JP6223573B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP6223573B2
JP6223573B2 JP2016534035A JP2016534035A JP6223573B2 JP 6223573 B2 JP6223573 B2 JP 6223573B2 JP 2016534035 A JP2016534035 A JP 2016534035A JP 2016534035 A JP2016534035 A JP 2016534035A JP 6223573 B2 JP6223573 B2 JP 6223573B2
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
heat exchanger
pipe
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016534035A
Other languages
Japanese (ja)
Other versions
JPWO2016009516A1 (en
Inventor
智也 藤本
智也 藤本
智隆 石川
智隆 石川
池田 隆
隆 池田
啓三 福原
啓三 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016009516A1 publication Critical patent/JPWO2016009516A1/en
Application granted granted Critical
Publication of JP6223573B2 publication Critical patent/JP6223573B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

本発明は、冷凍空調装置に関し、特に、液配管の結露に関する。   The present invention relates to a refrigeration air conditioner, and more particularly, to dew condensation on a liquid pipe.

従来の冷凍空調装置は、液配管の温度が周囲の温度より最低限、低くならないように、制御器によって冷却装置の冷却動作を制御している。これにより、冷媒循環回路を構成する液配管の結露の発生を防止しながら、冷却能力の増強を図ることができるように制御している(例えば、特許文献1参照)。   In the conventional refrigeration air conditioner, the cooling operation of the cooling device is controlled by the controller so that the temperature of the liquid piping does not become lower than the ambient temperature. Thereby, it controls so that the cooling capacity can be enhanced while preventing the occurrence of dew condensation in the liquid piping constituting the refrigerant circulation circuit (see, for example, Patent Document 1).

また、従来の冷凍空調装置は、液冷媒のサブクールを大きくすることにより、冷却能力を大きくし、より省エネとなるようにしているものもある(例えば、非特許文献1参照)。   In addition, some conventional refrigeration and air-conditioning apparatuses increase the cooling capacity by increasing the subcooling of the liquid refrigerant, thereby further saving energy (for example, see Non-Patent Document 1).

特許第4444220号公報(請求項2)Japanese Patent No. 4444220 (Claim 2) 三菱電機、「三菱電機R410A低温機器総合カタログ」、2014年1月版、p.6Mitsubishi Electric, “Mitsubishi Electric R410A Low Temperature Equipment General Catalog”, January 2014 edition, p. 6

特許文献1に記載の冷凍空調装置は、装置を更新する場合、現地の既設配管を再利用することがある。この場合、既設の液配管には断熱がされていないことがある。冷凍空調装置のみを更新し、既設の液配管を断熱せずに使用すると、液配管の表面温度が、外気の露点温度以下となった場合、液配管に結露が発生する。この結露により生じた水滴が室内に落ち、室内が水浸しになったり、カビが発生するなどの問題点があった。   When the refrigerating and air-conditioning apparatus described in Patent Literature 1 is updated, the existing local piping may be reused. In this case, the existing liquid piping may not be insulated. If only the refrigeration air conditioner is updated and the existing liquid pipe is used without heat insulation, condensation will occur in the liquid pipe when the surface temperature of the liquid pipe falls below the dew point temperature of the outside air. There have been problems such as water droplets generated by the condensation falling into the room, causing the room to become submerged, and causing mold.

また、非特許文献1に記載の冷凍空調装置は、液配管に断熱処理をしていない場合には、液配管に結露が発生しないように、液冷媒の温度を液配管の周囲の外気の露点温度までしか下げられない。このため、液冷媒のサブクールが大きく取れず、冷却能力を大きくできないため、省エネ性が確保できないなどの問題点があった。   Further, in the refrigeration air conditioner described in Non-Patent Document 1, when the liquid pipe is not thermally insulated, the temperature of the liquid refrigerant is set to the dew point of the outside air around the liquid pipe so that condensation does not occur in the liquid pipe. Can only be lowered to temperature. For this reason, there was a problem that the subcooling of the liquid refrigerant could not be increased and the cooling capacity could not be increased, so that energy saving could not be ensured.

更に、冷却能力を大きくし、省エネとなるように液冷媒のサブクールを大きくした場合、凝縮器の出口の冷媒温度が液配管の周囲の外気の露点温度以下となることがある。これにより、液配管が結露してしまうため、液配管に断熱処理をしなければならないなどの問題点があった。   Furthermore, when the cooling capacity is increased and the subcooling of the liquid refrigerant is increased so as to save energy, the refrigerant temperature at the outlet of the condenser may be lower than the dew point temperature of the outside air around the liquid piping. As a result, the liquid pipe is condensed, and there is a problem that the liquid pipe needs to be heat-insulated.

本発明は、上記のような問題点を解決するためになされたもので、第1の目的は、外気露点温度を下回る熱源で凝縮された液冷媒が周囲の外気の露点温度以下となるような場合でも、液配管に結露を生じさせない冷凍空調装置を得ることにある。   The present invention has been made to solve the above-described problems, and a first object is to make the liquid refrigerant condensed by the heat source lower than the outside air dew point temperature lower than the dew point temperature of the surrounding outside air. Even in such a case, the object is to obtain a refrigeration air conditioner that does not cause condensation in the liquid piping.

本発明の第2の目的は、現地の配管に断熱処理をすると工事費が多く必要になり、かつ工事時間も多くかかってくる。このため、液冷媒の温度を調整することで、1つの機種で、現地の液配管に結露を防止するための断熱処理をするか否かを選択できるようにし、客先の断熱処理等の費用や納期の要求に柔軟に対応できる冷凍空調装置を得ることにある。   According to the second object of the present invention, when heat insulation is applied to local piping, a large construction cost is required and a long construction time is required. For this reason, by adjusting the temperature of the liquid refrigerant, it is possible to select whether or not to heat-insulate the local liquid piping to prevent condensation on one model, and the cost of heat-insulating the customer, etc. Another object is to obtain a refrigeration air conditioner that can flexibly meet demands for delivery and delivery.

本発明に係る冷凍空調装置は、圧縮機、凝縮器、第一の減圧装置及び蒸発器が、冷媒配管を介して環状に接続された主冷媒回路と、凝縮器の出側の冷媒を更に冷却する熱交換器を備えた過冷却冷媒回路と、熱交換器の上流側の冷媒配管と熱交換器の下流側の冷媒配管との間に接続され、熱交換器をバイパスするバイパス回路と、を備え、バイパス回路は、凝縮器で凝縮された冷媒の一部を、熱交換器をバイパスして熱交換器の下流側の冷媒配管へ送るものである。 The refrigerating and air-conditioning apparatus according to the present invention further includes a main refrigerant circuit in which a compressor, a condenser, a first pressure reducing device, and an evaporator are connected in an annular shape via a refrigerant pipe, and further cools the refrigerant on the outlet side of the condenser A subcooling refrigerant circuit including a heat exchanger, a bypass circuit connected between a refrigerant pipe upstream of the heat exchanger and a refrigerant pipe downstream of the heat exchanger, and bypassing the heat exchanger, The bypass circuit includes a part of the refrigerant condensed in the condenser and bypasses the heat exchanger and sends the refrigerant to a refrigerant pipe on the downstream side of the heat exchanger .

本発明によれば、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段をバイパスするバイパス回路を持つ構成とした。これにより、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段で凝縮された冷媒が周囲の外気の露点温度以下となった場合でも、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段で凝縮された冷媒に圧縮機からの過熱ガスを加えることで、液冷媒の温度を露点温度を超えるように調整する。このようにすることで、冷媒配管(液配管)に結露を生じさせない、という効果を得ることができる。   According to this invention, it was set as the structure which has a bypass circuit which bypasses the means to cool the refrigerant | coolant using the 1st heat source which is less than external air dew point temperature. As a result, even when the refrigerant condensed by the means for cooling the refrigerant using the first heat source that is lower than the outside air dew point temperature becomes equal to or lower than the dew point temperature of the surrounding outside air, the first heat source that is lower than the outside air dew point temperature is used. The temperature of the liquid refrigerant is adjusted to exceed the dew point temperature by adding superheated gas from the compressor to the refrigerant condensed by the means for cooling the refrigerant. By doing in this way, the effect that dew condensation is not produced in refrigerant piping (liquid piping) can be acquired.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerant circuit of the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置の冷媒回路の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerant circuit of the refrigerating air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍空調装置の冷媒回路の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerant circuit of the refrigerating air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る冷凍空調装置の冷媒回路の概略構成を示す図である。It is a figure which shows schematic structure of the refrigerant circuit of the refrigerating air conditioning apparatus which concerns on Embodiment 4 of this invention. 図4のバイパス回路の流量制御装置の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the flow control apparatus of the bypass circuit of FIG.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。
図1に示されるように、冷凍空調装置の冷媒回路100は、圧縮機1、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2、利用側膨張弁3及び利用側熱交換器4が冷媒配管を介して環状に接続された構成となっている。これらの構成からなる回路を主冷媒回路と呼ぶ。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention.
As shown in FIG. 1, the refrigerant circuit 100 of the refrigerating and air-conditioning apparatus includes a compressor 1, a means 2 for cooling refrigerant using a first heat source that is lower than an outside air dew point temperature, a use side expansion valve 3, and a use side heat exchange. The vessel 4 is configured to be connected annularly via a refrigerant pipe. A circuit having these configurations is referred to as a main refrigerant circuit.

なお、圧縮機1及び外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2は熱源側ユニットを構成し、利用側膨張弁3及び利用側熱交換器4は利用側ユニットを構成している。外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2と利用側膨張弁3とは液配管5によって接続されており、液配管5には現地接続液配管20が含まれる。利用側熱交換器4と圧縮機1とはガス配管7によって接続されており、ガス配管7には現地接続ガス配管21が含まれる。現地接続液配管20及び現地接続ガス配管21は、既設配管を利用する場合も含まれる。   The compressor 1 and the means 2 for cooling the refrigerant using the first heat source lower than the outside air dew point temperature constitute a heat source side unit, and the use side expansion valve 3 and the use side heat exchanger 4 constitute a use side unit. doing. The means 2 for cooling the refrigerant using the first heat source lower than the outside air dew point temperature and the use side expansion valve 3 are connected by a liquid pipe 5, and the liquid pipe 5 includes an on-site connection liquid pipe 20. The use side heat exchanger 4 and the compressor 1 are connected by a gas pipe 7, and the gas pipe 7 includes an on-site connection gas pipe 21. The local connection liquid pipe 20 and the local connection gas pipe 21 include cases where existing pipes are used.

冷凍空調装置の冷媒回路100は、バイパス回路11(サブ冷媒回路)を更に備えている。バイパス回路11は、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の入側の冷媒配管と、出側の冷媒配管との間に接続されている。バイパス回路11は、圧縮機1から吐出された冷媒の一部を、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2をバイパスして液配管5に送る。   The refrigerant circuit 100 of the refrigeration air conditioner further includes a bypass circuit 11 (sub refrigerant circuit). The bypass circuit 11 is connected between the inlet side refrigerant pipe and the outlet side refrigerant pipe of the means 2 for cooling the refrigerant using the first heat source lower than the outside air dew point temperature. The bypass circuit 11 sends a part of the refrigerant discharged from the compressor 1 to the liquid pipe 5 by bypassing the means 2 for cooling the refrigerant using the first heat source lower than the outside air dew point temperature.

なお、本実施の形態1において、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2は、例えば水道水、地下水、地熱、別の冷凍装置の蒸発器などの外気露点温度を下回る温度の熱源(第一の熱源)と熱交換する。これにより、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の冷媒は冷却される。   In the first embodiment, the means 2 for cooling the refrigerant using the first heat source that is lower than the outside air dew point temperature is, for example, the outside air dew point temperature of tap water, ground water, geothermal heat, an evaporator of another refrigeration apparatus, or the like. Heat exchange with lower temperature heat source (first heat source). Thereby, the refrigerant | coolant of the means 2 which cools the refrigerant | coolant using the 1st heat source which is less than an external air dew point temperature is cooled.

次に、本実施の形態1に係る冷凍空調装置の動作を図1を参照しながら説明する。
冷媒回路100内の冷媒は、圧縮機1において高温高圧の過熱ガスに圧縮された後、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2へ送られる。外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2を通過する冷媒は、上記の第一の熱源と熱交換を行うことで高温高圧の液冷媒に凝縮される。そして、液冷媒は、液配管5を通過し、利用側膨張弁3に通されて低温低圧の気液2相冷媒となる。低温低圧の気液2相冷媒は、利用側熱交換器4内で周囲の空気や水と熱交換されて低温低圧の過熱ガスの状態となり、ガス配管7を通過し、再度、圧縮機1に吸入される。この一連の動作を行うことで、主冷媒回路の冷媒サイクルが構成されている。
Next, the operation of the refrigerating and air-conditioning apparatus according to Embodiment 1 will be described with reference to FIG.
The refrigerant in the refrigerant circuit 100 is compressed into a high-temperature and high-pressure superheated gas in the compressor 1 and then sent to the means 2 for cooling the refrigerant using the first heat source that is lower than the outside air dew point temperature. The refrigerant that passes through the means 2 for cooling the refrigerant using the first heat source that is lower than the outside air dew point temperature is condensed into a high-temperature and high-pressure liquid refrigerant by exchanging heat with the first heat source. The liquid refrigerant passes through the liquid pipe 5 and is passed through the use-side expansion valve 3 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature low-pressure gas-liquid two-phase refrigerant is heat-exchanged with the surrounding air and water in the use-side heat exchanger 4 to become a low-temperature and low-pressure superheated gas state, passes through the gas pipe 7, and again enters the compressor 1. Inhaled. By performing this series of operations, the refrigerant cycle of the main refrigerant circuit is configured.

外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の両端に接続されたバイパス回路11は、圧縮機1で高温高圧の過熱ガスとなった冷媒の一部を、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の上流側で分岐して外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2をバイパスし、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2から流れる冷却された冷媒と外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の下流側で合流させ、液配管5へ送る。バイパス回路11へ分岐される冷媒の流量は、例えば、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の流路抵抗(管径、長さ)とバイパス回路11の流路抵抗(管径、長さ)との割合によって調整される。   The bypass circuit 11 connected to both ends of the means 2 for cooling the refrigerant using the first heat source that is lower than the outside air dew point temperature converts a part of the refrigerant that has become high temperature and high pressure superheated gas in the compressor 1 to the outside air dew point temperature. The second means for cooling the refrigerant using the first heat source that is below the outside air dew point temperature is bypassed by branching upstream of the means 2 for cooling the refrigerant using the first heat source that is less than The cooled refrigerant flowing from the means 2 for cooling the refrigerant using one heat source and the refrigerant using the first heat source below the outside air dew point temperature are merged downstream of the means 2 for cooling and sent to the liquid pipe 5. The flow rate of the refrigerant branched to the bypass circuit 11 is, for example, the flow path resistance (tube diameter, length) of the means 2 for cooling the refrigerant using the first heat source that is lower than the outside air dew point temperature and the flow path of the bypass circuit 11. It is adjusted by the ratio with the resistance (tube diameter, length).

以上のように、本実施の形態1においては、主冷媒回路にバイパス回路11(サブ冷媒回路)を設け、高温高圧の液冷媒と過熱ガスとを合流させることで、液冷媒の温度を液配管5の周囲の外気温度より高くすることができる。これにより、液配管5(特に、現地接続液配管20)への断熱処理の有無にかかわらず、液配管5(特に、現地接続液配管20)に結露が発生しない冷凍空調装置を得ることができる。
このため、本実施の形態1によれば、従来の問題点、つまり、液配管5の表面温度が周囲の外気の露点温度を下回る場合に、液配管5の表面に結露が生じ、液配管5が配置されている天井裏などに結露水が垂れ、天井裏や室内が水浸しになったり、カビが発生する、という従来の問題点が解消されている。
As described above, in the first embodiment, the bypass circuit 11 (sub-refrigerant circuit) is provided in the main refrigerant circuit, and the high-temperature and high-pressure liquid refrigerant and the superheated gas are merged, thereby adjusting the temperature of the liquid refrigerant to the liquid pipe. The ambient temperature around 5 can be higher. Thereby, it is possible to obtain a refrigerating and air-conditioning apparatus in which condensation does not occur in the liquid pipe 5 (particularly the on-site connection liquid pipe 20) regardless of the presence or absence of heat insulation treatment on the liquid pipe 5 (particularly on-site connection liquid pipe 20). .
For this reason, according to the first embodiment, when the surface temperature of the liquid pipe 5 is lower than the dew point temperature of the surrounding outside air, dew condensation occurs on the surface of the liquid pipe 5, and the liquid pipe 5 The conventional problem that condensation water hangs down on the back of the ceiling where the slab is placed, the back of the ceiling and the room become submerged, and mold occurs is eliminated.

なお、本実施の形態1において、液冷媒の温度を外気の温度より高くすることで、液配管5への結露の発生を防いでいるが、本発明はこれに限定されない。例えば、液冷媒の温度を外気の露点温度より高くしても同様に結露の発生を防ぐことができる。   In the first embodiment, the temperature of the liquid refrigerant is set higher than the temperature of the outside air to prevent the condensation on the liquid pipe 5, but the present invention is not limited to this. For example, even if the temperature of the liquid refrigerant is higher than the dew point temperature of the outside air, it is possible to prevent the occurrence of condensation.

なお、利用側膨張弁3は、本発明の「第一の減圧装置」に相当し、利用側熱交換器4は、本発明の「蒸発器」に相当する。また、液配管5は、本発明の「外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段と第一の減圧装置との間の冷媒配管」に相当する。   The use side expansion valve 3 corresponds to the “first decompression device” of the present invention, and the use side heat exchanger 4 corresponds to the “evaporator” of the present invention. Further, the liquid pipe 5 corresponds to the “refrigerant pipe between the means for cooling the refrigerant using the first heat source below the outside air dew point temperature and the first pressure reducing device” of the present invention.

実施の形態2.
本実施の形態2は、上記の実施の形態1の冷媒回路に過冷却冷媒回路を付加したものである。本実施の形態2において、主冷媒回路の基本的な構成は、実施の形態1における主冷媒回路の構成と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態2を説明する。
Embodiment 2. FIG.
In the second embodiment, a supercooled refrigerant circuit is added to the refrigerant circuit of the first embodiment. In the second embodiment, the basic configuration of the main refrigerant circuit is the same as the configuration of the main refrigerant circuit in the first embodiment. Therefore, the present embodiment will be mainly described below with respect to the differences from the first embodiment. 2 will be described.

図2に示されるように、冷凍空調装置の冷媒回路100は、過冷却冷媒回路30を備える。過冷却冷媒回路30は、絞り装置12、熱交換器13及び冷媒配管14が順に接続される構成となっている。
バイパス回路11の入口は、凝縮器6の出側と熱交換器13の上流側の冷媒配管との間に設けられ、バイパス回路11の出口は、熱交換器13の下流側の冷媒配管と分岐部16との間に設けられている。これにより、バイパス回路11は、熱交換器13をバイパスする構成となっている。
過冷却冷媒回路30は、バイパス回路11の出口の下流にある分岐部16と接続され、その後、絞り装置12を経由して熱交換器13に接続される。熱交換器13は、バイパス回路11の入口とバイパス回路11の出口との間に設けられ、絞り装置12で減圧された冷媒(第一の冷媒)と、凝縮器6の出側の分岐する前の冷媒(第二の冷媒)とを熱交換する。熱交換器13で熱交換された冷媒は、冷媒配管14を経由して、圧縮機1が有するインジェクション配管1aに送り出される。圧縮機1は、インジェクション配管1aから流入した中温中圧の冷媒を、圧縮機1の圧縮行程の中間部分に流入させる。
As shown in FIG. 2, the refrigerant circuit 100 of the refrigeration air conditioner includes a supercooling refrigerant circuit 30. The subcooling refrigerant circuit 30 is configured such that the expansion device 12, the heat exchanger 13, and the refrigerant pipe 14 are connected in order.
The inlet of the bypass circuit 11 is provided between the outlet side of the condenser 6 and the refrigerant pipe on the upstream side of the heat exchanger 13, and the outlet of the bypass circuit 11 branches from the refrigerant pipe on the downstream side of the heat exchanger 13. It is provided between the unit 16. Thereby, the bypass circuit 11 is configured to bypass the heat exchanger 13.
The supercooling refrigerant circuit 30 is connected to the branch portion 16 downstream of the outlet of the bypass circuit 11, and then connected to the heat exchanger 13 via the expansion device 12. The heat exchanger 13 is provided between the inlet of the bypass circuit 11 and the outlet of the bypass circuit 11, and the refrigerant decompressed by the expansion device 12 (first refrigerant) and before branching on the outlet side of the condenser 6 Heat exchange with the other refrigerant (second refrigerant). The refrigerant heat-exchanged by the heat exchanger 13 is sent out to the injection pipe 1 a of the compressor 1 via the refrigerant pipe 14. The compressor 1 causes the medium-temperature / medium-pressure refrigerant flowing from the injection pipe 1 a to flow into an intermediate portion of the compression stroke of the compressor 1.

次に、本実施の形態2に係る冷凍空調装置の動作を図2を参照しながら説明する。
まず、過冷却冷媒回路30の動作について説明する。
過冷却冷媒回路30は、凝縮器6から出た高温高圧の液冷媒の一部を分岐部16で分岐し、絞り装置12に冷媒を流す。絞り装置12は、流量を制御する可変式の流量調整弁であり、高温高圧の液冷媒を中温中圧の気液2相の冷媒(第二の熱源)として、熱交換器13に流す。熱交換器13は、凝縮器6から流出した高温高圧の液冷媒と、過冷却冷媒回路30を流れる中温中圧の気液2相の冷媒(第二の熱源)とを熱交換させ、凝縮器6の出側の液冷媒に過冷却を付加する。その後、過冷却冷媒回路30を流れる冷媒は、冷媒配管14に流入する。
Next, the operation of the refrigerating and air-conditioning apparatus according to Embodiment 2 will be described with reference to FIG.
First, the operation of the supercooling refrigerant circuit 30 will be described.
The supercooling refrigerant circuit 30 branches a part of the high-temperature and high-pressure liquid refrigerant that has come out of the condenser 6 at the branching section 16 and causes the refrigerant to flow through the expansion device 12. The expansion device 12 is a variable flow rate adjusting valve that controls the flow rate, and causes the high-temperature and high-pressure liquid refrigerant to flow through the heat exchanger 13 as a medium-temperature and medium-pressure gas-liquid two-phase refrigerant (second heat source). The heat exchanger 13 exchanges heat between the high-temperature and high-pressure liquid refrigerant that has flowed out of the condenser 6 and the medium-temperature and medium-pressure gas-liquid refrigerant (second heat source) that flows in the supercooled refrigerant circuit 30. Subcooling is added to the liquid refrigerant on the outlet side 6. Thereafter, the refrigerant flowing through the supercooled refrigerant circuit 30 flows into the refrigerant pipe 14.

冷媒配管14に流入した冷媒(中温中圧の冷媒)は、インジェクション配管1aを介して圧縮機1の圧縮行程の中間部分に流入する。これにより、圧縮機1を冷却し、吐出冷媒温度及び圧縮機1のモータ温度を下げることができる。   The refrigerant that has flowed into the refrigerant pipe 14 (medium-temperature medium-pressure refrigerant) flows into an intermediate portion of the compressor 1 through the injection pipe 1a. Thereby, the compressor 1 can be cooled and the discharge refrigerant temperature and the motor temperature of the compressor 1 can be lowered.

次に、上記の冷媒配管14の動作を踏まえた上で、本実施の形態2に係る冷凍空調装置の動作を説明する。
冷媒回路100内の冷媒は、圧縮機1にて高温高圧の過熱ガスに圧縮された後、凝縮器6において第一の熱源と熱交換されて、高温高圧の液冷媒に凝縮される。凝縮器6を出た液冷媒は、上記のように、過冷却冷媒回路30の熱交換器13によって高圧で過冷却が付加される。
また、バイパス回路11は、圧縮機1で高温高圧の過熱ガスとなった冷媒の一部を凝縮器6の下流側で分岐して熱交換器13をバイパスし、熱交換器13から流れる冷却された冷媒と熱交換器13の下流側で合流させ、液配管5へ送る。
その後は、上記の実施の形態1と同様に、液配管5に送られた冷媒は、利用側膨張弁3を通り、低温低圧の気液2相冷媒となり、利用側熱交換器4内で周囲の空気や水と熱交換されて低温低圧の過熱ガスの状態となり、再度圧縮機1に吸入される。
Next, the operation of the refrigerating and air-conditioning apparatus according to Embodiment 2 will be described based on the operation of the refrigerant pipe 14 described above.
The refrigerant in the refrigerant circuit 100 is compressed into a high-temperature and high-pressure superheated gas by the compressor 1, is then heat-exchanged with the first heat source in the condenser 6, and is condensed into a high-temperature and high-pressure liquid refrigerant. The liquid refrigerant exiting the condenser 6 is supercooled at a high pressure by the heat exchanger 13 of the supercooling refrigerant circuit 30 as described above.
Further, the bypass circuit 11 branches a part of the refrigerant that has become high-temperature and high-pressure superheated gas in the compressor 1 on the downstream side of the condenser 6 to bypass the heat exchanger 13, and is cooled by flowing from the heat exchanger 13. The refrigerant is combined with the downstream side of the heat exchanger 13 and sent to the liquid pipe 5.
After that, as in the first embodiment, the refrigerant sent to the liquid pipe 5 passes through the use side expansion valve 3 and becomes a low-temperature and low-pressure gas-liquid two-phase refrigerant. The heat is exchanged with the air and water to form a low-temperature and low-pressure superheated gas state, and is sucked into the compressor 1 again.

以上のように、本実施の形態2によれば、凝縮器6を通過した高温高圧の液冷媒が、過冷却冷媒回路30の熱交換器13で過冷却を大きく付加される。そして、液冷媒の温度が外気の温度以下となった場合であっても、バイパス回路11によって、高温高圧の液冷媒を合流させることで、液冷媒の温度を液配管5の周囲の外気温度より高くすることができる。これにより、液配管5(特に、現地接続液配管20)への断熱処理の有無にかかわらず、液配管5(特に、現地接続液配管20)に結露が発生しない冷凍空調装置を得ることができる。
また、過冷却冷媒回路30内の冷媒を圧縮機1に戻すようにしているので、過冷却冷媒回路30の絞り装置12で中温中圧にされ、熱交換器13にて主冷媒回路の冷媒と熱交換した冷媒を圧縮機1に入れ、圧縮機1を冷却することができる。
As described above, according to the second embodiment, the high-temperature and high-pressure liquid refrigerant that has passed through the condenser 6 is largely supercooled by the heat exchanger 13 of the supercooling refrigerant circuit 30. Even when the temperature of the liquid refrigerant is equal to or lower than the temperature of the outside air, the temperature of the liquid refrigerant is made higher than the temperature of the outside air around the liquid pipe 5 by joining the high-temperature and high-pressure liquid refrigerant by the bypass circuit 11. Can be high. Thereby, it is possible to obtain a refrigerating and air-conditioning apparatus in which condensation does not occur in the liquid pipe 5 (particularly the on-site connection liquid pipe 20) regardless of the presence or absence of heat insulation treatment on the liquid pipe 5 (particularly on-site connection liquid pipe 20). .
Further, since the refrigerant in the supercooling refrigerant circuit 30 is returned to the compressor 1, the medium temperature and the intermediate pressure are set by the expansion device 12 of the supercooling refrigerant circuit 30, and the refrigerant in the main refrigerant circuit is changed by the heat exchanger 13. The heat-exchanged refrigerant can be put into the compressor 1 and the compressor 1 can be cooled.

なお、絞り装置12は、本発明の「第二の減圧装置」に相当する。過冷却冷媒回路30の絞り装置12の下流側の冷媒(中温中圧の冷媒)は、本発明の「第一の冷媒」に相当し、凝縮器6の出側の冷媒(高温高圧の液冷媒)は、本発明における「第二の冷媒」に相当する。また、液配管5は、本発明の「凝縮器と第一の減圧装置との間の冷媒配管」に相当する。   The expansion device 12 corresponds to the “second decompression device” of the present invention. The refrigerant on the downstream side of the expansion device 12 of the subcooling refrigerant circuit 30 (medium temperature / medium pressure refrigerant) corresponds to the “first refrigerant” of the present invention, and the refrigerant on the outlet side of the condenser 6 (high temperature / high pressure liquid refrigerant). ) Corresponds to the “second refrigerant” in the present invention. The liquid pipe 5 corresponds to the “refrigerant pipe between the condenser and the first pressure reducing device” of the present invention.

実施の形態3.
本実施の形態3は、上記の実施の形態2のバイパス回路11に可変式の流量調整弁又は開閉可能な切替弁を付加したものである。本実施の形態3において、冷媒回路100の基本的な構成は、実施の形態2における冷媒回路100の構成と同様であるため、以下、実施の形態2との相違点を中心に本実施の形態3を説明する。
Embodiment 3 FIG.
In the third embodiment, a variable flow rate adjusting valve or a switching valve that can be opened and closed is added to the bypass circuit 11 of the second embodiment. In the third embodiment, the basic configuration of the refrigerant circuit 100 is the same as the configuration of the refrigerant circuit 100 in the second embodiment. Therefore, the present embodiment will be mainly described below with respect to the differences from the second embodiment. 3 will be described.

図3に示されるように、冷凍空調装置の冷媒回路100は、熱交換器13をバイパスするバイパス回路11に、弁15を更に備えている。バイパス回路11の弁15は、冷媒の流量を制御する可変式の流量調整弁、又は冷媒の流路を開閉可能にする切替弁である。   As shown in FIG. 3, the refrigerant circuit 100 of the refrigeration air conditioner further includes a valve 15 in the bypass circuit 11 that bypasses the heat exchanger 13. The valve 15 of the bypass circuit 11 is a variable flow rate adjusting valve that controls the flow rate of the refrigerant, or a switching valve that can open and close the flow path of the refrigerant.

次に、バイパス回路11の弁15の動作を図3を参照しながら説明する。
液配管5の中の液冷媒の温度が、周囲の外気温度を上回る場合には、液配管5は結露しないため、バイパス回路11の弁15を閉める。
しかし、液配管5の中の液冷媒の温度が、周囲の外気温度以下となる場合には、バイパス回路11の弁15を開けて、高温高圧の液冷媒をバイパス回路11に流す。これにより、液冷媒の温度を上げ、周囲の外気温度を上回るようにし、液配管5の結露を防止する。
Next, the operation of the valve 15 of the bypass circuit 11 will be described with reference to FIG.
When the temperature of the liquid refrigerant in the liquid pipe 5 exceeds the ambient outside air temperature, the liquid pipe 5 does not condense, so the valve 15 of the bypass circuit 11 is closed.
However, when the temperature of the liquid refrigerant in the liquid pipe 5 is equal to or lower than the ambient outside air temperature, the valve 15 of the bypass circuit 11 is opened to allow the high-temperature and high-pressure liquid refrigerant to flow to the bypass circuit 11. Thereby, the temperature of the liquid refrigerant is raised so as to exceed the ambient temperature of the surroundings, and condensation of the liquid pipe 5 is prevented.

また、冷媒の流量を制御する可変式の流量調整弁を使用した場合には、バイパス回路11を流れる冷媒の流量を微調整することが可能となるため、液配管5の温度を液配管5の周囲の温度(又は露点温度)を超えた温度であって、その温度付近に制御することができる。   In addition, when a variable flow rate adjusting valve that controls the flow rate of the refrigerant is used, the flow rate of the refrigerant flowing through the bypass circuit 11 can be finely adjusted. The temperature is higher than the ambient temperature (or dew point temperature) and can be controlled in the vicinity of that temperature.

更に、開閉可能な切替弁を全閉に、あるいは冷媒の流量を制御する可変式の流量調整弁を全閉になるように制御した場合には、冷媒がバイパス回路11を通過しなくなる。これにより、バイパス回路11を設置していない冷媒回路100と同様の構成とすることができる。   Further, when the switching valve that can be opened and closed is fully closed or the variable flow rate adjustment valve that controls the flow rate of the refrigerant is controlled to be fully closed, the refrigerant does not pass through the bypass circuit 11. Thereby, it can be set as the structure similar to the refrigerant circuit 100 which does not install the bypass circuit 11. FIG.

以上のように、本実施の形態3に係る冷凍空調装置は、現地の液配管5に断熱処理ができない場合、バイパス回路11の弁15で冷媒の流量の調整等を行い、凝縮器6で凝縮された液冷媒と熱交換器13で過冷却を付加された液冷媒を合流させる。これにより、液冷媒の温度を液配管5の周囲の外気温度より高くすることができ、液配管5に結露が発生しないようにすることができる。   As described above, the refrigerating and air-conditioning apparatus according to the third embodiment adjusts the flow rate of the refrigerant with the valve 15 of the bypass circuit 11 and condenses with the condenser 6 when the local liquid piping 5 cannot be insulated. The liquid refrigerant that has been supercooled by the heat exchanger 13 is merged with the liquid refrigerant that has been added. Thereby, the temperature of the liquid refrigerant can be made higher than the outside air temperature around the liquid pipe 5, and condensation can be prevented from occurring in the liquid pipe 5.

一方で、現地の液配管5(特に、現地接続液配管20)に断熱処理ができる場合(又は現地接続液配管20として断熱処理された既設冷媒配管を利用する場合)、バイパス回路11の弁15を全閉にし、凝縮器6から出た高温高圧の液冷媒を全て熱交換器13で過冷却を付加することで、液冷媒の過冷却を大きく取ることができる。これにより、冷凍空調装置の冷却能力が大きくなり、省エネ性を確保することができる。   On the other hand, when the local liquid pipe 5 (particularly, the local connection liquid pipe 20) can be insulated (or when the existing refrigerant pipe subjected to the heat insulation is used as the local connection liquid pipe 20), the valve 15 of the bypass circuit 11 is used. Is fully closed, and all of the high-temperature and high-pressure liquid refrigerant discharged from the condenser 6 is supercooled by the heat exchanger 13, so that the liquid refrigerant can be largely subcooled. Thereby, the cooling capacity of the refrigeration air conditioner is increased, and energy saving can be ensured.

これらのことから、1つの機種で、現地の液配管5に結露を防止するための断熱処理をするか否かを選択することで、客先の断熱処理等の費用や納期の要求に柔軟に対応できる冷凍空調装置を得ることができる。   From these facts, it is possible to flexibly meet the customer's cost of heat treatment and delivery requirements by selecting whether or not heat treatment to prevent condensation on the local liquid piping 5 with one model. A refrigeration air conditioner that can be used can be obtained.

実施の形態4.
本実施の形態4は、上記の実施の形態3のバイパス回路11の弁15の開度を自動的に制御するようにしたものである。本実施の形態4の冷媒回路100の構成は、実施の形態3の構成と同様であるため、以下、実施の形態3との相違点を中心に本実施の形態4を説明する。
Embodiment 4 FIG.
In the fourth embodiment, the opening degree of the valve 15 of the bypass circuit 11 of the third embodiment is automatically controlled. Since the configuration of the refrigerant circuit 100 of the fourth embodiment is the same as the configuration of the third embodiment, the fourth embodiment will be described below with a focus on differences from the third embodiment.

図4に示されるように、本実施の形態4の冷媒回路100は、外気温度センサ31、冷媒温度センサ32及び流量制御装置33を更に備えている。流量制御装置33は、例えばマイコンで構成されている。   As shown in FIG. 4, the refrigerant circuit 100 of the fourth embodiment further includes an outside air temperature sensor 31, a refrigerant temperature sensor 32, and a flow rate control device 33. The flow control device 33 is configured by, for example, a microcomputer.

外気温度センサ31は、周囲の外気温度を検出し、流量制御装置33は、その外気温度のデータを外気温度センサ31から取り込む。同様に、冷媒温度センサ32は、液配管5を流れる液冷媒の温度を検出し、流量制御装置33は、その液冷媒の温度のデータを冷媒温度センサ32から取り込む。   The outside air temperature sensor 31 detects the surrounding outside air temperature, and the flow control device 33 takes in the outside air temperature data from the outside air temperature sensor 31. Similarly, the refrigerant temperature sensor 32 detects the temperature of the liquid refrigerant flowing through the liquid pipe 5, and the flow rate control device 33 takes in the temperature data of the liquid refrigerant from the refrigerant temperature sensor 32.

流量制御装置33には、例えば、外気温度と液冷媒温度に対応したバイパス回路11の弁15の開度が予めテーブルに記憶されており、取り込んだ外気温度及び液冷媒温度のデータに基づいて当該テーブルを参照し、バイパス回路11の弁15の開度を求め、その開度に基づいて弁15を制御する。   In the flow rate control device 33, for example, the opening degree of the valve 15 of the bypass circuit 11 corresponding to the outside air temperature and the liquid refrigerant temperature is stored in advance in the table, and based on the data of the taken outside air temperature and liquid refrigerant temperature With reference to the table, the opening degree of the valve 15 of the bypass circuit 11 is obtained, and the valve 15 is controlled based on the opening degree.

図5は、流量制御装置33の制御動作を示すフローチャートである。以下、流量制御装置33の制御動作を図5の各ステップに基づき、図4を参照しつつ説明する。
(S1)
冷凍空調装置を起動する。
(S2)
バイパス回路11の流量制御装置33が、外気温度センサ31から液配管5の周囲の外気温度の情報を取り込むと共に、冷媒温度センサ32から液配管5を流れる液冷媒温度の情報を取り込む。
(S3)
外気温度と液冷媒温度を比較する。外気温度が液冷媒温度以上の場合は、ステップS4へ移行する。それ以外は、ステップS5へ移行する。
(S4)
バイパス回路11の弁15を開き、バイパス回路11に流れる冷媒量を増やし、液冷媒温度を上げる。
(S5)
バイパス回路11の弁15を閉じ、バイパス回路11に流れる冷媒量を減らし、液冷媒温度を下げ、液冷媒温度を外気温度付近に調整する。
FIG. 5 is a flowchart showing the control operation of the flow control device 33. Hereinafter, the control operation of the flow control device 33 will be described with reference to FIG. 4 based on the steps of FIG.
(S1)
Start the refrigeration air conditioner.
(S2)
The flow rate control device 33 of the bypass circuit 11 takes in information on the outside air temperature around the liquid pipe 5 from the outside air temperature sensor 31 and takes in information on the temperature of the liquid refrigerant flowing through the liquid pipe 5 from the refrigerant temperature sensor 32.
(S3)
Compare the outside air temperature and the liquid refrigerant temperature. When outside temperature is more than liquid refrigerant temperature, it shifts to Step S4. Otherwise, the process proceeds to step S5.
(S4)
The valve 15 of the bypass circuit 11 is opened, the amount of refrigerant flowing through the bypass circuit 11 is increased, and the liquid refrigerant temperature is increased.
(S5)
The valve 15 of the bypass circuit 11 is closed, the amount of refrigerant flowing through the bypass circuit 11 is reduced, the liquid refrigerant temperature is lowered, and the liquid refrigerant temperature is adjusted to the vicinity of the outside air temperature.

以上のように、バイパス回路11に弁15及び流量制御装置33を設けて弁15の開度を制御し、凝縮器6で凝縮された液冷媒と熱交換器13で過冷却を付加された液冷媒を合流させることで、液冷媒の温度を液配管5の周囲の外気温度より高くすることができる。これにより、液配管5に結露を防止するための断熱処理をするか否かを、1つの機種で選択でき、客先が負担する費用や納期の要求に柔軟に対応できる冷凍空調装置を得ることができる。   As described above, the valve 15 and the flow rate control device 33 are provided in the bypass circuit 11 to control the opening degree of the valve 15, and the liquid refrigerant condensed by the condenser 6 and the supercooled liquid added by the heat exchanger 13. By combining the refrigerant, the temperature of the liquid refrigerant can be made higher than the outside air temperature around the liquid pipe 5. Thereby, it is possible to select whether or not to heat-insulate the liquid pipe 5 to prevent condensation, and to obtain a refrigeration and air-conditioning apparatus that can flexibly respond to the cost and delivery date burden borne by the customer. Can do.

更に、バイパス回路11の流量制御装置33を設け、熱交換器13をバイパスする回路に流れる冷媒量を制御しているので、液冷媒温度を外気の温度付近に制御することができ、液配管5に結露しないようにすることができる冷凍空調装置を得ることができる。   Furthermore, since the flow rate control device 33 of the bypass circuit 11 is provided and the amount of refrigerant flowing through the circuit bypassing the heat exchanger 13 is controlled, the liquid refrigerant temperature can be controlled near the outside air temperature, and the liquid pipe 5 It is possible to obtain a refrigeration air conditioner that can prevent condensation.

なお、本実施の形態4では、外気温度と液冷媒温度を比較してバイパス回路11の弁15の開度を制御しているが、本発明はこれに限定されず、例えば外気温度センサ31の代わりに露点計を用いて外気の露点温度を求め、外気の露点温度と液冷媒温度を比較してバイパス回路11の弁15の開度を制御しても良い。   In the fourth embodiment, the opening degree of the valve 15 of the bypass circuit 11 is controlled by comparing the outside air temperature and the liquid refrigerant temperature. However, the present invention is not limited to this, for example, the outside air temperature sensor 31 Instead, a dew point temperature of the outside air may be obtained using a dew point meter, and the opening degree of the valve 15 of the bypass circuit 11 may be controlled by comparing the dew point temperature of the outside air with the liquid refrigerant temperature.

1 圧縮機、1a インジェクション配管、2 外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段、3 利用側膨張弁、4 利用側熱交換器、5 液配管、6 凝縮器、7 ガス配管、11 バイパス回路、12 絞り装置、13 熱交換器、14 冷媒配管、15 弁、16 分岐部、20 現地接続液配管、21 現地接続ガス配管、30 過冷却冷媒回路、31 外気温度センサ、32 冷媒温度センサ、33 流量制御装置、100 冷媒回路。   DESCRIPTION OF SYMBOLS 1 Compressor, 1a Injection piping, 2 Means for cooling refrigerant using first heat source lower than outside air dew point temperature, 3 Usage side expansion valve, 4 Usage side heat exchanger, 5 Liquid piping, 6 Condenser, 7 Gas Piping, 11 Bypass circuit, 12 Throttle device, 13 Heat exchanger, 14 Refrigerant piping, 15 Valve, 16 Branch, 20 On-site connection liquid piping, 21 On-site connection gas piping, 30 Supercooling refrigerant circuit, 31 Outside air temperature sensor, 32 Refrigerant temperature sensor, 33 flow rate control device, 100 refrigerant circuit.

Claims (9)

圧縮機、凝縮器、第一の減圧装置及び蒸発器が、冷媒配管を介して環状に接続された主冷媒回路と、
前記凝縮器の出側の冷媒を更に冷却する熱交換器を備えた過冷却冷媒回路と、
前記熱交換器の上流側の冷媒配管と前記熱交換器の下流側の冷媒配管との間に接続され、前記熱交換器をバイパスするバイパス回路と、
を備え、
前記バイパス回路は、前記凝縮器で凝縮された冷媒の一部を、前記熱交換器をバイパスして前記熱交換器の下流側の冷媒配管へ送る、
冷凍空調装置。
A main refrigerant circuit in which a compressor, a condenser, a first pressure reducing device, and an evaporator are annularly connected via a refrigerant pipe;
A supercooled refrigerant circuit comprising a heat exchanger for further cooling the refrigerant on the outlet side of the condenser;
A bypass circuit connected between a refrigerant pipe upstream of the heat exchanger and a refrigerant pipe downstream of the heat exchanger, and bypassing the heat exchanger;
With
The bypass circuit bypasses the heat exchanger and sends a part of the refrigerant condensed in the condenser to a refrigerant pipe on the downstream side of the heat exchanger.
Refrigeration air conditioner.
前記圧縮機は、インジェクション配管を有し、
前記過冷却冷媒回路は、
前記バイパス回路の出口と前記第一の減圧装置との間から分岐した第一の冷媒を減圧する第二の減圧装置と、
前記第二の減圧装置から送られた前記第一の冷媒と、前記凝縮器を出た第二の冷媒とで熱交換を行い、前記第二の冷媒を過冷却する前記熱交換器と、
を備え、
前記熱交換器で熱交換された前記第一の冷媒を前記圧縮機のインジェクション配管へ送る、
請求項に記載の冷凍空調装置。
The compressor has an injection pipe,
The supercooling refrigerant circuit is
A second decompression device for decompressing the first refrigerant branched from between the outlet of the bypass circuit and the first decompression device;
The heat exchanger that performs heat exchange between the first refrigerant sent from the second decompression device and the second refrigerant that has exited the condenser, and supercools the second refrigerant;
With
Sending the first refrigerant heat-exchanged by the heat exchanger to an injection pipe of the compressor;
The refrigerating and air-conditioning apparatus according to claim 1 .
前記第二の減圧装置は、流量を制御する可変式の流量調整弁である、
請求項に記載の冷凍空調装置。
The second pressure reducing device is a variable flow rate adjusting valve that controls the flow rate.
The refrigerating and air-conditioning apparatus according to claim 2 .
前記バイパス回路は、前記凝縮器と前記第一の減圧装置との間の冷媒配管内の冷媒の温度が、周囲の外気の露点温度より高くなるように、前記凝縮器で凝縮された冷媒の一部を前記熱交換器の下流側の冷媒配管へ送る、
請求項1〜3の何れか一項に記載の冷凍空調装置。
The bypass circuit is one of the refrigerant condensed in the condenser so that the temperature of the refrigerant in the refrigerant pipe between the condenser and the first pressure reducing device is higher than the dew point temperature of the surrounding outside air. Part to the refrigerant pipe downstream of the heat exchanger,
The refrigeration air conditioner as described in any one of Claims 1-3 .
前記バイパス回路は、前記凝縮器と前記第一の減圧装置との間の冷媒配管内の冷媒の温度が、周囲の外気の温度より高くなるように、前記凝縮器で凝縮された冷媒の一部を前記熱交換器の下流側の冷媒配管へ送る、
請求項1〜3の何れか一項に記載の冷凍空調装置。
The bypass circuit includes a part of the refrigerant condensed in the condenser so that the temperature of the refrigerant in the refrigerant pipe between the condenser and the first pressure reducing device is higher than the temperature of the surrounding outside air. To the refrigerant pipe downstream of the heat exchanger,
The refrigeration air conditioner as described in any one of Claims 1-3 .
前記バイパス回路は、冷媒の流量を調整する可変式の流量調整弁又は開閉可能な切替弁を備えた、
請求項1〜5の何れか一項に記載の冷凍空調装置。
The bypass circuit includes a variable flow rate adjustment valve that adjusts the flow rate of the refrigerant or a switching valve that can be opened and closed.
The refrigeration air conditioner as described in any one of Claims 1-5 .
前記凝縮器と前記第一の減圧装置との間の冷媒配管内の冷媒の温度を検出する冷媒温度センサと、
外気の温度を検出する外気温度センサと、
前記冷媒温度センサによって検出された前記冷媒の温度と、前記外気温度センサによって検出された前記外気の温度とに基づいて前記流量調整弁又は前記切替弁を制御する流量制御装置と、
を更に備えた、
請求項に記載の冷凍空調装置。
A refrigerant temperature sensor for detecting the temperature of the refrigerant in the refrigerant pipe between the condenser and the first pressure reducing device;
An outside air temperature sensor for detecting the outside air temperature;
A flow rate control device that controls the flow rate adjustment valve or the switching valve based on the temperature of the refrigerant detected by the refrigerant temperature sensor and the temperature of the outside air detected by the outside air temperature sensor;
Further comprising
The refrigerating and air-conditioning apparatus according to claim 6 .
前記流量制御装置は、前記液配管内の冷媒が周囲の外気の露点温度より高くなるように、前記バイパス回路を流通する冷媒の流量を調整する、
請求項に記載の冷凍空調装置。
The flow rate control device adjusts the flow rate of the refrigerant flowing through the bypass circuit so that the refrigerant in the liquid pipe is higher than the dew point temperature of the surrounding outside air.
The refrigerating and air-conditioning apparatus according to claim 7 .
前記流量制御装置は、前記液配管内の冷媒が周囲の外気の温度より高くなるように、前記バイパス回路を流通する冷媒の流量を調整する、
請求項に記載の冷凍空調装置。
The flow rate control device adjusts the flow rate of the refrigerant flowing through the bypass circuit so that the refrigerant in the liquid pipe is higher than the temperature of the ambient outside air.
The refrigerating and air-conditioning apparatus according to claim 7 .
JP2016534035A 2014-07-16 2014-07-16 Refrigeration air conditioner Active JP6223573B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068959 WO2016009516A1 (en) 2014-07-16 2014-07-16 Refrigerating and air conditioning device

Publications (2)

Publication Number Publication Date
JPWO2016009516A1 JPWO2016009516A1 (en) 2017-04-27
JP6223573B2 true JP6223573B2 (en) 2017-11-01

Family

ID=55078035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016534035A Active JP6223573B2 (en) 2014-07-16 2014-07-16 Refrigeration air conditioner

Country Status (4)

Country Link
EP (1) EP3171096A4 (en)
JP (1) JP6223573B2 (en)
CN (1) CN106537062B (en)
WO (1) WO2016009516A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146068A (en) * 2016-02-19 2017-08-24 三菱重工業株式会社 Refrigerating machine and its control method
JP6664478B2 (en) * 2016-06-23 2020-03-13 三菱電機株式会社 Binary refrigeration equipment
JP7267063B2 (en) * 2019-03-27 2023-05-01 三菱重工サーマルシステムズ株式会社 refrigeration cycle equipment
EP3879207B1 (en) * 2020-03-10 2023-09-06 Trane International Inc. Refrigeration apparatuses and operating method thereof
KR102416452B1 (en) * 2021-06-16 2022-07-05 호스트웨이아이디씨(주) Eco-friendly natural cooling system using the hydrothermal energy of tap water supplied from waterwork
CN113613465B (en) * 2021-08-02 2022-12-02 珠海格力电器股份有限公司 Air conditioner anti-condensation assembly, control method thereof and air conditioning system
WO2024023993A1 (en) * 2022-07-27 2024-02-01 三菱電機株式会社 Refrigeration cycle device

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285426A (en) * 1995-04-13 1996-11-01 Matsushita Refrig Co Ltd Refrigerator
JPH1047836A (en) * 1996-08-06 1998-02-20 Matsushita Refrig Co Ltd Refrigerator having freezing function
JP2004361019A (en) * 2003-06-05 2004-12-24 Sharp Corp Air conditioner
JP2005049073A (en) * 2003-07-31 2005-02-24 Ckd Corp Fluid cooling device
EP1771691A4 (en) * 2004-05-24 2009-09-02 Carrier Corp Two phase or subcooling reheat system
JP2006112708A (en) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp Refrigerating air conditioner
CN100480597C (en) * 2004-10-29 2009-04-22 大金工业株式会社 Refrigeration system
CN101666559B (en) * 2006-03-27 2012-04-04 三菱电机株式会社 Refrigerating and air-conditioning plant
JP2008008523A (en) * 2006-06-28 2008-01-17 Hitachi Appliances Inc Refrigerating cycle and water heater
JP4803199B2 (en) * 2008-03-27 2011-10-26 株式会社デンソー Refrigeration cycle equipment
JP5120056B2 (en) * 2008-05-02 2013-01-16 ダイキン工業株式会社 Refrigeration equipment
JP4740984B2 (en) * 2008-06-19 2011-08-03 三菱電機株式会社 Refrigeration air conditioner
JP5414598B2 (en) * 2010-03-30 2014-02-12 三菱電機株式会社 Air conditioner
JP5278451B2 (en) * 2011-01-27 2013-09-04 パナソニック株式会社 Refrigeration cycle apparatus and hot water heater using the same
JP6051401B2 (en) * 2012-06-12 2016-12-27 パナソニックIpマネジメント株式会社 Heat pump air conditioning and hot water supply system
WO2015132967A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device

Also Published As

Publication number Publication date
CN106537062A (en) 2017-03-22
EP3171096A1 (en) 2017-05-24
CN106537062B (en) 2019-04-16
WO2016009516A1 (en) 2016-01-21
JPWO2016009516A1 (en) 2017-04-27
EP3171096A4 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6223573B2 (en) Refrigeration air conditioner
US9631826B2 (en) Combined air-conditioning and hot-water supply system
JP6479162B2 (en) Air conditioner
US10161647B2 (en) Air-conditioning apparatus
JP5847366B1 (en) Air conditioner
US20100180612A1 (en) Refrigeration device
EP3109566B1 (en) Air conditioning device
GB2566381A (en) Refrigeration cycle system
JP6362780B2 (en) Refrigeration cycle equipment
JP2011179783A (en) Refrigerating device
JP5872052B2 (en) Air conditioner
JP6380927B2 (en) refrigerator
JP6072264B2 (en) Refrigeration equipment
JP6242289B2 (en) Refrigeration cycle equipment
JP6316452B2 (en) Refrigeration cycle equipment
JP5447968B2 (en) Heat pump equipment
JP2009228975A (en) Remote condenser type air conditioner
JP2014001916A (en) Refrigeration cycle device
JP2017161164A (en) Air-conditioning hot water supply system
WO2017138243A1 (en) Refrigeration cycle device
JP2013120039A (en) Heat pump system
US20150219373A1 (en) Air-conditioning apparatus
JP2005134011A (en) Air conditioner
JPH04283358A (en) Refrigerator
JP2016166703A (en) Air conditioning unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250