JP5176978B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5176978B2
JP5176978B2 JP2009011628A JP2009011628A JP5176978B2 JP 5176978 B2 JP5176978 B2 JP 5176978B2 JP 2009011628 A JP2009011628 A JP 2009011628A JP 2009011628 A JP2009011628 A JP 2009011628A JP 5176978 B2 JP5176978 B2 JP 5176978B2
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
compressor
desorption mechanism
desorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009011628A
Other languages
Japanese (ja)
Other versions
JP2010169305A (en
Inventor
克之 大澤
達也 小林
裕一 高橋
祐生 吉田
正洋 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009011628A priority Critical patent/JP5176978B2/en
Publication of JP2010169305A publication Critical patent/JP2010169305A/en
Application granted granted Critical
Publication of JP5176978B2 publication Critical patent/JP5176978B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、冷却装置に関し、特に冷媒回路に対して脱着可能な蒸発器を備えた冷却装置に関する。   The present invention relates to a cooling device, and more particularly, to a cooling device including an evaporator that is detachable from a refrigerant circuit.

従来、カップリング等の脱着機構部を介して冷媒回路と脱着可能な蒸発器を備えた冷却装置が知られている(例えば、特許文献1参照)。   2. Description of the Related Art Conventionally, a cooling device including a refrigerant circuit and an evaporator that can be detached through a desorption mechanism such as a coupling is known (see, for example, Patent Document 1).

図2は、従来の冷却装置の一例を示す冷媒回路図である。図2に示すように、この従来の冷却装置は、圧縮機1と、凝縮器2と、製氷機3に設けた蒸発器4と、これらを接続する冷媒配管5と、凝縮器用ファン6とを備えた冷媒回路で構成されている。蒸発器4は、その上流側の脱着機構部7と、下流側の脱着機構部8とを介してこの冷媒回路に脱着可能に接続してある。   FIG. 2 is a refrigerant circuit diagram illustrating an example of a conventional cooling device. As shown in FIG. 2, this conventional cooling apparatus includes a compressor 1, a condenser 2, an evaporator 4 provided in the ice making machine 3, a refrigerant pipe 5 connecting them, and a condenser fan 6. The refrigerant circuit is provided. The evaporator 4 is detachably connected to the refrigerant circuit via a desorption mechanism section 7 on the upstream side and a desorption mechanism section 8 on the downstream side.

図2の構成において、製氷機3への動作指令があると、圧縮機1が稼動し、開放弁9が開放されるようになっており、圧縮機1にて加圧された高温の冷媒は、凝縮器2によって冷却されて凝縮後、ドライヤ10を通過し、開放弁9に到達する。   In the configuration of FIG. 2, when there is an operation command to the ice making machine 3, the compressor 1 is operated and the release valve 9 is opened, and the high-temperature refrigerant pressurized by the compressor 1 is After being cooled and condensed by the condenser 2, it passes through the dryer 10 and reaches the release valve 9.

膨張弁11で減圧された冷媒は低温となり、蒸発器4に達し、製氷機3にて製氷しながら蒸発する。その後、逆止弁12とアキュムレータ13を通過して圧縮機1に戻る。このサイクルを繰り返し、製氷機3にて必要な氷の蓄氷を行う。ここで、圧縮機1の停止時に、冷媒回路から脱着機構部7と脱着機構部8とを脱着することによって、蒸発器4を冷媒回路から切り離すことができる。   The refrigerant decompressed by the expansion valve 11 becomes a low temperature, reaches the evaporator 4, and evaporates while making ice in the ice making machine 3. Thereafter, it passes through the check valve 12 and the accumulator 13 and returns to the compressor 1. This cycle is repeated and necessary ice storage is performed by the ice making machine 3. Here, when the compressor 1 is stopped, the evaporator 4 can be disconnected from the refrigerant circuit by detaching the desorption mechanism unit 7 and the desorption mechanism unit 8 from the refrigerant circuit.

特開2006−71251号公報JP 2006-71251 A

ところで、上記の従来の冷却装置で使用する冷媒を二酸化炭素(CO2)のような自然冷媒にした場合、圧縮機停止状態での冷媒圧力はフロン系冷媒の場合に比して非常に高いことから、蒸発器を脱着する際の脱着機構部の脱着操作は危険を伴い困難となる。また、脱着機構部の破損を来すおそれがある。 By the way, when the refrigerant used in the above-described conventional cooling device is a natural refrigerant such as carbon dioxide (CO 2 ), the refrigerant pressure when the compressor is stopped is much higher than that of the chlorofluorocarbon refrigerant. Therefore, the desorption operation of the desorption mechanism when desorbing the evaporator is dangerous and difficult. Moreover, there is a risk of damage to the desorption mechanism.

本発明は、上記実情に鑑みてなされたものであり、圧縮機の停止時に脱着機構部の前後の冷媒圧力を低下することができる冷却装置を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the cooling device which can reduce the refrigerant | coolant pressure before and behind a desorption mechanism part at the time of a stop of a compressor.

上記の目的を達成するために、本発明の請求項1に係る冷却装置は、圧縮機に接続した冷媒配管からなる冷媒回路に対して、脱着機構部を介して脱着可能に接続した蒸発器を有する製氷機用の冷却装置において、前記蒸発器から見て上流側の前記脱着機構部に接続した冷媒配管から分岐して、前記蒸発器から見て下流側の前記脱着機構部に接続した冷媒配管に接続し、前記蒸発器および前記脱着機構部を通過しないで前記圧縮機からの冷媒を流す分岐配管と、前記蒸発器から見て上流側の前記脱着機構部に接続した冷媒配管であって、前記分岐配管が分岐する点よりも下流側の冷媒配管の流路を閉塞可能な弁と、前記蒸発器から見て下流側の前記脱着機構部に接続した冷媒配管であって、前記分岐配管が接続する点よりも下流側の冷媒配管から前記蒸発器への冷媒の逆流を防止する逆止機構とを備え、前記脱着機構部の脱着操作により前記冷媒回路からの前記蒸発器の切り離しを行う場合には、前記圧縮機を一旦停止し、前記弁を閉塞し、前記圧縮機を再起動することによって、冷媒は前記分岐配管を流れて前記逆止機構を通過して前記圧縮機に戻り、前記脱着機構部の前後は前記圧縮機への吸引力により低圧状態となり、この状態で前記圧縮機を停止すると前記逆止機構および前記弁によって前記蒸発器側の回路は閉塞されて前記脱着機構部の前後は低圧状態のまま保持され、この状態で前記脱着機構部を前記冷媒回路から切り離せるようにしたことを特徴とする。 In order to achieve the above object, a cooling device according to claim 1 of the present invention includes an evaporator detachably connected to a refrigerant circuit including a refrigerant pipe connected to a compressor via a desorption mechanism. In the cooling apparatus for an ice making machine, the refrigerant pipe branched from the refrigerant pipe connected to the desorption mechanism section upstream from the evaporator and connected to the desorption mechanism section downstream from the evaporator A branch pipe for flowing the refrigerant from the compressor without passing through the evaporator and the desorption mechanism section, and a refrigerant pipe connected to the desorption mechanism section on the upstream side as viewed from the evaporator , A valve capable of closing the flow path of the refrigerant pipe downstream from the point where the branch pipe branches, and a refrigerant pipe connected to the desorption mechanism section downstream from the evaporator , wherein the branch pipe is or refrigerant pipe downstream of the point of connection And a non-return mechanism for preventing reverse flow of refrigerant to the evaporator, when said by desorption operation of detaching mechanism portion performs disconnection of the evaporator from the refrigerant circuit, temporarily stopping the compressor, By closing the valve and restarting the compressor, the refrigerant flows through the branch pipe, passes through the check mechanism, returns to the compressor, and the front and rear of the desorption mechanism section are connected to the compressor. When the compressor is stopped in this state due to the suction force, the circuit on the evaporator side is closed by the check mechanism and the valve, and the front and rear of the desorption mechanism portion are maintained in a low pressure state. The desorption mechanism section can be separated from the refrigerant circuit .

また、本発明の請求項2に係る冷却装置は、上述した請求項1において、前記分岐配管の流路を閉塞可能な弁をさらに備えたことを特徴とする。   The cooling device according to claim 2 of the present invention is characterized in that in claim 1 described above, the cooling device further includes a valve capable of closing the flow path of the branch pipe.

また、本発明の請求項3に係る冷却装置は、上述した請求項1または2において、前記冷媒は、二酸化炭素であることを特徴とする。   The cooling device according to claim 3 of the present invention is characterized in that in claim 1 or 2, the refrigerant is carbon dioxide.

本発明によれば、圧縮機に接続した冷媒配管からなる冷媒回路に対して、脱着機構部を介して脱着可能に接続した蒸発器を有する冷却装置において、前記蒸発器から見て上流側の前記脱着機構部に接続した冷媒配管から分岐して、前記蒸発器から見て下流側の前記脱着機構部に接続した冷媒配管に接続し、前記蒸発器および前記脱着機構部を通過しないで前記圧縮機からの冷媒を流す分岐配管と、前記蒸発器から見て上流側の前記脱着機構部に接続した冷媒配管の流路を閉塞可能な弁と、前記蒸発器から見て下流側の前記脱着機構部に接続した冷媒配管から前記蒸発器への冷媒の逆流を防止する逆止機構とを備えたので、圧縮機を一旦停止して弁を閉塞した後に、圧縮機を再起動すると、冷媒配管内の冷媒は蒸発器および脱着機構部を通過せずに分岐配管内を流れた後、逆止機構を通過して圧縮機に戻る。圧縮機をしばらく稼動すると、脱着機構部の前後の冷媒圧力は、圧縮機による吸引作用によって低圧状態となるので、その後、圧縮機を停止した際に脱着機構部の脱着操作を容易かつ安全に行うことができる。   According to the present invention, in a cooling device having an evaporator detachably connected to a refrigerant circuit composed of refrigerant piping connected to a compressor via a desorption mechanism, the upstream side of the evaporator as viewed from the evaporator. The compressor is branched from the refrigerant pipe connected to the desorption mechanism section, connected to the refrigerant pipe connected to the desorption mechanism section on the downstream side as viewed from the evaporator, and does not pass through the evaporator and the desorption mechanism section. A branch pipe for flowing the refrigerant from the evaporator, a valve capable of closing the flow path of the refrigerant pipe connected to the desorption mechanism section upstream from the evaporator, and the desorption mechanism section downstream from the evaporator And a non-return mechanism for preventing the reverse flow of the refrigerant from the refrigerant pipe connected to the evaporator, so that after the compressor is stopped and the valve is closed, the compressor is restarted. The refrigerant must pass through the evaporator and desorption mechanism. After flowing through the branch pipe, the flow returns to the compressor through the return mechanism. When the compressor is operated for a while, the refrigerant pressure before and after the desorption mechanism part becomes a low pressure state due to the suction action by the compressor. be able to.

以下に添付図面を参照しながら、本発明に係る冷却装置の好適な実施の形態を、製氷機に用いる場合を例にとり詳細に説明する。図1は、本発明に係る冷却装置の冷媒回路図である。   A preferred embodiment of a cooling device according to the present invention will be described below in detail with reference to the accompanying drawings, taking as an example the case of being used in an ice making machine. FIG. 1 is a refrigerant circuit diagram of a cooling device according to the present invention.

図1に示すように、本発明の冷却装置100は、圧縮機20と、凝縮器としてのガスクーラ22と、製氷機24に設けた蒸発器26と、これらを接続する冷媒配管28からなる冷媒回路で構成され、分岐配管30と、凝縮器用ファン32とを備える。冷媒としては二酸化炭素(CO2)を使用することができる。蒸発器26は、蒸発器26から見て上流側の脱着機構部34と、蒸発器26から見て下流側の脱着機構部36とを介してこの冷媒回路に脱着可能に接続してある。 As shown in FIG. 1, the cooling device 100 of the present invention includes a refrigerant circuit comprising a compressor 20, a gas cooler 22 as a condenser, an evaporator 26 provided in an ice making machine 24, and a refrigerant pipe 28 connecting them. Comprising a branch pipe 30 and a condenser fan 32. Carbon dioxide (CO 2 ) can be used as the refrigerant. The evaporator 26 is detachably connected to the refrigerant circuit via a desorption mechanism section 34 on the upstream side as viewed from the evaporator 26 and a desorption mechanism section 36 on the downstream side as viewed from the evaporator 26.

分岐配管30は、圧縮機20からの冷媒を蒸発器26および脱着機構部34、36を通過させないで流すためのものであり、上流側の脱着機構部34に接続した冷媒配管28の点Aから分岐して、下流側の脱着機構部36に接続した冷媒配管28の点Bに接続してある。   The branch pipe 30 is for flowing the refrigerant from the compressor 20 without passing through the evaporator 26 and the desorption mechanism sections 34 and 36, and from the point A of the refrigerant pipe 28 connected to the upstream desorption mechanism section 34. It branches and is connected to the point B of the refrigerant pipe 28 connected to the desorption mechanism part 36 on the downstream side.

また、冷却装置100は、上流側の脱着機構部34に接続した冷媒配管28の流路を閉塞可能な弁としての第一開放弁46と、分岐配管30の流路を閉塞可能な弁としての第二開放弁48と、逆止機構としての逆止弁50とを備える。第一開放弁46は分岐点Aよりも下流側の冷媒配管28に設けてあり、第二開放弁48は分岐配管30に設けてある。また、逆止弁50は点Bよりも下流側の冷媒配管28に設けてある。   The cooling device 100 includes a first opening valve 46 as a valve capable of closing the flow path of the refrigerant pipe 28 connected to the upstream side desorption mechanism 34 and a valve as a valve capable of closing the flow path of the branch pipe 30. A second release valve 48 and a check valve 50 as a check mechanism are provided. The first release valve 46 is provided in the refrigerant pipe 28 downstream from the branch point A, and the second release valve 48 is provided in the branch pipe 30. The check valve 50 is provided in the refrigerant pipe 28 on the downstream side of the point B.

この冷却装置100は、電子膨張弁38と、ストレーナ40と、内部熱交換器42と、キャピラリ44とをさらに備える。電子膨張弁38は、点Aよりも上流側の冷媒配管28に設けてあり、ストレーナ40は、電子膨張弁38とガスクーラ22との間に設けてある。内部熱交換器42は、電子膨張弁38とストレーナ40との間に設けてある。キャピラリ44は、第一開放弁46と脱着機構部34との間に設けてある。   The cooling device 100 further includes an electronic expansion valve 38, a strainer 40, an internal heat exchanger 42, and a capillary 44. The electronic expansion valve 38 is provided in the refrigerant pipe 28 upstream from the point A, and the strainer 40 is provided between the electronic expansion valve 38 and the gas cooler 22. The internal heat exchanger 42 is provided between the electronic expansion valve 38 and the strainer 40. The capillary 44 is provided between the first release valve 46 and the desorption mechanism 34.

上記の構成の動作および作用について説明する。
図示しない制御部から製氷機24への動作指令があると、圧縮機20が稼動し、電子膨張弁38および第一開放弁46が開放され、かつ第二開放弁48は閉止される。
The operation and action of the above configuration will be described.
When there is an operation command from the control unit (not shown) to the ice making machine 24, the compressor 20 is activated, the electronic expansion valve 38 and the first opening valve 46 are opened, and the second opening valve 48 is closed.

圧縮機20にて加圧された高圧の冷媒は、ガスクーラ22によって冷却され、ストレーナ40を通過後、内部熱交換器42でさらに冷却される。その後、電子膨張弁38およびキャピラリ44にて減圧された冷媒は低温となり、蒸発器26に達し、製氷機24にて製氷しながら蒸発する。   The high-pressure refrigerant pressurized by the compressor 20 is cooled by the gas cooler 22 and further cooled by the internal heat exchanger 42 after passing through the strainer 40. Thereafter, the refrigerant decompressed by the electronic expansion valve 38 and the capillary 44 becomes a low temperature, reaches the evaporator 26, and evaporates while making ice by the ice making machine 24.

その後、冷媒は再び内部熱交換器42を通過し、その際に加熱され、逆止弁50を通過後、圧縮機20に戻る。ここで、脱着機構部34、36の脱着操作により冷媒回路からの蒸発器26の切り離しを行う場合には、圧縮機20を一旦停止し、第一開放弁46を閉塞し、かつ第二開放弁48を開放して圧縮機20を再起動する。これによって、冷媒は分岐配管30を流れた後、圧縮機20に戻るために内部熱交換器42に向かい、その後、逆止弁50を通過して圧縮機20に戻る。   Thereafter, the refrigerant again passes through the internal heat exchanger 42, is heated at that time, passes through the check valve 50, and returns to the compressor 20. Here, when the evaporator 26 is separated from the refrigerant circuit by the desorption operation of the desorption mechanism portions 34 and 36, the compressor 20 is temporarily stopped, the first release valve 46 is closed, and the second release valve is closed. 48 is opened and the compressor 20 is restarted. Thus, after the refrigerant flows through the branch pipe 30, the refrigerant goes to the internal heat exchanger 42 to return to the compressor 20, and then passes through the check valve 50 and returns to the compressor 20.

しばらく稼動すると、脱着機構部34、36の前後は、圧縮機20への吸引力により低圧状態となる。この状態で圧縮機20を停止すると同時に第二開放弁48を閉塞すると、逆止弁50、第一開放弁46および第二開放弁48によって蒸発器26側の回路は閉塞され、この状態で脱着機構部34、36の前後は低圧のまま保持される。この状態で脱着機構部34、36を冷媒回路から容易にかつ安全に切り離すことができる。   After operating for a while, the front and rear of the desorption mechanism sections 34 and 36 are in a low pressure state due to the suction force to the compressor 20. When the compressor 20 is stopped in this state and the second release valve 48 is closed at the same time, the circuit on the evaporator 26 side is closed by the check valve 50, the first release valve 46, and the second release valve 48. The front and back of the mechanical parts 34 and 36 are held at a low pressure. In this state, the desorption mechanism sections 34 and 36 can be easily and safely separated from the refrigerant circuit.

以上説明したように、本発明によれば、蒸発器から見て上流側の脱着機構部に接続した冷媒配管から分岐して、蒸発器から見て下流側の脱着機構部に接続した冷媒配管に接続し、蒸発器および脱着機構部を通過しないで圧縮機からの冷媒を流す分岐配管と、蒸発器から見て上流側の脱着機構部に接続した冷媒配管の流路を閉塞可能な弁と、蒸発器から見て下流側の脱着機構部に接続した冷媒配管から蒸発器への冷媒の逆流を防止する逆止機構とを備えたので、圧縮機を一旦停止して弁を閉塞した後に、圧縮機を再起動すると、冷媒配管内の冷媒は蒸発器および脱着機構部を通過せずに分岐配管内を流れた後、逆止機構を通過して圧縮機に戻る。圧縮機をしばらく稼動すると、脱着機構部の前後の冷媒圧力は、圧縮機による吸引作用によって低圧状態となるので、その後、圧縮機を停止した際に脱着機構部の脱着操作を容易かつ安全に行うことができる。   As described above, according to the present invention, the refrigerant pipe branched from the refrigerant pipe connected to the upstream desorption mechanism section viewed from the evaporator and connected to the downstream desorption mechanism section viewed from the evaporator is provided. A branch pipe that connects and flows the refrigerant from the compressor without passing through the evaporator and the desorption mechanism, and a valve that can block the flow path of the refrigerant pipe that is connected to the desorption mechanism on the upstream side when viewed from the evaporator; Since it has a check mechanism that prevents the reverse flow of the refrigerant from the refrigerant pipe connected to the desorption mechanism section on the downstream side when viewed from the evaporator, the compressor is temporarily stopped to close the valve, and then compressed. When the machine is restarted, the refrigerant in the refrigerant pipe flows through the branch pipe without passing through the evaporator and the desorption mechanism, and then returns to the compressor through the check mechanism. When the compressor is operated for a while, the refrigerant pressure before and after the desorption mechanism part becomes a low pressure state due to the suction action by the compressor. be able to.

本発明に係る冷却装置の一例を示す冷媒回路図である。It is a refrigerant circuit figure which shows an example of the cooling device which concerns on this invention. 従来の冷却装置の一例を示す冷媒回路図である。It is a refrigerant circuit diagram which shows an example of the conventional cooling device.

20 圧縮機
22 ガスクーラ
24 製氷機
26 蒸発器
28 冷媒配管
30 分岐配管
32 凝縮器用ファン
34,36 脱着機構部
38 電子膨張弁
40 ストレーナ
42 内部熱交換器
44 キャピラリ
46 第一開放弁
48 第二開放弁
50 逆止弁
100 冷却装置
DESCRIPTION OF SYMBOLS 20 Compressor 22 Gas cooler 24 Ice maker 26 Evaporator 28 Refrigerant piping 30 Branch piping 32 Condenser fan 34,36 Desorption mechanism part 38 Electronic expansion valve 40 Strainer 42 Internal heat exchanger 44 Capillary 46 1st release valve 48 2nd release valve 50 Check valve 100 Cooling device

Claims (3)

圧縮機に接続した冷媒配管からなる冷媒回路に対して、脱着機構部を介して脱着可能に接続した蒸発器を有する製氷機用の冷却装置において、
前記蒸発器から見て上流側の前記脱着機構部に接続した冷媒配管から分岐して、前記蒸発器から見て下流側の前記脱着機構部に接続した冷媒配管に接続し、前記蒸発器および前記脱着機構部を通過しないで前記圧縮機からの冷媒を流す分岐配管と、前記蒸発器から見て上流側の前記脱着機構部に接続した冷媒配管であって、前記分岐配管が分岐する点よりも下流側の冷媒配管の流路を閉塞可能な弁と、前記蒸発器から見て下流側の前記脱着機構部に接続した冷媒配管であって、前記分岐配管が接続する点よりも下流側の冷媒配管から前記蒸発器への冷媒の逆流を防止する逆止機構とを備え
前記脱着機構部の脱着操作により前記冷媒回路からの前記蒸発器の切り離しを行う場合には、
前記圧縮機を一旦停止し、前記弁を閉塞し、前記圧縮機を再起動することによって、冷媒は前記分岐配管を流れて前記逆止機構を通過して前記圧縮機に戻り、前記脱着機構部の前後は前記圧縮機への吸引力により低圧状態となり、この状態で前記圧縮機を停止すると前記逆止機構および前記弁によって前記蒸発器側の回路は閉塞されて前記脱着機構部の前後は低圧状態のまま保持され、この状態で前記脱着機構部を前記冷媒回路から切り離せるようにしたことを特徴とする冷却装置。
In a cooling device for an ice making machine having an evaporator that is detachably connected via a desorption mechanism unit to a refrigerant circuit composed of refrigerant piping connected to a compressor,
Branched from a refrigerant pipe connected to the desorption mechanism section upstream from the evaporator, and connected to a refrigerant pipe connected to the desorption mechanism section downstream from the evaporator, the evaporator and the evaporator A branch pipe that allows the refrigerant from the compressor to flow without passing through the desorption mechanism section, and a refrigerant pipe that is connected to the desorption mechanism section on the upstream side as viewed from the evaporator, where the branch pipe is branched. and capable of closing the valve on the downstream side flow path of the refrigerant pipe, a refrigerant pipe connected to the releasable mechanism portion downstream from the evaporator, the refrigerant downstream of the point where the branch pipe is connected A check mechanism for preventing a reverse flow of the refrigerant from the pipe to the evaporator ,
When separating the evaporator from the refrigerant circuit by the desorption operation of the desorption mechanism,
By temporarily stopping the compressor, closing the valve, and restarting the compressor, the refrigerant flows through the branch pipe, passes through the check mechanism, returns to the compressor, and the desorption mechanism unit. Before and after, the suction force to the compressor causes a low pressure state. When the compressor is stopped in this state, the circuit on the evaporator side is closed by the check mechanism and the valve, and the front and rear of the desorption mechanism portion are low pressure. A cooling device characterized in that it is held in a state, and in this state, the desorption mechanism section can be separated from the refrigerant circuit .
前記分岐配管の流路を閉塞可能な弁をさらに備えたことを特徴とする請求項1に記載の冷却装置。   The cooling device according to claim 1, further comprising a valve capable of closing the flow path of the branch pipe. 前記冷媒は、二酸化炭素であることを特徴とする請求項1または2に記載の冷却装置。   The cooling device according to claim 1 or 2, wherein the refrigerant is carbon dioxide.
JP2009011628A 2009-01-22 2009-01-22 Cooling system Expired - Fee Related JP5176978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009011628A JP5176978B2 (en) 2009-01-22 2009-01-22 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009011628A JP5176978B2 (en) 2009-01-22 2009-01-22 Cooling system

Publications (2)

Publication Number Publication Date
JP2010169305A JP2010169305A (en) 2010-08-05
JP5176978B2 true JP5176978B2 (en) 2013-04-03

Family

ID=42701630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009011628A Expired - Fee Related JP5176978B2 (en) 2009-01-22 2009-01-22 Cooling system

Country Status (1)

Country Link
JP (1) JP5176978B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3291753B2 (en) * 1992-04-08 2002-06-10 ダイキン工業株式会社 Refrigerant charging amount detection device for refrigeration equipment
JP2006064255A (en) * 2004-08-26 2006-03-09 Sanyo Electric Co Ltd Refrigerator
JP4396457B2 (en) * 2004-09-06 2010-01-13 富士電機リテイルシステムズ株式会社 Cooling system
JP2006327494A (en) * 2005-05-27 2006-12-07 Denso Corp Air-conditioner for vehicle

Also Published As

Publication number Publication date
JP2010169305A (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4974714B2 (en) Water heater
US20100180612A1 (en) Refrigeration device
WO2008054380A3 (en) Economized refrigeration cycle with expander
JP5141269B2 (en) Refrigeration equipment
US11479082B2 (en) System and method for refrigerant management in an electric vehicle
JP2008096033A (en) Refrigerating device
JP6223573B2 (en) Refrigeration air conditioner
JP6318107B2 (en) heat pump
JP4827191B2 (en) Operation method of heat pump using CO2 as refrigerant
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
JP2004251558A (en) Refrigeration cycle device and its control method
JP5176978B2 (en) Cooling system
JP2008121926A (en) Refrigeration air conditioner
JP2009180429A (en) Refrigerating device
JP2009228975A (en) Remote condenser type air conditioner
KR102017406B1 (en) Heat pump
JP2009210159A (en) Control method of gas heat pump type air conditioner, and gas heat pump type air conditioner
JP6288942B2 (en) Refrigeration equipment
JP2010236725A (en) Heat pump device
JP2008020089A (en) Cooling device
JP2007101043A (en) Heat cycle
JP2005106413A (en) Refrigerant cycle device
JP4179602B2 (en) Thermal storage air conditioner
JP2014047954A (en) Refrigeration cycle device
JP2011058705A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20110214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R150 Certificate of patent or registration of utility model

Ref document number: 5176978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees