分離構造と合流点との間に配置される。流量調整装置、および冷媒加熱装置は、合流点から順に第2流路に配置される。温度センサは、第2流路の冷媒加熱装置を通過した冷媒の温度を検出する。報知装置は、温度センサの出力に応じて冷媒不足を報知する。 The present disclosure relates to an outdoor unit of a refrigeration cycle device configured to be connected to a load device including an inflator and an evaporator. The outdoor unit includes a first flow path, a compressor, a condenser, a heat exchanger, a second flow path, a first gas-liquid separation structure, a first on-off valve, a second gas-liquid separation structure, and the like. It includes a second on-off valve, a flow rate adjusting device, a refrigerant heating device, a temperature sensor, and a notification device. The first flow path forms a circulation flow path through which the refrigerant circulates by being connected to the load device. The compressor and condenser are arranged in the first flow path. The second flow path branches from a plurality of branch points of the first flow path downstream of the condenser in the direction in which the refrigerant circulates, and then merges at the confluence, so that the refrigerant that has passed through the condenser is returned to the compressor. It is composed of. The first gas-liquid separation structure is provided at the first branch point among the plurality of branch points. The first on-off valve is arranged between the first gas-liquid separation structure and the confluence. The second gas-liquid separation structure is provided at the second branch point among the plurality of branch points. The second on-off valve is arranged between the second gas-liquid separation structure and the confluence. The flow rate adjusting device and the refrigerant heating device are arranged in the second flow path in order from the confluence. The temperature sensor detects the temperature of the refrigerant that has passed through the refrigerant heating device in the second flow path. The notification device notifies the refrigerant shortage according to the output of the temperature sensor.
 本開示の室外ユニットによれば、複数の分岐点から異なる乾き度の冷媒を選択的に冷媒加熱装置に分岐させ冷媒不足を判定できるので、冷媒不足を早期段階で検出することができる。 According to the outdoor unit of the present disclosure, it is possible to selectively branch refrigerants having different dryness from a plurality of branch points to the refrigerant heating device and determine the refrigerant shortage, so that the refrigerant shortage can be detected at an early stage.
本実施の形態に係る冷凍サイクル装置1の構成を示す図である。It is a figure which shows the structure of the refrigerating cycle apparatus 1 which concerns on this embodiment. 気液分離機構において気液分離ができない状態を説明するための図である。It is a figure for demonstrating the state in which gas-liquid separation cannot be performed in a gas-liquid separation mechanism. 気液分離機構において気液分離が可能である状態を説明するための図である。It is a figure for demonstrating the state in which gas-liquid separation is possible in a gas-liquid separation mechanism. 図1に示す冷凍サイクル装置に対応する冷凍サイクルを示すモリエル線図である。It is a Moriel diagram which shows the refrigerating cycle corresponding to the refrigerating cycle apparatus shown in FIG. 各分岐部を通した場合のバイパス流路通過後の冷媒の乾き度と冷媒封入率との関係を示す図である。It is a figure which shows the relationship between the dryness of a refrigerant after passing through a bypass flow path and a refrigerant filling rate when passing through each branch part. 冷媒不足検知モードにおける制御を説明するためのフローチャートである。It is a flowchart for demonstrating control in a refrigerant shortage detection mode.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態の変形例について説明するが、実施の形態および各変形例で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Hereinafter, modifications of the plurality of embodiments will be described, but it is planned from the beginning of the application that the embodiments and the configurations described in the respective modifications are appropriately combined. The same or corresponding parts in the drawings are designated by the same reference numerals, and the description thereof will not be repeated.
 図1は、本実施の形態に係る冷凍サイクル装置1の構成を示す図である。図1を参照して、冷凍サイクル装置1は、室外ユニット2と、負荷装置3と、延長配管84,88とを備える。 FIG. 1 is a diagram showing a configuration of a refrigeration cycle device 1 according to the present embodiment. With reference to FIG. 1, the refrigeration cycle device 1 includes an outdoor unit 2, a load device 3, and extension pipes 84 and 88.
 冷凍サイクル装置1の室外ユニット2は、延長配管84,88によって、負荷装置3に接続されるように構成される。 The outdoor unit 2 of the refrigeration cycle device 1 is configured to be connected to the load device 3 by extension pipes 84 and 88.
 室外ユニット2は、圧縮機10と、凝縮器20と、受液器(レシーバ)30と、過冷却器35と、熱交換器40と、配管80~83、89とを備える。受液器30は、配管81と凝縮器20との間に配置され、冷媒を貯留するように構成される。 The outdoor unit 2 includes a compressor 10, a condenser 20, a liquid receiver (receiver) 30, a supercooler 35, a heat exchanger 40, and pipes 80 to 83, 89. The liquid receiver 30 is arranged between the pipe 81 and the condenser 20 and is configured to store the refrigerant.
 圧縮機10から、凝縮器20、受液器30、過冷却器35、熱交換器40を順に経て負荷装置3への接続口に至る流路F1は、負荷装置3と共に、冷媒が循環する循環流路を形成するように構成される。以下、この循環流路を冷凍サイクルの「メイン回路」とも言う。 The flow path F1 from the compressor 10 to the connection port to the load device 3 through the condenser 20, the liquid receiver 30, the supercooler 35, and the heat exchanger 40 in this order circulates the refrigerant together with the load device 3. It is configured to form a flow path. Hereinafter, this circulation flow path is also referred to as a "main circuit" of the refrigeration cycle.
 負荷装置3は、膨張装置50と、蒸発器60と、配管85,86,87とを含む。膨張装置50は、たとえば、室外ユニット2と独立して制御される温度膨張弁である。 The load device 3 includes an expansion device 50, an evaporator 60, and pipes 85, 86, 87. The expansion device 50 is, for example, a temperature expansion valve that is controlled independently of the outdoor unit 2.
 圧縮機10は、配管89から吸入される冷媒を圧縮して配管80へ吐出する。圧縮機10は、吸入ポートG1と吐出ポートG2と中間圧ポートG3とを有する。圧縮機10は、蒸発器60を通過した冷媒を吸入ポートG1から吸入し、中間圧ポートG3から吸入した冷媒と合わせて、吐出ポートG2から凝縮器20に向けて冷媒を吐出するように構成される。 The compressor 10 compresses the refrigerant sucked from the pipe 89 and discharges it to the pipe 80. The compressor 10 has a suction port G1, a discharge port G2, and an intermediate pressure port G3. The compressor 10 is configured to suck the refrigerant that has passed through the evaporator 60 from the suction port G1 and discharge the refrigerant from the discharge port G2 toward the condenser 20 together with the refrigerant sucked from the intermediate pressure port G3. To.
 圧縮機10は、制御装置100からの制御信号に従って回転速度を調整するように構成される。圧縮機10の回転速度を調整することによって冷媒の循環量が調整され、冷凍サイクル装置1の冷凍能力を調整することができる。圧縮機10には種々のタイプのものを採用可能であり、たとえば、スクロールタイプ、ロータリータイプ、スクリュータイプ等のものを採用し得る。 The compressor 10 is configured to adjust the rotation speed according to a control signal from the control device 100. By adjusting the rotation speed of the compressor 10, the circulation amount of the refrigerant is adjusted, and the refrigerating capacity of the refrigerating cycle device 1 can be adjusted. Various types of compressors 10 can be adopted, and for example, scroll type, rotary type, screw type and the like can be adopted.
 凝縮器20は、圧縮機10から配管80に吐出された冷媒を凝縮して受液器30および配管81へ流す。凝縮器20は、圧縮機10から吐出された高温高圧のガス冷媒が外気と熱交換を行なうように構成される。この熱交換により、放熱した冷媒は凝縮して液相に変化する。ファン22は、凝縮器20において冷媒が熱交換を行なう外気を凝縮器20に供給する。ファン22の回転速度を調整することにより、圧縮機10の吐出側の冷媒圧力を調整することができる。 The condenser 20 condenses the refrigerant discharged from the compressor 10 to the pipe 80 and flows it to the liquid receiver 30 and the pipe 81. The condenser 20 is configured such that a high-temperature and high-pressure gas refrigerant discharged from the compressor 10 exchanges heat with the outside air. By this heat exchange, the heat-dissipated refrigerant condenses and changes into a liquid phase. The fan 22 supplies the condenser 20 with outside air through which the refrigerant exchanges heat in the condenser 20. By adjusting the rotation speed of the fan 22, the refrigerant pressure on the discharge side of the compressor 10 can be adjusted.
 受液器30は、熱交換器40の第1通路H1と凝縮器20との間に配置され、冷媒を貯留するように構成される。 The liquid receiver 30 is arranged between the first passage H1 of the heat exchanger 40 and the condenser 20, and is configured to store the refrigerant.
 過冷却器35は、受液器30において飽和温度となっている液冷媒の温度をさらに低下させ、過冷却度SCを確保するために設けられる。たとえば、図示しないファンなどによって過冷却器35を通過する冷媒はさらに冷却される。 The supercooler 35 is provided to further lower the temperature of the liquid refrigerant, which is the saturation temperature in the receiver 30, and to secure the supercooling degree SC. For example, the refrigerant passing through the supercooler 35 is further cooled by a fan (not shown) or the like.
 熱交換器40は、第1通路H1および第2通路H2を有し、第1通路H1を流れる冷媒と第2通路H2を流れる冷媒との間で熱交換を行なうように構成される。 The heat exchanger 40 has a first passage H1 and a second passage H2, and is configured to exchange heat between the refrigerant flowing through the first passage H1 and the refrigerant flowing through the second passage H2.
 室外ユニット2は、配管91~94と、膨張弁92とをさらに備える。配管91は、配管83の分岐点BP4から分岐する。配管91、膨張弁92、配管93、熱交換器40の第2通路H2および配管94は、メイン回路の分岐点BP4から圧縮機10の中間圧ポートG3に冷媒を流す第3流路F3を構成する。第3流路F3を「インジェクション流路」とも呼ぶ。 The outdoor unit 2 further includes pipes 91 to 94 and an expansion valve 92. The pipe 91 branches from the branch point BP4 of the pipe 83. The pipe 91, the expansion valve 92, the pipe 93, the second passage H2 of the heat exchanger 40, and the pipe 94 constitute a third passage F3 for flowing the refrigerant from the branch point BP4 of the main circuit to the intermediate pressure port G3 of the compressor 10. To do. The third flow path F3 is also referred to as an "injection flow path".
 室外ユニット2は、立上げ配管711~713と、開閉弁V1~V3と、配管72と、流量調整装置73と、配管74と、冷媒加熱装置75とをさらに備える。開閉弁V1~V3としては、たとえば電磁弁を使用することができる。 The outdoor unit 2 further includes start-up pipes 711 to 713, on-off valves V1 to V3, pipes 72, a flow rate adjusting device 73, pipes 74, and a refrigerant heating device 75. As the on-off valves V1 to V3, for example, a solenoid valve can be used.
 立上げ配管711は、循環流路の受液器30の出口に接続された配管81の分岐点BP1から分岐し、開閉弁V1を介して配管72の合流点Aに接続される。 The start-up pipe 711 branches from the branch point BP1 of the pipe 81 connected to the outlet of the liquid receiver 30 of the circulation flow path, and is connected to the confluence point A of the pipe 72 via the on-off valve V1.
 立上げ配管712は、過冷却器35の冷媒出口と熱交換器40の第1通路H1の冷媒入口とを接続する配管82の分岐点BP2から分岐し、開閉弁V2を介して配管72の合流点Aに接続される。 The start-up pipe 712 branches from the branch point BP2 of the pipe 82 connecting the refrigerant outlet of the supercooler 35 and the refrigerant inlet of the first passage H1 of the heat exchanger 40, and joins the pipe 72 via the on-off valve V2. Connected to point A.
 立上げ配管713は、熱交換器40の第1通路H1の冷媒出口の分岐点BP3から分岐し、開閉弁V3を介して配管72の合流点Aに接続される。 The start-up pipe 713 branches from the branch point BP3 of the refrigerant outlet of the first passage H1 of the heat exchanger 40, and is connected to the confluence point A of the pipe 72 via the on-off valve V3.
 配管72は、開閉弁V1~V3を通過した冷媒を合流させる合流点Aと流量調整装置73の一方端とを接続する。配管74は、流量調整装置73の他方端と配管89とを接続する。冷媒加熱装置75は、流量調整装置73を通過した冷媒を加熱するように構成される。冷媒加熱装置75としては、たとえば電気ヒータを使用することができる。 The pipe 72 connects the merging point A where the refrigerants that have passed through the on-off valves V1 to V3 merge and one end of the flow rate adjusting device 73. The pipe 74 connects the other end of the flow rate adjusting device 73 to the pipe 89. The refrigerant heating device 75 is configured to heat the refrigerant that has passed through the flow rate adjusting device 73. As the refrigerant heating device 75, for example, an electric heater can be used.
 流量調整装置73としては、たとえば代表的にはキャピラリチューブを使用することができるが、オリフィスなど流路の断面積が狭くなり圧力差が生じるものであれば良い。また、流量調整装置73として膨張弁を使用しても良い。以下において、メイン回路から分岐して流量調整装置73を経由して圧縮機10に冷媒を送るこの第2流路F2を、「バイパス流路」と呼ぶ。 As the flow rate adjusting device 73, for example, a capillary tube can be typically used, but any device such as an orifice in which the cross-sectional area of the flow path becomes narrow and a pressure difference occurs may be used. Further, an expansion valve may be used as the flow rate adjusting device 73. Hereinafter, the second flow path F2 that branches from the main circuit and sends the refrigerant to the compressor 10 via the flow rate adjusting device 73 is referred to as a “bypass flow path”.
 立上げ配管711~713によって分岐することにより、冷媒が漏洩して冷媒不足となった場合には、ガス冷媒が混ざった二相冷媒が配管72に導入される。 When the refrigerant leaks and the refrigerant becomes insufficient due to branching by the start-up pipes 711 to 713, the two-phase refrigerant mixed with the gas refrigerant is introduced into the pipe 72.
 なお、バイパス流路の接続先は、圧縮機10の吸入ポートG1に代えて中間圧ポートG3としても良い。 The bypass flow path may be connected to the intermediate pressure port G3 instead of the suction port G1 of the compressor 10.
 室外ユニット2は、さらに、圧力センサ110,111と、温度センサ120,121,122と、室外ユニット2を制御する制御装置100を備える。 The outdoor unit 2 further includes pressure sensors 110, 111, temperature sensors 120, 121, 122, and a control device 100 for controlling the outdoor unit 2.
 圧力センサ110は、圧縮機10の吸入冷媒の圧力PLを検出し、その検出値を制御装置100へ出力する。圧力センサ111は、圧縮機10の吐出冷媒の圧力PHを検出し、その検出値を制御装置100へ出力する。温度センサ120は、凝縮器20に送られる外気の温度TAを検出し、その検出値を制御装置100へ出力する。温度センサ121は、凝縮器20の出口から受液器30に送出される冷媒の温度TCを検出し、その検出値を制御装置100へ出力する。温度センサ122は、流量調整装置73を通過した後に冷媒加熱装置75で加熱された冷媒の温度T1を検出し、その検出値を制御装置100へ出力する。 The pressure sensor 110 detects the pressure PL of the suction refrigerant of the compressor 10 and outputs the detected value to the control device 100. The pressure sensor 111 detects the pressure PH of the discharged refrigerant of the compressor 10 and outputs the detected value to the control device 100. The temperature sensor 120 detects the temperature TA of the outside air sent to the condenser 20, and outputs the detected value to the control device 100. The temperature sensor 121 detects the temperature TC of the refrigerant sent from the outlet of the condenser 20 to the liquid receiver 30, and outputs the detected value to the control device 100. The temperature sensor 122 detects the temperature T1 of the refrigerant heated by the refrigerant heating device 75 after passing through the flow rate adjusting device 73, and outputs the detected value to the control device 100.
 制御装置100は、CPU(Central Processing Unit)102と、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、室外ユニット2における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including. The CPU 102 expands the program stored in the ROM into a RAM or the like and executes the program. The program stored in the ROM is a program in which the processing procedure of the control device 100 is described. The control device 100 executes control of each device in the outdoor unit 2 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 以上説明したように、本実施の形態では、高圧部である受液器30の出口の分岐点BP1、過冷却器35の出口の分岐点BP2、熱交換器40の第1通路H1の出口の分岐点BP3のいずれから冷媒を低圧部である圧縮機10の吸入ポートG1へ送る第2流路F2を設ける。第2流路F2には、流量調整装置73と冷媒加熱装置75とが配置される。 As described above, in the present embodiment, the branch point BP1 at the outlet of the receiver 30 which is the high pressure portion, the branch point BP2 at the outlet of the supercooler 35, and the outlet of the first passage H1 of the heat exchanger 40. A second flow path F2 for sending the refrigerant from any of the branch points BP3 to the suction port G1 of the compressor 10 which is the low pressure portion is provided. A flow rate adjusting device 73 and a refrigerant heating device 75 are arranged in the second flow path F2.
 冷媒加熱装置75によって加熱された冷媒が通過する部分に、実際の冷媒の温度を測定するための温度センサ122と、圧力から低圧飽和温度を検出するための圧力センサ110とが設けられる。 A temperature sensor 122 for measuring the actual temperature of the refrigerant and a pressure sensor 110 for detecting the low pressure saturation temperature from the pressure are provided in a portion through which the refrigerant heated by the refrigerant heating device 75 passes.
 二相状態の冷媒は圧力センサで圧力を測ればそれに対応する温度(飽和温度)が定まる。予め、この圧力と飽和温度との対応関係を示す変換テーブルが制御装置100のメモリ104に記憶されている。制御装置100は、変換テーブルから圧力PLに対応する飽和温度を求め、実際に温度センサで測定した温度T1との差を計算する。飽和温度をT0とすると過熱度SHは、SH=T1-T0となる。 For a two-phase refrigerant, if the pressure is measured with a pressure sensor, the corresponding temperature (saturation temperature) is determined. A conversion table showing the correspondence between the pressure and the saturation temperature is stored in the memory 104 of the control device 100 in advance. The control device 100 obtains the saturation temperature corresponding to the pressure PL from the conversion table, and calculates the difference from the temperature T1 actually measured by the temperature sensor. When the saturation temperature is T0, the superheat degree SH is SH = T1-T0.
 なお、低圧飽和温度は、点Cの圧力を測定して、これを温度に換算しても良い。実際の温度と低圧飽和温度との差を求めることによって、過熱度SHの有無が判断できる。 For the low pressure saturation temperature, the pressure at point C may be measured and converted into temperature. By obtaining the difference between the actual temperature and the low-pressure saturation temperature, the presence or absence of the superheat degree SH can be determined.
 このような構成において、メイン流路からバイパス流路の分岐点BP1~BP3の各々には、気液分離機構が設けられる。図2は、気液分離機構において気液分離ができない状態を説明するための図である。図3は、気液分離機構において気液分離が可能である状態を説明するための図である。 In such a configuration, a gas-liquid separation mechanism is provided at each of the branch points BP1 to BP3 from the main flow path to the bypass flow path. FIG. 2 is a diagram for explaining a state in which gas-liquid separation is not possible in the gas-liquid separation mechanism. FIG. 3 is a diagram for explaining a state in which gas-liquid separation is possible in the gas-liquid separation mechanism.
 図2、図3を参照して、気液分離機構は、液管である配管81~83からそれぞれ重力と反対方向に立ち上がった立上げ配管711~713によって構成される。 With reference to FIGS. 2 and 3, the gas-liquid separation mechanism is composed of rising pipes 711 to 713 that rise from pipes 81 to 83, which are liquid pipes, in the directions opposite to gravity, respectively.
 図2に示すように、配管81~83に流れる冷媒の乾き度が小さいと、立上げ配管711~713および配管72には、液冷媒とガス冷媒が混在した二相冷媒が流れる。一方、図3に示すように、配管81~83に流れる冷媒の乾き度が大きいと、立上げ配管711~713の途中で液冷媒が重力によって落下し、立上げ配管711~713のいずれかを経由した配管72には液冷媒から分離された単相のガス冷媒が流れる。 As shown in FIG. 2, when the dryness of the refrigerant flowing in the pipes 81 to 83 is small, the two-phase refrigerant in which the liquid refrigerant and the gas refrigerant are mixed flows in the start-up pipes 711 to 713 and the pipe 72. On the other hand, as shown in FIG. 3, when the dryness of the refrigerant flowing through the pipes 81 to 83 is large, the liquid refrigerant drops due to gravity in the middle of the start-up pipes 711 to 713, and any of the start-up pipes 711 to 713 is used. A single-phase gas refrigerant separated from the liquid refrigerant flows through the pipe 72 via the pipe 72.
 バイパス流路に二相冷媒が流れている場合には、冷媒加熱装置75で加熱しても冷媒が気化するための潜熱として熱が吸収される。したがって、温度センサ122で検出される温度T1は冷媒の飽和温度と一致する。この状態では、冷媒の過熱度SH=0である。 When a two-phase refrigerant is flowing in the bypass flow path, heat is absorbed as latent heat for vaporizing the refrigerant even if it is heated by the refrigerant heating device 75. Therefore, the temperature T1 detected by the temperature sensor 122 coincides with the saturation temperature of the refrigerant. In this state, the degree of superheat of the refrigerant SH = 0.
 一方、バイパス流路にガス状態の冷媒が流れている場合には、冷媒加熱装置75で加熱すると、顕熱として熱が冷媒に吸収されるので、冷媒の温度が上昇する。したがって、温度センサ122で検出される温度T1は冷媒の飽和温度よりも高くなり、冷媒の過熱度SH>0となる。 On the other hand, when a gas-state refrigerant is flowing in the bypass flow path, when the refrigerant heating device 75 heats the refrigerant, the heat is absorbed by the refrigerant as sensible heat, so that the temperature of the refrigerant rises. Therefore, the temperature T1 detected by the temperature sensor 122 becomes higher than the saturation temperature of the refrigerant, and the degree of superheat of the refrigerant SH> 0.
 図4は、図1に示す冷凍サイクル装置に対応する冷凍サイクルを示すモリエル線図である。図4において、冷媒量が十分である場合のサイクルが実線で示され、冷媒量が不足している場合のサイクルが破線で示される。 FIG. 4 is a Moriel diagram showing a refrigeration cycle corresponding to the refrigeration cycle apparatus shown in FIG. In FIG. 4, the cycle when the amount of refrigerant is sufficient is shown by a solid line, and the cycle when the amount of refrigerant is insufficient is shown by a broken line.
 冷媒が不足していない場合には、凝縮器20を通過した冷媒は液冷媒となっている。したがって、分岐点BP1,BP2,BP3のいずれにおいても、冷媒の状態は液冷媒であり、図4においてA3点よりも左側の状態である。 If the refrigerant is not insufficient, the refrigerant that has passed through the condenser 20 is a liquid refrigerant. Therefore, at any of the branch points BP1, BP2, and BP3, the state of the refrigerant is a liquid refrigerant, which is the state on the left side of the point A3 in FIG.
 しかし、冷媒が不足して受液器30の液冷媒量が少なくなると、分岐点の位置はモリエル線図上を右に移動する。図4では、冷媒量がある量まで減った場合に第2流路F2に流れる冷媒の状態変化を示す経路が経路F2(1),F2(2),F2(3)で示される。 However, when the amount of liquid refrigerant in the receiver 30 becomes low due to insufficient refrigerant, the position of the branch point moves to the right on the Moriel diagram. In FIG. 4, the paths F2 (1), F2 (2), and F2 (3) show the state change of the refrigerant flowing in the second flow path F2 when the amount of the refrigerant is reduced to a certain amount.
 経路F2(1)は、開閉弁V1を開き開閉弁V2,V3を閉じた場合に、冷媒が分岐点BP1から第2流路F2に流れた場合の経路を示す。このとき、図1の点A,B,Cの状態が、図4の点A1,B1,C1としてそれぞれ示される。 The path F2 (1) shows a path when the refrigerant flows from the branch point BP1 to the second flow path F2 when the on-off valve V1 is opened and the on-off valves V2 and V3 are closed. At this time, the states of points A, B, and C in FIG. 1 are shown as points A1, B1, and C1 in FIG. 4, respectively.
 経路F2(2)は、開閉弁V2を開き開閉弁V1,V3を閉じた場合に、冷媒が分岐点BP2から第2流路F2に流れた場合の経路を示す。このとき、図1の点A,B,Cの状態が、図4の点A2,B2,C2としてそれぞれ示される。 The path F2 (2) indicates a path when the refrigerant flows from the branch point BP2 to the second flow path F2 when the on-off valve V2 is opened and the on-off valves V1 and V3 are closed. At this time, the states of points A, B, and C in FIG. 1 are shown as points A2, B2, and C2 in FIG. 4, respectively.
 経路F2(3)は、開閉弁V3を開き開閉弁V1,V2を閉じた場合に、冷媒が分岐点BP3から第2流路F2に流れた場合の経路を示す。このとき、図1の点A,B,Cの状態が、図4の点A3,B3,C3としてそれぞれ示される。 Route F2 (3) indicates a route when the refrigerant flows from the branch point BP3 to the second flow path F2 when the on-off valve V3 is opened and the on-off valves V1 and V2 are closed. At this time, the states of points A, B, and C in FIG. 1 are shown as points A3, B3, and C3 in FIG. 4, respectively.
 バイパス通路である第2流路F2には、メイン回路の膨張装置50、蒸発器60で定まった差圧に応じた流量の冷媒が流れる。流量調整装置73で減圧されると、冷媒の状態は点A1,A2,A3からそれぞれ点B1,B2,B3に変化する。そして冷媒加熱装置75で冷媒が加熱されると、冷媒の状態は点B1,B2,B3からそれぞれ点C1,C2,C3に変化する。 A flow rate of refrigerant corresponding to the differential pressure determined by the expansion device 50 and the evaporator 60 of the main circuit flows through the second flow path F2, which is a bypass passage. When the pressure is reduced by the flow rate adjusting device 73, the state of the refrigerant changes from points A1, A2, A3 to points B1, B2, B3, respectively. Then, when the refrigerant is heated by the refrigerant heating device 75, the state of the refrigerant changes from points B1, B2, B3 to points C1, C2, and C3, respectively.
 図4の点A2では、冷媒の状態は二相状態であり、点A3では冷媒の状態は単相の液状態である。経路F2(2)および経路F2(3)においては、配管74には液冷媒がある程度の量が流れている。このため、加熱して右方向に点が移動しても、飽和ガス線を超えないので、冷媒の温度は飽和温度のまま変化しない。したがって、点C2、C3において、過熱度SHはゼロである。 At point A2 in FIG. 4, the state of the refrigerant is a two-phase state, and at point A3, the state of the refrigerant is a single-phase liquid state. In the path F2 (2) and the path F2 (3), a certain amount of liquid refrigerant flows through the pipe 74. Therefore, even if the point moves to the right by heating, the temperature of the refrigerant does not change at the saturation temperature because it does not exceed the saturated gas line. Therefore, at points C2 and C3, the degree of superheat SH is zero.
 一方、図4の点A1では、冷媒の状態は単相のガス状態である。経路F2(1)においては、配管74には液冷媒がほとんど流れていないので、冷媒加熱装置75から冷媒に与えられた熱は顕熱となり、ガス状態となった冷媒の温度は飽和温度よりも高くなる。したがって、点C1において、過熱度SHはSH>0となる。 On the other hand, at point A1 in FIG. 4, the state of the refrigerant is a single-phase gas state. In the path F2 (1), since the liquid refrigerant hardly flows through the pipe 74, the heat given to the refrigerant from the refrigerant heating device 75 becomes sensible heat, and the temperature of the refrigerant in the gas state is higher than the saturation temperature. It gets higher. Therefore, at point C1, the degree of superheat SH is SH> 0.
 図4の破線の状態よりも冷媒量がさらに減少すると、経路F2(2)も左に移動し点C2においても、過熱度SHはSH>0となり、さらに冷媒量が減少すると経路F2(3)も左に移動し点C3においても、過熱度SHはSH>0となる。 When the amount of refrigerant further decreases from the state of the broken line in FIG. 4, the path F2 (2) also moves to the left, and the superheat degree SH becomes SH> 0 even at the point C2, and when the amount of refrigerant further decreases, the path F2 (3) Also moves to the left and at point C3, the superheat degree SH becomes SH> 0.
 すなわち、開閉弁V1,V2,V3を1つずつ順番に開き、3つの状態の過熱度SHを調べることによって、冷媒量の減少度合い、言い換えれば冷媒不足の度合いを知ることができる。 That is, by opening the on-off valves V1, V2, and V3 one by one in order and examining the degree of superheat SH in the three states, the degree of decrease in the amount of refrigerant, in other words, the degree of refrigerant shortage can be known.
 図5は、各分岐部を通した場合のバイパス流路通過後の冷媒の乾き度と冷媒封入率との関係を示す図である。ここで、冷媒封入率100%とは、設計上の過不足のない規定充填量を示し、100%との差が不足量であるとする。設置当初は充填量に余裕を見てあるので、たとえば冷媒封入率は105%であることもある。そして漏洩して冷媒量が減少し100%より少なくなったときに冷媒不足であると判断される。 FIG. 5 is a diagram showing the relationship between the dryness of the refrigerant after passing through the bypass flow path and the refrigerant filling rate when passing through each branch portion. Here, the refrigerant filling rate of 100% indicates a specified filling amount that is not excessive or deficient in design, and it is assumed that the difference from 100% is the insufficient amount. At the beginning of installation, there is a margin in the filling amount, so for example, the refrigerant filling rate may be 105%. Then, when the amount of refrigerant leaks and decreases to less than 100%, it is determined that the refrigerant is insufficient.
 乾き度がいくつのときに気液分離ができるかは、気液分離機構の設計によって決まる値である。この気液分離可能な限界の乾き度を0.05とし、図5に破線で示している。冷媒封入率が96%より多い場合には、開閉弁V1~V3のいずれを開いた場合にも過熱度SH=0となり、この気液分離機構の限界により、冷媒不足は検出できない。 The degree of dryness that allows gas-liquid separation is a value determined by the design of the gas-liquid separation mechanism. The dryness of the gas-liquid separable limit is set to 0.05, and is shown by a broken line in FIG. When the refrigerant filling rate is more than 96%, the degree of superheat SH = 0 regardless of which of the on-off valves V1 to V3 is opened, and due to the limitation of this gas-liquid separation mechanism, the refrigerant shortage cannot be detected.
 冷媒封入率96%の場合には、開閉弁V1を開いて分岐点BP1から冷媒をバイパス流路に流した場合に過熱度SH>0となる。したがって、この気液分離機構を用いた場合には、冷媒封入率が96%以下において冷媒不足であることを検知可能である。なお、冷媒封入率96%の場合には、開閉弁V2またはV3を開いて冷媒をバイパス流路に流した場合には、バイパス流路通過後の冷媒の過熱度SH=0である。 When the refrigerant filling rate is 96%, the degree of superheat SH> 0 when the on-off valve V1 is opened and the refrigerant flows from the branch point BP1 to the bypass flow path. Therefore, when this gas-liquid separation mechanism is used, it is possible to detect that the refrigerant is insufficient when the refrigerant filling rate is 96% or less. When the refrigerant filling rate is 96% and the on-off valve V2 or V3 is opened to allow the refrigerant to flow through the bypass flow path, the degree of superheat of the refrigerant after passing through the bypass flow path SH = 0.
 冷媒封入率91%の場合には、開閉弁V1またはV2を開いて分岐点BP1またはBP2から冷媒をバイパス流路に流した場合に過熱度SH>0となる。なお、冷媒封入率91%の場合には、開閉弁V3を開いて冷媒をバイパス流路に流した場合には、バイパス流路通過後の冷媒の過熱度SH=0である。 When the refrigerant filling rate is 91%, the degree of superheat SH> 0 when the on-off valve V1 or V2 is opened and the refrigerant flows from the branch point BP1 or BP2 into the bypass flow path. When the refrigerant filling rate is 91%, the degree of superheat of the refrigerant SH = 0 after passing through the bypass flow path when the on-off valve V3 is opened and the refrigerant flows through the bypass flow path.
 冷媒封入率84%の場合には、開閉弁V1,V2,V3のいずれを開いてもバイパス流路を通過した後の冷媒の過熱度SHは、SH>0となる。以上より、開閉弁V1~V3を選択的に1つ開くことによって、3段階の冷媒不足の度合いを検出できる。 When the refrigerant filling rate is 84%, the degree of superheat SH of the refrigerant after passing through the bypass flow path is SH> 0 regardless of which of the on-off valves V1, V2, and V3 is opened. From the above, by selectively opening one on-off valve V1 to V3, the degree of refrigerant shortage in three stages can be detected.
 図6は、冷媒不足検知モードにおける制御を説明するためのフローチャートである。冷媒不足検知モードは、例えば、1日または数日に1度のように、タイマーなどによって定期的に実行される。 FIG. 6 is a flowchart for explaining the control in the refrigerant shortage detection mode. The refrigerant shortage detection mode is periodically executed by a timer or the like, for example, once a day or several days.
 ここで、受液器30に保持されている液冷媒の量は、冷凍サイクル装置の運転状態によって変動する。冷媒量は、本来は、受液器30中の液量が一番少なくなるような運転状態であっても受液器30に液が残存する位の十分な量であるべきである。 Here, the amount of the liquid refrigerant held in the liquid receiver 30 varies depending on the operating state of the refrigeration cycle device. Originally, the amount of the refrigerant should be a sufficient amount so that the liquid remains in the liquid receiver 30 even in the operating state where the liquid amount in the liquid receiver 30 is the smallest.
 レシーバ中の液量が一番減るような運転状態とは、凝縮温度である温度TCが高くなる状態(外気温度、ファンの回転速度などの影響で高圧部の圧力が上昇している状態)である。この場合には、メイン回路内の冷媒密度が増加し体積が減る方向となる。メイン回路内の冷媒の体積減少分だけ受液器30から循環回路側に液冷媒が出て行くため、受液器30中の液量が減っている。 The operating state in which the amount of liquid in the receiver is most reduced is the state in which the temperature TC, which is the condensation temperature, is high (the pressure in the high-pressure part is rising due to the influence of the outside air temperature, the rotation speed of the fan, etc.) is there. In this case, the density of the refrigerant in the main circuit increases and the volume decreases. Since the liquid refrigerant is discharged from the receiver 30 to the circulation circuit side by the amount of the volume reduction of the refrigerant in the main circuit, the amount of liquid in the receiver 30 is reduced.
 また、複数台室内機を使う場合には、停止している室内機があればその分の冷媒が受液器に貯留されているので、複数台の室内機が全部稼働しているときが受液器中の液量が少なくなる。 In addition, when using multiple indoor units, if there is a stopped indoor unit, the refrigerant for that amount is stored in the receiver, so it is received when all of the multiple indoor units are in operation. The amount of liquid in the liquid container decreases.
 従って、冷媒不足の早期段階での検出を可能とするために、本実施の形態では、冷媒不足検知モードにおいては、気液分離機構が設けられている受液器30出口から熱交換器40の出口に至る部分の乾き度を通常運転時よりも増加させ、バイパス流路に設けた冷媒不足検知部で冷媒不足を検知しやすくする。 Therefore, in order to enable detection of refrigerant shortage at an early stage, in the present embodiment, in the refrigerant shortage detection mode, the heat exchanger 40 is connected from the outlet 30 of the receiver 30 provided with the gas-liquid separation mechanism. The dryness of the portion leading to the outlet is increased as compared with the normal operation, and the refrigerant shortage detection unit provided in the bypass flow path makes it easy to detect the refrigerant shortage.
 具体的には、冷媒不足検知モードに設定されると、ステップS1において、制御装置100は、圧縮機10の運転周波数を予め決められた固定周波数とする。また、インジェクション流路の膨張弁92の開度も固定される。 Specifically, when the refrigerant shortage detection mode is set, in step S1, the control device 100 sets the operating frequency of the compressor 10 to a predetermined fixed frequency. Further, the opening degree of the expansion valve 92 of the injection flow path is also fixed.
 さらに、制御装置100は、ファン22の回転速度を変更する。通常運転モードにおいては、ファン22の回転速度は、各機器が効率よく働くように決定される。たとえば、外気と温度TCとの差が10℃となるように設定される。 Further, the control device 100 changes the rotation speed of the fan 22. In the normal operation mode, the rotation speed of the fan 22 is determined so that each device works efficiently. For example, the difference between the outside air and the temperature TC is set to be 10 ° C.
 これに対して、冷媒不足検知モードにおいては、制御装置100は、通常運転で取り得る最低の回転速度以下にファン22の回転速度を設定する。たとえば、ファン22の回転を停止させても良い。その結果、凝縮器20における外気との熱交換効率が低下し、凝縮器20で冷媒が凝縮しにくくなる。すると、気液分離機構が設けられている部分の乾き度が通常運転時よりも増加する。すなわち、通常運転時よりも冷媒中のガス冷媒比率が増加する。 On the other hand, in the refrigerant shortage detection mode, the control device 100 sets the rotation speed of the fan 22 to be equal to or lower than the minimum rotation speed that can be obtained in normal operation. For example, the rotation of the fan 22 may be stopped. As a result, the efficiency of heat exchange with the outside air in the condenser 20 is lowered, and the refrigerant is less likely to be condensed in the condenser 20. Then, the dryness of the portion provided with the gas-liquid separation mechanism increases as compared with the normal operation. That is, the ratio of gas refrigerant in the refrigerant increases as compared with the case of normal operation.
 続いて、ステップS2において、制御装置100は、開閉弁V1を開き、開閉弁V2,V3を閉じた状態としてバイパス流路に冷媒を流す。続いて、ステップS3において、制御装置100は、冷媒不足か否かの判定を行なう。制御装置100は、冷媒加熱装置の出口(点C)の過熱度SHの有無で冷媒不足かどうかを検知する。 Subsequently, in step S2, the control device 100 opens the on-off valve V1 and flows the refrigerant through the bypass flow path with the on-off valves V2 and V3 closed. Subsequently, in step S3, the control device 100 determines whether or not the refrigerant is insufficient. The control device 100 detects whether or not the refrigerant is insufficient based on the presence or absence of the superheat degree SH at the outlet (point C) of the refrigerant heating device.
 以上説明したステップS1~S3においては、冷媒不足の早期段階で検出できるように、制御装置100は、凝縮器20の出口の乾き度を増加させ、メイン回路の冷媒の循環量を増やして、レシーバを空に近い状態としてから点Cの過熱度SHを確認する。通常使用条件より厳しい条件で運転することによって、過熱度SHによって冷媒不足の判定をしやすくする。 In steps S1 to S3 described above, the control device 100 increases the dryness of the outlet of the condenser 20 and increases the circulation amount of the refrigerant in the main circuit so that the refrigerant shortage can be detected at an early stage. The superheat degree SH of the point C is confirmed after setting the state close to the sky. By operating under stricter conditions than normal operating conditions, it becomes easier to determine the refrigerant shortage based on the degree of superheat SH.
 ステップS3において、冷媒不足でない場合(S3でNO)、すなわち過熱度SH=0であった場合には、冷媒量は適正であるとして制御装置100は冷媒不足検知モードを終了する。 In step S3, if there is no refrigerant shortage (NO in S3), that is, if the degree of superheat SH = 0, the control device 100 terminates the refrigerant shortage detection mode assuming that the amount of refrigerant is appropriate.
 一方、ステップS3において、冷媒不足である場合(S3でYES)、すなわち過熱度SH>0であった場合には、制御装置100は冷媒不足であると判定し、ステップS4に処理を進める。 On the other hand, in step S3, when the refrigerant is insufficient (YES in S3), that is, when the degree of superheat SH> 0, the control device 100 determines that the refrigerant is insufficient, and proceeds to step S4.
 ステップS4では、制御装置100は、開閉弁V1を閉じて、開閉弁V1~V3のうち開閉弁V2のみを開いた状態とする。そして、ステップS5において、制御装置100は、冷媒加熱装置の出口(点C)の過熱度SHの有無で冷媒不足かどうかを検知する。ステップS5において、冷媒不足でない場合(S5でNO)、すなわち過熱度SH=0であった場合には、ステップS9において、制御装置100は、予めメモリ104に記憶された各分岐点BP1,BP2,BP3のいずれを選択しているかと冷媒封入量との関係を示すテーブルを参照して、冷媒量の算出を行なう。この場合、図5に示した例では、冷媒封入量が91%以上96%未満であると算出される。 In step S4, the control device 100 closes the on-off valve V1 and opens only the on-off valve V2 among the on-off valves V1 to V3. Then, in step S5, the control device 100 detects whether or not the refrigerant is insufficient based on the presence or absence of the superheat degree SH at the outlet (point C) of the refrigerant heating device. In step S5, when the refrigerant is not insufficient (NO in S5), that is, when the degree of superheat SH = 0, in step S9, the control device 100 sets the branch points BP1, BP2, which are stored in the memory 104 in advance. The amount of refrigerant is calculated with reference to a table showing the relationship between which of BP3 is selected and the amount of refrigerant filled. In this case, in the example shown in FIG. 5, it is calculated that the amount of the refrigerant filled is 91% or more and less than 96%.
 一方、ステップS5において、冷媒不足である場合(S3でYES)、すなわち過熱度SH>0であった場合には、制御装置100はさらなる冷媒不足であると判定し、ステップS6に処理を進める。 On the other hand, in step S5, when the refrigerant is insufficient (YES in S3), that is, when the degree of superheat SH> 0, the control device 100 determines that the refrigerant is further insufficient, and proceeds to step S6.
 ステップS6では、制御装置100は、開閉弁V2を閉じて、開閉弁V1~V3のうち開閉弁V3のみを開いた状態とする。そして、ステップS7において、制御装置100は、冷媒加熱装置の出口(点C)の過熱度SHの有無で冷媒不足かどうかを検知する。ステップS7において、冷媒不足でない場合(S7でNO)、すなわち過熱度SH=0であった場合には、ステップS10において、制御装置100は、予めメモリ104に記憶されたテーブルを参照して、冷媒量の算出を行なう。この場合、図5に示した例では、冷媒封入量が84%以上91%未満であると算出される。 In step S6, the control device 100 closes the on-off valve V2 and opens only the on-off valve V3 among the on-off valves V1 to V3. Then, in step S7, the control device 100 detects whether or not the refrigerant is insufficient based on the presence or absence of the superheat degree SH at the outlet (point C) of the refrigerant heating device. In step S7, when the refrigerant is not insufficient (NO in S7), that is, when the degree of superheat SH = 0, in step S10, the control device 100 refers to the table stored in the memory 104 in advance and the refrigerant. Calculate the amount. In this case, in the example shown in FIG. 5, it is calculated that the amount of the refrigerant filled is 84% or more and less than 91%.
 一方、ステップS7において、冷媒不足である場合(S7でYES)、すなわち過熱度SH>0であった場合には、制御装置100はさらなる冷媒不足であると判定し、ステップS8に処理を進める。ステップS8において、制御装置100は、予めメモリ104に記憶されたテーブルを参照して、冷媒量の算出を行なう。この場合、図5に示した例では、冷媒封入量が84%未満であると算出される。 On the other hand, if the refrigerant is insufficient in step S7 (YES in S7), that is, if the degree of superheat SH> 0, the control device 100 determines that the refrigerant is further insufficient, and proceeds to step S8. In step S8, the control device 100 calculates the amount of the refrigerant with reference to the table stored in the memory 104 in advance. In this case, in the example shown in FIG. 5, it is calculated that the amount of the refrigerant filled is less than 84%.
 ステップS8,S9,S10のいずれかにおいて冷媒量の算出が実行された後は、制御装置100は、ステップS11において、制御装置100は、冷媒が不足していることを示す警報を報知装置101に出力させる。報知装置101は、たとえば、液晶ディスプレイなどの表示装置、警告ランプなどであり、通信回線を介して外部装置への警告信号を送信する装置であっても良い。 After the calculation of the amount of refrigerant is executed in any of steps S8, S9, and S10, the control device 100 sends an alarm to the notification device 101 indicating that the refrigerant is insufficient in step S11. Output. The notification device 101 is, for example, a display device such as a liquid crystal display, a warning lamp, or the like, and may be a device that transmits a warning signal to an external device via a communication line.
 使用者は、報知装置101からの出力結果に基づいて、冷凍サイクル装置を停止させるか否か、冷媒の漏洩の修理または冷媒不足量の充填をいつ行なうかなどを検討することができる。制御装置100が、検知した不足量から使用者やサービス業者に緊急性や追加封入量を知らせるようにしても良い。 Based on the output result from the notification device 101, the user can consider whether to stop the refrigerating cycle device, when to repair the refrigerant leak or to fill the refrigerant shortage. The control device 100 may notify the user or the service provider of the urgency or the additional encapsulation amount based on the detected shortage amount.
 報知装置101を用いてユーザに冷媒量をお知らせした後には、制御装置100は、冷媒不足検知モードの処理を終了する。 After notifying the user of the amount of refrigerant using the notification device 101, the control device 100 ends the processing of the refrigerant shortage detection mode.
 (変形例)
 以上説明した例では、冷媒の乾き度が異なる3か所の分岐点から冷媒をバイパス流路に流すことによって、冷媒加熱装置75に向けて流す冷媒の乾き度を3段階に変化させながら冷媒量の検知を行なったが、ステップS8、S9、S10の各々においてファン22の回転速度を変化させることによって、冷媒の乾き度をさらに変化させて冷媒量をさらに細かい精度で検知しても良い。
(Modification example)
In the above-described example, the amount of refrigerant is changed in three stages by flowing the refrigerant from three branch points having different dryness of the refrigerant to the bypass flow path, thereby changing the dryness of the refrigerant flowing toward the refrigerant heating device 75 in three stages. However, by changing the rotation speed of the fan 22 in each of steps S8, S9, and S10, the dryness of the refrigerant may be further changed to detect the amount of the refrigerant with finer accuracy.
 また、ファン22の回転速度を固定し、代わりにステップS8、S9、S10の各々において圧縮機10の運転周波数を変化させることによって乾き度を変化させて冷媒量をさらに細かい精度で検知しても良い。 Further, even if the rotation speed of the fan 22 is fixed and the dryness is changed by changing the operating frequency of the compressor 10 in each of steps S8, S9, and S10, the amount of refrigerant can be detected with even finer accuracy. good.
 また、ファン22の回転速度および圧縮機10の運転周波数を固定し、代わりにステップS8、S9、S10の各々において膨張弁92の開度を変化させることによって乾き度を変化させて冷媒量をさらに細かい精度で検知しても良い。 Further, the rotation speed of the fan 22 and the operating frequency of the compressor 10 are fixed, and instead, the degree of dryness is changed by changing the opening degree of the expansion valve 92 in each of steps S8, S9, and S10 to further increase the amount of refrigerant. It may be detected with fine accuracy.
 なお、以上の実施の形態においても、冷媒量を検出する際の冷媒の乾き度を変更するために、ファン22の回転速度および圧縮機10の運転周波数のいずれかの変更を膨張弁92の開度の変更と組み合わせて使用しても良い。 Also in the above embodiment, in order to change the dryness of the refrigerant when detecting the amount of the refrigerant, either the rotation speed of the fan 22 or the operating frequency of the compressor 10 is changed to open the expansion valve 92. It may be used in combination with the change of degree.
 また、過冷却器35を設けない構成であっても、複数の分岐点BP1、BP2から分岐させた冷媒を開閉弁V1、V2で選択してバイパス流路である第2流路F2に流すことによって、冷媒不足の早期段階での検出が可能である。 Further, even if the supercooler 35 is not provided, the refrigerant branched from the plurality of branch points BP1 and BP2 is selected by the on-off valves V1 and V2 and flows to the second flow path F2 which is a bypass flow path. Therefore, it is possible to detect the refrigerant shortage at an early stage.
 また、熱交換器40を設けない構成であっても、複数の分岐点BP1、BP3から分岐させた冷媒を開閉弁V1、V3で選択してバイパス流路である第2流路F2に流すことによって、冷媒不足の早期段階での検出が可能である。 Further, even if the heat exchanger 40 is not provided, the refrigerant branched from the plurality of branch points BP1 and BP3 is selected by the on-off valves V1 and V3 and flows to the second flow path F2 which is a bypass flow path. Therefore, it is possible to detect the refrigerant shortage at an early stage.
 最後に、本実施の形態について、再び図面を参照しつつ総括する。
 図1に示すように、本開示は、膨張装置50および蒸発器60を含む負荷装置3に接続されるように構成された冷凍サイクル装置1の室外ユニット2に関する。室外ユニット2は、第1流路F1と、圧縮機10と、凝縮器20と、第2流路F2と、第1気液分離構造と、第1開閉弁と、第2気液分離構造と、第2開閉弁と、流量調整装置73、および冷媒加熱装置75と、温度センサ122と、報知装置101とを備える。
Finally, the present embodiment will be summarized again with reference to the drawings.
As shown in FIG. 1, the present disclosure relates to an outdoor unit 2 of a refrigeration cycle device 1 configured to be connected to a load device 3 including an inflator 50 and an evaporator 60. The outdoor unit 2 includes a first flow path F1, a compressor 10, a condenser 20, a second flow rate F2, a first gas-liquid separation structure, a first on-off valve, and a second gas-liquid separation structure. , A second on-off valve, a flow rate adjusting device 73, a refrigerant heating device 75, a temperature sensor 122, and a notification device 101.
 たとえば、「第1気液分離構造」には、図1の立上げ配管711が対応する。「第1開閉弁」には、図1の開閉弁V1が対応する。「第2気液分離構造」には、図1の立上げ配管712が対応する。「第2開閉弁」には、図1の開閉弁V2が対応する。 For example, the start-up pipe 711 in FIG. 1 corresponds to the "first gas-liquid separation structure". The on-off valve V1 of FIG. 1 corresponds to the "first on-off valve". The riser pipe 712 of FIG. 1 corresponds to the “second gas-liquid separation structure”. The on-off valve V2 of FIG. 1 corresponds to the "second on-off valve".
 第1流路F1は、負荷装置3に接続されることによって、冷媒が循環する循環流路を形成する。圧縮機10および凝縮器20は、第1流路F1に配置される。第2流路F2は、冷媒が循環する方向において、凝縮器20よりも下流の第1流路F1の複数の分岐点BP1~BP3から分岐した後に合流点Aにおいて合流し、凝縮器20を通過した冷媒を圧縮機10に戻すように構成される。第1気液分離構造は、複数の分岐点のうちの第1分岐点に設けられる。第1開閉弁は、第1気液分離構造と合流点Aとの間に配置される。第2気液分離構造は、複数の分岐点のうちの第2分岐点に設けられる。第2開閉弁は、第2気液分離構造と合流点Aとの間に配置される。 The first flow path F1 is connected to the load device 3 to form a circulation flow path through which the refrigerant circulates. The compressor 10 and the condenser 20 are arranged in the first flow path F1. The second flow path F2 branches from a plurality of branch points BP1 to BP3 of the first flow path F1 downstream of the condenser 20 in the direction in which the refrigerant circulates, and then merges at the confluence point A and passes through the condenser 20. It is configured to return the generated refrigerant to the compressor 10. The first gas-liquid separation structure is provided at the first branch point among the plurality of branch points. The first on-off valve is arranged between the first gas-liquid separation structure and the confluence point A. The second gas-liquid separation structure is provided at the second branch point among the plurality of branch points. The second on-off valve is arranged between the second gas-liquid separation structure and the confluence point A.
 たとえば、「第1分岐点」には、図1の分岐点BP1が対応し、「第2分岐点」には、図1の分岐点BP2が対応する。 For example, the "first branch point" corresponds to the branch point BP1 of FIG. 1, and the "second branch point" corresponds to the branch point BP2 of FIG.
 流量調整装置73、および冷媒加熱装置75は、合流点Aから順に第2流路F2に配置される。温度センサ122は、第2流路F2の冷媒加熱装置75を通過した冷媒の温度を検出する。報知装置101は、温度センサ122の出力に応じて冷媒不足を報知する。 The flow rate adjusting device 73 and the refrigerant heating device 75 are arranged in the second flow path F2 in order from the confluence point A. The temperature sensor 122 detects the temperature of the refrigerant that has passed through the refrigerant heating device 75 of the second flow path F2. The notification device 101 notifies the refrigerant shortage according to the output of the temperature sensor 122.
 このように、複数の分岐点から1つを選択して第2流路に流すことが可能であるので、冷媒不足を検知する感度を変えることができ、早期段階での冷媒不足の検知が可能となる。 In this way, since it is possible to select one from a plurality of branch points and flow it through the second flow path, the sensitivity for detecting the refrigerant shortage can be changed, and the refrigerant shortage can be detected at an early stage. It becomes.
 なお、上記に置いては、「第1気液分離機構」に立上げ配管711が対応し、「第2気液分離構造」には立上げ配管712が対応するとして説明したが、立上げ配管711~713のうちから2つを選択し、「第1気液分離機構」および「第2気液分離機構」に対応させれば良い。たとえば、過冷却器35を設けない構成として、「第1気液分離機構」に立上げ配管711を対応させ、「第2気液分離構造」に立上げ配管713を対応させ、「第2開閉弁」に開閉弁V3を対応させても良い。またたとえば、熱交換器40を設けない構成として、「第1気液分離機構」に立上げ配管711を対応させ、「第2気液分離構造」に立上げ配管712を対応させ、「第2開閉弁」に開閉弁V2を対応させても良い。 In the above description, it has been described that the start-up pipe 711 corresponds to the "first gas-liquid separation mechanism" and the start-up pipe 712 corresponds to the "second gas-liquid separation structure". Two of 711 to 713 may be selected to correspond to the "first gas-liquid separation mechanism" and the "second gas-liquid separation mechanism". For example, in a configuration in which the supercooler 35 is not provided, the "first gas-liquid separation mechanism" is associated with the start-up pipe 711, the "second gas-liquid separation structure" is associated with the start-up pipe 713, and the "second opening / closing" is performed. The on-off valve V3 may be associated with the "valve". Further, for example, in a configuration in which the heat exchanger 40 is not provided, the "first gas-liquid separation mechanism" is associated with the start-up pipe 711, and the "second gas-liquid separation structure" is associated with the start-up pipe 712. The on-off valve V2 may be associated with the on-off valve.
 好ましくは、室外ユニット2は、過冷却器35および熱交換器40と、第3気液分離構造と、第3開閉弁とをさらに備える。過冷却器35および熱交換器40は、第1流路F1において凝縮器20よりも下流に順に配置される。第3気液分離構造は、複数の分岐点BP1~BP3のうちの第3分岐点に設けられる。 Preferably, the outdoor unit 2 further includes a supercooler 35, a heat exchanger 40, a third gas-liquid separation structure, and a third on-off valve. The supercooler 35 and the heat exchanger 40 are arranged in order in the first flow path F1 downstream of the condenser 20. The third gas-liquid separation structure is provided at the third branch point among the plurality of branch points BP1 to BP3.
 たとえば、「第3気液分離構造」には、図1の立上げ配管713が対応する。「第3開閉弁」には、図1の開閉弁V3が対応する。「第3分岐点」には図1の分岐点BP3が対応する。 For example, the start-up pipe 713 in FIG. 1 corresponds to the "third gas-liquid separation structure". The on-off valve V3 of FIG. 1 corresponds to the "third on-off valve". The "third branch point" corresponds to the branch point BP3 of FIG.
 第3開閉弁は、第3気液分離構造と合流点Aとの間に配置される。第1分岐点は、第1流路F1において凝縮器20の冷媒出口から過冷却器35の冷媒入口までの間に配置される。第2分岐点は、第1流路F1において過冷却器35の冷媒出口から熱交換器40の冷媒入口までの間に配置される。第3分岐点は、第1流路F1において熱交換器40の冷媒出口よりも下流に配置される。 The third on-off valve is arranged between the third gas-liquid separation structure and the confluence point A. The first branch point is arranged between the refrigerant outlet of the condenser 20 and the refrigerant inlet of the supercooler 35 in the first flow path F1. The second branch point is arranged between the refrigerant outlet of the supercooler 35 and the refrigerant inlet of the heat exchanger 40 in the first flow path F1. The third branch point is arranged downstream of the refrigerant outlet of the heat exchanger 40 in the first flow path F1.
 より好ましくは、室外ユニット2は、開閉弁V1~V3を制御し、温度センサ122の出力に基づいて冷媒不足を検出する制御装置100をさらに備える。 More preferably, the outdoor unit 2 further includes a control device 100 that controls the on-off valves V1 to V3 and detects a refrigerant shortage based on the output of the temperature sensor 122.
 さらに好ましくは、室外ユニット2は、通常モードと冷媒不足検知モードとを動作モードとして有する。室外ユニット2は、凝縮器20を通過した後の冷媒の乾き度を増加させる乾き度増加装置をさらに備える。「乾き度増加装置」には、たとえばファン22が対応する。制御装置100は、乾き度増加装置を制御し、冷媒不足検知モードにおいて、凝縮器20を通過した後の冷媒の乾き度を、通常モードよりも増加させるように構成される。 More preferably, the outdoor unit 2 has a normal mode and a refrigerant shortage detection mode as operation modes. The outdoor unit 2 further includes a dryness increasing device that increases the dryness of the refrigerant after passing through the condenser 20. For example, a fan 22 corresponds to the “dryness increasing device”. The control device 100 controls the dryness increasing device, and is configured to increase the dryness of the refrigerant after passing through the condenser 20 in the refrigerant shortage detection mode as compared with the normal mode.
 このように、冷媒不足検知モードにおいて冷媒の乾き度を増加させるので、冷媒不足の早期段階での検知が可能となる。 In this way, since the dryness of the refrigerant is increased in the refrigerant shortage detection mode, it is possible to detect the refrigerant shortage at an early stage.
 好ましくは、第1気液分離構造および第2気液分離構造は、第1分岐点および第2分岐点においてそれぞれ第1流路から第2流路を重力と反対方向に分岐させるように構成される。 Preferably, the first gas-liquid separation structure and the second gas-liquid separation structure are configured to branch the first flow path to the second flow path in the direction opposite to gravity at the first branch point and the second branch point, respectively. To.
 気液分離構造をこのような構成とすることによって、気相の冷媒を分離しやすくすることができる。これにより、冷媒加熱装置75に送られる冷媒の乾き度を増加させるので、冷媒不足の早期段階での検知が可能となる。 By having such a gas-liquid separation structure, it is possible to facilitate the separation of the gas-phase refrigerant. As a result, the dryness of the refrigerant sent to the refrigerant heating device 75 is increased, so that it is possible to detect the refrigerant shortage at an early stage.
 以上、冷凍サイクル装置1を備える冷凍機を例示して本実施の形態を説明したが、冷凍サイクル装置1は、空気調和機などに利用されても良い。 Although the present embodiment has been described above by exemplifying a refrigerator provided with the refrigerating cycle device 1, the refrigerating cycle device 1 may be used as an air conditioner or the like.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope equivalent to the claims.
 1 冷凍サイクル装置、2 室外ユニット、3 負荷装置、10 圧縮機、20 凝縮器、22 ファン、30 受液器、35 過冷却器、40 熱交換器、50 膨張装置、60 蒸発器、72,74,80,81,82,83,85,86,87,89,91,93,94 配管、73 流量調整装置、75 冷媒加熱装置、84,88 延長配管、92 膨張弁、100 制御装置、101 報知装置、104 メモリ、110,111 圧力センサ、120,121,122 温度センサ、711,712,713 立上げ配管、BP1,BP2,BP3,BP4 分岐点、F1,F2,F3 流路、G1 吸入ポート、G2 吐出ポート、G3 中間圧ポート、H1 第1通路、H2 第2通路、V1,V2,V3 開閉弁。 1 Refrigeration cycle device, 2 Outdoor unit, 3 Load device, 10 Compressor, 20 Condenser, 22 Fan, 30 Recipient, 35 Supercooler, 40 Heat exchanger, 50 Expansion device, 60 Evaporator, 72,74 , 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94 piping, 73 flow control device, 75 refrigerant heating device, 84,88 extension piping, 92 expansion valve, 100 control device, 101 notification Equipment, 104 memory, 110,111 pressure sensor, 120,121,122 temperature sensor, 711,712,713 riser pipe, BP1, BP2, BP3, BP4 branch point, F1, F2, F3 flow path, G1 suction port, G2 discharge port, G3 intermediate pressure port, H1 first passage, H2 second passage, V1, V2, V3 on-off valve.

Claims (6)

  1.  膨張装置および蒸発器を含む負荷装置に接続されるように構成された冷凍サイクル装置の室外ユニットであって、
     前記負荷装置に接続されることによって、冷媒が循環する循環流路を形成する第1流路と、
     前記第1流路に配置される、圧縮機および凝縮器と、
     前記冷媒が循環する方向において、前記凝縮器よりも下流の前記第1流路の複数の分岐点から分岐した後に合流点において合流し、前記凝縮器を通過した冷媒を前記圧縮機に戻すように構成された第2流路と、
     前記複数の分岐点のうちの第1分岐点に設けられる第1気液分離構造と、
     前記第1気液分離構造と前記合流点との間に配置される第1開閉弁と、
     前記複数の分岐点のうちの第2分岐点に設けられる第2気液分離構造と、
     前記第2気液分離構造と前記合流点との間に配置される第2開閉弁と、
     前記合流点から順に前記第2流路に配置される流量調整装置、および冷媒加熱装置と、
     前記第2流路の前記冷媒加熱装置を通過した冷媒の温度を検出する温度センサと、
     前記温度センサの出力に応じて冷媒不足を報知する報知装置とを備える、室外ユニット。
    An outdoor unit of a refrigeration cycle device configured to be connected to a load device including an inflator and an evaporator.
    A first flow path that forms a circulation flow path through which the refrigerant circulates by being connected to the load device, and
    A compressor and a condenser arranged in the first flow path,
    In the direction in which the refrigerant circulates, after branching from a plurality of branch points of the first flow path downstream of the condenser, the refrigerant merges at the confluence, and the refrigerant that has passed through the condenser is returned to the compressor. The configured second flow path and
    A first gas-liquid separation structure provided at the first branch point among the plurality of branch points,
    A first on-off valve arranged between the first gas-liquid separation structure and the confluence,
    A second gas-liquid separation structure provided at the second branch point of the plurality of branch points,
    A second on-off valve arranged between the second gas-liquid separation structure and the confluence,
    A flow rate adjusting device and a refrigerant heating device arranged in the second flow path in order from the confluence.
    A temperature sensor that detects the temperature of the refrigerant that has passed through the refrigerant heating device in the second flow path, and
    An outdoor unit including a notification device for notifying a refrigerant shortage according to the output of the temperature sensor.
  2.  前記第1流路において前記凝縮器よりも下流に順に配置される、過冷却器および熱交換器と、
     前記複数の分岐点のうちの第3分岐点に設けられる第3気液分離構造と、
     前記第3気液分離構造と前記合流点との間に配置される第3開閉弁とをさらに備え、
     前記第1分岐点は、前記第1流路において前記凝縮器の冷媒出口から前記過冷却器の冷媒入口までの間に配置され、
     前記第2分岐点は、前記第1流路において前記過冷却器の冷媒出口から前記熱交換器の冷媒入口までの間に配置され、
     前記第3分岐点は、前記第1流路において前記熱交換器の冷媒出口よりも下流に配置される、請求項1に記載の室外ユニット。
    A supercooler and a heat exchanger arranged in order downstream of the condenser in the first flow path,
    A third gas-liquid separation structure provided at the third branch point among the plurality of branch points,
    Further provided with a third on-off valve arranged between the third gas-liquid separation structure and the confluence.
    The first branch point is arranged between the refrigerant outlet of the condenser and the refrigerant inlet of the supercooler in the first flow path.
    The second branch point is arranged between the refrigerant outlet of the supercooler and the refrigerant inlet of the heat exchanger in the first flow path.
    The outdoor unit according to claim 1, wherein the third branch point is arranged downstream of the refrigerant outlet of the heat exchanger in the first flow path.
  3.  前記第1~第3開閉弁を制御し、前記温度センサの出力に基づいて冷媒不足を検出する制御装置をさらに備える、請求項2に記載の室外ユニット。 The outdoor unit according to claim 2, further comprising a control device that controls the first to third on-off valves and detects a refrigerant shortage based on the output of the temperature sensor.
  4.  前記室外ユニットは、通常モードと冷媒不足検知モードとを動作モードとして有し、
     前記凝縮器を通過した後の冷媒の乾き度を増加させる乾き度増加装置をさらに備え、
     前記制御装置は、前記乾き度増加装置を制御し、前記冷媒不足検知モードにおいて、前記凝縮器を通過した後の冷媒の乾き度を、前記通常モードよりも増加させるように構成される、請求項3に記載の室外ユニット。
    The outdoor unit has a normal mode and a refrigerant shortage detection mode as operation modes.
    Further provided with a dryness increasing device for increasing the dryness of the refrigerant after passing through the condenser.
    The control device is configured to control the dryness increasing device and increase the dryness of the refrigerant after passing through the condenser in the refrigerant shortage detection mode as compared with the normal mode. The outdoor unit according to 3.
  5.  前記第1気液分離構造および前記第2気液分離構造は、前記第1分岐点および前記第2分岐点においてそれぞれ前記第1流路から前記第2流路を重力と反対方向に分岐させるように構成される、請求項1に記載の室外ユニット。 The first gas-liquid separation structure and the second gas-liquid separation structure branch from the first flow path to the second flow path in the direction opposite to gravity at the first branch point and the second branch point, respectively. The outdoor unit according to claim 1, which is configured in 1.
  6.  請求項1~5のいずれか1項に記載の室外ユニットと、前記負荷装置とを備える冷凍サイクル装置。 A refrigeration cycle device including the outdoor unit according to any one of claims 1 to 5 and the load device.
PCT/JP2019/044280 2019-11-12 2019-11-12 Outdoor unit and refrigeration cycle device WO2021095115A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021555653A JP7150192B2 (en) 2019-11-12 2019-11-12 Outdoor unit and refrigeration cycle equipment
PCT/JP2019/044280 WO2021095115A1 (en) 2019-11-12 2019-11-12 Outdoor unit and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/044280 WO2021095115A1 (en) 2019-11-12 2019-11-12 Outdoor unit and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2021095115A1 true WO2021095115A1 (en) 2021-05-20

Family

ID=75911925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044280 WO2021095115A1 (en) 2019-11-12 2019-11-12 Outdoor unit and refrigeration cycle device

Country Status (2)

Country Link
JP (1) JP7150192B2 (en)
WO (1) WO2021095115A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636369A (en) * 1986-06-27 1988-01-12 三菱電機株式会社 Proper refrigerant filling-quantity detector
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JPH06101911A (en) * 1992-08-26 1994-04-12 Hitachi Ltd Refrigerating cycle using non-azeotropic mixed refrigerant
JPH0868576A (en) * 1994-08-31 1996-03-12 Daikin Ind Ltd Refrigerator
WO2013027232A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Refrigeration cycle device
JP2018105532A (en) * 2016-12-26 2018-07-05 カルソニックカンセイ株式会社 Air conditioner

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288438B2 (en) 2007-12-04 2013-09-11 株式会社Lixil Opening device frame and corner structure thereof
WO2012161099A1 (en) 2011-05-24 2012-11-29 ポリマテック 株式会社 Seal member and composite seal member

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636369A (en) * 1986-06-27 1988-01-12 三菱電機株式会社 Proper refrigerant filling-quantity detector
JPH05288438A (en) * 1992-04-08 1993-11-02 Daikin Ind Ltd Refrigerant filled amount detector of refrigerating plant
JPH06101911A (en) * 1992-08-26 1994-04-12 Hitachi Ltd Refrigerating cycle using non-azeotropic mixed refrigerant
JPH0868576A (en) * 1994-08-31 1996-03-12 Daikin Ind Ltd Refrigerator
WO2013027232A1 (en) * 2011-08-19 2013-02-28 三菱電機株式会社 Refrigeration cycle device
JP2018105532A (en) * 2016-12-26 2018-07-05 カルソニックカンセイ株式会社 Air conditioner

Also Published As

Publication number Publication date
JPWO2021095115A1 (en) 2021-05-20
JP7150192B2 (en) 2022-10-07

Similar Documents

Publication Publication Date Title
US8074459B2 (en) Heat pump system having auxiliary water heating and heat exchanger bypass
EP1659348B1 (en) Freezing apparatus
EP2375188B1 (en) Air conditioner
EP3163217B1 (en) Refrigeration cycle device
JP6188947B2 (en) Air conditioner
JP6188948B2 (en) Air conditioner
WO2011070954A1 (en) Air conditioner and refrigerant amount detection method for air conditioner
JP6223469B2 (en) Air conditioner
WO1998009118A1 (en) Air conditioner
KR101425040B1 (en) Air conditioner
JP5418253B2 (en) Refrigeration cycle equipment
JP5855284B2 (en) Air conditioner
US7451615B2 (en) Refrigeration device
JP2002257427A (en) Refrigerating air conditioner and its operating method
JP2012137241A (en) Air-conditioning apparatus
WO2014103013A1 (en) Heat pump system
EP3819555A1 (en) Refrigeration cycle equipment
WO2021095115A1 (en) Outdoor unit and refrigeration cycle device
JP5537906B2 (en) Air conditioner
JP6198945B2 (en) Air conditioner
WO2021111561A1 (en) Outdoor unit and refrigeration cycle device
JP3048658B2 (en) Refrigeration equipment
JPH04283363A (en) Freezer device
JPH0340296B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19952626

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021555653

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19952626

Country of ref document: EP

Kind code of ref document: A1