JP2002195702A - Extraction and separation mechanism, refrigerating cycle apparatus, heat source unit and regeneration method therefor - Google Patents

Extraction and separation mechanism, refrigerating cycle apparatus, heat source unit and regeneration method therefor

Info

Publication number
JP2002195702A
JP2002195702A JP2000393582A JP2000393582A JP2002195702A JP 2002195702 A JP2002195702 A JP 2002195702A JP 2000393582 A JP2000393582 A JP 2000393582A JP 2000393582 A JP2000393582 A JP 2000393582A JP 2002195702 A JP2002195702 A JP 2002195702A
Authority
JP
Japan
Prior art keywords
pipe
extraction
liquid
raffinate
extractant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000393582A
Other languages
Japanese (ja)
Other versions
JP4567182B2 (en
Inventor
Osamu Morimoto
修 森本
Yasuyori Hirai
康順 平井
Shiro Takatani
士郎 高谷
Satoru Toyama
悟 外山
Shinichi Iwamoto
慎一 岩本
Tomohiko Kasai
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000393582A priority Critical patent/JP4567182B2/en
Publication of JP2002195702A publication Critical patent/JP2002195702A/en
Application granted granted Critical
Publication of JP4567182B2 publication Critical patent/JP4567182B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remove the problem of the oil in a compressor being drained and thus reliability tends to be lost, which is caused by the infeasibility of returning only ester oil or ether oil to the compressor after being separated, due to the mingling of mineral oil, which has been recovered from existing piping in the ester oil or ether oil once new oil flows out of an outdoor unit, in the case where abundant of refrigerator oil in the compressor temporarily flows out due to foaming, when the compressor is started with liquid refrigerant being stagnated therein, resulting in the inability to capture all of the refrigerant oil, even with a high performance oil separator. SOLUTION: A compressor, a heat source side heat exchanger and an accumulator are provided. There are also provided an extraction and separation mechanism, in which the piping between the heat exchanger and liquid piping is connected to inflow piping, piping for connecting the lower part of the accumulator to inflow piping for extractive, piping for diverging compressor suction piping for connection with outflow piping, piping for diverging the compressor suction piping for connection with extraction outflow piping, and a raffinate storage vessel which is connected to raffinate outflow piping for storing raffinate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の技術分野】この発明は冷凍サイクル装置ある
いは空調・冷凍装置の冷媒の置換に関する。さらに詳し
くは、冷凍サイクル装置の冷媒を置換する際に既存の冷
凍機油を抽出分離する抽出分離機構とそれを用いた冷凍
サイクル装置に関する。具体例としては、主に、HFC系
冷媒を用いた冷凍・空調機を新設する場合において、HC
FC系冷媒もしくはCFC系冷媒を用いた冷凍空調機に用い
られていた既設の延長配管を流用する場合、既設配管中
に残留するHCFC系もしくはCFC系冷媒用の冷凍機油を洗
浄・回収する抽出分離機構および抽出分離機構を有する
冷凍・空調機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle apparatus.
Or, it relates to the replacement of refrigerant in air conditioning / refrigeration equipment. Further details
In other words, when replacing the refrigerant in the refrigeration cycle
Extraction separation mechanism for extraction and separation of refrigerating machine oil and refrigeration using it
It relates to a cycle device. Specific examples are mainly HFC-based
When installing a refrigeration / air conditioner using refrigerant, HC
Used for refrigeration and air conditioners using FC-based refrigerants or CFC-based refrigerants
When diverting existing extension piping,
Of refrigeration oil for HCFC or CFC refrigerant remaining in the
Has an extraction and separation mechanism for purifying and recovering and an extraction and separation mechanism
It relates to refrigeration and air conditioners.

【0002】[0002]

【従来の技術】図23は、特開2000−9368号公報に記載
の既設配管を用いた冷凍・空調機であって、既設配管中
に残留する鉱油を洗浄・回収する冷凍サイクル装置の従
来例である。図23に示す冷凍サイクルにおいて、冷房
運転を行う場合は、圧縮機23で圧縮された高温高圧の
ガス冷媒はHFC用冷凍機油と共に圧縮機23を吐出さ
れ、油分離器53に入る。ここで、HFC用の冷凍機油
は完全に分離され、ガス冷媒のみが、四方弁24を経
て、熱源側熱交換器25へ流入し、凝縮液化する。凝縮
液化した冷媒は第一の操作弁57を経て第一の接続配管
Cを流れる。HFCの液冷媒が第一の接続配管Cを流れ
るときに、第一の接続配管Cに残留している鉱油等を少
しずつ洗浄してHFCの液冷媒と共に流れ、絞り装置4
0へ流入し、ここで、低圧まで減圧されて低温の二相状
態となり、負荷側熱交換器39で蒸発・ガス化する。蒸
発・ガス化した冷媒は、第二の接続配管Dに流入する。
第二の接続配管Dに流入している鉱油は、ガス冷媒との
速度差から生じる鉱油と冷媒ガス界面のせん断力を推進
力とし、配管内面を引きずられるように流れる。接続配
管Dを流れた鉱油を含むガス冷媒は、四方弁24を介し
て異物捕獲手段55へ流入する。ここで、鉱油はガス冷
媒から分離され、ガス冷媒のみがアキュムレータ26を
介して圧縮機23へ戻る。
2. Description of the Related Art FIG. 23 shows a conventional refrigeration cycle apparatus for refrigeration / air conditioning using an existing pipe disclosed in Japanese Patent Application Laid-Open No. 2000-9368, which cleans and recovers mineral oil remaining in the existing pipe. It is. In the refrigeration cycle shown in FIG. 23, when performing the cooling operation, the high-temperature and high-pressure gas refrigerant compressed by the compressor 23 is discharged from the compressor 23 together with the HFC refrigerating machine oil and enters the oil separator 53. Here, the refrigerating machine oil for the HFC is completely separated, and only the gas refrigerant flows into the heat source side heat exchanger 25 via the four-way valve 24 and is condensed and liquefied. The condensed and liquefied refrigerant flows through the first connection pipe C via the first operation valve 57. When the liquid refrigerant of the HFC flows through the first connection pipe C, the mineral oil or the like remaining in the first connection pipe C is washed little by little and flows together with the liquid refrigerant of the HFC.
0, where the pressure is reduced to a low pressure to be in a low-temperature two-phase state, and the load-side heat exchanger 39 evaporates and gasifies. The evaporated and gasified refrigerant flows into the second connection pipe D.
The mineral oil flowing into the second connection pipe D flows so as to be dragged on the inner surface of the pipe by using the shearing force at the interface between the mineral oil and the refrigerant gas generated from the speed difference between the gas refrigerant and the refrigerant as the driving force. The gas refrigerant containing the mineral oil flowing through the connection pipe D flows into the foreign matter capturing means 55 via the four-way valve 24. Here, the mineral oil is separated from the gas refrigerant, and only the gas refrigerant returns to the compressor 23 via the accumulator 26.

【0003】また、図24は特開平09‐324756号公報に
記載の密閉型圧縮機で、液面を制御して冷凍機油と液冷
媒を分離する機構の従来例である。密閉ケーシング70
の底面と同じ高さに抽出口66を設け、密閉ケーシング
70の上部と底面と密閉ケーシング70の底面と同じ高
さに設けた抽出口66とを抽出配管67で結び、その抽
出配管67の中にHFCを主成分とする液状の冷媒68
の液面と連動して動く比重を有するフロート65を設け
ることで、密閉ケーシング70内の底面から、二相分離
した液冷媒を抽出し、非溶解性潤滑油71を給油管64
より吸入するようにしたものである。
FIG. 24 shows a conventional example of a hermetic compressor disclosed in Japanese Patent Application Laid-Open No. 09-324756, in which a liquid level is controlled to separate refrigerating machine oil and liquid refrigerant. Closed casing 70
An extraction port 66 is provided at the same height as the bottom surface of the closed casing 70, and an upper portion and a bottom surface of the closed casing 70 are connected to an extraction port 66 provided at the same height as the bottom surface of the closed casing 70 by an extraction pipe 67. Liquid refrigerant 68 mainly composed of HFC
By providing a float 65 having a specific gravity that moves in conjunction with the liquid level of the liquid, the liquid refrigerant separated into two phases is extracted from the bottom surface in the closed casing 70, and the insoluble lubricating oil 71 is supplied to the oil supply pipe 64.
It is intended to be more inhaled.

【0004】[0004]

【発明が解決しようとする課題】特開2000−9368号公報
記載の冷凍サイクル装置では、室外機の中で新規の冷凍
機油として用いられるエステル油もしくはエーテル油を
完全に回収する必要があり、高性能な油分離器が必要と
なり、構造が複雑になったり、製造にコストがかかると
いう課題があった。
In the refrigerating cycle device described in Japanese Patent Application Laid-Open No. 2000-9368, it is necessary to completely recover ester oil or ether oil used as a new refrigerating machine oil in an outdoor unit. There is a problem that a high performance oil separator is required, the structure becomes complicated, and the production cost increases.

【0005】さらに、圧縮機に液冷媒が寝込んだ状態で
圧縮機を起動すると、フォーミングによって圧縮機内の
冷凍機油が一時的に多量に流出するため、高性能な油分
離器でも全ての冷凍機油を捕らえきれない可能性があ
る。この場合、一旦、室外機から新規の油が流出してし
まうと、既設配管中から回収した鉱油とエステル油もし
くはエーテル油が混ざり、エステル油もしくはエーテル
油のみを分離し圧縮機へ返油することが不可能になるの
で、圧縮機の油が枯渇し、信頼性を失う可能性があっ
た。
Further, when the compressor is started with the liquid refrigerant laid in the compressor, a large amount of the refrigerating machine oil in the compressor temporarily flows out due to forming. May not be caught. In this case, once new oil spills from the outdoor unit, the mineral oil recovered from the existing piping and the ester oil or ether oil are mixed, and only the ester oil or ether oil is separated and returned to the compressor. , The compressor oil is depleted and may lose reliability.

【0006】また、特開平09‐324756号公報に示される
ような抽出機構では、新規の冷凍機油として用いられる
エステル油もしくはエーテル油と既設配管中に残留した
冷凍機油である鉱油とが混合した混合油が二相分離し冷
媒液の上に浮く場合には、既設配管中に残留していた冷
凍機油のみを分離・回収することができず、新規のエス
テル油もしくはエーテル油が劣化した鉱油の影響で劣化
し、信頼性を失うという課題があった。
[0006] Further, in the extraction mechanism as disclosed in Japanese Patent Application Laid-Open No. 09-324756, a mixture of ester oil or ether oil used as a new refrigerating machine oil and mineral oil which is a refrigerating machine oil remaining in an existing pipe is mixed. If the oil separates into two phases and floats on the refrigerant liquid, only the refrigerating machine oil remaining in the existing piping cannot be separated and recovered, and the effect of new ester oil or ether oil degraded mineral oil And the problem of losing reliability.

【0007】この発明は上述の課題を解決するためにな
されたものであり、第一の冷媒、例えばHCFC系もしくは
CFC系冷媒が用いられていた既設配管を流用する冷凍サ
イクル装置あるいは冷凍・空調装置において、第二の冷
媒、例えばHFC系冷媒の冷凍機油である新規のエステ
ル油やエーテル油等と既設配管中に残留していたCFC
系もしくはHCFC系冷凍サイクルの冷凍機油である鉱
油とが混合した場合でも、冷凍・空調機が通常の運転を
しつつ、既設配管中に残留していた鉱油を分離回収し、
新規のエステル油もしくはエーテル油の劣化を抑え、既
設配管を使用する冷凍・空調機の施工を容易にし、冷凍
サイクルの信頼性を高めることを目的とする。
[0007] The present invention has been made to solve the above-mentioned problems, and has a first refrigerant, for example, an HCFC system or the like.
In a refrigeration cycle device or a refrigeration / air-conditioning device that diverts an existing pipe in which a CFC-based refrigerant was used, a second refrigerant, for example, a new ester oil or ether oil, which is a refrigerating machine oil of an HFC-based refrigerant, is used in the existing pipe. CFC remaining
Even if mineral oil that is the refrigerating machine oil of the refrigeration cycle of the system or the HCFC system is mixed, the refrigeration / air conditioner performs the normal operation and separates and recovers the mineral oil remaining in the existing piping.
An object of the present invention is to suppress deterioration of a new ester oil or ether oil, to facilitate installation of a refrigeration / air conditioner using an existing pipe, and to enhance reliability of a refrigeration cycle.

【0008】[0008]

【課題を解決するための手段】本願発明による抽出分離
機構は、請求項1に記載のように、抽質と原溶媒とが混
合した抽料と抽剤とを二相分離する比率で混合し、抽料
中の抽質を抽剤に抽出すると共に抽残液の密度が抽出液
の密度よりも小さい抽出分離機構において、抽残液のみ
を分離する機構を備えたものである。
According to a first aspect of the present invention, there is provided an extraction / separation mechanism which mixes an extractant and an extractant in a ratio of two phases, in which an extract and a raw solvent are mixed. Further, in the extraction / separation mechanism in which the extract in the extract is extracted into the extractant and the density of the raffinate is smaller than the density of the extract, a mechanism for separating only the raffinate is provided.

【0009】本願発明による抽出分離機構は、請求項2
に記載のように、鉛直方向に長さを有し、抽剤流入配
管、抽料流入配管、前記抽剤流入配管および前記抽料流
入配管より高い位置に配置された抽残液流出配管を備
え、抽剤により抽料から所定成分を抽出する抽出容器
と、鉛直方向に長さを有し抽剤流出配管を有する液面発
生容器とを、それぞれ鉛直方向の下部および上部で互い
に連通させ、前記抽剤流出配管と前記抽残液流出配管と
を前記抽剤流出配管により形成する液面よりも前記抽残
液流出配管により形成する液面が高くなるように配置し
たものである。
The extraction and separation mechanism according to the present invention is described in claim 2.
As described in the above, having a length in the vertical direction, the extractant inflow pipe, the extractant inflow pipe, the extractant inflow pipe and the raffinate liquid outflow pipe disposed at a position higher than the extractant inflow pipe An extraction container for extracting a predetermined component from an extract with an extractant, and a liquid level generating container having a length in the vertical direction and an extractant outflow pipe, respectively, communicate with each other at a lower portion and an upper portion in the vertical direction, The extractant outflow pipe and the raffinate outflow pipe are arranged so that the liquid level formed by the raffinate outflow pipe is higher than the liquid level formed by the extractant outflow pipe.

【0010】本願発明による抽出分離機構は、請求項3
に記載のように、請求項2に記載のものにおいて、前記
抽料流入配管を前記抽剤流入配管よりも低い位置に配置
したものである。
[0010] The extraction and separation mechanism according to the present invention is described in claim 3.
As described in the item (2), in the above-mentioned item (2), the extract inflow pipe is arranged at a position lower than the extractant inflow pipe.

【0011】本願発明による抽出分離機構は、請求項4
に記載のように、鉛直方向に長さを有し、抽剤流入配管
と抽料流入配管と前記抽剤流入配管および前記抽料流入
配管より高い位置に配置された抽残液流出配管と、前記
抽料流入配管より低い位置に配置された抽出液流出配管
とを備え、抽剤により抽料から所定成分を抽出する抽出
容器と、前記抽出容器内の底面と液面との圧力差を一定
にする制御機構とを含み、前記抽出容器内に抽剤のみが
ある場合の液面高さより前記抽残液流出配管により形成
する液面が高くなるように前記抽残液流出配管を配置し
たものである。
The extraction / separation mechanism according to the present invention is described in claim 4.
As described in the above, has a length in the vertical direction, the extractant inflow pipe, the extractant inflow pipe, the extractant inflow pipe and the raffinate liquid outflow pipe arranged at a position higher than the extractant inflow pipe, An extraction liquid outlet pipe arranged at a position lower than the extract liquid inlet pipe, and an extraction container for extracting a predetermined component from the extract with an extractant, and a constant pressure difference between the bottom surface and the liquid level in the extraction container. And a control mechanism for arranging the raffinate outflow pipe such that the liquid level formed by the raffinate outflow pipe is higher than the liquid level when only the extractant is present in the extraction container. It is.

【0012】本願発明による抽出分離機構は、請求項5
に記載のように、鉛直方向に長さを有し、抽料流入配管
と、前記抽料流入配管より高い位置に配置された抽残液
流出配管と、前記抽料流入配管より低い位置に配置され
た抽出液流出配管とを備え、抽剤により抽料から所定成
分を抽出する抽出容器と、鉛直方向に長さを有し、抽剤
流入配管と抽剤流出配管とを備えた液面発生容器とを、
それぞれ鉛直方向の下部および上部で互いに連通させ、
前記抽剤流出配管と前記抽残液流出配管とを前記抽剤流
出配管により形成する液面よりも前記抽残液流出配管に
より形成する液面が高くなるように配置したものであ
る。
The extraction and separation mechanism according to the present invention is described in claim 5.
As described in the above, has a length in the vertical direction, the extract inflow pipe, the raffinate outflow pipe arranged at a position higher than the extract inflow pipe, and disposed at a position lower than the extract inflow pipe And an extraction container for extracting a predetermined component from the extract by the extractant, and a liquid surface having a length in the vertical direction and an extractant inflow pipe and an extractant outflow pipe. Container and
Communicate with each other at the bottom and top in the vertical direction,
The extractant outflow pipe and the raffinate outflow pipe are arranged so that the liquid level formed by the raffinate outflow pipe is higher than the liquid level formed by the extractant outflow pipe.

【0013】本願発明による抽出分離機構は、請求項6
に記載のように、請求項2〜5のいずれかに記載のもの
において、前記抽残液流出配管の接続部近傍の水平方向
の断面積を前記接続部近傍より低い部分の水平方向の断
面積よりも小さくしたものである。
According to the present invention, there is provided an extraction / separation mechanism.
As described in any one of claims 2 to 5, the horizontal cross-sectional area of a portion near the connecting portion of the raffinate outflow pipe is lower than the horizontal portion of the portion near the connecting portion. It is smaller than that.

【0014】本願発明による抽出分離機構は、請求項7
に記載のように、抽剤により抽料から所定成分を抽出す
る抽出容器、前記抽出容器に接続され抽剤と抽料とを混
合して流入させる混合配管、前記抽出容器に接続され逆
止弁を有する抽残液流出配管、前記抽出容器内の下部に
一端を開口し上部に他端を開口する通気管、抽出容器内
の上部に一端を開口し前記抽出容器の外部に他端を開口
する液戻し管、前記抽残液流出配管の接続部より低い位
置で前記通気管の中間部と前記液戻し管の中間部とを連
通する連通管を備えたものである。
According to the present invention, there is provided an extraction / separation mechanism.
As described in, an extraction container for extracting a predetermined component from the extract by the extractant, a mixing pipe connected to the extraction container to mix and flow the extractant and the extract, and a check valve connected to the extraction container A raffinate outflow pipe having: a vent pipe having one end opened at the lower part in the extraction container and the other end opened at the upper part, and one end opened at the upper part inside the extraction container and the other end opened outside the extraction container. A liquid return pipe, and a communication pipe that communicates with an intermediate part of the vent pipe and an intermediate part of the liquid return pipe at a position lower than a connection part of the raffinate outflow pipe.

【0015】本願発明による抽出分離機構は、請求項8
に記載のように、アキュムレータと請求項7に記載の抽
出容器とを一体に形成し、前記液戻し管の前記他端を前
記アキュムレータの内部に開口させたものである。
The extraction and separation mechanism according to the present invention is described in claim 8.
The accumulator and the extraction container according to claim 7 are integrally formed, and the other end of the liquid return pipe is opened inside the accumulator.

【0016】本願発明による抽出分離機構は、請求項9
に記載のように、抽剤により抽料から所定成分を抽出す
る抽出容器、前記抽出容器に接続され抽剤と抽料とを混
合して流入させる混合配管、前記抽出容器内の上部に一
端を開口し前記抽出容器の外部に他端を開口する通気
管、前記抽出容器内の下部(底部)に一端を開口し前記
抽出容器の外部に他端を開口する液戻し管、抽残液の密
度と抽出液の密度との中間の密度を有し前記液戻し管の
前記一端を開閉するフロート弁を備えたものである。
According to the present invention, there is provided an extraction / separation mechanism.
As described in the above, an extraction container for extracting a predetermined component from the extract by the extractant, a mixing pipe connected to the extraction container to mix and flow the extractant and the extract, and one end at an upper part in the extraction container A vent pipe that is open and has the other end open to the outside of the extraction vessel, a liquid return pipe that has one end open to the lower part (bottom) inside the extraction vessel and has the other end open to the outside of the extraction vessel, and the density of the raffinate And a float valve having a density intermediate between the density of the extract and the density of the extract and opening and closing the one end of the liquid return pipe.

【0017】本願発明による抽出分離機構は、請求項1
0に記載のように、請求項9に記載のものにおいて、逆
止弁を有し、前記フロート弁により制御される抽出液の
液面高さよりも高い位置で前記抽出容器に接続された抽
残液流出配管を備えたものである。
The extraction / separation mechanism according to the present invention is as follows.
10. The residue according to claim 9, further comprising a check valve and connected to the extraction vessel at a position higher than the liquid level of the extract controlled by the float valve. It has a liquid outflow pipe.

【0018】本願発明による冷凍サイクル装置の熱源機
は、請求項11に記載のように、圧縮機、熱源側熱交換
器およびアキュムレータを含む冷凍サイクル装置の熱源
機において、請求項1〜4のいずれかに記載の抽出分離
機構と、抽残液貯留容器とを備え、前記熱源側熱交換器
の下流と前記抽出分離機構の抽剤流入配管とを接続し、
前記アキュムレータの下部と前記抽料流入配管とを接続
し、前記圧縮機の吸入配管と前記液面発生器の抽剤流出
配管とを接続し、前記抽残液流出配管と抽残液貯溜容器
とを接続したものである。
A heat source unit of a refrigeration cycle apparatus according to the present invention is a heat source unit of a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger and an accumulator as described in claim 11. The extraction and separation mechanism according to any of the above, comprising a raffinate liquid storage container, connecting the downstream of the heat source side heat exchanger and the extraction agent inflow pipe of the extraction and separation mechanism,
Connecting the lower part of the accumulator and the extract inflow pipe, connecting the suction pipe of the compressor and the extractant outflow pipe of the liquid level generator, the raffinate outflow pipe and the raffinate storage container, Are connected.

【0019】本願発明による冷凍サイクル装置の熱源機
は、請求項12に記載のように、圧縮機、熱源側熱交換
器、アキュムレータ、前記圧縮機の吐出側に接続された
油分離器を含む冷凍サイクル装置の熱源機において、請
求項1〜4のいずれかに記載の抽出分離機構と、抽残液
貯留容器とを備え、前記油分離器の下流と前記抽出分離
機構の抽剤流入配管とを絞り手段を介して接続し、前記
アキュムレータの下部と前記抽料流入配管とを接続する
と共に、前記圧縮機の吸入配管と前記抽剤流出配管とを
接続し、かつ、前記油分離器の下流から前記絞り手段の
間の配管と、前記圧縮機の吸入配管と前記抽剤流出配管
の間の配管を熱交換させる冷媒熱交換器を備え、前記抽
残液流出配管と前記抽残液貯溜容器とを接続したもので
ある。
According to a twelfth aspect of the present invention, there is provided a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger, an accumulator, and an oil separator connected to a discharge side of the compressor. In the heat source device of the cycle device, the extraction / separation mechanism according to any one of claims 1 to 4, and a raffinate storage container, and a downstream of the oil separator and an extractant inflow pipe of the extraction / separation mechanism. Connected via a throttling means, connects the lower part of the accumulator and the extractant inflow pipe, connects the suction pipe of the compressor and the extractant outflow pipe, and from the downstream of the oil separator. A pipe between the throttle means, a refrigerant heat exchanger for exchanging heat between a pipe between the suction pipe of the compressor and the extractant outflow pipe, the raffinate outflow pipe and the raffinate storage vessel, Are connected.

【0020】本願発明による冷凍サイクル装置の熱源機
は、請求項13に記載のように、圧縮機、熱源側熱交換
器およびアキュムレータを含む冷凍サイクル装置の熱源
機において、請求項5または6に記載の抽出分離機構
と、抽残液貯留容器とを備え、前記熱源側熱交換器の下
流と前記抽出分離機構の抽剤流入配管とを接続し、前記
アキュムレータの下部と前記抽料流入配管とを接続し、
前記圧縮機の吸入配管と前記抽剤流出配管とを接続し、
前記圧縮機の吸入配管と前記抽出液流出配管とを接続
し、前記抽残液流出配管と抽残液貯溜容器とを接続した
ものである。
The heat source unit of the refrigeration cycle apparatus according to the present invention is a heat source unit of a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger and an accumulator, as described in claim 13. Extraction and separation mechanism, and a raffinate storage tank, connecting the downstream of the heat source side heat exchanger and the extractant inflow pipe of the extraction and separation mechanism, and connecting the lower part of the accumulator and the extract inflow pipe connection,
Connecting the suction pipe and the extractant outflow pipe of the compressor,
The suction pipe of the compressor and the extraction liquid outflow pipe are connected, and the raffinate outflow pipe and the raffinate storage container are connected.

【0021】本願発明による冷凍サイクル装置の熱源機
は、請求項14に記載のように、圧縮機、熱源側熱交換
器、アキュムレータ、前記圧縮機の吐出側に接続された
油分離器を含む冷凍サイクル装置の熱源機において、請
求項5または6に記載の抽出分離機構と、抽残液貯留容
器とを備え、前記熱源側熱交換器の下流と前記抽出分離
機構の抽剤流入配管とを接続し、前記油分離器の返油回
路と前記抽料流入配管とを接続し、前記圧縮機の吸入配
管と前記抽剤流出配管とを接続し、前記圧縮機の吸入配
管と前記抽出液流出配管とを接続し、前記抽残液流出配
管と抽残液貯溜容器とを接続したものである。
According to a fourteenth aspect of the present invention, there is provided a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger, an accumulator, and an oil separator connected to a discharge side of the compressor. A heat source device of a cycle device, comprising: the extraction / separation mechanism according to claim 5 or 6; and a raffinate storage container, wherein a downstream of the heat source side heat exchanger and an extractant inflow pipe of the extraction / separation mechanism are connected. Connecting the oil return circuit of the oil separator to the extract flow inflow pipe, connecting the suction pipe of the compressor and the extractant outflow pipe, and connecting the suction pipe of the compressor and the extract outflow pipe Are connected, and the raffinate outflow pipe and the raffinate storage container are connected.

【0022】本願発明による冷凍サイクル装置の熱源機
は、請求項15に記載のように、圧縮機、熱源側熱交換
器、アキュムレータ、前記圧縮機の吐出側に接続された
油分離器を含む冷凍サイクル装置の熱源機において、請
求項7〜10のいずれかに記載の抽出分離機構と、抽残
液貯留容器とを備え、前記熱源側熱交換器の下流と前記
抽出分離機構の混合配管とを接続し、前記油分離器の返
油回路と前記混合配管とを接続し、前記液戻し管の前記
他端を低圧側の配管もしくは機器に接続し、前記抽残液
流出配管と前記抽残液貯溜容器とを接続したものであ
る。
According to a twelfth aspect of the present invention, there is provided a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger, an accumulator, and an oil separator connected to a discharge side of the compressor. In the heat source device of the cycle device, the extraction / separation mechanism according to any one of claims 7 to 10, and a raffinate storage container, and a downstream of the heat source side heat exchanger and a mixing pipe of the extraction / separation mechanism. Connecting the oil return circuit of the oil separator to the mixing pipe, connecting the other end of the liquid return pipe to a low pressure side pipe or device, connecting the raffinate outflow pipe and the raffinate It is connected to a storage container.

【0023】本願発明による冷凍サイクル装置の熱源機
は、請求項16に記載のように、圧縮機、熱源側熱交換
器、請求項8に記載の一体型アキュムレータ、前記圧縮
機の吐出側に接続された油分離器を含む冷凍サイクル装
置の熱源機において、抽残液貯留容器を備え、前記熱源
側熱交換器の下流と前記抽出分離機構の混合管とを接続
し、前記油分離器の返油回路と前記混合管とを接続し、
前記抽残液流出配管と前記抽残液貯溜容器とを接続した
ものである。
A heat source unit of a refrigeration cycle apparatus according to the present invention is connected to a compressor, a heat source side heat exchanger, an integrated accumulator according to claim 8, and a discharge side of the compressor. In the heat source unit of the refrigeration cycle apparatus including the separated oil separator, a raffinate storage container is provided, and a downstream of the heat source side heat exchanger is connected to a mixing pipe of the extraction / separation mechanism, and a return of the oil separator is provided. Connecting the oil circuit and the mixing pipe,
The raffinate outflow pipe is connected to the raffinate storage container.

【0024】本願発明による冷凍サイクル装置の熱源機
は、請求項17に記載のように、請求項11〜16のい
ずれかに記載のものにおいて、前記抽残液貯溜容器に
は、抽残液貯溜容器内の液が外部へ逆流することを防止
する機構を設けたものである。
The heat source unit of the refrigeration cycle apparatus according to the present invention is the heat source unit according to any one of claims 11 to 16, wherein the raffinate liquid storage container has a raffinate liquid storage container. A mechanism is provided to prevent the liquid in the container from flowing back to the outside.

【0025】本願発明による冷凍サイクル装置の熱源機
は、請求項18に記載のように、請求項11〜17のい
ずれかに記載のものにおいて、前記抽残液貯溜容器内部
には抽残液もしくは原溶媒を吸着する吸着材を設けたも
のである。
The heat source unit of the refrigerating cycle device according to the present invention is the heat source unit according to any one of claims 11 to 17, wherein the raffinate liquid or the raffinate liquid is contained in the raffinate liquid storage container. An adsorbent for adsorbing the raw solvent is provided.

【0026】本願発明による冷凍サイクル装置の熱源機
は、請求項19に記載のように、請求項11〜18のい
ずれかに記載のものにおいて、前記抽剤としてハイドロ
フルオロカーボン系の冷媒、前記抽料としてエステル油
もしくはエーテル油のいずれかと鉱油もしくはハードア
ルキルベンゼン油のいずれかとの混合油としたものであ
る。
The heat source unit of a refrigeration cycle apparatus according to the present invention is the heat source unit according to any one of claims 11 to 18, wherein the extractant is a hydrofluorocarbon-based refrigerant, As a mixed oil of either an ester oil or an ether oil and a mineral oil or a hard alkylbenzene oil.

【0027】本願発明による冷凍サイクル装置の熱源機
は、請求項20に記載のように、請求項項11〜19の
いずれかに記載のものにおいて、前記抽出容器内の温度
は、冷凍サイクルの低圧の飽和温度とするものである。
According to a twentieth aspect of the present invention, there is provided a heat source unit for a refrigeration cycle apparatus according to any one of the eleventh to nineteenth aspects, wherein the temperature in the extraction vessel is set to a low pressure of the refrigeration cycle. At the saturation temperature.

【0028】本願発明による冷凍サイクル装置は、請求
項21に記載のように、利用側熱交換器を含む利用側機
と、請求項11〜20のいずれかに記載の熱源機とを接
続配管により接続して冷媒回路を構成したものである。
According to a refrigeration cycle apparatus of the present invention, a use side machine including a use side heat exchanger and a heat source machine according to any one of claims 11 to 20 are connected by a connecting pipe. They are connected to form a refrigerant circuit.

【0029】本願発明による冷凍サイクル装置は、請求
項22に記載のように、請求項21に記載のものにおい
て、前記接続配管として、既設の冷凍サイクル装置の接
続配管を利用したものである。
The refrigeration cycle apparatus according to the present invention, as described in claim 22, is the one according to claim 21, wherein a connection pipe of an existing refrigeration cycle apparatus is used as the connection pipe.

【0030】本願発明による冷凍サイクル装置の更新方
法は、請求項23に記載のように、既設の冷凍サイクル
装置の熱源機を請求項11〜20のいずれかに記載の熱
源機に置換するとともに冷媒を置換するものである。
According to a refrigeration cycle apparatus updating method according to the present invention, as described in claim 23, the heat source unit of the existing refrigeration cycle unit is replaced with the heat source unit according to any one of claims 11 to 20, and the refrigerant is replaced. Is to be replaced.

【0031】[0031]

【発明の実施の形態】以下に本発明の実施の形態につい
て図面を参照して詳細に説明する。なお各図中、同一ま
たは相当する部分には同一の符号を付してその説明を簡
略化ないし省略する場合がある。 実施の形態1.図1は、本発明の実施の形態1を示す抽
出分離機構を搭載した冷凍サイクル装置あるいは冷凍・
空調装置の冷媒回路を示す。図1において、23は圧縮
機、24は四方弁、25は熱源側熱交換器、26はアキ
ュムレータである。1は抽出容器であり、抽料流入配管
2を介してアキュムレータ26の下部と接続され、流入
配管22および弁31を介して熱源側熱交換器25の下
流で熱源側熱交換器25と液管38との間に接続され
る。さらに、抽残液流出配管4を介して抽残液貯留容器
29に接続され、抽残液貯溜容器29の上部と吸入配管
30aとは冷媒配管で接続される。6は液面発生容器で
あり、抽出容器1と液面発生容器6は上部連結管8と下
部連結管9とで接続される。流出配管7は一端を液面発
生容器6に接続され、他端は冷媒熱交換器28および弁
32を介して配管30により圧縮機23の吸入配管30
aに接続され、これらにより熱源機あるいは室外機51
を形成する。また、39は負荷側熱交換器あるいは利用
側熱交換器、40は絞り装置であり、これらにより利用
側機52あるいは室内機52を形成する。室外機51と
室内機52は、液管38(第一の接続配管)およびガス
管37(第二の接続配管)によって連結される。なお、
図面の添え字のa,bは、室内機が複数存在するマルチ
式冷凍・空調システムであることを示すが、説明におい
ては簡略化のため添字a,bを省略する。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters, and description thereof may be simplified or omitted. Embodiment 1 FIG. FIG. 1 is a refrigeration cycle apparatus equipped with an extraction / separation mechanism or a refrigeration /
1 shows a refrigerant circuit of an air conditioner. In FIG. 1, 23 is a compressor, 24 is a four-way valve, 25 is a heat source side heat exchanger, and 26 is an accumulator. Reference numeral 1 denotes an extraction vessel, which is connected to the lower part of the accumulator 26 via the inflow pipe 2 and the heat source side heat exchanger 25 downstream of the heat source side heat exchanger 25 via the inflow pipe 22 and the valve 31. 38. Furthermore, it is connected to the raffinate liquid storage container 29 via the raffinate liquid outflow pipe 4, and the upper part of the raffinate liquid storage container 29 and the suction pipe 30a are connected by a refrigerant pipe. Reference numeral 6 denotes a liquid level generating vessel, and the extraction vessel 1 and the liquid level generating vessel 6 are connected by an upper connecting pipe 8 and a lower connecting pipe 9. One end of the outflow pipe 7 is connected to the liquid level generating vessel 6, and the other end is connected to the suction pipe 30 of the compressor 23 by the pipe 30 via the refrigerant heat exchanger 28 and the valve 32.
a and the heat source unit or the outdoor unit 51
To form Reference numeral 39 denotes a load side heat exchanger or a use side heat exchanger, and reference numeral 40 denotes a throttling device, which forms a use side unit 52 or an indoor unit 52. The outdoor unit 51 and the indoor unit 52 are connected by a liquid pipe 38 (first connection pipe) and a gas pipe 37 (second connection pipe). In addition,
The suffixes a and b in the drawing indicate that the system is a multi-type refrigeration / air-conditioning system having a plurality of indoor units.

【0032】第一の冷媒、例えばHCFC系もしくはC
FC系の冷媒と、第一の冷凍機油(潤滑油)、例えば鉱
油もしくはハードアルキルベンゼン油が用いられていた
既存の冷凍・空調装置を、第二の冷媒、例えばHFC系
冷媒と、第二の冷凍機油(潤滑油)、例えばエステル油
もしくはエーテル油を用いる冷凍・空調装置に置換し
て、上記のような冷媒回路を形成する。
A first refrigerant, for example, HCFC or C
An existing refrigeration / air-conditioning system using an FC-based refrigerant and a first refrigeration oil (lubricating oil), for example, a mineral oil or a hard alkylbenzene oil, is replaced with a second refrigerant, for example, an HFC-based refrigerant and a second refrigeration oil. The refrigerant circuit as described above is formed by substituting a refrigeration / air-conditioning device using machine oil (lubricating oil), for example, ester oil or ether oil.

【0033】上記のような構成の冷凍・空調機を施工す
る場合で、HCFC系もしくはCFC系の冷媒を充填し
たユニットに用いられていた液管およびガス管、もしく
は液管・ガス管および室内機を流用し、HFC系冷媒を
用い、冷凍機油にエステル油を用いる室外機を新設した
場合、液管とガス管および室内機にはHCFC系または
CFC系の冷凍機油として用いられていた鉱油が残留し
ている。このような状態で冷凍サイクルを冷房運転した
場合の動作について説明する。圧縮機23を吐出した高
温・高圧のガス冷媒は、熱源側熱交換器25で放熱し、
凝縮・液化して液管38を流れる。液管38を流れる液
冷媒は、液管38内に残留する鉱油を、液冷媒と鉱油の
間に生じる界面せん断力でひきずりながら液管38中の
鉱油を洗浄していく。液管38を流れた液冷媒は、室内
機52に入り、蒸発気化し、ガス管37を流れ、ガス配
管37中に残留する鉱油を、ガス冷媒と鉱油の間に生じ
るせん断力でひきずりながらガス管中の鉱油を洗浄して
いく。ガス管37を流れたガス冷媒は、室外機51に戻
り、四方弁24およびアキュムレータ26を介して圧縮
機23へ戻る。このとき、圧縮機23から持出されたエ
ステル油が冷媒と共に既設の冷媒配管中を循環し、既設
配管中に残留していた鉱油と混合し、冷媒と共にアキュ
ムレータ26に入る。
When the refrigeration / air-conditioning apparatus having the above configuration is installed, the liquid and gas pipes, or the liquid and gas pipes and indoor units used in the unit filled with the HCFC or CFC refrigerant are used. If an outdoor unit is newly installed using HFC refrigerant and ester oil as refrigerating machine oil, mineral oil used as HCFC or CFC refrigerating machine oil will remain in the liquid and gas pipes and indoor unit. are doing. The operation when the refrigeration cycle performs the cooling operation in such a state will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 23 radiates heat in the heat source side heat exchanger 25,
It condenses and liquefies and flows through the liquid pipe 38. The liquid refrigerant flowing through the liquid pipe 38 cleans the mineral oil in the liquid pipe 38 while dragging the mineral oil remaining in the liquid pipe 38 by the interface shear force generated between the liquid refrigerant and the mineral oil. The liquid refrigerant flowing through the liquid pipe 38 enters the indoor unit 52, evaporates and evaporates, flows through the gas pipe 37, and draws the mineral oil remaining in the gas pipe 37 while dragging it with the shear force generated between the gas refrigerant and the mineral oil. Clean the mineral oil in the pipe. The gas refrigerant flowing through the gas pipe 37 returns to the outdoor unit 51, and returns to the compressor 23 via the four-way valve 24 and the accumulator 26. At this time, the ester oil taken out of the compressor 23 circulates in the existing refrigerant pipe together with the refrigerant, mixes with the mineral oil remaining in the existing pipe, and enters the accumulator 26 together with the refrigerant.

【0034】既設配管から回収した鉱油を分離する場合
には、弁31、弁32および弁34を開き、弁31で高
圧の液冷媒を低圧の二相冷媒まで絞り、流入配管22を
介して抽出容器1に導く。また、アキュムレータ26か
らは既設配管から回収した鉱油とエステル油の混合油が
抽料流入配管2を介して抽出容器1に流入する。抽出容
器1では、鉱油とエステル油の混合油中のエステル油が
冷媒に抽出され、抽残液である鉱油に富む油が上層とな
って二相分離し、鉱油に富む油の量が多くなると、抽残
液流出配管4を介して抽残液貯留容器29に貯留され
る。下層となる冷媒とエステル油に富む油の混合液は、
液面発生容器6内を通り流出配管7から流出し、冷媒熱
交換器28で液冷媒が蒸発・気化し、エステル油に富む
油のみが圧縮機23の吸入配管30aへ流入する。
When separating the recovered mineral oil from the existing pipe, the valve 31, the valve 32 and the valve 34 are opened, the high-pressure liquid refrigerant is throttled by the valve 31 to the low-pressure two-phase refrigerant, and extracted through the inflow pipe 22. Lead to container 1. Further, the mixed oil of the mineral oil and the ester oil recovered from the existing pipe flows from the accumulator 26 into the extraction container 1 through the extract inlet pipe 2. In the extraction vessel 1, when the ester oil in the mixed oil of the mineral oil and the ester oil is extracted by the refrigerant, the mineral oil-rich oil, which is the raffinate, is separated into two phases in the upper layer, and the amount of the mineral oil-rich oil increases. Is stored in the raffinate storage container 29 via the raffinate outflow pipe 4. The mixture of the lower layer refrigerant and the oil rich in ester oil is
The refrigerant flows out of the outflow pipe 7 through the inside of the liquid level generating container 6, and the liquid refrigerant evaporates and vaporizes in the refrigerant heat exchanger 28, and only the oil rich in ester oil flows into the suction pipe 30 a of the compressor 23.

【0035】次に、暖房運転した場合の動作について説
明する。圧縮機23を吐出した高温・高圧のガス冷媒
は、ガス管37を流れ、ガス管37中に残留する鉱油
を、ガス冷媒と鉱油の間に生じるせん断力でひきずりな
がらガス管中の鉱油を洗浄していく。ガス管37を流れ
たガス冷媒は、負荷側熱交換器39で放熱し、凝縮・液
化して絞り装置40で絞られ低圧の二相冷媒になる。こ
の低圧の二相冷媒は液管38を流れ、液管38内に残留
する鉱油を、液もしくはガスと鉱油の間に生じる界面せ
ん断力でひきずりながら液管38中の鉱油を洗浄してい
く。液管38を流れた気液二相冷媒は、室外機51に入
り、熱源側熱交換器25で蒸発し、四方弁24およびア
キュムレータ26を介して圧縮機23へ戻る。このと
き、圧縮機23から持出されたエステル油が冷媒と共に
既設の冷媒配管中を循環し、既設配管中に残留していた
鉱油と混合し、冷媒と共にアキュムレータ26に入る。
また、アキュムレータ26には、冷房と暖房における必
要冷媒量の差に相当する量の液冷媒が貯められる。
Next, the operation when the heating operation is performed will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 23 flows through the gas pipe 37 and cleans the mineral oil in the gas pipe while dragging the mineral oil remaining in the gas pipe 37 by a shear force generated between the gas refrigerant and the mineral oil. I will do it. The gas refrigerant flowing through the gas pipe 37 radiates heat in the load-side heat exchanger 39, condenses and liquefies, and is throttled by the expansion device 40 to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows through the liquid pipe 38 and cleans the mineral oil in the liquid pipe 38 while dragging the mineral oil remaining in the liquid pipe 38 by the interfacial shear force generated between the liquid or gas and the mineral oil. The gas-liquid two-phase refrigerant flowing through the liquid pipe 38 enters the outdoor unit 51, evaporates in the heat source side heat exchanger 25, and returns to the compressor 23 via the four-way valve 24 and the accumulator 26. At this time, the ester oil taken out of the compressor 23 circulates in the existing refrigerant pipe together with the refrigerant, mixes with the mineral oil remaining in the existing pipe, and enters the accumulator 26 together with the refrigerant.
The accumulator 26 stores an amount of liquid refrigerant corresponding to the difference between the required amount of refrigerant for cooling and the amount of refrigerant for heating.

【0036】既設配管から回収した鉱油を分離する場合
には、弁31は閉じ、弁32、弁34を開く。アキュム
レータ26内では、余剰の液冷媒が溜まっているので、
既設配管から回収した鉱油は液面付近に浮遊しているか
もしくは液冷媒に溶けているかの2通りである。このと
き、アキュムレータ26内の液面付近に浮遊している鉱
油に富む油は暖房運転中は圧縮機23へ戻ることはない
ので、冷媒に溶解している鉱油の回収のみを考える。ア
キュムレータ26からは既設配管から回収した鉱油とエ
ステル油の混合油が冷媒に溶解して抽料流入配管2を介
して抽出容器1に流入する。抽出容器1では、熱源(図
示せず)によって抽出容器1内を過熱し、冷媒を所定量
まで蒸発させる。ここで、熱源は抽料流入配管2上に配
置してもよい。この時、液冷媒の減少に伴い液冷媒への
溶解度以上となった量の鉱油に富む油が析出し、抽出容
器1内の液面付近に相をなす。ここで、抽残液貯留容器
29は冷媒配管により圧縮機の吸入配管30aと接続さ
れているため、抽残液貯留容器29内の圧力を抽出容器
1内の圧力よりも低くすることができる。従って、抽出
容器1の液面付近に相をなす鉱油に富む油は、抽出容器
1と抽残液貯留容器29の圧力差に従って抽残液流出配
管4を介して抽出容器1から抽残液貯留容器29に流れ
込み、抽残液貯留容器29に貯留される。冷媒とエステ
ル油に富む油の混合液は、液面発生容器6内を通り流出
配管7から流出し、冷媒熱交換器28で液冷媒が、若
干、蒸発・気化し圧縮機23の吸入配管へ流入する。
When separating the recovered mineral oil from the existing pipe, the valve 31 is closed and the valves 32 and 34 are opened. In the accumulator 26, since excess liquid refrigerant is accumulated,
Mineral oil recovered from existing pipes is either floating near the liquid surface or dissolved in liquid refrigerant. At this time, since the mineral-rich oil floating near the liquid level in the accumulator 26 does not return to the compressor 23 during the heating operation, only recovery of the mineral oil dissolved in the refrigerant is considered. From the accumulator 26, the mixed oil of the mineral oil and the ester oil recovered from the existing pipe is dissolved in the refrigerant and flows into the extraction container 1 via the extract inlet pipe 2. In the extraction container 1, the inside of the extraction container 1 is overheated by a heat source (not shown), and the refrigerant is evaporated to a predetermined amount. Here, the heat source may be arranged on the extraction flow inflow pipe 2. At this time, as the amount of the liquid refrigerant decreases, an amount of mineral-rich oil that has exceeded the solubility in the liquid refrigerant precipitates, and forms a phase near the liquid surface in the extraction vessel 1. Here, since the raffinate liquid storage container 29 is connected to the suction pipe 30a of the compressor by the refrigerant pipe, the pressure in the raffinate liquid storage container 29 can be made lower than the pressure in the extraction container 1. Accordingly, the oil rich in mineral oil which forms a phase near the liquid level of the extraction vessel 1 is stored in the extraction vessel 1 via the raffinate outflow pipe 4 according to the pressure difference between the extraction vessel 1 and the raffinate storage vessel 29. It flows into the container 29 and is stored in the raffinate storage container 29. The mixture of the refrigerant and the oil rich in ester oil flows out of the outflow pipe 7 through the liquid level generating container 6, and the liquid refrigerant evaporates and vaporizes slightly in the refrigerant heat exchanger 28 to the suction pipe of the compressor 23. Inflow.

【0037】つぎに、抽出分離機構の構造および抽出分
離の原理について説明する。図2は抽出分離機構の概略
構成図である。図2において、1は抽出容器であり、抽
出容器1には、抽料流入配管2、抽剤流入配管3、抽残
液流出配管4が接続される。また、これらの配管を接続
する位置は、密度の小さい抽料と密度の大きい抽剤を混
合する観点から、鉛直方向の上から抽残液流出配管4、
抽剤流入配管3、抽料流入配管2の順で抽出容器1に接
続し、浮力により抽出容器1内を上昇する抽料と抽出容
器1内を下降する抽剤とが適度に混ざり合うようにする
ことが望ましい。6は液面発生容器であり、抽出容器1
と液面発生容器6とは、上部連結管8および下部連結管
9とにより接続される。液面発生容器6には流出配管7
が抽残液流出配管4よりやや低い位置に接続される。こ
のとき、流出配管7と抽残液流出配管4の鉛直方向の高
さの差は、抽出容器1内において、液面上部に相をなす
抽残液の厚さによって決定する。なお、図2の抽出分離
機構を図1の冷媒回路に適用する場合、図1の流入配管
22と図2の抽剤流入配管3とは同じものとなる。
Next, the structure of the extraction and separation mechanism and the principle of extraction and separation will be described. FIG. 2 is a schematic configuration diagram of the extraction separation mechanism. In FIG. 2, reference numeral 1 denotes an extraction container, to which an extract inflow pipe 2, an extractant inflow pipe 3, and a raffinate outflow pipe 4 are connected. In addition, from the viewpoint of mixing a low-density extract and a high-density extractant, the positions at which these pipes are connected are the raffinate outflow pipes 4 from above in the vertical direction.
The extractant inflow pipe 3 and the extractant inflow pipe 2 are connected to the extraction container 1 in this order, so that the extractant rising in the extraction container 1 by buoyancy and the extractant descending in the extraction container 1 are appropriately mixed. It is desirable to do. Reference numeral 6 denotes a liquid level generating container,
The liquid level generating container 6 is connected with the upper connecting pipe 8 and the lower connecting pipe 9. Outflow pipe 7
Is connected to a position slightly lower than the raffinate outflow pipe 4. At this time, the difference between the height of the outflow pipe 7 and the height of the raffinate outflow pipe 4 in the vertical direction is determined by the thickness of the raffinate forming a phase above the liquid surface in the extraction vessel 1. When the extraction / separation mechanism of FIG. 2 is applied to the refrigerant circuit of FIG. 1, the inflow pipe 22 of FIG. 1 and the extractant inflow pipe 3 of FIG. 2 are the same.

【0038】係る構成の抽出分離機構における抽質分離
動作について説明する。抽剤流入配管3から冷媒液を流
入させると、抽出容器1内の液面は、パスカルの原理か
ら流出配管7の位置とほぼ同位置にくる。流出配管7が
抽残液流出配管4よりやや低い位置とすることにより、
抽残液が発生しない場合には、抽出容器1内に形成され
る液面高さが抽残液流出配管4より低くなるので、抽残
液流出配管4から液冷媒が流出するのを防ぐことができ
る。次に、抽料流入配管2から、エステル油と鉱油の混
合油を流入させると、抽出容器1内において、鉱油とエ
ステル油の混合油からエステル油が冷媒に抽出され、密
度差から抽残液である鉱油に富む油が二相分離して上面
に浮く。この時の現象を図3の模式図を使って説明す
る。いま、抽出容器1内には、液冷媒がH3の高さま
で、鉱油がH2の高さまで入っており、液面発生容器6
にはH1まで冷媒液が入っているものとする。鉱油は冷
媒液よりも密度が小さいので、図4に示すように、H2
の高さが高くなるほど、抽出容器1と液面発生容器6と
の液面高さの差ΔHが大きくなる。そこで、流出配管7
を抽残液流出配管4よりΔHの範囲内においてやや低く
することによって、抽出容器1内で分離し、抽出容器1
の液面上部に相をなす鉱油に富む油を抽残液流出配管4
から排出することができる。また、抽出容器1に鉱油が
無い場合には、流出配管7と抽残液流出配管4の液面高
さが同一となり、流出配管7が抽残液流出配管4よりや
や低い位置にあることから、抽残液流出配管4から液冷
媒が流出することはない。
The extraction separation operation in the extraction / separation mechanism having such a configuration will be described. When the refrigerant liquid is caused to flow from the extractant inflow pipe 3, the liquid level in the extraction vessel 1 comes to be substantially the same as the position of the outflow pipe 7 from the principle of Pascal. By setting the outflow pipe 7 at a position slightly lower than the raffinate outflow pipe 4,
When no raffinate is generated, the liquid level formed in the extraction vessel 1 is lower than the raffinate outflow pipe 4, so that the liquid refrigerant is prevented from flowing out of the raffinate outflow pipe 4. Can be. Next, when a mixed oil of an ester oil and a mineral oil is caused to flow in from the extract inlet pipe 2, the ester oil is extracted into the refrigerant from the mixed oil of the mineral oil and the ester oil in the extraction container 1, and the residual liquid is extracted from the density difference. The oil rich in mineral oil is separated into two phases and floats on the upper surface. The phenomenon at this time will be described with reference to the schematic diagram of FIG. Now, in the extraction vessel 1, the liquid refrigerant is filled up to the height of H3 and the mineral oil is filled up to the height of H2.
Is assumed to contain refrigerant liquid up to H1. Since mineral oil has a lower density than the refrigerant liquid, as shown in FIG.
The height ΔH of the liquid surface height between the extraction container 1 and the liquid surface generation container 6 increases as the height of the container increases. Therefore, the outflow pipe 7
Is slightly lower than the raffinate outflow pipe 4 within the range of ΔH, so that the
At the upper part of the liquid level, drain the oil rich in mineral oil that forms a phase
Can be discharged from When no mineral oil is present in the extraction vessel 1, the outflow pipe 7 and the raffinate outflow pipe 4 have the same liquid level, and the outflow pipe 7 is located at a position slightly lower than the raffinate outflow pipe 4. The liquid refrigerant does not flow out of the raffinate outflow pipe 4.

【0039】さらに、エステル油と鉱油の混合油と冷媒
を抽出容器1へ流入させる比率とその流入量に関しては
次のように決定する。図5に相分離特性曲線、図6に平
衡曲線を示す。図5と図6とは水平に並べると相互の関
係が理解しやすいが、出願書式の制約から出願時には水
平に配列することができないので、上下に配列して示
す。図5と図6を水平に配置して両図の横軸が同一延長
線上にあるようにすると、図5の線分E−Jと図6のJ
の線分とは同一延長線上でつながるものである。図5に
おいて、Aは鉱油100%、Bは冷媒100%のポイン
ト、Fは抽料の組成、Sは抽剤の組成であり、ΣはFの
組成の抽料とSの組成の抽剤をある比率で混ぜ合わせた
場合で、かつ、二相分離しないと仮定した場合の組成で
ある。Σが二相分離する領域内にある場合には、上部組
成Rと下部組成Eに分離する。このときのE点は、図6
に示す平衡曲線から決定できる。上部の相におけるエス
テル油と鉱油の比率PRは、B点とR点を結んだ延長線
と線分ACとの交点として求めることができ、鉱油の比
率が最も大きくなるように抽料と抽剤の混合比を決定す
る。ここで、エステル油と鉱油の混合油と冷媒を抽出容
器1へ流入させるときの流入量は、抽出速度により予め
決定し、抽出容器1への冷媒とエステル油と鉱油の混合
油の流入量の制御は配管の流路抵抗等によって行う。抽
出容器1内の温度に関しては、できるだけ低く設定する
ことで、抽料が小量の場合でも二相分離するので、小量
の鉱油まで分離することができる。特に、この抽出分離
機構を図1に示すような冷凍サイクルと組合せて使用す
る場合には、抽出容器1が低圧となるようにすること
で、二相分離して鉱油に富む油が析出しやすくなるの
で、鉱油の分離精度を高める効果がある。また、試験的
に鉱油の分離精度を確かめることで、抽出容器1内の圧
力を、適宜、高圧と低圧の間の中間圧としてもかまわな
い。一般には、抽出容器1内の温度は、冷凍サイクルの
低圧の飽和温度とするのがよい。
Further, the ratio of the mixed oil of the ester oil and the mineral oil and the refrigerant flowing into the extraction vessel 1 and the amount of the flow are determined as follows. FIG. 5 shows a phase separation characteristic curve, and FIG. 6 shows an equilibrium curve. 5 and FIG. 6 can be easily understood if they are arranged horizontally, but they cannot be arranged horizontally at the time of filing due to restrictions on the application format, and are therefore shown vertically. If FIG. 5 and FIG. 6 are arranged horizontally so that the horizontal axis of both figures is on the same extension line, the line segment EJ of FIG.
Are connected on the same extension line. In FIG. 5, A is the point of 100% mineral oil, B is the point of 100% refrigerant, F is the composition of the extract, S is the composition of the extractant, and Δ is the extract of the composition of F and the extractant of the composition of S. This is the composition when mixing at a certain ratio and assuming that two phases are not separated. When Σ is in the region where two phases are separated, it is separated into an upper composition R and a lower composition E. The point E at this time is shown in FIG.
Can be determined from the equilibrium curve shown in FIG. The ratio PR of the ester oil to the mineral oil in the upper phase can be obtained as the intersection of the extended line connecting the points B and R and the line segment AC, and the extract and the extractant are set so that the ratio of the mineral oil is maximized. Is determined. Here, the inflow amount when the mixed oil of the ester oil and the mineral oil and the refrigerant are allowed to flow into the extraction container 1 is determined in advance by the extraction speed, and the inflow amount of the mixed oil of the refrigerant, the ester oil, and the mineral oil into the extraction container 1 is determined. The control is performed based on the flow resistance of the pipe. By setting the temperature in the extraction container 1 as low as possible, even if the amount of the extract is small, the two-phase separation is performed, so that even a small amount of mineral oil can be separated. In particular, when this extraction / separation mechanism is used in combination with a refrigeration cycle as shown in FIG. 1, by setting the extraction vessel 1 to a low pressure, two-phase separation facilitates precipitation of mineral-rich oil. Therefore, there is an effect of improving the separation accuracy of the mineral oil. Further, by confirming the separation accuracy of the mineral oil on a trial basis, the pressure in the extraction vessel 1 may be set to an intermediate pressure between a high pressure and a low pressure as appropriate. In general, the temperature in the extraction vessel 1 is preferably set to the low pressure saturation temperature of the refrigeration cycle.

【0040】したがって、CFC系もしくはHCFC系
の冷媒を用いて運転した冷凍・空調装置に用いられ、C
FC系もしくはHCFC系冷凍サイクルの冷凍機油であ
る鉱油が残留した既設配管を使用し、室外機もしくは室
外機および室内機を新設し、冷媒にHFC系の冷媒を用
いた冷凍空調装置において、通常運転を行いながら必要
に応じて既設配管または既設配管および室内機に残留し
ていた鉱油を回収し、劣化した鉱油とエステル油の混合
により、エステル油が劣化するのを防止することができ
る。なお、抽剤をR407C、R404A、R410
A、R32等のHFC系冷媒とした場合、抽質としては
エステル油の変わりにエーテル油等の冷媒に相溶な油で
あればなんでも同様の効果を奏する。また、CFC系も
しくはHCFC系で用いられる既設配管中に残留した油
としては、鉱油の変わりにCFC系もしくはHCFC系
の冷媒に溶解する油で密度が液冷媒よりも小さければど
んな冷凍機油でもよく、例えばHAB油等でも同様の効
果がある。
Therefore, it is used in a refrigeration / air-conditioning system operated by using a CFC-based or HCFC-based refrigerant.
An outdoor unit or an outdoor unit and an indoor unit are newly installed using the existing piping in which mineral oil, which is the refrigerating machine oil of the FC or HCFC refrigeration cycle, remains. The mineral oil remaining in the existing pipe or the existing pipe and the indoor unit is collected as necessary while performing, and the deterioration of the ester oil can be prevented by mixing the deteriorated mineral oil and the ester oil. In addition, R407C, R404A, R410
When an HFC-based refrigerant such as A or R32 is used, the same effect can be obtained as long as the extract is oil compatible with the refrigerant such as ether oil instead of ester oil. Further, as the oil remaining in the existing piping used in the CFC or HCFC system, any refrigerating machine oil may be used as long as the oil is soluble in the CFC or HCFC system refrigerant instead of the mineral oil and has a density smaller than the liquid refrigerant, For example, the same effect can be obtained with HAB oil or the like.

【0041】また、抽残液貯留容器29には、逆流防止
の弁を配置することにより、一旦、抽残液貯留容器29
に回収した鉱油が冷媒の寝込み等により逆流し、冷媒回
路内へ再流出することを防止することができる。さら
に、抽残液貯留容器29内に鉱油を吸着する吸着剤を内
蔵することにより、一旦、抽残液貯留容器29に回収し
た鉱油が冷媒回路内へ再流出することを、簡易な構成で
安価に防止することができる。
Further, a valve for preventing backflow is disposed in the raffinate liquid storage container 29 so that the raffinate liquid storage container 29 is temporarily stopped.
It is possible to prevent the recovered mineral oil from flowing backward due to the stagnation of the refrigerant and the like, and from flowing again into the refrigerant circuit. Further, by incorporating an adsorbent for adsorbing mineral oil in the raffinate liquid storage container 29, the mineral oil once recovered in the raffinate liquid storage container 29 can be re-flowed into the refrigerant circuit with a simple configuration and at low cost. Can be prevented.

【0042】また、鉱油をより精度よく分離するための
抽出分離機構を図7に示す。図7において、添え字の
a、bは抽出分離機構が2系統存在することを示し、抽
残液流出配管4aと抽料流入配管2bを接続した構成と
している。ただし、以下の説明では添え字のa、bを省
略する場合がある。図7において、1は抽出容器であ
り、抽出容器1には、抽料流入配管2、抽剤流入配管
3、抽残液流出配管4が接続される。また、これらの配
管を接続する位置は、密度の小さい抽料と密度の大きい
抽剤を混合する観点から、鉛直方向の上から抽残液流出
配管4、抽剤流入配管3、抽料流入配管2の順で抽出容
器1に接続し、浮力により抽出容器1内を上昇する抽料
と抽出容器1内を下降する抽剤とが適度に混ざり合うよ
うにすることが望ましい。6は液面発生容器であり、抽
出容器1と液面発生容器6とは、上部連結管8および下
部連結管9とにより接続される。液面発生容器6には流
出配管7が抽残液流出配管4よりやや低い位置に接続さ
れる。このとき、流出配管7と抽残液流出配管4の鉛直
方向の高さの差は、抽出容器1内において、液面上部に
相をなす抽残液の厚さによって決定する。
FIG. 7 shows an extraction / separation mechanism for separating mineral oil with higher precision. In FIG. 7, the subscripts a and b indicate that there are two extraction / separation mechanisms, and the structure is such that the raffinate outflow pipe 4a and the extract inflow pipe 2b are connected. However, in the following description, the subscripts a and b may be omitted. In FIG. 7, reference numeral 1 denotes an extraction container, and the extraction container 1 is connected to a flow-in inlet pipe 2, an extractant inflow pipe 3, and a raffinate outflow pipe 4. In addition, from the viewpoint of mixing a low-density extract and a high-density extractant, the positions where these pipes are connected are: It is desirable that the extraction material 1 is connected to the extraction container 1 in the order of 2 so that the extract that rises in the extraction container 1 by buoyancy and the extractant that descends in the extraction container 1 are appropriately mixed. Reference numeral 6 denotes a liquid level generating vessel, and the extraction vessel 1 and the liquid level generating vessel 6 are connected by an upper connecting pipe 8 and a lower connecting pipe 9. The outflow pipe 7 is connected to the liquid level generating container 6 at a position slightly lower than the raffinate outflow pipe 4. At this time, the difference between the height of the outflow pipe 7 and the height of the raffinate outflow pipe 4 in the vertical direction is determined by the thickness of the raffinate forming a phase above the liquid surface in the extraction vessel 1.

【0043】係る構成の抽出分離機構の動作について説
明する。抽剤流入配管3aと3bから、各々、抽出容器
1a,1bに液冷媒を流入させると、抽出容器1aと液
面発生容器6aおよび抽出容器1bと液面発生容器6b
の液面は、各々、同じ高さで上昇する。液面発生容器6
a,6b内の液面が、各々、流出配管7a,7bの位置
までくると、液冷媒は、各々、流出配管7a,7bから
流出するので、抽出容器1a,1bの液面は、各々、流
出配管7a,7bの位置で一定となる。抽残液流出配管
4a,4bは、各々、流出配管7a,7bよりも高い位
置にあるので、液冷媒が抽残液流出配管4a,4bから
流出することはない。ここで、抽料流入配管2aから、
エステル油と鉱油の混合油を抽出容器1aに流入させる
と、エステル油が液冷媒に抽出され、鉱油に富む油が二
相分離し、その量が増加すると、抽残液流出配管4aか
ら流出し、抽料流入配管2bを介して、抽出容器1bに
流入する。抽出容器1bに流入した鉱油に富む油は、抽
出容器1b内の液冷媒と接触して再びエステル油が抽出
され、さらに鉱油に富んだ油が抽出容器1b内で二相分
離し、やがて、抽残液流出配管4bから流出する。
The operation of the extraction / separation mechanism having such a configuration will be described. When the liquid refrigerant flows into the extraction containers 1a and 1b from the extractant inflow pipes 3a and 3b, respectively, the extraction container 1a and the liquid surface generation container 6a, and the extraction container 1b and the liquid surface generation container 6b
Respectively rise at the same height. Liquid level generating container 6
When the liquid levels in the a and 6b reach the positions of the outflow pipes 7a and 7b, respectively, the liquid refrigerant flows out of the outflow pipes 7a and 7b, respectively. It becomes constant at the positions of the outflow pipes 7a and 7b. Since the raffinate outflow pipes 4a and 4b are located higher than the outflow pipes 7a and 7b, the liquid refrigerant does not flow out of the raffinate outflow pipes 4a and 4b. Here, from the lottery inflow pipe 2a,
When the mixed oil of the ester oil and the mineral oil flows into the extraction vessel 1a, the ester oil is extracted into the liquid refrigerant, and the oil rich in the mineral oil is separated into two phases. , Flows into the extraction container 1b via the extraction inlet pipe 2b. The mineral oil-rich oil that has flowed into the extraction container 1b comes into contact with the liquid refrigerant in the extraction container 1b, and the ester oil is extracted again. Further, the mineral oil-rich oil is separated into two phases in the extraction container 1b. It flows out from the residual liquid outflow pipe 4b.

【0044】図8を用いて、図7における抽出分離機構
の鉱油分離動作を説明する。図8において、Cは鉱油1
00%、Bは冷媒100%のポイント、Fは抽料の組
成、Sは抽剤の組成であり、Σ1はFの組成の抽料とS
の組成の抽剤をある比率で混ぜ合わせた場合で、かつ、
二相分離しないと仮定した場合の組成である。Σ1は上
部組成R1と下部組成E1に分離する。組成R1の上部
の相を抽残液として分離し、再度、抽剤Sを混ぜると、
上部組成R2と下部組成E2に分離する。組成R2にお
ける鉱油の比率は組成R1よりも小さくなるので、鉱油
を分離する抽出分離機構としては精度を上げることがで
きる。なお、同様に3つ以上の抽出分離機構をつなぎあ
わせると、より高い鉱油分離性能が得られる。
The operation of separating and extracting mineral oil by the extraction and separation mechanism in FIG. 7 will be described with reference to FIG. In FIG. 8, C is mineral oil 1
00%, B is the point of 100% refrigerant, F is the composition of the extract, S is the composition of the extractant, and $ 1 is the extract of the composition of F and S
When the extractant of the composition of is mixed in a certain ratio, and
This is the composition assuming that two-phase separation does not occur. # 1 separates into an upper composition R1 and a lower composition E1. When the upper phase of the composition R1 is separated as a raffinate and the extractant S is mixed again,
It is separated into an upper composition R2 and a lower composition E2. Since the ratio of the mineral oil in the composition R2 is smaller than that in the composition R1, the accuracy of the extraction and separation mechanism for separating the mineral oil can be improved. Similarly, when three or more extraction separation mechanisms are connected, higher mineral oil separation performance can be obtained.

【0045】図9は、本発明の実施の形態1による抽出
分離機構を搭載した冷凍サイクルの冷媒回路の他の例を
示す。図9において、53は圧縮機23の吐出側と四方
弁24との間に挿入された油分離器であり、分離された
油を絞り装置36を介して返油管35によりアキュムレ
ータ26に返油する。72は配管(冷媒回路)であり、
油分離器53の出口側から弁31、冷媒熱交換器28、
絞り装置58を介して冷媒流入管22に接続されてい
る。その他は図1と同様であるから説明を省略する。こ
の冷媒回路において、流入配管22に流入させる液冷媒
は、図9に示すように、流出配管7から流出する低温の
二相冷媒と冷媒回路72を流れる高温・高圧のガス冷媒
を、冷媒熱交換器28で熱交換させ、冷媒回路72を流
れる冷媒を凝縮・液化し、その液化した冷媒を絞り装置
58で絞った後、流入配管22を介して抽出容器1内へ
導いている。このような構成によっても同様の効果を奏
する。
FIG. 9 shows another example of the refrigerant circuit of the refrigeration cycle equipped with the extraction / separation mechanism according to Embodiment 1 of the present invention. In FIG. 9, reference numeral 53 denotes an oil separator inserted between the discharge side of the compressor 23 and the four-way valve 24. . 72 is a pipe (refrigerant circuit),
From the outlet side of the oil separator 53, the valve 31, the refrigerant heat exchanger 28,
It is connected to the refrigerant inflow pipe 22 via the expansion device 58. The other parts are the same as those in FIG. In this refrigerant circuit, the liquid refrigerant flowing into the inflow pipe 22 is, as shown in FIG. The refrigerant flowing through the refrigerant circuit 72 is condensed and liquefied by the heat exchanger 28, the liquefied refrigerant is throttled by the expansion device 58, and then guided into the extraction container 1 through the inflow pipe 22. A similar effect can be obtained by such a configuration.

【0046】なお、以上説明したこの発明の概念は次の
ようにも要約できる。この発明の抽出分離機構は、抽質
と原溶媒とが混合した抽料と、抽剤とを、二相分離する
比率で混合し、抽料中の抽質を抽剤に抽出すると共に、
抽残液の密度と抽出液の密度との相違を利用して、抽残
液のみを分離するものである。ここで、具体例として
は、抽料は、原溶媒としての鉱油もしくはハードアルキ
ルベンゼン油に、抽質としてのエステル油もしくはエー
テル油が混合したものが該当する。また、抽剤としてハ
イドロフルオロカーボン系の冷媒が該当する。抽残液と
しては、抽質であるエステル油もしくはエーテル油が抽
出された後の、原溶媒である鉱油もしくはハードアルキ
ルベンゼン油に富む油が該当する。
The concept of the present invention described above can be summarized as follows. The extraction / separation mechanism of the present invention mixes the extract and the extractant in which the extract and the raw solvent are mixed, and the extractant at a ratio of two-phase separation, and extracts the extract in the extract into the extractant,
By utilizing the difference between the density of the raffinate and the density of the extract, only the raffinate is separated. Here, as a specific example, the extract corresponds to a mixture of a mineral oil or a hard alkylbenzene oil as a raw solvent and an ester oil or an ether oil as an extract. In addition, a hydrofluorocarbon-based refrigerant corresponds to the extractant. As the raffinate, an oil rich in a mineral oil or a hard alkylbenzene oil as a raw solvent after extraction of an extractable ester oil or ether oil is applicable.

【0047】また、図2に示す抽出分離機構は次のよう
にも要約できる。すなわち、この抽出分離機構は、液面
発生容器6と抽出容器1とを上部連結管8と下部連結管
9とで接続し、抽出容器1に接続された抽料流入配管
2、抽剤流入配管3、抽残液流出配管4とを備えると共
に、液面発生容器6に流出配管(7)を接続し、抽残液
の密度が抽出液の密度よりも小さい抽出分離機構におい
て、溶液面発生容器6内に発生した液面位置より抽出容
器1と接続される抽残液流出配管4の接続口の下部の方
を高く位置させたものである。
The extraction and separation mechanism shown in FIG. 2 can be summarized as follows. That is, this extraction and separation mechanism connects the liquid level generating vessel 6 and the extraction vessel 1 with the upper connecting pipe 8 and the lower connecting pipe 9, and the extraction material inflow pipe 2 and the extractant inflow pipe connected to the extraction vessel 1. 3. An extraction pipe having a raffinate outflow pipe 4 and an outflow pipe (7) connected to the liquid level generating vessel 6 so that the density of the raffinate is lower than the density of the extract. The lower part of the connection port of the raffinate outflow pipe 4 connected to the extraction container 1 is positioned higher than the liquid surface position generated in the inside 6.

【0048】また、図1に示す冷凍サイクル装置の熱源
機は次のようにも要約できる。すなわち、この熱源機
は、圧縮機23、熱源側熱交換器25およびアキュムレ
ータ26を備え、熱源側熱交換器25と液配管38との
間の配管と流入配管22(図2の抽出分離機構の抽剤流
入配管3に対応)とを接続する配管と、アキュムレータ
26の下部と抽料流入配管2とを接続する配管と、圧縮
機23の吸入配管を分岐し流出配管7と接続する配管
と、抽残液流出配管4と接続され抽残液を貯留する抽残
液貯溜容器29を有するものである。
The heat source unit of the refrigeration cycle apparatus shown in FIG. 1 can be summarized as follows. That is, this heat source device includes a compressor 23, a heat source side heat exchanger 25, and an accumulator 26, and a pipe between the heat source side heat exchanger 25 and the liquid pipe 38 and the inflow pipe 22 (of the extraction / separation mechanism in FIG. 2). A pipe connecting the lower part of the accumulator 26 and the extract inlet pipe 2, a pipe branching the suction pipe of the compressor 23 and connecting to the outlet pipe 7, It has a raffinate storage container 29 that is connected to the raffinate outflow pipe 4 and stores the raffinate.

【0049】また、図9に示す冷凍サイクル装置の熱源
機は次のようにも要約できる。すなわち、この熱源機
は、圧縮機23、熱源側熱交換器25、アキュムレータ
26および圧縮機23の吐出側に接続された油分離器5
3を備え、油分離器53の下流と流入配管22(図2の
抽出分離機構の抽剤流入配管3に対応)とを接続する配
管72と、アキュムレータ26の下部と抽料流入配管2
とを接続する配管と、圧縮機23の吸入配管を分岐し流
出配管7と接続する配管と、抽残液流出配管4と接続さ
れ抽残液を貯留する抽残液貯溜容器29とを有するもの
である。
The heat source unit of the refrigeration cycle apparatus shown in FIG. 9 can be summarized as follows. That is, the heat source unit includes the compressor 23, the heat source side heat exchanger 25, the accumulator 26, and the oil separator 5 connected to the discharge side of the compressor 23.
3, a pipe 72 connecting the downstream of the oil separator 53 and the inflow pipe 22 (corresponding to the extractant inflow pipe 3 of the extraction / separation mechanism in FIG. 2), a lower part of the accumulator 26, and the extract feed pipe 2
, A pipe that branches the suction pipe of the compressor 23 and connects to the outflow pipe 7, and a raffinate storage container 29 that is connected to the raffinate outflow pipe 4 and stores the raffinate. It is.

【0050】実施の形態2.図10は、本発明の実施の
形態2による抽出分離機構の構成の概要図である。図1
0中、10はシェル、11、12、13は仕切板、14
は仕切板11に開けられた孔、15は仕切板13に開け
られた孔で、孔14を孔15よりもやや低い位置とす
る。16、17は仕切板12の上部と下部に開けられた
孔である。2は抽料流入配管であり、抽料流入配管2は
シェル10内の仕切板12と仕切板13で仕切られた空
間43内に一端を開口して接続される。3は抽剤流入配
管であり、抽剤流入配管3はシェル10内の仕切板12
と仕切板13で仕切られた空間43内に一端を開口して
接続される。さらに、5は抽出液流出配管であり、抽出
液流出配管5はシェル10内の仕切板12と仕切板13
で仕切られた空間43内の底部付近などの下部に一端を
開口して接続される。なお、抽出液流出配管5は、シェ
ル10内の仕切板11と仕切板12で仕切られた空間4
2の下部に一端を開口して接続してもよい。
Embodiment 2 FIG. 10 is a schematic diagram of a configuration of an extraction / separation mechanism according to Embodiment 2 of the present invention. FIG.
In 0, 10 is a shell, 11, 12, and 13 are partition plates, 14
Is a hole formed in the partition plate 11, and 15 is a hole formed in the partition plate 13. The hole 14 is located at a position slightly lower than the hole 15. Reference numerals 16 and 17 denote holes formed in the upper and lower portions of the partition plate 12, respectively. Reference numeral 2 denotes a lotion inflow pipe, and the lotion inflow pipe 2 is connected at one end to a space 43 partitioned by the partition plate 12 and the partition plate 13 in the shell 10. Reference numeral 3 denotes an extractant inflow pipe, and the extractant inflow pipe 3 is a partition plate 12
And one end is opened in a space 43 partitioned by the partition plate 13. Further, reference numeral 5 denotes an extract outflow pipe, and the extract outflow pipe 5 includes a partition plate 12 and a partition plate 13 in the shell 10.
One end is opened and connected to a lower portion, such as near the bottom, in the space 43 partitioned by. The extraction liquid outflow pipe 5 is provided in a space 4 partitioned by a partition plate 11 and a partition plate 12 in the shell 10.
One end may be opened and connected to the lower part of 2.

【0051】係る構成の抽出分離機構の動作について説
明する。抽剤流入配管3から冷媒液を流入させると、空
間42と空間43の液面は共に孔14に位置まで上昇す
る。液面が孔14以上になると孔14から液冷媒が空間
41側に流出し、空間42および空間43の液面が孔1
4の位置に保たれる。ここで、抽料流入配管2からエス
テル油と鉱油の混合油を流入させると、空間43におい
て、エステル油が冷媒液に抽出されるとともに、鉱油が
分離し、鉱油と冷媒液の密度差から空間43の液面上部
に鉱油に富む液相を形成する。この鉱油に富む油の相が
厚くなると、空間42の液面高さよりも空間43の液面
高さの方が高くなり、孔15から空間44に鉱油が流れ
込むようになる。また、空間43に流れ込む鉱油の量が
減少すると、空間43に形成される鉱油の相の厚さが減
少し、液面高さも孔15の位置に達しなくなり、空間4
4には液冷媒が流れ込むことはない。したがって、エス
テル油と鉱油の混合油から、抽出分離した鉱油を貯留す
る容器を抽出分離機構と一体化することにより安価に製
造することができる。
The operation of the extraction / separation mechanism having such a configuration will be described. When the refrigerant liquid flows from the extractant inflow pipe 3, the liquid levels of the space 42 and the space 43 both rise to the position of the hole 14. When the liquid level becomes equal to or larger than the hole 14, the liquid refrigerant flows out of the hole 14 toward the space 41, and the liquid surfaces of the space 42 and the space 43
It is kept in position 4. Here, when a mixed oil of ester oil and mineral oil flows in from the extract inlet pipe 2, the ester oil is extracted into the refrigerant liquid in the space 43, the mineral oil is separated, and the space is determined by the density difference between the mineral oil and the refrigerant liquid. A liquid phase rich in mineral oil is formed above the liquid surface of 43. When the mineral oil-rich oil phase becomes thicker, the liquid level of the space 43 becomes higher than the liquid level of the space 42, and the mineral oil flows into the space 44 from the hole 15. When the amount of the mineral oil flowing into the space 43 decreases, the thickness of the phase of the mineral oil formed in the space 43 decreases, and the liquid level does not reach the position of the hole 15.
No liquid refrigerant flows into 4. Therefore, it can be manufactured at low cost by integrating a container for storing the extracted and separated mineral oil from the mixed oil of the ester oil and the mineral oil with the extraction and separation mechanism.

【0052】なお、図10の抽出分離機構を図1の冷媒
回路に適用するときは、図10の抽出液流出配管5は、
図1の流出配管7の位置に接続する。また、図10では
抽残液は内部に貯留するので、図1の抽残液流出配管4
に相当するものは外部には出ていない。したがって接続
する必要はない。
When the extraction / separation mechanism of FIG. 10 is applied to the refrigerant circuit of FIG. 1, the extraction liquid outflow pipe 5 of FIG.
It is connected to the position of the outflow pipe 7 in FIG. In FIG. 10, since the raffinate is stored inside, the raffinate outflow pipe 4 shown in FIG.
There is no equivalent to outside. Therefore, there is no need to connect.

【0053】なお、図10に示す抽出分離機構は次のよ
うにも要約できる。すなわち、この抽出分離機構は、シ
ェル10内の空間42(液面発生容器に相当)と空間4
3(抽出容器に相当)とを上部孔16(上部連結管に相
当)と下部孔17(下部連結管に相当)とで接続し、空
間43に接続された抽料流入配管2と抽剤流入配管3
と、孔15(抽残液流出配管に相当)とを備えると共
に、空間42に孔14(流出配管に相当)を設け、抽残
液の密度が抽出液の密度よりも小さい抽出分離機構にお
いて、空間42に発生した液面位置より空間43の孔1
5の方を高く位置させたものである。
The extraction and separation mechanism shown in FIG. 10 can be summarized as follows. In other words, the extraction and separation mechanism is configured such that the space 42 (corresponding to a liquid surface generation container) in the shell 10 and the space 4
3 (corresponding to an extraction vessel) is connected by an upper hole 16 (corresponding to an upper connecting pipe) and a lower hole 17 (corresponding to a lower connecting pipe). Piping 3
And a hole 15 (corresponding to the raffinate outflow pipe), and a hole 14 (corresponding to the outflow pipe) in the space 42, and the density of the raffinate is smaller than the density of the extract. From the position of the liquid surface generated in the space 42, the hole 1 in the space 43
5 is positioned higher.

【0054】実施の形態3.図11は、本発明の実施の
形態3による抽出分離機構の構成の概要図である。図1
1中、20は外円筒形容器、21は内円筒形容器であ
り、外円筒形容器20は内円筒形容器21を内封する。
外円筒形容器20と内円筒形容器21の間には空間4
3、内円筒形容器21の内部には空間42が形成され
る。また、内円筒形容器21の上部と下部には孔16と
孔17が開けられている。空間43には、抽料流入配管
2、抽剤流入配管3および抽残液流出配管4が接続され
ている。空間42には、流出配管7が挿入され、空間4
2内部における流出配管7の端部は、抽残液流出配管4
よりやや低い位置とする。
Embodiment 3 FIG. FIG. 11 is a schematic diagram of a configuration of an extraction / separation mechanism according to Embodiment 3 of the present invention. FIG.
In 1, 20 is an outer cylindrical container, 21 is an inner cylindrical container, and the outer cylindrical container 20 encloses the inner cylindrical container 21.
A space 4 is provided between the outer cylindrical container 20 and the inner cylindrical container 21.
3. A space 42 is formed inside the inner cylindrical container 21. Holes 16 and 17 are formed in the upper and lower portions of the inner cylindrical container 21. The space 43 is connected to the extract inlet pipe 2, the extractant inlet pipe 3, and the raffinate outlet pipe 4. The outflow pipe 7 is inserted into the space 42,
The end of the outflow pipe 7 in the inside 2 is the raffinate outflow pipe 4
A slightly lower position.

【0055】係る構成の抽出分離機構の動作について説
明する。抽剤流入配管3から冷媒液が空間43に入る
と、孔17を通って空間42にも冷媒液が流れ、空間4
2と空間43の液面の高さは同一となって上昇する。空
間42において液面高さが流出配管7の端部以上に上昇
すると、液冷媒は流出配管7に流れ込み、液面の高さは
流出配管7の端部の位置に保たれる。この時、空間43
においても、同位置に液面が保たれ、抽残液流出配管7
から液冷媒が流出することはない。次に、抽料流入配管
2からエステル油と鉱油の混合油を流入させると、エス
テル油が冷媒液に抽出され、鉱油が分離し、鉱油と冷媒
液の密度差から空間43の液面上部に鉱油に富む液相を
形成する。この鉱油の相が厚くなると、空間42の液面
高さよりも空間43の液面高さの方が高くなり、抽残液
流出配管4から鉱油に富む油が流出する。したがって、
抽出分離機構を二重円筒構造とすることにより、安価で
コンパクトに製造することができる。なお、図11の抽
出分離機構は図1などの冷媒回路にそのまま適用でき
る。
The operation of the extraction / separation mechanism having such a configuration will be described. When the refrigerant liquid enters the space 43 from the extractant inflow pipe 3, the refrigerant liquid also flows through the hole 17 to the space 42, and the space 4
2 and the height of the liquid surface of the space 43 become the same and rise. When the liquid level rises above the end of the outflow pipe 7 in the space 42, the liquid refrigerant flows into the outflow pipe 7, and the liquid level is maintained at the position of the end of the outflow pipe 7. At this time, space 43
The liquid level is maintained at the same position in
The liquid refrigerant does not flow out of the apparatus. Next, when the mixed oil of the ester oil and the mineral oil flows in from the extract inlet pipe 2, the ester oil is extracted into the refrigerant liquid, the mineral oil is separated, and the density difference between the mineral oil and the refrigerant liquid causes the upper part of the liquid level of the space 43 to rise. Form a liquid phase rich in mineral oil. When the phase of the mineral oil becomes thicker, the level of the liquid in the space 43 becomes higher than the level of the liquid in the space 42, and the oil rich in the mineral oil flows out from the raffinate outflow pipe 4. Therefore,
By making the extraction / separation mechanism a double cylindrical structure, it can be manufactured inexpensively and compactly. The extraction and separation mechanism shown in FIG. 11 can be applied to the refrigerant circuit shown in FIG.

【0056】なお、図11に示す抽出分離機構の構成は
次のようにも要約できる。すなわち、この抽出分離機構
は、内円筒形容器21内の空間42(液面発生容器に相
当)と、内円筒形容器21と外円筒形容器20とで形成
する空間43(抽出容器に相当)とを上部孔16(上部
連結管に相当)と下部孔17(下部連結管に相当)とで
接続し、空間43に接続された抽料流入配管2と抽剤流
入配管3と抽残液流出配管4とを備えると共に、空間4
2に流出配管7を設け、抽残液の密度が抽出液の密度よ
りも小さい抽出分離機構において、空間42に発生した
液面位置より空間43の抽残液流出配管4の方を高く位
置させたものである。
The structure of the extraction and separation mechanism shown in FIG. 11 can be summarized as follows. In other words, this extraction and separation mechanism includes a space 42 (corresponding to a liquid level generating container) in the inner cylindrical container 21 and a space 43 (corresponding to the extraction container) formed by the inner cylindrical container 21 and the outer cylindrical container 20. Are connected by an upper hole 16 (corresponding to an upper connecting pipe) and a lower hole 17 (corresponding to a lower connecting pipe), and the extract inflow pipe 2, the extractant inflow pipe 3 and the raffinate outflow connected to the space 43. And a space 4
In the extraction / separation mechanism in which the density of the raffinate is lower than the density of the extract, the outflow pipe 7 in the space 43 is positioned higher than the liquid surface position generated in the space 42. It is something.

【0057】実施の形態4.図12は、本発明の実施の
形態4による抽出分離機構の構成の概要図である。図1
2において、1は抽出容器であり、抽出容器1には、上
部から抽残液流出配管、抽剤流入配管3、抽料流入配管
2および抽出液流出配管7が順次接続される。また、抽
出液流出配管7には電磁弁96が配設される。さらに、
抽出容器1の上部のガス中には第1の圧力センサー9
8、抽出液の底部の液中には第2の圧力センサー99が
設置され、第1の圧力センサー98と第2の圧力センサ
ー99の検知値から、制御器97を介して電磁弁96が
開閉される。動作について説明する。抽出容器1には、
抽剤流入配管3から抽剤が流入し、抽料流入配管2から
は抽料が流入し、抽出容器1内で抽剤と抽料が混合し、
抽残液と抽出液に分離する。ここで、電磁弁96の開閉
動作により、第1の圧力センサー98と第2の圧力セン
サー99の検知の差が一定になるように制御すること
で、密度の軽い抽残液の量が多くなる程、抽出容器1内
の抽残液とガス部の界面の高さは抽出液のみがある場合
の液面高さよりも高くすることができる。したがって、
抽残液流出配管4を抽出液のみがある場合の液面高さよ
りも高い位置で抽出容器1と接続することで、抽残液の
みを抽残液流出配管4から流出させることが可能とな
る。なお、図12の抽出分離機構を図1または図9の冷
媒回路に適用するときは、図10の抽出液流出配管5
は、図1または図9の流出配管7に接続する。
Embodiment 4 FIG. FIG. 12 is a schematic diagram of a configuration of an extraction / separation mechanism according to Embodiment 4 of the present invention. FIG.
In 2, reference numeral 1 denotes an extraction container, and a raffinate outflow pipe, an extractant inflow pipe 3, an extract inflow pipe 2, and an extract outflow pipe 7 are sequentially connected to the extraction vessel 1 from above. Further, an electromagnetic valve 96 is provided in the extraction liquid outflow pipe 7. further,
The first pressure sensor 9 is contained in the gas above the extraction vessel 1.
8. A second pressure sensor 99 is installed in the liquid at the bottom of the extract, and an electromagnetic valve 96 is opened and closed via a controller 97 based on the detection values of the first pressure sensor 98 and the second pressure sensor 99. Is done. The operation will be described. In the extraction container 1,
The extractant flows in from the extractant inflow pipe 3, the extractant flows in from the extractant inflow pipe 2, the extractant and the extractor mix in the extraction container 1,
Separate into raffinate and extract. Here, by controlling the opening and closing operation of the electromagnetic valve 96 so that the difference between the detections of the first pressure sensor 98 and the second pressure sensor 99 is constant, the amount of the light-residue raffinate increases. Thus, the height of the interface between the raffinate and the gas portion in the extraction vessel 1 can be made higher than the liquid level when only the extract is present. Therefore,
By connecting the raffinate outflow pipe 4 to the extraction vessel 1 at a position higher than the liquid level when only the extract is present, only the raffinate can flow out of the raffinate outflow pipe 4. . When the extraction / separation mechanism of FIG. 12 is applied to the refrigerant circuit of FIG. 1 or FIG.
Is connected to the outflow pipe 7 in FIG. 1 or FIG.

【0058】また、図12に示した抽出分離機構の構成
は次のようにも要約できる。すなわち、抽残液の密度が
抽出液の密度よりも小さい抽出分離機構において、抽出
容器1と、抽出容器1に接続された抽料流入配管2、抽
剤流入配管3、抽出液流出配管5、抽残液流出配管4と
を備え、抽出容器1内の抽残液の液面と抽出容器1の底
面との圧力差を一定とする制御機構と、圧力差が一定で
抽出容器1内に抽剤のみがある場合の液面高さより抽残
液流出配管4の接続口の下部の方を高く位置させたもの
である。
The structure of the extraction and separation mechanism shown in FIG. 12 can be summarized as follows. That is, in the extraction / separation mechanism in which the density of the raffinate is smaller than the density of the extract, the extraction vessel 1, the extract inlet pipe 2, the extractant inflow pipe 3, the extract outflow pipe 5 connected to the extraction vessel 1, A control mechanism for providing a constant pressure difference between the liquid level of the raffinate in the extraction vessel 1 and the bottom surface of the extraction vessel 1; The lower part of the connection port of the raffinate outflow pipe 4 is positioned higher than the liquid level when only the agent is present.

【0059】実施の形態5.図13は本発明の実施の形
態5による抽出分離機構を搭載した冷凍サイクルの冷媒
回路を示す。図13において、23は圧縮機、24は四
方弁、25は熱源側熱交換器、26はアキュムレータで
ある。1は抽出容器であり、抽出容器1は、抽料流入配
管2および弁59を介してアキュムレータ26と接続さ
れると共に、抽残液流出配管4を介して抽残液貯留容器
29に接続される。6は液面発生容器であり、抽出容器
1と液面発生容器6は上部連結管8と下部連結管9とで
接続される。流出配管7は一端を液面発生容器6に接続
され、他端は冷媒熱交換器28および弁32を介して圧
縮機23の吸入配管30aに接続される。さらに、流入
配管22は弁31を介して熱源側熱交換器25と液管3
8との間に接続される。抽出液流出配管5は流出配管7
と冷媒熱交換器28との間の配管と接続される。以上の
構成により室外機51を形成する。また、39は負荷側
熱交換器、40は絞り装置であり、これらにより室内機
52を形成する。室外機51と室内機52は、液管38
およびガス管37によって連結される。なお、図13に
おいて、添え字のa,bは、室内機が複数存在するマル
チ式冷凍・空調システムであることを示すが、説明では
簡略化のため添え字を省略する場合がある。
Embodiment 5 FIG. FIG. 13 shows a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 5 of the present invention. In FIG. 13, 23 is a compressor, 24 is a four-way valve, 25 is a heat source side heat exchanger, and 26 is an accumulator. Reference numeral 1 denotes an extraction container, and the extraction container 1 is connected to the accumulator 26 via the inflow pipe 2 and the valve 59, and is connected to the extraction vessel 29 through the outflow pipe 4. . Reference numeral 6 denotes a liquid level generating vessel, and the extraction vessel 1 and the liquid level generating vessel 6 are connected by an upper connecting pipe 8 and a lower connecting pipe 9. One end of the outflow pipe 7 is connected to the liquid level generating container 6, and the other end is connected to the suction pipe 30 a of the compressor 23 via the refrigerant heat exchanger 28 and the valve 32. Further, the inflow pipe 22 is connected to the heat source side heat exchanger 25 and the liquid pipe 3 through the valve 31.
8 is connected. Extract liquid outflow pipe 5 is outflow pipe 7
And a refrigerant heat exchanger 28. The outdoor unit 51 is formed by the above configuration. Further, reference numeral 39 denotes a load-side heat exchanger, and reference numeral 40 denotes a throttle device, which forms an indoor unit 52. The outdoor unit 51 and the indoor unit 52 are
And a gas pipe 37. In FIG. 13, the subscripts a and b indicate that the system is a multi-type refrigeration / air-conditioning system having a plurality of indoor units, but the subscripts may be omitted in the description for simplicity.

【0060】上記のような構成の冷凍・空調機を施工す
る場合で、HCFC系もしくはCFC系の冷媒を充填し
たユニットに用いられていた液管およびガス管もしくは
液管・ガス管および室内機を流用し、冷媒にHFC系冷
媒・冷凍機油にエステル油を用いる室外機を新設した場
合、液管とガス管および室内機にはHCFC系またはC
FC系の冷凍機油として用いられていた鉱油が残留して
いる。このような状態で冷凍サイクルを冷房運転した場
合の動作について説明する。圧縮機23を吐出した高温
・高圧のガス冷媒は、熱源側熱交換器で放熱し、凝縮・
液化して液管38を流れ、液管38内に残留する鉱油
を、液もしくはガスと鉱油の間に生じる界面せん断力で
ひきずりながら液管38中の鉱油を洗浄していく。液管
38を流れた液冷媒は、室内機52に入り、蒸発気化
し、ガス管37を流れ、ガス配管中に残留する鉱油を、
ガス冷媒と鉱油の間に生じるせん断力でひきずりながら
ガス管中の鉱油を洗浄していく。ガス管37を流れたガ
ス冷媒は室外機51に戻り、四方弁24およびアキュム
レータ26を介して圧縮機23へ戻る。このとき、圧縮
機から持出されたエステル油が冷媒と共に既設の冷媒配
管中を循環し、既設配管中に残留していた鉱油と混合
し、冷媒と共にアキュムレータ26に入る。
When the refrigeration / air-conditioning apparatus having the above configuration is installed, the liquid and gas pipes or the liquid and gas pipes and the indoor unit used in the unit filled with the HCFC or CFC refrigerant are used. If an outdoor unit that uses HFC-based refrigerant and ester oil as refrigerating machine oil is newly installed, the liquid and gas pipes and indoor unit will be HCFC-based or C-type.
Mineral oil used as FC refrigerating machine oil remains. The operation when the refrigeration cycle performs the cooling operation in such a state will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 23 radiates heat in the heat source side heat exchanger and is condensed.
The liquid oil is liquefied and flows through the liquid pipe 38, and the mineral oil in the liquid pipe 38 is washed while dragging the mineral oil remaining in the liquid pipe 38 by an interfacial shear force generated between the liquid or gas and the mineral oil. The liquid refrigerant flowing through the liquid pipe 38 enters the indoor unit 52, evaporates and evaporates, flows through the gas pipe 37, and removes the mineral oil remaining in the gas pipe.
The mineral oil in the gas pipe is washed while being dragged by the shear force generated between the gas refrigerant and the mineral oil. The gas refrigerant flowing through the gas pipe 37 returns to the outdoor unit 51, and returns to the compressor 23 via the four-way valve 24 and the accumulator 26. At this time, the ester oil taken out of the compressor circulates in the existing refrigerant pipe together with the refrigerant, mixes with the mineral oil remaining in the existing pipe, and enters the accumulator 26 with the refrigerant.

【0061】図14は、本発明の実施の形態5による抽
出分離機構の構成の概要図であり、図13の冷凍サイク
ル装置に適用できるものである。図14中、1は抽出容
器であり、抽出容器1には抽料流入配管2、抽残液流出
配管4、抽出液流出配管5が接続される。6は液面発生
容器であり、抽出容器1と液面発生容器6は上部連結管
8と下部連結管9とで接続されている。また、液面発生
容器6には流入配管22と流出配管7とが接続されてい
る。ここで、流出配管7と液面発生容器6との接続位置
は、抽残液流出配管4よりも鉛直方向にやや低くする。
FIG. 14 is a schematic diagram of the configuration of an extraction / separation mechanism according to Embodiment 5 of the present invention, which is applicable to the refrigeration cycle apparatus of FIG. In FIG. 14, reference numeral 1 denotes an extraction vessel, to which a lottery inflow pipe 2, a raffinate outflow pipe 4, and an extract outflow pipe 5 are connected. Reference numeral 6 denotes a liquid level generating vessel, and the extraction vessel 1 and the liquid level generating vessel 6 are connected by an upper connecting pipe 8 and a lower connecting pipe 9. Further, an inflow pipe 22 and an outflow pipe 7 are connected to the liquid level generating container 6. Here, the connection position between the outflow pipe 7 and the liquid level generating container 6 is slightly lower in the vertical direction than the raffinate liquid outflow pipe 4.

【0062】係る構成の抽出分離機構の動作について説
明する。流入配管22から気液二相冷媒を液面発生容器
6に流入させ、流出配管7から流出させると、流出配管
7の位置に液面が発生する。また、液面発生容器6と抽
出容器1は上部連絡管8と下部連絡管9で接続されてい
るので、均圧されて、抽出容器1内にも流出配管7と同
位置に液面が生じる。ここで、抽料流入配管2からエス
テル油と鉱油の混合油を流入させると、エステル油が冷
媒液に抽出され、鉱油が分離し、鉱油と冷媒液の密度差
から抽出容器1の液面上部に鉱油に富む液相を形成す
る。この鉱油の相が厚くなると、液面発生容器6の液面
高さよりも抽出容器1の液面高さの方が高くなり、抽残
液流出配管4から鉱油が流出する。
The operation of the extraction / separation mechanism having such a configuration will be described. When the gas-liquid two-phase refrigerant flows into the liquid level generating container 6 from the inflow pipe 22 and flows out from the outflow pipe 7, a liquid level is generated at the position of the outflow pipe 7. Further, since the liquid level generating vessel 6 and the extraction vessel 1 are connected by the upper communication pipe 8 and the lower communication pipe 9, the pressure is equalized and a liquid level is generated in the extraction vessel 1 at the same position as the outflow pipe 7. . Here, when a mixed oil of ester oil and mineral oil flows into the extraction fluid inflow pipe 2, the ester oil is extracted into the refrigerant liquid, and the mineral oil is separated. Forms a liquid phase rich in mineral oil. When the phase of the mineral oil becomes thicker, the liquid level of the extraction vessel 1 becomes higher than the liquid level of the liquid level generating vessel 6, and the mineral oil flows out from the raffinate outflow pipe 4.

【0063】図15は、本発明の実施の形態5による抽
出分離機構の構成の変形例の概要図である。図15に示
すように、抽出容器1において、抽残液流出配管4の接
続部近傍の水平方向の断面積を他の部分、特に抽残液流
出配管4の接続部近傍より低い部分の水平方向の断面積
より小さくすることによって、分離された鉱油が少ない
場合でも、分離された鉱油の相の高さを高くすることが
できるので、小量の鉱油でも分離が可能となる。
FIG. 15 is a schematic diagram of a modification of the configuration of the extraction / separation mechanism according to the fifth embodiment of the present invention. As shown in FIG. 15, in the extraction vessel 1, the horizontal cross-sectional area in the vicinity of the connection portion of the raffinate outflow pipe 4 is set to be different from that of the other portions, particularly, the horizontal direction of the portion lower than the vicinity of the connection portion of the raffinate outflow pipe 4. By making the cross-sectional area smaller than the above, even if the separated mineral oil is small, the height of the separated mineral oil phase can be increased, so that even a small amount of mineral oil can be separated.

【0064】図16は本発明の実施の形態5による抽出
分離機構を搭載した冷凍サイクルの冷媒回路の他の例を
示す。図16において、23は圧縮機、53は油分離
器、24は四方弁、25は熱源側熱交換器、26はアキ
ュムレータである。1は抽出容器であり、抽出容器1
は、抽料流入配管2および弁34を介して返油回路35
と接続されると共に、抽残液流出配管4を介して抽残液
貯留容器29に接続される。6は液面発生容器であり、
抽出容器1と液面発生容器6は上部連結管8と下部連結
管9とで接続される。流出配管7は一端を液面発生容器
6に接続され、他端は冷媒熱交換器28および弁32を
介して圧縮機23の吸入配管30aに接続される。さら
に、流入配管22は弁31を介して熱源側熱交換器25
と液管38との間に接続される。抽出液流出配管5は、
流出配管7と冷媒熱交換器28との間の配管と接続され
る。以上のように室外機51を形成する。また、39は
負荷側熱交換器、40は絞り装置であり、これらにより
室内機52を形成する。室外機51と室内機52は、液
管38およびガス管37によって連結される。なお、図
16において、添え字のa,bは、室内機が複数存在す
るマルチ式冷凍・空調システムであることを示すが、説
明では簡略化のために記載を省略する。
FIG. 16 shows another example of a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 5 of the present invention. In FIG. 16, 23 is a compressor, 53 is an oil separator, 24 is a four-way valve, 25 is a heat source side heat exchanger, and 26 is an accumulator. Reference numeral 1 denotes an extraction container.
Is connected to the oil return circuit 35 via the extraction inflow pipe 2 and the valve 34.
Is connected to the raffinate storage container 29 via the raffinate outflow pipe 4. 6 is a liquid level generating container,
The extraction vessel 1 and the liquid level generating vessel 6 are connected by an upper connecting pipe 8 and a lower connecting pipe 9. One end of the outflow pipe 7 is connected to the liquid level generating container 6, and the other end is connected to the suction pipe 30 a of the compressor 23 via the refrigerant heat exchanger 28 and the valve 32. Further, the inflow pipe 22 is connected to the heat source side heat exchanger 25 through the valve 31.
And the liquid pipe 38. Extract liquid outflow pipe 5
It is connected to a pipe between the outflow pipe 7 and the refrigerant heat exchanger 28. The outdoor unit 51 is formed as described above. Further, reference numeral 39 denotes a load-side heat exchanger, and reference numeral 40 denotes a throttle device, which forms an indoor unit 52. The outdoor unit 51 and the indoor unit 52 are connected by a liquid pipe 38 and a gas pipe 37. In FIG. 16, the subscripts a and b indicate that the system is a multi-type refrigeration / air-conditioning system having a plurality of indoor units, but the description is omitted for simplification in the description.

【0065】上記のような構成の冷凍・空調機を施工す
る場合で、HCFC系もしくはCFC系の冷媒を充填し
たユニットに用いられていた液管およびガス管もしくは
液管・ガス管および室内機を流用し、冷媒にHFC系冷
媒・冷凍機油にエステル油を用いる室外機を新設した場
合、液管とガス管および室内機にはHCFC系またはC
FC系の冷凍機油として用いられていた鉱油が残留して
いる。このような状態で冷凍サイクルを冷房運転した場
合の動作について説明する。圧縮機23を吐出した高温
・高圧のガス冷媒は、熱源側熱交換器で放熱し、凝縮・
液化して液管38を流れ、液管38内に残留する鉱油
を、液もしくはガスと鉱油の間に生じる界面せん断力で
ひきずりながら液管38中の鉱油を洗浄していく。液管
38を流れた液冷媒は、室内機52に入り、蒸発気化
し、ガス管37を流れ、ガス配管中に残留する鉱油を、
ガス冷媒と鉱油の間に生じるせん断力でひきずりながら
ガス管中の鉱油を洗浄していく。ガス管37を流れたガ
ス冷媒は室外機51に戻り、四方弁24およびアキュム
レータ26を介して圧縮機23へ戻る。このとき、圧縮
機23から持出されたエステル油が冷媒と共に既設の冷
媒配管中を循環し、既設配管中に残留していた鉱油と混
合し、冷媒と共にアキュムレータ26に入る。
When the refrigeration / air-conditioning apparatus having the above-described configuration is installed, the liquid and gas pipes or the liquid and gas pipes and the indoor unit used in the unit filled with the HCFC or CFC refrigerant are used. If an outdoor unit that uses HFC-based refrigerant and ester oil as refrigerating machine oil is newly installed, the liquid and gas pipes and indoor unit will be HCFC-based or C-type.
Mineral oil used as FC refrigerating machine oil remains. The operation when the refrigeration cycle performs the cooling operation in such a state will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 23 radiates heat in the heat source side heat exchanger and is condensed.
The liquid oil is liquefied and flows through the liquid pipe 38, and the mineral oil in the liquid pipe 38 is washed while dragging the mineral oil remaining in the liquid pipe 38 by an interfacial shear force generated between the liquid or gas and the mineral oil. The liquid refrigerant flowing through the liquid pipe 38 enters the indoor unit 52, evaporates and evaporates, flows through the gas pipe 37, and removes the mineral oil remaining in the gas pipe.
The mineral oil in the gas pipe is washed while being dragged by the shear force generated between the gas refrigerant and the mineral oil. The gas refrigerant flowing through the gas pipe 37 returns to the outdoor unit 51, and returns to the compressor 23 via the four-way valve 24 and the accumulator 26. At this time, the ester oil taken out of the compressor 23 circulates in the existing refrigerant pipe together with the refrigerant, mixes with the mineral oil remaining in the existing pipe, and enters the accumulator 26 together with the refrigerant.

【0066】既設配管から回収した鉱油を分離する場合
には、弁31、弁32および弁34を開き、弁31で高
圧の液冷媒を低圧の二相冷媒まで絞り、流入配管22を
介して液面発生容器6に導く。また、返油回路35から
は既設配管から回収した鉱油とエステル油の混合油が弁
34にて低圧まで絞られて、抽料流入配管2を介して抽
出容器1に流入する。抽出容器1では、エステル油が冷
媒に抽出され、抽残液である鉱油に富む油が上層となっ
て二相分離し、鉱油に富む層の厚さが厚くなると、鉱油
に富む油が抽残液流出配管4を介して抽残液貯留容器2
9に流れ貯留される。抽出液である冷媒とエステル油に
富む油の混合液は、抽出液流出配管5から流出し、流出
配管7から流出した気液二相冷媒と合流した後、冷媒熱
交換器28で液冷媒が蒸発・気化し、エステル油に富む
油のみが圧縮機23の吸入配管へ流入する。
When separating the recovered mineral oil from the existing pipe, the valves 31, 32 and 34 are opened, the high-pressure liquid refrigerant is throttled to a low-pressure two-phase refrigerant by the valve 31, and the liquid is supplied through the inflow pipe 22. It leads to the surface generation container 6. Further, from the oil return circuit 35, the mixed oil of the mineral oil and the ester oil collected from the existing pipe is throttled to a low pressure by the valve 34 and flows into the extraction container 1 via the extraction charge inflow pipe 2. In the extraction vessel 1, the ester oil is extracted into the refrigerant, and the mineral-rich oil, which is the raffinate liquid, forms an upper layer and separates into two phases. Raffinate storage container 2 via liquid outflow pipe 4
9 and stored. The liquid mixture of the refrigerant as the extract and the oil rich in ester oil flows out of the extract liquid outlet pipe 5 and joins with the gas-liquid two-phase refrigerant flowing out of the outlet pipe 7. Only the oil that is evaporated and vaporized and rich in ester oil flows into the suction pipe of the compressor 23.

【0067】従って、冷媒流量が小さく冷媒回路内で圧
力差がつきにくい条件においても、油分離器53と抽出
容器1の圧力差を大きくとることができ、抽出容器1へ
の油の流動をスムーズにできるので、冷凍サイクルの広
い運転範囲において、抽出分離することができる。
Therefore, even under the condition that the flow rate of the refrigerant is small and the pressure difference in the refrigerant circuit is hard to be made, the pressure difference between the oil separator 53 and the extraction vessel 1 can be increased, and the flow of the oil to the extraction vessel 1 can be made smooth. Therefore, extraction and separation can be performed in a wide operating range of the refrigeration cycle.

【0068】なお、図16に示す冷凍サイクル装置の熱
源機の構成は次のようにも要約できる。すなわち、この
熱源機は、圧縮機23、この圧縮機23の吐出側に接続
された油分離器53、熱源側熱交換器25およびアキュ
ムレータ26を備え、熱源側熱交換器25と液配管27
との間の配管と流入配管(22)とを接続した図14お
よび図15に記載の抽出分離機構と、油分離器53から
絞り機構36を介してアキュムレータ26に返油する返
油回路35と、返油回路35を分岐し抽料流入配管2と
を接続する配管と、圧縮機23の吸入配管を分岐し流出
配管7と接続する配管と、圧縮機23の吸入配管を分岐
し抽出液流出配管5と接続する配管と、抽残液流出配管
4と接続され抽残液を貯留する抽残液貯溜容器を有する
ものである。
The configuration of the heat source unit of the refrigeration cycle apparatus shown in FIG. 16 can be summarized as follows. That is, the heat source unit includes a compressor 23, an oil separator 53 connected to the discharge side of the compressor 23, a heat source side heat exchanger 25, and an accumulator 26.
14 and 15 in which the pipe between the inlet pipe and the inflow pipe (22) is connected, and an oil return circuit 35 for returning oil from the oil separator 53 to the accumulator 26 via the throttle mechanism 36. , The pipe connecting the oil return circuit 35 and connecting to the extract inflow pipe 2, the pipe connecting the suction pipe of the compressor 23 and connecting to the outlet pipe 7, and the suction pipe of the compressor 23 branching and extracting liquid It has a pipe connected to the pipe 5 and a raffinate storage container connected to the raffinate outflow pipe 4 for storing the raffinate.

【0069】実施の形態6.図17は本発明の実施の形
態6による抽出分離機構を搭載した冷凍サイクルの冷媒
回路を示す。図17において、23は圧縮機、53は油
分離器、24は四方弁、25は熱源側熱交換器、26は
アキュムレータである。アキュムレータ26の内部は、
仕切板83により、上部空間26aと下部空間26bに
分離され、上部空間26aと下部空間26bは冷媒戻し
管75により連通される。73は両端を開放した通気管
であり、通気管73は一端を上部空間26aの上部に、
他端を上部空間26aの底部に位置するように設置され
る。また、通気管73と冷媒戻し管75は、仕切板83
からの鉛直方向の距離が等しい各々の中間の位置で、連
通管74によって連通される。76は気液分離用のデミ
スタ、84は一端を下部空間26bの上部に開口し、他
端をアキュムレータ26の外部に開口するU字管であ
り、U字の最下端は下部空間26bの底部の位置に来る
ように設置される。また、U字管の最下端付近には、返
油孔77が開けられている。29は抽残液貯留容器であ
り、上部空間26aとは抽残液流出配管4および逆止弁
80を介して連通される。抽残液流出配管4は連通管7
4よりもおよそ各配管の半径の和よりも高い位置に接続
することが望ましい。また、抽残液貯留容器29の上部
は、背圧管85および絞り79を介してU字管出口と接
続される。
Embodiment 6 FIG. FIG. 17 shows a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 6 of the present invention. In FIG. 17, 23 is a compressor, 53 is an oil separator, 24 is a four-way valve, 25 is a heat source side heat exchanger, and 26 is an accumulator. The inside of the accumulator 26
The partition 83 separates the upper space 26a and the lower space 26b, and the upper space 26a and the lower space 26b are communicated by the refrigerant return pipe 75. 73 is a ventilation pipe with both ends open, and the ventilation pipe 73 has one end above the upper space 26a,
It is installed so that the other end is located at the bottom of the upper space 26a. Further, the ventilation pipe 73 and the refrigerant return pipe 75 are connected to the partition plate 83.
Are communicated by the communication pipe 74 at respective intermediate positions having the same vertical distance from. 76 is a demister for gas-liquid separation, 84 is a U-shaped tube having one end opened to the upper part of the lower space 26b and the other end opened to the outside of the accumulator 26, and the lowermost end of the U-shape is at the bottom of the lower space 26b. It is installed to come to the position. An oil return hole 77 is formed near the lowermost end of the U-shaped tube. Reference numeral 29 denotes a raffinate storage container, which communicates with the upper space 26a via the raffinate outflow pipe 4 and the check valve 80. The raffinate outflow pipe 4 is a communication pipe 7
It is desirable to connect to a position higher than the sum of the radii of the respective pipes. The upper portion of the raffinate storage container 29 is connected to a U-shaped pipe outlet via a back pressure pipe 85 and a throttle 79.

【0070】上記のような構成の冷凍・空調機を施工す
る場合で、HCFC系もしくはCFC系の冷媒を充填し
たユニットに用いられていた液管およびガス管、もしく
は液管・ガス管および室内機を流用し、冷媒にHFC系
冷媒・冷凍機油にエステル油を用いる室外機を新設した
場合、液管とガス管および室内機にはHCFC系または
CFC系の冷凍機油として用いられていた鉱油が残留し
ている。このような状態で冷凍サイクルを冷房運転した
場合の動作について説明する。圧縮機23を吐出した高
温・高圧のガス冷媒は、油分離器53でガス冷媒中に含
まれるエステル油の噴霧を分離され、熱源側熱交換器2
5で放熱し、凝縮・液化して液管38を流れる。液管3
8を流れる液冷媒は、液管38内に残留する鉱油を、液
冷媒と鉱油の間に生じる界面せん断力でひきずりながら
液管中の鉱油を洗浄していく。液管38を流れた液冷媒
は、室内機52に入り、蒸発気化し、ガス管37を流
れ、ガス配管中に残留する鉱油を、ガス冷媒と鉱油の間
に生じるせん断力でひきずりながらガス管中の鉱油を洗
浄していく。ガス管37を流れたガス冷媒は、室外機5
1に戻り、四方弁24およびアキュムレータ26を介し
て圧縮機23へ戻る。
When the refrigeration / air-conditioning apparatus having the above configuration is installed, the liquid pipe and the gas pipe, or the liquid pipe / gas pipe and the indoor unit used in the unit filled with the HCFC or CFC refrigerant are used. If an outdoor unit is newly installed using HFC refrigerant as refrigerant and ester oil as refrigeration oil, mineral oil used as HCFC or CFC refrigeration oil will remain in the liquid and gas pipes and indoor unit. are doing. The operation when the refrigeration cycle performs the cooling operation in such a state will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 23 is separated from the spray of the ester oil contained in the gas refrigerant by the oil separator 53, and the heat source side heat exchanger 2
The heat is radiated at 5, condensed and liquefied, and flows through the liquid pipe 38. Liquid tube 3
The liquid refrigerant flowing through the pipe 8 cleans the mineral oil in the liquid pipe while dragging the mineral oil remaining in the liquid pipe 38 by the interface shear force generated between the liquid refrigerant and the mineral oil. The liquid refrigerant that has flowed through the liquid pipe 38 enters the indoor unit 52, evaporates and evaporates, flows through the gas pipe 37, and drags the mineral oil remaining in the gas pipe by the shear force generated between the gas refrigerant and the mineral oil. We wash mineral oil in. The gas refrigerant flowing through the gas pipe 37 is supplied to the outdoor unit 5.
1, and returns to the compressor 23 via the four-way valve 24 and the accumulator 26.

【0071】ここで、アキュムレータ26内部での鉱油
の分離動作について説明する。圧縮機23内部のエステ
ル油に既設配管中に残留した鉱油が混ざった場合には、
油分離器53で分離されたエステル油と鉱油の混合油が
返油配管35と絞り36を介してアキュムレータ26の
混合配管(吸入配管)45に流入し、既設配管から回収
された鉱油と混合する。さらに、熱源側熱交換器25で
凝縮した液冷媒が絞り78で低圧まで絞られアキュムレ
ータ26の混合配管(吸入配管)45に流入し、前記エ
ステル油と鉱油の混合油と混ざり合いエステル油と鉱油
の混合油からエステル油が冷媒液に抽出され、アキュム
レータ26に流入する。アキュムレータ26に流入した
冷媒ガス・エステル油の溶けた冷媒液およびわずかにエ
ステル油が溶けた鉱油は気液分離用デミスタ76によっ
てガス冷媒と液体とに分離され上部空間26aに入る。
上部空間26a内のガス冷媒は冷媒戻し管75を介して
下部空間26bに流入しU字管84を流れて圧縮機23
に戻る。気液分離用デミスタ76で分離された液は、上
部空間26の底部に溜まり、わずかにエステル油が溶け
た鉱油が上相、エステル油が溶けた冷媒液が下相となっ
て二相分離する。上相のわずかにエステル油の溶けた鉱
油は抽残液流出配管4および逆止弁80を介して抽残液
貯留容器29に溜まる。一方、上部空間26aの下相を
なすエステル油の溶けた液冷媒は上相の圧力に押されて
通気管73を上昇し、連通管74および冷媒戻し管75
を介して下部空間26bに流れ、下部空間26bの底部
に溜まる。下部空間26bの底部に溜まったエステル油
の溶けた液冷媒は、冷媒流量に応じた量だけ返油孔77
からU字管84内部に流入し、冷媒ガスと共に圧縮機2
3に流入する。
Here, the operation of separating the mineral oil inside the accumulator 26 will be described. When the mineral oil remaining in the existing piping is mixed with the ester oil inside the compressor 23,
The mixed oil of the ester oil and the mineral oil separated by the oil separator 53 flows into the mixing pipe (suction pipe) 45 of the accumulator 26 via the oil return pipe 35 and the throttle 36, and mixes with the mineral oil recovered from the existing pipe. . Further, the liquid refrigerant condensed in the heat source side heat exchanger 25 is throttled down to a low pressure by the throttle 78 and flows into the mixing pipe (suction pipe) 45 of the accumulator 26, and is mixed with the mixed oil of the ester oil and the mineral oil. The ester oil is extracted into the refrigerant liquid from the mixed oil and flows into the accumulator 26. The refrigerant liquid in which the refrigerant gas / ester oil has flowed into the accumulator 26 and the mineral oil in which the ester oil has slightly melted are separated into a gas refrigerant and a liquid by the demister 76 for gas-liquid separation and enter the upper space 26a.
The gas refrigerant in the upper space 26a flows into the lower space 26b through the refrigerant return pipe 75, flows through the U-shaped pipe 84, and
Return to The liquid separated by the gas-liquid separation demister 76 accumulates at the bottom of the upper space 26, and the mineral oil in which the ester oil is slightly dissolved becomes the upper phase, and the refrigerant liquid in which the ester oil is dissolved becomes the lower phase, and is separated into two phases. . The mineral oil of the upper phase, in which the ester oil is slightly dissolved, accumulates in the raffinate storage container 29 via the raffinate outflow pipe 4 and the check valve 80. On the other hand, the liquid refrigerant in which the ester oil, which forms the lower phase of the upper space 26a, is pushed by the pressure of the upper phase and rises in the ventilation pipe 73, and the communication pipe 74 and the refrigerant return pipe 75
And flows into the lower space 26b via the lower part, and accumulates at the bottom of the lower space 26b. The liquid refrigerant in which the ester oil has been collected at the bottom of the lower space 26b has an oil return hole 77 in an amount corresponding to the refrigerant flow rate.
Flows into the U-shaped tube 84 from the compressor 2 together with the refrigerant gas.
Flow into 3

【0072】次に、暖房運転した場合の動作について説
明する。圧縮機23を吐出した高温・高圧のガス冷媒
は、ガス管37を流れ、ガス管37中に残留する鉱油
を、ガス冷媒と鉱油の間に生じるせん断力でひきずりな
がらガス管中の鉱油を洗浄していく。ガス管37を流れ
たガス冷媒は、負荷側熱交換器39で放熱し、凝縮・液
化して絞り装置40で絞られ低圧の二相冷媒になる。こ
の低圧の二相冷媒は液管38を流れ、液管38内に残留
する鉱油を、液もしくはガスと鉱油の間に生じる界面せ
ん断力でひきずりながら液管38中の鉱油を洗浄してい
く。液管38を流れた気液二相冷媒は、室外機51に入
り、熱源側熱交換器25で蒸発し、四方弁24およびア
キュムレータ26を介して圧縮機23へ戻る。このと
き、圧縮機23から持出されたエステル油が冷媒と共に
既設の冷媒配管中を循環し、既設配管中に残留していた
鉱油と混合し、冷媒と共にアキュムレータ26に入る。
また、アキュムレータ26には、冷房と暖房における必
要冷媒量の差に相当する量の液冷媒が貯められる。ここ
で、アキュムレータ26内部での鉱油の分離動作は冷房
時と同様である。
Next, the operation when the heating operation is performed will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 23 flows through the gas pipe 37 and cleans the mineral oil in the gas pipe while dragging the mineral oil remaining in the gas pipe 37 by a shear force generated between the gas refrigerant and the mineral oil. I will do it. The gas refrigerant flowing through the gas pipe 37 radiates heat in the load-side heat exchanger 39, condenses and liquefies, and is throttled by the expansion device 40 to become a low-pressure two-phase refrigerant. The low-pressure two-phase refrigerant flows through the liquid pipe 38 and cleans the mineral oil in the liquid pipe 38 while dragging the mineral oil remaining in the liquid pipe 38 by the interfacial shear force generated between the liquid or gas and the mineral oil. The gas-liquid two-phase refrigerant flowing through the liquid pipe 38 enters the outdoor unit 51, evaporates in the heat source side heat exchanger 25, and returns to the compressor 23 via the four-way valve 24 and the accumulator 26. At this time, the ester oil taken out of the compressor 23 circulates in the existing refrigerant pipe together with the refrigerant, mixes with the mineral oil remaining in the existing pipe, and enters the accumulator 26 together with the refrigerant.
The accumulator 26 stores an amount of liquid refrigerant corresponding to the difference between the required amount of refrigerant for cooling and the amount of refrigerant for heating. Here, the operation of separating the mineral oil inside the accumulator 26 is the same as that during cooling.

【0073】従って、鉱油とエステル油の混合油と冷媒
液をアキュムレータ26の混合配管(吸入配管)45中
で混合させることにより、効率よく混合するので、冷媒
液へのエステル油の抽出を確実に行うことができる。こ
の結果、既設配管から回収した鉱油を確実に分離し、冷
凍サイクルの信頼性を高めることができる。
Therefore, the mixed oil of the mineral oil and the ester oil and the refrigerant liquid are mixed efficiently in the mixing pipe (suction pipe) 45 of the accumulator 26, so that the extraction of the ester oil into the refrigerant liquid is ensured. It can be carried out. As a result, the mineral oil recovered from the existing pipe can be reliably separated, and the reliability of the refrigeration cycle can be improved.

【0074】図18は、本発明の実施の形態6による抽
出分離機構を搭載した冷凍サイクルの冷媒回路の他の例
を示す。上記の図16では、仕切板83によりアキュム
レータ26を上下2段に分割した例を示したが、図18
に示す例でも同様の効果を得ることができる。つまり、
仕切板83aおよび仕切板83bによって左右の空間9
4aと94bに分割し、仕切板83aには上部の隙間9
3aと下部の隙間93bを設けると共に、仕切板83b
の高さを隙間93aと隙間93bの間の高さとすると、
空間94aにはわずかにエステル油が溶けた鉱油が上
相、エステル油が溶けた冷媒液が下相となって二相分離
する。空間94aの底部の液冷媒は隙間93bを通って
仕切板83aと仕切板83bの間に溜まり、空間94a
内の鉱油の量が増加するにしたがって、仕切板83aと
仕切板83bの間の冷媒液面の高さも上昇し、その高さ
が仕切板83bの上端まで来ると、空間94bに流れ込
むようになるので、鉱油は空間94aに溜めることがで
きる。
FIG. 18 shows another example of a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 6 of the present invention. FIG. 16 shows an example in which the accumulator 26 is divided into two upper and lower stages by the partition plate 83.
The same effect can be obtained in the example shown in FIG. That is,
The left and right spaces 9 are formed by the partition plate 83a and the partition plate 83b.
4a and 94b, and the partition plate 83a has an upper gap 9
3a and a lower gap 93b, and a partition plate 83b.
Is the height between the gap 93a and the gap 93b,
In the space 94a, the mineral oil in which the ester oil is slightly dissolved becomes the upper phase, and the refrigerant liquid in which the ester oil is dissolved becomes the lower phase, and is separated into two phases. The liquid refrigerant at the bottom of the space 94a passes through the gap 93b and accumulates between the partition plate 83a and the partition plate 83b.
As the amount of mineral oil in the inside increases, the height of the refrigerant liquid level between the partition plate 83a and the partition plate 83b also increases, and when the height reaches the upper end of the partition plate 83b, the refrigerant flows into the space 94b. Therefore, the mineral oil can be stored in the space 94a.

【0075】なお、図17に示す抽出分離機構の構成は
次のようにも要約できる。すなわち、この抽出分離機構
は、抽出容器1内の上部に一端を開口し、他端を抽出容
器1底部に開口する通気管73と、抽出容器1の上部に
一端を開口し他端を抽出容器1外に開口する液戻し管7
5と、通気管73と液戻し管75を連通管74にて連通
し、連通管74よりも高い位置で抽残液流出配管4を抽
出容器1と接続し、抽残液流出配管4と抽残液貯溜容器
29を逆止弁80を介して接続した抽出分離機構におい
て、混合配管45にて抽料と抽剤を混合した後に抽出容
器1内に導くものである。
The structure of the extraction and separation mechanism shown in FIG. 17 can be summarized as follows. That is, the extraction and separation mechanism includes a vent pipe 73 having one end opened in the upper part of the extraction vessel 1 and the other end opened in the bottom of the extraction vessel 1, a vent pipe 73 having one end opened in the upper part of the extraction vessel 1 and the other end in the extraction vessel. 1 Liquid return pipe 7 opening outside
5, the ventilation pipe 73 and the liquid return pipe 75 are communicated by a communication pipe 74, the raffinate outflow pipe 4 is connected to the extraction vessel 1 at a position higher than the communication pipe 74, and the raffinate outflow pipe 4 is connected to the extraction pipe 4. In the extraction / separation mechanism in which the residual liquid storage container 29 is connected via a check valve 80, the extract and the extractant are mixed in the mixing pipe 45 and then guided into the extraction container 1.

【0076】また、図17に示す冷凍サイクル装置の熱
源機の構成は次のようにも要約できる。すなわち、この
熱源機は、圧縮機23、油分離器53、熱源側熱交換器
25およびアキュムレータ26と、油分離器53から絞
り機構36を介して混合配管45に返油する返油回路3
5とを備え、熱源側熱交換器25と液配管27との間の
配管を分岐し混合配管45と接続すると共に、返油回路
35を混合配管45と接続し、混合配管45の出口とア
キュムレータ26の入口とを接続し、アキュムレータ2
6内部において上下に階層分けされた第1の空間(上部
空間)26aと第2の空間(下部空間)26bを設け、
第1の空間26aの上部に一端を開口し他端を第1の空
間26aの底部に開口する通気管73と、第1の空間2
6aの上部に一端を開口し他端を第2の空間26bに開
口する液戻し管75と、通気管73と液戻し管75を連
通管74にて連通し、連通管74よりも高い位置で抽残
液流出配管4を第1の空間26aと接続し、抽残液流出
配管4と抽残液貯溜容器29を逆止弁80を介して接続
したものである。
The configuration of the heat source unit of the refrigeration cycle apparatus shown in FIG. 17 can be summarized as follows. That is, the heat source unit includes a compressor 23, an oil separator 53, a heat source side heat exchanger 25, an accumulator 26, and an oil return circuit 3 for returning oil from the oil separator 53 to the mixing pipe 45 via the throttle mechanism 36.
5, a pipe between the heat source side heat exchanger 25 and the liquid pipe 27 is branched and connected to a mixing pipe 45, an oil return circuit 35 is connected to the mixing pipe 45, and an outlet of the mixing pipe 45 is connected to an accumulator. 26 and the accumulator 2
6, a first space (upper space) 26a and a second space (lower space) 26b which are divided into upper and lower layers are provided,
A vent pipe 73 having one end opened at the top of the first space 26a and the other end opened at the bottom of the first space 26a;
A liquid return pipe 75 having one end opened to the upper part of 6a and the other end opened to the second space 26b communicates with the ventilation pipe 73 and the liquid return pipe 75 through a communication pipe 74 at a position higher than the communication pipe 74. The raffinate outflow pipe 4 is connected to the first space 26a, and the raffinate outflow pipe 4 and the raffinate storage container 29 are connected via a check valve 80.

【0077】また、図18に示す抽出分離機構は次のよ
うにも要約できる。すなわち、この抽出分離機構は、容
器1内の空間94aと空間94bとを上部孔93aと下
部孔93bとで接続し、空間94aに接続された抽料と
抽剤との混合配管45を備えると共に、空間94bを中
間の高さで開放し、抽残液の密度が抽出液の密度よりも
小さい抽出分離機構において、空間94bから抽出液を
外部へ流出させるものである。
The extraction / separation mechanism shown in FIG. 18 can be summarized as follows. That is, the extraction / separation mechanism connects the space 94a and the space 94b in the container 1 with the upper hole 93a and the lower hole 93b, and includes the mixing pipe 45 for the extract and the extractant connected to the space 94a. The space 94b is opened at an intermediate height, and the extraction liquid flows out from the space 94b to the outside in the extraction separation mechanism in which the density of the raffinate is smaller than the density of the extract.

【0078】実施の形態7.図19は本発明の実施の形
態7による抽出分離機構を搭載した冷凍サイクルの冷媒
回路を示す。図19において、実施の形態5と同一部分
には、同一の記号を付し、説明を省略する。図19にお
いて、73は通気管であり、上部空間26aに上向きに
突出して一端を開口し、他端は仕切板83を貫通し下部
空間26b側に開口する。75は冷媒液戻し管であり、
一端を上部空間26aに開口すると共に、他端を下部空
間26bに開口する。冷媒液戻し管75の上部空間26
a側の端部には、鉱油と冷媒液の中間の密度のフロート
弁81を設置し、上部空間26a内の冷媒液の量によっ
て上下に運動する。
Embodiment 7 FIG. 19 shows a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 7 of the present invention. In FIG. 19, the same portions as those in the fifth embodiment are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 19, reference numeral 73 denotes a vent pipe, which projects upward into the upper space 26a and has one end opened, and the other end penetrates through the partition plate 83 and opens toward the lower space 26b. 75 is a refrigerant liquid return pipe,
One end is opened to the upper space 26a, and the other end is opened to the lower space 26b. Upper space 26 of refrigerant liquid return pipe 75
A float valve 81 having an intermediate density between the mineral oil and the refrigerant liquid is installed at the end on the a side, and moves up and down according to the amount of the refrigerant liquid in the upper space 26a.

【0079】ここで、図19に示した冷媒回路におい
て、冷房または暖房運転を行いながら既設配管から回収
した鉱油とエステル油の混合油から鉱油を分離する動作
について説明する。圧縮機23内部のエステル油に既設
配管中に残留した鉱油が混ざった場合には、油分離器5
3で分離されたエステル油と鉱油の混合油が返油配管3
5と絞り36を介してアキュムレータ26の混合配管
(吸入配管)45に流入し、既設配管から回収された鉱
油と混合する。さらに、熱源側熱交換器で凝縮した液冷
媒が絞り78で低圧まで絞られアキュムレータ26の混
合配管(吸入配管)45に流入し、前記エステル油と鉱
油の混合油と混ざり合い、エステル油と鉱油の混合油か
らエステル油が冷媒液に抽出され、アキュムレータ26
に流入する。アキュムレータ26に流入した冷媒ガス・
エステル油の溶けた冷媒液および鉱油は気液分離用デミ
スタ76によってガス冷媒と液体とに分離され上部空間
26aに入る。上部空間26a内のガス冷媒は通気管7
3を介して下部空間26bに流入し、U字管84を流れ
て圧縮機23に戻る。気液分離用デミスタ76で分離さ
れた液は、上部空間26aの底部に溜まり、わずかにエ
ステル油が溶けた鉱油が上相、エステル油が溶けた冷媒
液が下相となって二相分離する。ここで、フロート弁8
1の密度は、鉱油より重く、冷媒液よりも軽いので、上
相と下相の界面付近に浮遊する。下相をなす冷媒液の量
が増加すると、フロート弁81が冷媒液の高さに応じて
上昇し、冷媒液戻し管75の端部を開き、上部空間26
aの底部に溜まった冷媒液を下部空間26bに流す。下
部空間26bの底部に溜まったエステル油の溶けた液冷
媒は、冷媒流量に応じた量だけ返油孔77からU字管8
4内部に流入し、冷媒ガスと共に圧縮機23に流入す
る。
Here, the operation of separating the mineral oil from the mixed oil of the mineral oil and the ester oil recovered from the existing pipe while performing the cooling or heating operation in the refrigerant circuit shown in FIG. 19 will be described. If the ester oil inside the compressor 23 is mixed with the mineral oil remaining in the existing piping, the oil separator 5
The mixed oil of ester oil and mineral oil separated in 3
5 flows into the mixing pipe (suction pipe) 45 of the accumulator 26 through the throttle 36 and mixes with the mineral oil recovered from the existing pipe. Further, the liquid refrigerant condensed in the heat source side heat exchanger is throttled down to a low pressure by the throttle 78, flows into the mixing pipe (suction pipe) 45 of the accumulator 26, mixes with the mixed oil of the ester oil and the mineral oil, and mixes the ester oil and the mineral oil. Ester oil is extracted into the refrigerant liquid from the mixed oil of
Flows into. The refrigerant gas flowing into the accumulator 26
The refrigerant liquid in which the ester oil is dissolved and the mineral oil are separated into a gas refrigerant and a liquid by the gas-liquid separation demister 76 and enter the upper space 26a. The gas refrigerant in the upper space 26a is
3, flows into the lower space 26 b, flows through the U-shaped tube 84, and returns to the compressor 23. The liquid separated by the gas-liquid separation demister 76 accumulates at the bottom of the upper space 26a, and a two-phase separation occurs in which the mineral oil in which the ester oil is slightly dissolved becomes the upper phase, and the refrigerant liquid in which the ester oil is dissolved becomes the lower phase. . Here, the float valve 8
Since the density of 1 is heavier than mineral oil and lighter than refrigerant liquid, it floats near the interface between the upper and lower phases. When the amount of the refrigerant liquid forming the lower phase increases, the float valve 81 rises in accordance with the height of the refrigerant liquid, opens the end of the refrigerant liquid return pipe 75, and opens the upper space 26.
The refrigerant liquid accumulated at the bottom of the flow path a flows into the lower space 26b. The liquid refrigerant in which the ester oil is collected at the bottom of the lower space 26b is supplied from the oil return hole 77 through the U-tube 8 by an amount corresponding to the refrigerant flow rate.
4 and flows into the compressor 23 together with the refrigerant gas.

【0080】従って、鉱油と冷媒液の界面をフロート弁
81で制御し、エステル油の溶けた冷媒液を下部空間2
6bを介して圧縮機へ戻すことにより、上部空間26a
に鉱油を貯めることが可能となり、簡易な構成で既設配
管から回収した鉱油を分離・除去でき、かつ、冷凍サイ
クルの信頼性を高めることができる。
Therefore, the interface between the mineral oil and the refrigerant liquid is controlled by the float valve 81, and the refrigerant liquid in which the ester oil is dissolved is transferred to the lower space 2.
Returning to the compressor via 6b, the head space 26a
Mineral oil can be stored in the pipe, the mineral oil recovered from the existing pipe can be separated and removed with a simple configuration, and the reliability of the refrigeration cycle can be improved.

【0081】図20は、本発明の実施の形態7による抽
出分離機構を搭載した冷凍サイクルの冷媒回路の他の例
を示す。図20の抽出分離機構と冷媒回路は、図18に
示したものに、さらにフロート弁81により制御される
抽出液の液面高さよりも高い位置で抽残液流出配管4を
抽出容器1と接続し、抽残液流出配管4と抽残液貯溜容
器29とを逆止弁80を介して接続したものである。
FIG. 20 shows another example of a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 7 of the present invention. The extraction / separation mechanism and the refrigerant circuit of FIG. 20 are different from those shown in FIG. The raffinate outflow pipe 4 and the raffinate storage container 29 are connected via a check valve 80.

【0082】図21は、本発明の実施の形態7による抽
出分離機構を搭載した冷凍サイクルの冷媒回路のさらに
他の例を示す。図18の例では、仕切板83によりアキ
ュムレータ26を上下2段に分割した例を示したが、図
21に示す例でも同様の効果を得ることができる。つま
り、仕切板83によって左右の空間94aと94bに分
割し、仕切板83には上部の隙間93を設ける。空間9
4aの底部と空間94bの底部はフロート式開閉弁92
を介して配管93で接続される。フロート91は鉱油の
密度より大きく冷媒液の密度よりも軽くすることによ
り、フロート91は、空間94a内で鉱油と冷媒液の界
面付近に浮遊する。従って、空間94aの底部の冷媒液
の量が増加すると、フロート91が上昇すると共に、フ
ロート式開閉弁92が開き、配管93を介して冷媒液を
空間94aから空間94bへ流すことによって、鉱油の
みを空間94aに溜めることができる。
FIG. 21 shows still another example of a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 7 of the present invention. In the example of FIG. 18, the example in which the accumulator 26 is divided into upper and lower stages by the partition plate 83 is shown, but the same effect can be obtained in the example shown in FIG. 21. That is, the partition plate 83 is divided into left and right spaces 94a and 94b, and the partition plate 83 is provided with an upper gap 93. Space 9
The bottom of 4a and the bottom of space 94b are float-type on-off valves 92
And is connected by a pipe 93. By making the float 91 larger than the density of the mineral oil and lighter than the density of the refrigerant liquid, the float 91 floats near the interface between the mineral oil and the refrigerant liquid in the space 94a. Therefore, when the amount of the refrigerant liquid at the bottom of the space 94a increases, the float 91 rises and the float type on-off valve 92 opens, and the refrigerant liquid flows from the space 94a to the space 94b through the pipe 93, so that only the mineral oil is used. Can be stored in the space 94a.

【0083】なお、図19に示す抽出分離機構は次のよ
うにも要約できる。すなわち、この抽出分離機構は、抽
出容器1内の底部に一端を開口し、他端を抽出容器1外
に開口する液戻し管75と、抽出容器1の上部と容器外
部とを連通する通気管と、抽料と抽剤を混合した後に抽
出容器1内に導く混合配管45と、抽残液の密度と抽出
液の密度の間の密度となるフロート弁81を液戻し管7
5の開閉装置として設け、抽出容器1内の抽出液の液面
高さが所定値以上となると、フロート弁81を開放し抽
出液のみを抽出容器1外へ排出するものである。
The extraction / separation mechanism shown in FIG. 19 can be summarized as follows. That is, the extraction and separation mechanism includes a liquid return pipe 75 having one end opened at the bottom inside the extraction vessel 1 and the other end opened outside the extraction vessel 1, and a vent pipe communicating the upper part of the extraction vessel 1 with the outside of the vessel. A mixing pipe 45 for introducing the extract and the extractant into the extraction vessel 1 after mixing, and a float valve 81 having a density between the density of the raffinate and the density of the extract, and a liquid return pipe 7.
When the liquid level of the extract in the extraction container 1 becomes equal to or higher than a predetermined value, the float valve 81 is opened to discharge only the extract to the outside of the extraction container 1.

【0084】また、図21に示す抽出分離機構は次のよ
うにも要約できる。すなわち、この抽出分離機構は、容
器1内の空間94aと空間94bとを上部孔93で連通
させるとともに、互いの下部をフロート式開閉弁92を
介して接続し、フロート91によって開閉弁92を開閉
し、抽出液を空間94aから空間94bへ移動させるも
のである。
The extraction / separation mechanism shown in FIG. 21 can be summarized as follows. That is, the extraction and separation mechanism connects the space 94 a and the space 94 b in the container 1 with the upper hole 93, connects the lower parts of the container 94 with each other via the float-type on-off valve 92, and opens and closes the on-off valve 92 with the float 91. Then, the extract is moved from the space 94a to the space 94b.

【0085】実施の形態8.図22は本発明の実施の形
態8による抽出分離機構を搭載した冷凍サイクルの冷媒
回路を示す。図22において、実施例5と同一部分に
は、同一の記号を付し、説明を省略する。図22におい
て、73は通気管であり、上部空間26aに上向きに突
出して一端を開口し、他端は仕切板83を貫通し下部空
間26b側に開口する。87は冷媒液吸引管、96は電
磁弁であり、冷媒液吸引管87の一端は上部空間26a
の底部に開口すると共に、他端は電磁弁96を介してU
字管84の出口と接続される。
Embodiment 8 FIG. FIG. 22 shows a refrigerant circuit of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 8 of the present invention. In FIG. 22, the same portions as those in the fifth embodiment are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 22, reference numeral 73 denotes a ventilation tube which projects upward into the upper space 26a and has one end opened, and the other end penetrates through the partition plate 83 and opens toward the lower space 26b. 87 is a refrigerant liquid suction pipe, 96 is an electromagnetic valve, and one end of the refrigerant liquid suction pipe 87 is connected to the upper space 26a.
And the other end is connected to the U through a solenoid valve 96.
It is connected to the outlet of the tube 84.

【0086】ここで、図22の装置で、冷房または暖房
運転を行いながら既設配管から回収した鉱油とエステル
油の混合油から鉱油を分離する動作について説明する。
圧縮機23内部のエステル油に既設配管中に残留した鉱
油が混ざった場合には、油分離器53で分離されたエス
テル油と鉱油の混合油が返油配管35と絞り36を介し
てアキュムレータ26の混合配管(吸入配管)管45に
流入し、既設配管から回収された鉱油と混合する。さら
に、熱源側熱交換器25で凝縮した液冷媒が絞り78で
低圧まで絞られアキュムレータ26の混合配管(吸入配
管)45に流入し、前記エステル油と鉱油の混合油と混
ざり合い、エステル油と鉱油の混合油からエステル油が
冷媒液に抽出され、アキュムレータ26に流入する。ア
キュムレータ26に流入した冷媒ガス・エステル油の溶
けた冷媒液および鉱油は気液分離用デミスタ76によっ
てガス冷媒と液体とに分離され上部空間26aに入る。
上部空間26a内のガス冷媒は、通気管73を介して下
部空間26bに流入し、U字管84を流れて圧縮機23
に戻る。気液分離用デミスタ76で分離された液は、上
部空間26aの底部に溜まり、わずかにエステル油が溶
けた鉱油が上相、エステル油が溶けた冷媒液が下相とな
って二相分離する。下相をなす冷媒液の量が増加した場
合には、界面センサ82が冷媒液と鉱油の界面の上昇を
検知し、電磁弁96を開く。電磁弁96を開くと、上部
空間26aの底部に溜まった冷媒液が、冷媒液吸引管8
7を流れ電磁弁96を介してU字管出口に流れ込む。ま
た、一時的に、冷媒液の流入量が大きくなり、界面セン
サ88に位置まで界面が上昇した場合には、電磁弁89
を開き、配管90を介して上部空間26aの底部の冷媒
液を下部空間26bに流す。
Here, the operation of separating the mineral oil from the mixed oil of the mineral oil and the ester oil recovered from the existing pipe while performing the cooling or heating operation in the apparatus shown in FIG. 22 will be described.
When the mineral oil remaining in the existing pipe is mixed with the ester oil inside the compressor 23, the mixed oil of the ester oil and the mineral oil separated by the oil separator 53 is supplied to the accumulator 26 through the oil return pipe 35 and the throttle 36. Flows into the mixing pipe (suction pipe) 45 of the above, and mixes with the mineral oil recovered from the existing pipe. Further, the liquid refrigerant condensed in the heat source side heat exchanger 25 is throttled down to a low pressure by the throttle 78, flows into the mixing pipe (suction pipe) 45 of the accumulator 26, mixes with the mixed oil of the ester oil and the mineral oil, and mixes with the ester oil. The ester oil is extracted from the mixed oil of the mineral oil into the refrigerant liquid and flows into the accumulator 26. The refrigerant liquid and the mineral oil in which the refrigerant gas / ester oil has flowed into the accumulator 26 are separated into gas refrigerant and liquid by the gas-liquid separation demister 76 and enter the upper space 26a.
The gas refrigerant in the upper space 26a flows into the lower space 26b through the ventilation pipe 73, flows through the U-shaped pipe 84, and
Return to The liquid separated by the gas-liquid separation demister 76 accumulates at the bottom of the upper space 26a, and a two-phase separation occurs in which the mineral oil in which the ester oil is slightly dissolved becomes the upper phase, and the refrigerant liquid in which the ester oil is dissolved becomes the lower phase. . When the amount of the refrigerant liquid forming the lower phase increases, the interface sensor 82 detects an increase in the interface between the refrigerant liquid and the mineral oil, and opens the solenoid valve 96. When the solenoid valve 96 is opened, the refrigerant liquid accumulated at the bottom of the upper space 26a is discharged to the refrigerant liquid suction pipe 8
7 flows into the outlet of the U-tube through the solenoid valve 96. If the flow rate of the refrigerant liquid temporarily increases and the interface rises to the position of the interface sensor 88, the solenoid valve 89
Is opened, and the refrigerant liquid at the bottom of the upper space 26a flows through the pipe 90 into the lower space 26b.

【0087】従って、鉱油とエステル油の界面を精度よ
く検知することにより、鉱油の分離精度を高めると共
に、アキュムレータへの冷媒液流入量が一時的に増加し
た場合でも、冷媒液を下部空間26bに適切に貯留する
ことができるので、鉱油を確実に貯留することができ
る。
Therefore, by accurately detecting the interface between the mineral oil and the ester oil, the separation accuracy of the mineral oil is improved, and even when the amount of the refrigerant liquid flowing into the accumulator temporarily increases, the refrigerant liquid is transferred to the lower space 26b. Since it can be stored properly, mineral oil can be stored reliably.

【0088】なお、ここで、界面センサとしては、静電
容量センサや、赤外線等の吸光度を検知するものや、光
の屈折率の差を検知するものなどが一般的である。
Here, as the interface sensor, a capacitance sensor, a sensor for detecting the absorbance of infrared rays or the like, a sensor for detecting a difference in refractive index of light, and the like are generally used.

【0089】なお、図22に示す抽出分離機構は次のよ
うにも要約できる。すなわち、この抽出分離機構は、抽
出容器1の上部と容器外部の空間とを連通する通気管7
3と、冷媒液吸引管87と、抽料と抽剤を混合した後に
抽出容器1内に導く混合配管45と、抽残液と抽出液の
界面の移動を検出する界面センサー82と、界面センサ
ー82の信号によって冷媒吸引管87から抽出液を吸引
する電磁弁96を設けたものである。
The extraction and separation mechanism shown in FIG. 22 can be summarized as follows. That is, this extraction separation mechanism is provided with a vent pipe 7 that communicates the upper part of the extraction container 1 with the space outside the container.
3, a refrigerant liquid suction pipe 87, a mixing pipe 45 for introducing the extract and the extractant into the extraction container 1 after mixing, an interface sensor 82 for detecting the movement of the interface between the raffinate and the extract, and an interface sensor. An electromagnetic valve 96 for sucking the extract from the refrigerant suction pipe 87 in accordance with the signal 82 is provided.

【0090】[0090]

【発明の効果】本発明に係る抽出分離機構によれば、請
求項1に記載したように、抽質と原溶媒とが混合した抽
料と抽剤とを二相分離する比率で混合し、抽料中の抽質
を抽剤に抽出すると共に抽残液の密度が抽出液の密度よ
りも小さい抽出分離機構において、抽残液のみを分離す
る機構を備えたので、抽質と抽残液とを確実に分離する
ことができる。
According to the extraction / separation mechanism according to the present invention, as described in claim 1, the extract and the extractant in which the extract and the raw solvent are mixed are mixed at a ratio of two-phase separation, In the extraction and separation mechanism where the density of the raffinate is smaller than the density of the extract, a mechanism for separating only the raffinate is provided. Can be reliably separated.

【0091】本発明に係る抽出分離機構によれば、請求
項2,3に記載したように、抽剤により抽料から所定成
分を抽出する抽出容器と、抽剤流出配管を有する液面発
生容器とを、それぞれ鉛直方向の下部および上部で互い
に連通させ、抽剤流出配管と抽残液流出配管とを抽剤流
出配管により形成する液面よりも抽残液流出配管により
形成する液面が高くなるように配置したので、抽出容器
内の液面の位置を簡易に制御し、抽残液を効果的に分離
することができる。
According to the extraction / separation mechanism according to the present invention, as described in claims 2 and 3, an extraction container for extracting a predetermined component from an extract using an extractant, and a liquid level generating container having an extractant outlet pipe Are communicated with each other at the lower part and the upper part in the vertical direction, respectively, and the liquid surface formed by the raffinate outflow pipe is higher than the liquid level formed by the extractant outflow pipe and the raffinate outflow pipe. As a result, the position of the liquid level in the extraction container can be easily controlled, and the raffinate can be effectively separated.

【0092】本発明に係る抽出分離機構によれば、請求
項4に記載したように、抽剤により抽料から所定成分を
抽出する抽出容器と、抽出容器内の底面と液面との圧力
差を一定にする制御機構とを含み、抽出容器内に抽剤の
みがある場合の液面高さより抽残液流出配管により形成
する液面が高くなるように抽残液流出配管を配置したの
で、抽残液のみを確実に分離することができる。
According to the extraction / separation mechanism according to the present invention, as described in claim 4, the extraction container for extracting a predetermined component from the extract by the extractant, and the pressure difference between the bottom surface and the liquid level in the extraction container. Since the raffinate outflow pipe is arranged so that the liquid level formed by the raffinate outflow pipe is higher than the liquid level when there is only the extractant in the extraction container, Only the raffinate can be reliably separated.

【0093】本発明に係る抽出分離機構によれば、請求
項5に記載したように、抽剤により抽料から所定成分を
抽出する抽出容器と、抽剤流入配管と抽剤流出配管とを
備えた液面発生容器とを、それぞれ鉛直方向の下部およ
び上部で互いに連通させ、抽剤流出配管と抽残液流出配
管とを抽剤流出配管により形成する液面よりも抽残液流
出配管により形成する液面が高くなるように配置した。
すなわち、液面発生容器に気液二相流を流入させる流入
配管と、気液二相流を流出させる流出配管とを設け、流
出配管と液面発生容器との接続口付近に液面を発生させ
ることができるので、抽出容器内の液面を精度よく制御
することができ、もって効果的に抽出液と抽残液とを分
離することができる。
According to the extraction / separation mechanism of the present invention, as described in claim 5, an extraction container for extracting a predetermined component from the extract by the extractant, an extractant inflow pipe and an extractant outflow pipe are provided. The liquid level generating container is communicated with each other at the lower part and the upper part in the vertical direction, and the extractant outflow pipe and the raffinate outflow pipe are formed by the raffinate outflow pipe rather than the liquid surface formed by the extractant outflow pipe. It was arranged so that the liquid level to be run was high.
That is, an inflow pipe for flowing the gas-liquid two-phase flow into the liquid level generating container and an outflow pipe for discharging the gas-liquid two-phase flow are provided, and a liquid surface is generated near a connection port between the outflow pipe and the liquid level generating container. As a result, the liquid level in the extraction container can be controlled with high precision, and thus the extraction liquid and the raffinate can be effectively separated.

【0094】本発明に係る抽出分離機構によれば、請求
項6に記載したように、抽出容器において、抽残液流出
配管の接続部近傍の水平方向の断面積を接続部近傍より
低い部分の水平方向の断面積よりも小さくしたので、抽
残液の量が小量の場合でも、抽残液を確実に分離でき
る。
According to the extraction / separation mechanism according to the present invention, as described in claim 6, in the extraction vessel, the horizontal cross-sectional area near the connection portion of the raffinate outflow pipe is smaller than that of the portion near the connection portion. Since the cross-sectional area is smaller than the horizontal cross-sectional area, the raffinate can be reliably separated even when the amount of the raffinate is small.

【0095】本発明に係る抽出分離機構によれば、請求
項7,8に記載したように、抽料と抽剤を混合する混合
配管と、前記混合配管と接続し、上部に抽残液流出配
管、下部に抽出液流出配管を接続する抽出容器と、前記
抽出容器内の抽残液の液面高さを、前記抽残液流出配管
と前記抽出容器の接続口の下部よりも高い位置に制御す
る手段を設けたので、抽料と抽剤を効率よく混合し、抽
残液を確実に分離することができる。
According to the extraction / separation mechanism according to the present invention, as described in claims 7 and 8, the mixing pipe for mixing the extract and the extractant is connected to the mixing pipe, and the raffinate liquid flows out to the upper part. Piping, an extraction vessel for connecting an extraction liquid outflow pipe to the lower part, and the liquid level of the raffinate in the extraction vessel to a position higher than the lower part of the connection port between the raffinate outflow pipe and the extraction vessel. Since the control means is provided, the extract and the extractant can be efficiently mixed, and the raffinate can be reliably separated.

【0096】本発明に係る抽出分離機構によれば、請求
項9に記載したように、抽料と抽剤を混合する混合配管
と、前記混合配管と接続し、上部に抽残液流出配管、下
部に抽出液流出配管を接続する抽出容器と、前記抽出容
器内の抽残液と抽出液の界面高さを前記抽出液流出配管
と前記抽出容器の接続部より高い位置に制御する手段を
設けたので、抽出容器内に確実に抽残液を貯留すること
ができ、かつ、抽残液を貯留する別容器を必要としない
ので、安価に装置を製作することができる。
According to the extraction / separation mechanism of the present invention, as described in the ninth aspect, a mixing pipe for mixing the extract and the extractant is connected to the mixing pipe, and a raffinate outflow pipe is provided on the upper part. An extraction vessel for connecting an extraction liquid outflow pipe at a lower portion, and means for controlling an interface height between the raffinate and the extraction liquid in the extraction vessel at a position higher than a connection between the extraction liquid outflow pipe and the extraction vessel are provided. Therefore, the raffinate can be reliably stored in the extraction container, and a separate container for storing the raffinate is not required, so that the apparatus can be manufactured at low cost.

【0097】本発明に係る抽出分離機構によれば、請求
項10に記載したように、抽料と抽剤を混合する混合配
管と、前記混合配管と接続し、上部に抽残液流出配管、
下部に抽出液流出配管を接続する抽出容器と、前記抽出
容器内の抽残液の液面高さを、前記抽残液流出配管と前
記抽出容器の接続口の下部より高い位置に制御すると共
に、抽残液と抽出液の界面高さを前記抽出液流出配管と
前記抽出容器の接続口より高い位置に制御する手段を設
けたので、抽出容器内に確実に抽残液を貯留することが
できると共に、一時的に抽出容器への抽出液の流入量が
増加した場合でも、抽出容器内の抽残液面および抽残液
と冷媒液の界面の位置を安定して制御することができ
る。
According to the extraction / separation mechanism of the present invention, as described in claim 10, a mixing pipe for mixing the extract and the extractant is connected to the mixing pipe.
An extraction container for connecting the extraction liquid outflow pipe to the lower part, and controlling the liquid level of the raffinate in the extraction vessel to a position higher than the lower part of the connection port between the raffinate outflow pipe and the extraction vessel. Since the means for controlling the height of the interface between the extraction liquid and the extraction liquid at a position higher than the connection port between the extraction liquid outflow pipe and the extraction container is provided, it is possible to reliably store the extraction liquid in the extraction container. It is possible to stably control the raffinate liquid surface in the extraction container and the position of the interface between the raffinate liquid and the refrigerant liquid even when the amount of the extract liquid flowing into the extraction container temporarily increases.

【0098】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項11に記載したように、 請求項1〜4
のいずれかに記載の抽出分離機構を備え、熱源側熱交換
器の下流と抽出分離機構の抽剤流入配管とを接続し、ア
キュムレータの下部と抽料流入配管とを接続し、圧縮機
の吸入配管と液面発生器の抽剤流出配管とを接続したの
で、既設配管中から回収した鉱油にエステル油やエーテ
ル油といったHFC系冷媒対応の冷凍機油が混合した場
合でも、鉱油を分離回収することができる。
According to the heat source unit of the refrigeration cycle apparatus according to the present invention, as described in claim 11, claims 1 to 4
The extraction / separation mechanism according to any of the above, the downstream of the heat source side heat exchanger and the extractant inflow pipe of the extraction / separation mechanism are connected, the lower part of the accumulator and the extractant inflow pipe are connected, and the compressor is sucked. Since the pipe and the extractant outflow pipe of the liquid level generator are connected, even if the mineral oil recovered from the existing pipe is mixed with refrigeration oil compatible with HFC refrigerant such as ester oil or ether oil, mineral oil can be separated and recovered. Can be.

【0099】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項12に記載したように、圧縮機の吐出側
に接続された油分離器と、請求項1〜4のいずれかに記
載の抽出分離機構とを備え、油分離器の下流と抽出分離
機構の抽剤流入配管とを絞り手段を介して接続し、アキ
ュムレータの下部と抽料流入配管とを接続すると共に、
圧縮機の吸入配管と抽剤流出配管とを接続し、かつ、油
分離器の下流から絞り手段の間の配管と、圧縮機の吸入
配管と抽剤流出配管の間の配管を熱交換させる冷媒熱交
換器を備えたので、既設配管中から回収した鉱油にエス
テル油やエーテル油といったHFC系冷媒対応の冷凍機
油が混合した場合でも、鉱油を分離回収することができ
る。
According to the heat source unit of the refrigeration cycle apparatus according to the present invention, as described in claim 12, the oil separator connected to the discharge side of the compressor, and according to any one of claims 1 to 4, An extraction separation mechanism is provided, and the downstream of the oil separator and the extractant inflow pipe of the extraction and separation mechanism are connected via a throttle means, and the lower part of the accumulator and the extractant inflow pipe are connected,
Refrigerant that connects the suction pipe of the compressor and the extractant outflow pipe, and heat exchanges the pipe between the downstream of the oil separator and the throttle means, and the pipe between the suction pipe and the extractant outflow pipe of the compressor. Since the heat exchanger is provided, the mineral oil can be separated and recovered even when the refrigerating machine oil corresponding to the HFC-based refrigerant such as the ester oil or the ether oil is mixed with the mineral oil recovered from the existing pipe.

【0100】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項13に記載したように、請求項5または
6に記載の抽出分離機構を備え、熱源側熱交換器の下流
と抽出分離機構の抽剤流入配管とを接続し、アキュムレ
ータの下部と抽料流入配管とを接続し、圧縮機の吸入配
管と抽剤流出配管とを接続し、圧縮機の吸入配管と抽出
液流出配管とを接続したので、既設配管中から回収した
鉱油にエステル油やエーテル油といったHFC系冷媒対
応の冷凍機油が混合した場合でも、鉱油を分離回収する
ことができる。
According to the heat source unit of the refrigeration cycle apparatus according to the present invention, as described in claim 13, the extraction / separation mechanism according to claim 5 or 6 is provided, and the extraction / separation mechanism is provided downstream of the heat source side heat exchanger. Connect the extractant inflow pipe of the mechanism, connect the lower part of the accumulator and the extractant inflow pipe, connect the suction pipe of the compressor and the extractant outflow pipe, and connect the suction pipe and the extract outflow pipe of the compressor. Is connected, the mineral oil can be separated and recovered even when the refrigerating machine oil corresponding to the HFC refrigerant such as the ester oil or the ether oil is mixed with the mineral oil recovered from the existing piping.

【0101】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項14に記載したように、 圧縮機の吐出
側に接続された油分離器を含み、請求項5または6に記
載の抽出分離機構を備え、熱源側熱交換器の下流と抽出
分離機構の抽剤流入配管とを接続し、油分離器の返油回
路と抽料流入配管とを接続し、圧縮機の吸入配管と抽剤
流出配管とを接続し、圧縮機の吸入配管と抽出液流出配
管とを接続したので、あらゆる運転範囲で既設配管中か
ら回収した鉱油を分離することができる。
According to the heat source device of the refrigeration cycle apparatus according to the present invention, as described in claim 14, an oil separator connected to the discharge side of the compressor is included, and the extraction device according to claim 5 or 6 is provided. A separation mechanism is connected, the downstream of the heat source side heat exchanger is connected to the extraction agent inflow pipe of the extraction and separation mechanism, the oil return circuit of the oil separator is connected to the extraction material inflow pipe, and the suction pipe of the compressor is connected to the extraction pipe. Since the agent outflow pipe is connected and the suction pipe of the compressor and the extract outflow pipe are connected, it is possible to separate the mineral oil recovered from the existing pipe in any operating range.

【0102】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項15に記載したように、 圧縮機の吐出
側に接続された油分離器を含み、請求項7〜10のいず
れかに記載の抽出分離機構を備え、熱源側熱交換器の下
流と抽出分離機構の混合管とを接続し、油分離器の返油
回路と混合管とを接続し、液戻し管の他端を低圧側の配
管もしくは機器に接続し、抽料と抽剤を予め混合配管で
混合した後、抽出容器に流入させる。これにより、抽質
の抽出を確実に行うことができるので、冷凍サイクルに
おいて、既設配管から回収した鉱油にエステル油やエー
テル油といったHFC系冷媒対応の冷凍機油が混合した
場合でも、効率よく、かつ、確実に鉱油を分離すること
ができる。
According to the heat source unit of the refrigeration cycle apparatus according to the present invention, as described in claim 15, an oil separator connected to the discharge side of the compressor is provided. The extraction / separation mechanism described above is connected, the downstream of the heat source side heat exchanger is connected to the mixing pipe of the extraction / separation mechanism, the oil return circuit of the oil separator is connected to the mixing pipe, and the other end of the liquid return pipe is at a low pressure. After connecting the extract and the extractant with the mixing pipe in advance, the mixture is allowed to flow into the extraction container. As a result, extraction of the extract can be reliably performed, so that even in the case where the refrigerating machine oil compatible with the HFC-based refrigerant such as the ester oil or the ether oil is mixed with the mineral oil recovered from the existing piping in the refrigeration cycle, and , It is possible to reliably separate the mineral oil.

【0103】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項16に記載したように、圧縮機の吐出側
に接続された油分離器と、請求項8に記載の一体型アキ
ュムレータとを含み、熱源側熱交換器の下流と抽出分離
機構の混合配管とを接続し、油分離器の返油回路と混合
配管とを接続し、抽料と抽剤を予め混合配管で混合した
後、抽出容器に流入させる。したがって、抽出容器をア
キュムレータ内に内蔵するため、冷凍サイクルにおい
て、既設配管から回収した鉱油にエステル油やエーテル
油といったHFC系冷媒対応の冷凍機油が混合した場合
でも、安価に効率よく鉱油を分離することができる。
According to the heat source device of the refrigeration cycle apparatus according to the present invention, as described in claim 16, the oil separator connected to the discharge side of the compressor and the integrated accumulator according to claim 8 After connecting the downstream of the heat source side heat exchanger and the mixing pipe of the extraction / separation mechanism, connecting the oil return circuit of the oil separator and the mixing pipe, and mixing the extract and the extractant with the mixing pipe in advance Into the extraction vessel. Therefore, since the extraction container is built in the accumulator, even if the refrigerating cycle, when the refrigerating machine oil corresponding to the HFC-based refrigerant such as the ester oil or the ether oil is mixed with the mineral oil recovered from the existing piping, the mineral oil is efficiently separated at low cost. be able to.

【0104】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項17に記載したように、抽残液貯留容器
には、抽残液貯留容器内の液が外部へ逆流することを防
止する機構を設けたので、抽残液貯留容器内に貯留され
た鉱油が、冷媒回路内に再流出することを防止する。
According to the heat source device of the refrigeration cycle apparatus according to the present invention, as described in claim 17, the liquid in the raffinate storage container is prevented from flowing back to the outside into the raffinate storage container. The mechanism for preventing the mineral oil stored in the raffinate liquid storage container from flowing back into the refrigerant circuit is prevented.

【0105】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項18に記載したように、抽残液貯留容器
内部には抽残液を吸着する吸着材を設けたので、抽残液
貯留容器内に貯留された鉱油を簡易に確実に捕獲でき
る。
According to the heat source device of the refrigeration cycle apparatus according to the present invention, as described in claim 18, the raffinate liquid storage container is provided with an adsorbent for adsorbing the raffinate liquid, so that the raffinate liquid is provided. Mineral oil stored in the storage container can be easily and reliably captured.

【0106】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項19に記載したように、抽剤としてハイ
ドロフルオロカーボン系の冷媒、抽料としてエステル油
もしくはエーテル油のいずれかと鉱油もしくはハードア
ルキルベンゼン油のいずれかとの混合油としたので、エ
ステル油の回収効率を高め、圧縮機の潤滑油が枯渇する
ことを防止し、信頼性を高めることができる。
According to the heat source unit of the refrigeration cycle apparatus according to the present invention, as described in claim 19, a hydrofluorocarbon-based refrigerant is used as an extractant, and either an ester oil or an ether oil and a mineral oil or a hard alkylbenzene are used as an extractant. Since a mixed oil with any of the oils is used, the recovery efficiency of the ester oil can be increased, the lubricating oil of the compressor can be prevented from being depleted, and the reliability can be increased.

【0107】本発明に係る冷凍サイクル装置の熱源機に
よれば、請求項20に記載したように、抽出容器内の温
度を、冷凍サイクルの低圧の飽和温度以下としたので、
より精度よく鉱油を抽出することができる。
According to the heat source unit of the refrigeration cycle apparatus according to the present invention, as described in claim 20, the temperature in the extraction vessel is set to be equal to or lower than the low-pressure saturation temperature of the refrigeration cycle.
Mineral oil can be extracted more accurately.

【0108】本発明に係る冷凍サイクル装置によれば、
請求項21に記載したように、利用側熱交換器を含む利
用側機と、請求項11〜20のいずれかに記載の熱源機
とを接続配管により接続して冷媒回路を構成したので、
抽料から抽質の分離を行える冷凍サイクル装置が得られ
る。
According to the refrigeration cycle apparatus of the present invention,
As described in claim 21, since the use side machine including the use side heat exchanger and the heat source device according to any one of claims 11 to 20 are connected by a connection pipe to form a refrigerant circuit,
A refrigeration cycle device capable of separating the extract from the extract is obtained.

【0109】本発明に係る冷凍サイクル装置によれば、
請求項22に記載したように、接続配管として、既設の
冷凍サイクル装置の接続配管を利用したので、効率的に
更新した冷凍サイクル装置が得られる。
According to the refrigeration cycle apparatus of the present invention,
As described in claim 22, since the connection pipe of the existing refrigeration cycle apparatus is used as the connection pipe, an efficiently updated refrigeration cycle apparatus can be obtained.

【0110】本発明に係る冷凍サイクル装置の更新方法
によれば、請求項23に記載したように、既設の冷凍サ
イクル装置の熱源機を請求項11〜20のいずれかに記
載の熱源機に置換するとともに冷媒を置換するので、既
設の冷凍サイクル装置の接続配管等を利用して更新を行
うことができる。
According to the refrigeration cycle apparatus updating method of the present invention, as described in claim 23, the heat source unit of the existing refrigeration cycle unit is replaced with the heat source unit according to any one of claims 11 to 20. In addition, since the refrigerant is replaced, the renewal can be performed using a connection pipe or the like of the existing refrigeration cycle device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1の抽出分離機構を搭載
した冷凍サイクルの冷媒回路図を示す図である。
FIG. 1 is a diagram showing a refrigerant circuit diagram of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 1 of the present invention.

【図2】 本発明の実施の形態1の抽出分離機構の概略
構成図である。
FIG. 2 is a schematic configuration diagram of an extraction / separation mechanism according to Embodiment 1 of the present invention.

【図3】 抽出容器と液面発生容器中の液面レベルを示
す模式図である。
FIG. 3 is a schematic diagram showing a liquid level in an extraction container and a liquid level generating container.

【図4】 抽出容器内の鉱油の比率の変化に対する抽出
容器と液面発生容器の液面レベルの差の変化を示す図で
ある。
FIG. 4 is a diagram showing a change in the difference in liquid level between the extraction container and the liquid level generating container with respect to a change in the ratio of mineral oil in the extraction container.

【図5】 三角座標を用いた液相3成分系の相状態を示
す図である。
FIG. 5 is a diagram showing a phase state of a liquid phase three-component system using triangular coordinates.

【図6】 液相3成分系の平衡曲線を示す図である。FIG. 6 is a diagram showing an equilibrium curve of a liquid phase ternary system.

【図7】 本発明の実施の形態1の抽出分離機構の他の
概略構成図である。
FIG. 7 is another schematic configuration diagram of the extraction / separation mechanism according to the first embodiment of the present invention.

【図8】 本発明の実施の形態1の抽出分離機構の他の
例における三角座標を用いた液相3成分系の相状態を示
す図である。
FIG. 8 is a diagram illustrating a phase state of a liquid three-component system using triangular coordinates in another example of the extraction and separation mechanism according to the first embodiment of the present invention.

【図9】 本発明の実施の形態1の抽出分離機構を搭載
した冷凍サイクルのその他の例を示す冷媒回路図であ
る。
FIG. 9 is a refrigerant circuit diagram illustrating another example of a refrigeration cycle equipped with the extraction / separation mechanism according to Embodiment 1 of the present invention.

【図10】 本発明の実施の形態2の抽出分離機構の概
略構成図である。
FIG. 10 is a schematic configuration diagram of an extraction / separation mechanism according to Embodiment 2 of the present invention.

【図11】 本発明の実施の形態3の抽出分離機構の概
略構成図である。
FIG. 11 is a schematic configuration diagram of an extraction / separation mechanism according to Embodiment 3 of the present invention.

【図12】 本発明の実施の形態4の抽出分離機構の概
略構成図である。
FIG. 12 is a schematic configuration diagram of an extraction / separation mechanism according to Embodiment 4 of the present invention.

【図13】 本発明の実施の形態5の抽出分離機構を搭
載した冷凍サイクルの冷媒回路図を示す図である。
FIG. 13 is a diagram showing a refrigerant circuit diagram of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 5 of the present invention.

【図14】 本発明の実施の形態5の抽出分離機構の概
略構成図である。
FIG. 14 is a schematic configuration diagram of an extraction / separation mechanism according to Embodiment 5 of the present invention.

【図15】 本発明の実施の形態5の抽出分離機構の他
の概略構成図である。
FIG. 15 is another schematic configuration diagram of the extraction / separation mechanism according to the fifth embodiment of the present invention.

【図16】 本発明の実施の形態5の抽出分離機構を搭
載した冷凍サイクルの冷媒回路図の他の例を示す図であ
る。
FIG. 16 is a diagram showing another example of a refrigerant circuit diagram of a refrigeration cycle equipped with the extraction / separation mechanism according to Embodiment 5 of the present invention.

【図17】 本発明の実施の形態6の抽出分離機構を搭
載した冷凍サイクルのその他の例を示す冷媒回路図であ
る。
FIG. 17 is a refrigerant circuit diagram illustrating another example of a refrigeration cycle equipped with the extraction / separation mechanism according to Embodiment 6 of the present invention.

【図18】 本発明の実施の形態6の抽出分離機構を搭
載した冷凍サイクルの冷媒回路図を示す図である。
FIG. 18 is a diagram showing a refrigerant circuit diagram of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 6 of the present invention.

【図19】 本発明の実施の形態7の抽出分離機構を搭
載した冷凍サイクルのその他の例を示す冷媒回路図であ
る。
FIG. 19 is a refrigerant circuit diagram showing another example of a refrigeration cycle equipped with the extraction / separation mechanism according to Embodiment 7 of the present invention.

【図20】 本発明の実施の形態7の抽出分離機構を搭
載した冷凍サイクルの冷媒回路図を示す図である。
FIG. 20 is a diagram showing a refrigerant circuit diagram of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 7 of the present invention.

【図21】 本発明の実施の形態7の抽出分離機構を搭
載した冷凍サイクルの冷媒回路図を示す図である。
FIG. 21 is a diagram showing a refrigerant circuit diagram of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 7 of the present invention.

【図22】 本発明の実施の形態8の抽出分離機構を搭
載した冷凍サイクルの冷媒回路図を示す図である。
FIG. 22 is a diagram showing a refrigerant circuit diagram of a refrigeration cycle equipped with an extraction / separation mechanism according to Embodiment 8 of the present invention.

【図23】 従来例の抽出分離機構の概略構成図であ
る。
FIG. 23 is a schematic configuration diagram of a conventional extraction / separation mechanism.

【図24】 他の従来例の抽出分離機構の概略構成図で
ある。
FIG. 24 is a schematic configuration diagram of another conventional extraction / separation mechanism.

【符号の説明】[Explanation of symbols]

1 抽出容器、 2 抽料流入配管、 3 抽剤流入配
管、 4 抽残液流出配管、 5 抽出液流出配管、
6 液面発生容器、 7 流出配管、 8 上部連絡
管、 9 下部連絡管、 10 シェル、 11,1
2,13 仕切板、14,15,16,17 孔、 2
0 外円筒形容器、 21 内円筒形容器、22 流入
配管、 23 圧縮機、 24 四方弁、 25 熱源
側熱交換器、 26 アキュムレータ、 26a 上部
空間、 26b 下部空間、 27液ライン配管、 2
8 冷媒熱交換器、 29 抽残液貯留容器、 30
配管、 30a 吸入配管、 31,32 弁、 33
配管、 34 弁、 返油回路、 36 絞り装置、
37 ガス管、 38 液管、 39 負荷側熱交換
器、 40 絞り装置、 41,42,43,44 空
間、 45 混合配管(吸入配管)、 51 室外機、
52 室内機、 53 油分離器、 54返油穴、
55 異物捕獲手段、 56,57 操作弁、 58
絞り装置、61 機械部、 62 副軸受、 63 給
油装置、 64 給油管、 65フロート、 66 抽
出口、 67 抽出配管、 68 HFCを主成分とす
る液状冷媒、 69 バネ、 70 密閉ケーシング、
71 非相溶性潤滑油、 72 冷媒回路、 73
通気管、 74 連通管、 75 冷媒液戻し管、 7
6 気液分離用デミスタ、 77 返油孔、 78 絞
り、 79 絞り、 80 逆止弁、 81 フロート
弁、 82 界面センサ、 83 仕切板、 84 U
字管、 85 背圧管、 86 配管、 87 冷媒液
吸引管、88 界面センサ、 89 電磁弁、 90
配管、 91 フロート、 92フロート式開閉弁、
93 配管、 94 空間、 96 電磁弁。
1 Extraction vessel, 2 Extraction inflow pipe, 3 Extractant inflow pipe, 4 Extraction residue outflow pipe, 5 Extraction outflow pipe,
6 Liquid level generating vessel, 7 Outflow pipe, 8 Upper connecting pipe, 9 Lower connecting pipe, 10 Shell, 11, 1
2,13 partition plate, 14,15,16,17 holes, 2
0 outer cylindrical container, 21 inner cylindrical container, 22 inflow piping, 23 compressor, 24 four-way valve, 25 heat source side heat exchanger, 26 accumulator, 26a upper space, 26b lower space, 27 liquid line piping, 2
8 Refrigerant heat exchanger, 29 Extraction liquid storage container, 30
Piping, 30a Suction piping, 31, 32 valve, 33
Piping, 34 valves, oil return circuit, 36 throttle device,
37 gas pipe, 38 liquid pipe, 39 load side heat exchanger, 40 throttle device, 41, 42, 43, 44 space, 45 mixing pipe (suction pipe), 51 outdoor unit,
52 indoor unit, 53 oil separator, 54 oil return hole,
55 foreign matter capturing means, 56, 57 operating valve, 58
Throttle device, 61 mechanical part, 62 auxiliary bearing, 63 oil supply device, 64 oil supply pipe, 65 float, 66 extraction port, 67 extraction pipe, 68 liquid refrigerant mainly composed of HFC, 69 spring, 70 sealed casing,
71 incompatible lubricating oil, 72 refrigerant circuit, 73
Ventilation pipe, 74 communication pipe, 75 refrigerant liquid return pipe, 7
6 demister for gas-liquid separation, 77 oil return hole, 78 throttle, 79 throttle, 80 check valve, 81 float valve, 82 interface sensor, 83 partition plate, 84 U
Pipe, 85 back pressure pipe, 86 piping, 87 refrigerant liquid suction pipe, 88 interface sensor, 89 solenoid valve, 90
Piping, 91 float, 92 float on-off valve,
93 piping, 94 space, 96 solenoid valve.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高谷 士郎 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 外山 悟 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 岩本 慎一 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 河西 智彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shiro Takatani 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Satoru Toyama 2-3-2 Marunouchi, Chiyoda-ku, Tokyo 3 Rishi Electric Co., Ltd. (72) Inventor Shinichi Iwamoto 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Sanishi Electric Co., Ltd. Inside the corporation

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 抽質と原溶媒とが混合した抽料と抽剤と
を二相分離する比率で混合し、抽料中の抽質を抽剤に抽
出すると共に抽残液の密度が抽出液の密度よりも小さい
抽出分離機構において、抽残液のみを分離する機構を備
えたことを特徴とする抽出分離機構。
1. An extract in which an extract and a raw solvent are mixed and an extractant are mixed at a ratio of two-phase separation, and the extract in the extract is extracted into the extractant and the density of the raffinate is extracted. An extraction / separation mechanism comprising a mechanism for separating only raffinate liquid in an extraction / separation mechanism having a density lower than that of a liquid.
【請求項2】 鉛直方向に長さを有し、抽剤流入配管、
抽料流入配管、前記抽剤流入配管および前記抽料流入配
管より高い位置に配置された抽残液流出配管を備え、抽
剤により抽料から所定成分を抽出する抽出容器と、鉛直
方向に長さを有し抽剤流出配管を有する液面発生容器と
を、それぞれ鉛直方向の下部および上部で互いに連通さ
せ、前記抽剤流出配管と前記抽残液流出配管とを前記抽
剤流出配管により形成する液面よりも前記抽残液流出配
管により形成する液面が高くなるように配置したことを
特徴とする抽出分離機構。
2. An extractant inflow pipe having a length in a vertical direction.
An extraction container for extracting a predetermined component from the extract by the extractant, comprising an extractor inflow pipe, the extractant inflow pipe, and a raffinate outflow pipe arranged at a position higher than the extractor inflow pipe; And a liquid level generating container having an extractant outflow pipe, respectively, are communicated with each other at a lower portion and an upper portion in the vertical direction, and the extractant outflow pipe and the raffinate outflow pipe are formed by the extractant outflow pipe. An extraction / separation mechanism, wherein a liquid level formed by the raffinate outflow pipe is higher than a liquid level to be extracted.
【請求項3】 前記抽料流入配管を前記抽剤流入配管よ
りも低い位置に配置したことを特徴とする請求項2に記
載の抽出分離機構。
3. The extraction / separation mechanism according to claim 2, wherein the extract inflow pipe is disposed at a lower position than the extractant inflow pipe.
【請求項4】 鉛直方向に長さを有し、抽剤流入配管と
抽料流入配管と前記抽剤流入配管および前記抽料流入配
管より高い位置に配置された抽残液流出配管と、前記抽
料流入配管より低い位置に配置された抽出液流出配管と
を備え、抽剤により抽料から所定成分を抽出する抽出容
器と、前記抽出容器内の底面と液面との圧力差を一定に
する制御機構とを含み、前記抽出容器内に抽剤のみがあ
る場合の液面高さより前記抽残液流出配管により形成す
る液面が高くなるように前記抽残液流出配管を配置した
ことを特徴とする抽出分離機構。
4. An extractant inflow pipe, an extractant inflow pipe, a raffinate outflow pipe arranged at a position higher than the extractant inflow pipe and the extractant inflow pipe, and having a length in a vertical direction. An extraction liquid outlet pipe disposed at a lower position than the extract input pipe, and an extraction container for extracting a predetermined component from the extract using an extractant; and a pressure difference between a bottom surface and a liquid level in the extraction container. And a control mechanism to perform, the raffinate outflow pipe is arranged so that the liquid level formed by the raffinate outflow pipe is higher than the liquid level when there is only the extractant in the extraction container. Characteristic extraction and separation mechanism.
【請求項5】 鉛直方向に長さを有し、抽料流入配管
と、前記抽料流入配管より高い位置に配置された抽残液
流出配管と、前記抽料流入配管より低い位置に配置され
た抽出液流出配管とを備え、抽剤により抽料から所定成
分を抽出する抽出容器と、鉛直方向に長さを有し、抽剤
流入配管と抽剤流出配管とを備えた液面発生容器とを、
それぞれ鉛直方向の下部および上部で互いに連通させ、
前記抽剤流出配管と前記抽残液流出配管とを前記抽剤流
出配管により形成する液面よりも前記抽残液流出配管に
より形成する液面が高くなるように配置したことを特徴
とする抽出分離機構。
5. A drainage inflow pipe having a length in the vertical direction, a raffinate liquid outflow pipe arranged at a higher position than the extractor inflow pipe, and a lower position than the extractant inflow pipe. And an extraction vessel for extracting a predetermined component from the extract with the extractant, and a liquid level generating container having a length in the vertical direction and comprising an extractant inflow pipe and an extractant outflow pipe. And
Communicate with each other at the bottom and top in the vertical direction,
The extraction method, wherein the extractant outflow pipe and the raffinate outflow pipe are arranged such that a liquid surface formed by the raffinate outflow pipe is higher than a liquid level formed by the extractant outflow pipe. Separation mechanism.
【請求項6】 前記抽出容器において、前記抽残液流出
配管の接続部近傍の水平方向の断面積を前記接続部近傍
より低い部分の水平方向の断面積よりも小さくしたこと
を特徴とする請求項2〜5のいずれかに記載の抽出分離
機構。
6. The extraction container, wherein a horizontal cross-sectional area in the vicinity of a connection portion of the raffinate outflow pipe is smaller than a horizontal cross-sectional area of a portion lower than in the vicinity of the connection portion. Item 6. The extraction separation mechanism according to any one of Items 2 to 5.
【請求項7】 抽剤により抽料から所定成分を抽出する
抽出容器、前記抽出容器に接続され抽剤と抽料とを混合
して流入させる混合配管、前記抽出容器に接続され逆止
弁を有する抽残液流出配管、前記抽出容器内の下部に一
端を開口し上部に他端を開口する通気管、抽出容器内の
上部に一端を開口し前記抽出容器の外部に他端を開口す
る液戻し管、前記抽残液流出配管の接続部より低い位置
で前記通気管の中間部と前記液戻し管の中間部とを連通
する連通管を備えたことを特徴とする抽出分離機構。
7. An extraction container for extracting a predetermined component from the extract with the extractant, a mixing pipe connected to the extraction container for mixing and flowing the extractant and the extract, and a check valve connected to the extraction container. A raffinate outflow pipe having, a vent pipe having one end opened at a lower part in the extraction container and another end opened at an upper part, and a liquid having one end opened at an upper part in the extraction container and another end opened outside the extraction container. An extraction / separation mechanism comprising: a return pipe; and a communication pipe that communicates an intermediate portion of the ventilation pipe and an intermediate portion of the liquid return pipe at a position lower than a connection portion of the raffinate outflow pipe.
【請求項8】 アキュムレータと請求項7に記載の抽出
容器とを一体に形成し、前記液戻し管の前記他端を前記
アキュムレータの内部に開口させたことを特徴とする一
体型抽出分離機構。
8. An integrated extraction / separation mechanism wherein an accumulator and the extraction container according to claim 7 are integrally formed, and the other end of the liquid return pipe is opened inside the accumulator.
【請求項9】 抽剤により抽料から所定成分を抽出する
抽出容器、前記抽出容器に接続され抽剤と抽料とを混合
して流入させる混合配管、前記抽出容器内の上部に一端
を開口し前記抽出容器の外部に他端を開口する通気管、
前記抽出容器内の下部(底部)に一端を開口し前記抽出
容器の外部に他端を開口する液戻し管、抽残液の密度と
抽出液の密度との中間の密度を有し前記液戻し管の前記
一端を開閉するフロート弁を備えたことを特徴とする抽
出分離機構。
9. An extraction container for extracting a predetermined component from the extract using an extractant, a mixing pipe connected to the extraction container for mixing and flowing the extractant and the extract, and having one end opened at an upper part in the extraction container. A vent pipe having the other end opened to the outside of the extraction container;
A liquid return pipe having one end opened at a lower portion (bottom) inside the extraction container and the other end opened outside the extraction container, the liquid return having an intermediate density between the density of the raffinate and the density of the extract; An extraction separation mechanism comprising a float valve for opening and closing said one end of the tube.
【請求項10】 逆止弁を有し、前記フロート弁により
制御される抽出液の液面高さよりも高い位置で前記抽出
容器に接続された抽残液流出配管を備えたことを特徴と
する請求項9に記載の抽出分離機構。
10. A raffinate outflow pipe connected to the extraction vessel at a position higher than a liquid level of the extract controlled by the float valve, the check having a check valve. The extraction and separation mechanism according to claim 9.
【請求項11】 圧縮機、熱源側熱交換器およびアキュ
ムレータを含む冷凍サイクル装置の熱源機において、請
求項1〜4のいずれかに記載の抽出分離機構と、抽残液
貯留容器とを備え、 前記熱源側熱交換器の下流と前記抽出分離機構の抽剤流
入配管とを接続し、前記アキュムレータの下部と前記抽
料流入配管とを接続し、前記圧縮機の吸入配管と前記液
面発生器の抽剤流出配管とを接続し、前記抽残液流出配
管と抽残液貯溜容器とを接続したことを特徴とする冷凍
サイクル装置の熱源機。
11. A heat source unit of a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger and an accumulator, comprising: the extraction / separation mechanism according to claim 1; and a raffinate liquid storage container. A downstream of the heat source side heat exchanger is connected to an extractant inflow pipe of the extraction / separation mechanism, a lower portion of the accumulator is connected to the extractant inflow pipe, and a suction pipe of the compressor and the liquid level generator are connected. A heat source unit of a refrigeration cycle apparatus, wherein the extraction liquid outflow pipe is connected to the extraction liquid outflow pipe, and the extraction liquid outflow pipe is connected to the extraction liquid storage vessel.
【請求項12】 圧縮機、熱源側熱交換器、アキュムレ
ータ、前記圧縮機の吐出側に接続された油分離器を含む
冷凍サイクル装置の熱源機において、請求項1〜4のい
ずれかに記載の抽出分離機構と、抽残液貯留容器とを備
え、 前記油分離器の下流と前記抽出分離機構の抽剤流入配管
とを絞り手段を介して接続し、前記アキュムレータの下
部と前記抽料流入配管とを接続すると共に、前記圧縮機
の吸入配管と前記抽剤流出配管とを接続し、かつ、前記
油分離器の下流から前記絞り手段の間の配管と、前記圧
縮機の吸入配管と前記抽剤流出配管の間の配管を熱交換
させる冷媒熱交換器を備え、前記抽残液流出配管と前記
抽残液貯溜容器とを接続したことを特徴とする冷凍サイ
クル装置の熱源機。
12. The heat source device of a refrigeration cycle device including a compressor, a heat source side heat exchanger, an accumulator, and an oil separator connected to a discharge side of the compressor, according to claim 1, wherein An extraction / separation mechanism, and a raffinate liquid storage container; a downstream of the oil separator and an extraction / inflow pipe of the extraction / separation mechanism connected via a throttle unit; a lower part of the accumulator and the extraction inflow pipe And a connection between the suction pipe of the compressor and the extractant outflow pipe, and a pipe between the throttle means from downstream of the oil separator, and a suction pipe of the compressor and the extraction pipe. A heat source unit for a refrigeration cycle device, comprising: a refrigerant heat exchanger for exchanging heat between pipes between the agent outflow pipes, wherein the raffinate outflow pipe and the raffinate storage container are connected.
【請求項13】 圧縮機、熱源側熱交換器およびアキュ
ムレータを含む冷凍サイクル装置の熱源機において、請
求項5または6に記載の抽出分離機構と、抽残液貯留容
器とを備え、 前記熱源側熱交換器の下流と前記抽出分離機構の抽剤流
入配管とを接続し、前記アキュムレータの下部と前記抽
料流入配管とを接続し、前記圧縮機の吸入配管と前記抽
剤流出配管とを接続し、前記圧縮機の吸入配管と前記抽
出液流出配管とを接続し、前記抽残液流出配管と抽残液
貯溜容器とを接続したことを特徴とする冷凍サイクル装
置の熱源機。
13. A heat source device of a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger and an accumulator, comprising: the extraction / separation mechanism according to claim 5 and a raffinate liquid storage container; The downstream of the heat exchanger is connected to the extractant inflow pipe of the extraction and separation mechanism, the lower part of the accumulator is connected to the extractant inflow pipe, and the suction pipe of the compressor is connected to the extractant outflow pipe. The suction source of the compressor and the extraction liquid outflow pipe are connected, and the raffinate outflow pipe and the raffinate storage container are connected to each other.
【請求項14】 圧縮機、熱源側熱交換器、アキュムレ
ータ、前記圧縮機の吐出側に接続された油分離器を含む
冷凍サイクル装置の熱源機において、請求項5または6
に記載の抽出分離機構と、抽残液貯留容器とを備え、 前記熱源側熱交換器の下流と前記抽出分離機構の抽剤流
入配管とを接続し、前記油分離器の返油回路と前記抽料
流入配管とを接続し、前記圧縮機の吸入配管と前記抽剤
流出配管とを接続し、前記圧縮機の吸入配管と前記抽出
液流出配管とを接続し、前記抽残液流出配管と抽残液貯
溜容器とを接続したことを特徴とする冷凍サイクル装置
の熱源機。
14. A heat source unit of a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger, an accumulator, and an oil separator connected to a discharge side of the compressor.
The extraction and separation mechanism, and a raffinate liquid storage container, comprising: a downstream of the heat source side heat exchanger and an extractant inflow pipe of the extraction and separation mechanism connected to the oil return circuit of the oil separator and The extractor inflow pipe is connected, the compressor suction pipe and the extractant outflow pipe are connected, the compressor suction pipe and the extract outflow pipe are connected, and the raffinate outflow pipe is connected. A heat source unit for a refrigeration cycle device, wherein the heat source unit is connected to a raffinate storage container.
【請求項15】 圧縮機、熱源側熱交換器、アキュムレ
ータ、前記圧縮機の吐出側に接続された油分離器を含む
冷凍サイクル装置の熱源機において、請求項7〜10の
いずれかに記載の抽出分離機構と、抽残液貯留容器とを
備え、 前記熱源側熱交換器の下流と前記抽出分離機構の混合配
管とを接続し、前記油分離器の返油回路と前記混合配管
とを接続し、前記液戻し管の前記他端を低圧側の配管も
しくは機器に接続し、前記抽残液流出配管と前記抽残液
貯溜容器とを接続したことを特徴とする冷凍サイクル装
置の熱源機。
15. The heat source device of a refrigeration cycle device including a compressor, a heat source side heat exchanger, an accumulator, and an oil separator connected to a discharge side of the compressor, wherein the heat source device according to any one of claims 7 to 10. An extraction / separation mechanism, and a raffinate storage container; connecting a downstream of the heat source side heat exchanger to a mixing pipe of the extraction / separation mechanism; and connecting an oil return circuit of the oil separator to the mixing pipe. The other end of the liquid return pipe is connected to a low pressure side pipe or device, and the raffinate outflow pipe and the raffinate storage container are connected to each other.
【請求項16】 圧縮機、熱源側熱交換器、請求項8に
記載の一体型アキュムレータ、前記圧縮機の吐出側に接
続された油分離器を含む冷凍サイクル装置の熱源機にお
いて、抽残液貯留容器を備え、 前記熱源側熱交換器の下流と前記抽出分離機構の混合管
とを接続し、前記油分離器の返油回路と前記混合管とを
接続し、前記抽残液流出配管と前記抽残液貯溜容器とを
接続したことを特徴とする冷凍サイクル装置の熱源機。
16. The raffinate liquid in a heat source unit of a refrigeration cycle apparatus including a compressor, a heat source side heat exchanger, the integrated accumulator according to claim 8, and an oil separator connected to a discharge side of the compressor. Comprising a storage container, connecting the downstream of the heat source side heat exchanger and the mixing pipe of the extraction and separation mechanism, connecting the oil return circuit of the oil separator and the mixing pipe, and A heat source unit for a refrigeration cycle device, wherein the heat source unit is connected to the raffinate storage container.
【請求項17】 前記抽残液貯溜容器には、抽残液貯溜
容器内の液が外部へ逆流することを防止する機構を設け
たことを特徴とする請求項11〜16のいずれかに記載
の冷凍サイクル装置の熱源機。
17. A mechanism according to claim 11, wherein the raffinate storage container is provided with a mechanism for preventing the liquid in the raffinate storage container from flowing back to the outside. Heat source equipment for refrigeration cycle equipment.
【請求項18】 前記抽残液貯溜容器内部には抽残液も
しくは原溶媒を吸着する吸着材を設けたことを特徴とす
る請求項11〜17のいずれかに記載の冷凍サイクル装
置の熱源機。
18. The heat source unit of a refrigeration cycle apparatus according to claim 11, wherein an adsorbent for adsorbing the raffinate or the raw solvent is provided inside the raffinate storage container. .
【請求項19】 前記抽剤としてハイドロフルオロカー
ボン系の冷媒、前記抽料としてエステル油もしくはエー
テル油のいずれかと鉱油もしくはハードアルキルベンゼ
ン油のいずれかとの混合油としたことを特徴とする請求
項11〜18のいずかに記載の冷凍サイクル装置の熱源
機。
19. The method according to claim 11, wherein the extractant is a hydrofluorocarbon-based refrigerant, and the extractant is a mixed oil of either an ester oil or an ether oil and a mineral oil or a hard alkylbenzene oil. A heat source unit for a refrigeration cycle apparatus according to any one of the above.
【請求項20】 前記抽出容器内の温度は、冷凍サイク
ルの低圧の飽和温度とすることを特徴とする請求項11
〜19のいずれかに記載の冷凍サイクル装置の熱源機。
20. The method according to claim 11, wherein the temperature in the extraction vessel is a low-pressure saturation temperature of a refrigeration cycle.
20. A heat source unit for a refrigeration cycle apparatus according to any one of claims to 19.
【請求項21】 利用側熱交換器を含む利用側機と、請
求項11〜20のいずれかに記載の熱源機とを接続配管
により接続して冷媒回路を構成したことを特徴とする冷
凍サイクル装置。
21. A refrigeration cycle comprising a refrigerant circuit formed by connecting a user-side machine including a user-side heat exchanger and the heat source device according to claim 11 by a connection pipe. apparatus.
【請求項22】 前記接続配管として、既設の冷凍サイ
クル装置の接続配管を利用したことを特徴とする請求項
21に記載の冷凍サイクル装置。
22. The refrigeration cycle apparatus according to claim 21, wherein a connection pipe of an existing refrigeration cycle apparatus is used as the connection pipe.
【請求項23】 既設の冷凍サイクル装置の熱源機を請
求項11〜20のいずれかに記載の熱源機に置換すると
ともに冷媒を置換することを特徴とする冷凍サイクル装
置の更新方法。
23. A method of updating a refrigeration cycle device, comprising replacing a heat source device of an existing refrigeration cycle device with the heat source device according to claim 11 and replacing a refrigerant.
JP2000393582A 2000-12-25 2000-12-25 Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus Expired - Fee Related JP4567182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000393582A JP4567182B2 (en) 2000-12-25 2000-12-25 Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000393582A JP4567182B2 (en) 2000-12-25 2000-12-25 Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2002195702A true JP2002195702A (en) 2002-07-10
JP4567182B2 JP4567182B2 (en) 2010-10-20

Family

ID=18859351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000393582A Expired - Fee Related JP4567182B2 (en) 2000-12-25 2000-12-25 Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP4567182B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109199A1 (en) * 2003-06-06 2004-12-16 Daikin Industries, Ltd. Air conditioner
JP2010019541A (en) * 2008-06-09 2010-01-28 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and its operating method
JP2010530295A (en) * 2007-06-04 2010-09-09 プレッシャー バイオサイエンシズ インコーポレイテッド Pressure-enhanced molecular extraction and distribution
JP2010203733A (en) * 2009-03-05 2010-09-16 Hitachi Appliances Inc Air conditioning device
JP2011185513A (en) * 2010-03-08 2011-09-22 Ebara Refrigeration Equipment & Systems Co Ltd Lubricating oil recovery device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335957A (en) * 1991-05-10 1992-11-24 Mitsubishi Electric Corp Refrigerating plant
JPH0875323A (en) * 1994-09-09 1996-03-19 Sanyo Electric Co Ltd Refrigerating device
JP2000146369A (en) * 1998-11-06 2000-05-26 Hitachi Ltd Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335957A (en) * 1991-05-10 1992-11-24 Mitsubishi Electric Corp Refrigerating plant
JPH0875323A (en) * 1994-09-09 1996-03-19 Sanyo Electric Co Ltd Refrigerating device
JP2000146369A (en) * 1998-11-06 2000-05-26 Hitachi Ltd Air conditioner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109199A1 (en) * 2003-06-06 2004-12-16 Daikin Industries, Ltd. Air conditioner
CN100419344C (en) * 2003-06-06 2008-09-17 大金工业株式会社 Air conditioner
JP2010530295A (en) * 2007-06-04 2010-09-09 プレッシャー バイオサイエンシズ インコーポレイテッド Pressure-enhanced molecular extraction and distribution
US9458190B2 (en) 2007-06-04 2016-10-04 Pressure Biosciences, Inc. Extraction and partitioning of molecules
JP2010019541A (en) * 2008-06-09 2010-01-28 Ebara Refrigeration Equipment & Systems Co Ltd Compression refrigerating machine and its operating method
JP2010203733A (en) * 2009-03-05 2010-09-16 Hitachi Appliances Inc Air conditioning device
JP2011185513A (en) * 2010-03-08 2011-09-22 Ebara Refrigeration Equipment & Systems Co Ltd Lubricating oil recovery device

Also Published As

Publication number Publication date
JP4567182B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
EP1391667B1 (en) Converting a refrigerating system
EP2873935A1 (en) Freezer
US9791176B2 (en) Refrigeration apparatus
JP4567182B2 (en) Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus
WO2015029204A1 (en) Air conditioner
JP2003042603A (en) Refrigerating cycle apparatus, method for manufacturing the same and method for operating the same
JPH11257805A (en) Lubricant return device for freezing cycle
JP4420892B2 (en) Refrigeration air conditioner
JP4376470B2 (en) Refrigeration cycle apparatus and operation method thereof
JP2015158317A (en) Air conditioning device
JP3361771B2 (en) Operation method of refrigeration cycle device
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP2002061992A (en) Air conditioner
JP4052478B2 (en) Refrigerator oil separation and recovery system and cleaning method for air conditioning system
WO2016098349A1 (en) Refrigeration device
JP4128796B2 (en) Refrigeration cycle equipment
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
CN208296384U (en) refrigeration system
JP3492427B2 (en) Refrigeration air conditioner
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
KR100378531B1 (en) coolant and oil separating/ collecting device of turbo chiller
JP2007085643A (en) Cleaning method for air conditioning system, and outdoor unit used therein
JP2002107011A (en) Cleaning operation method of refrigerating cycle equipment
JP4186764B2 (en) Refrigeration equipment
JP4554098B2 (en) Refrigeration cycle apparatus and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100805

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees