JP4128796B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4128796B2
JP4128796B2 JP2002123470A JP2002123470A JP4128796B2 JP 4128796 B2 JP4128796 B2 JP 4128796B2 JP 2002123470 A JP2002123470 A JP 2002123470A JP 2002123470 A JP2002123470 A JP 2002123470A JP 4128796 B2 JP4128796 B2 JP 4128796B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
compressor
refrigeration cycle
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002123470A
Other languages
Japanese (ja)
Other versions
JP2003322436A (en
Inventor
康順 平井
士郎 ▲高▼谷
修 森本
慎一 若本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002123470A priority Critical patent/JP4128796B2/en
Publication of JP2003322436A publication Critical patent/JP2003322436A/en
Application granted granted Critical
Publication of JP4128796B2 publication Critical patent/JP4128796B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、これまで使用してきたクロロフルオロカーボン(CFC)系冷媒またはハイドロクロロフルオロカーボン(HCFC)系冷媒を、ハイドロフルオロカーボン(HFC)系冷媒に交換して使用する冷凍サイクル装置に関するものであり、さらに詳しくは、室外機をHFC系冷媒を用いた新規なものに更新し、CFC系冷媒またはHCFC系冷媒で用いていた既設配管および既設室内機に残留した潤滑油を冷媒回路内の一部に分離・貯留することにより既設配管および既設室内機を流用可能とする冷凍サイクル装置に関するものである。
【0002】
【従来の技術】
従来の冷凍サイクル装置における既設配管利用技術としては、例えば特開平6−249551号公報に開示されたものがある。これは、既設配管中に残留する鉱油を回収し、レトロフィットにより既設配管を利用可能とするものであって、主にカーエアコンを対象としたものである。
【0003】
【発明が解決しようとする課題】
上記のような技術により、カーエアコンのような既設配管が短い場合は、洗浄作業を繰返すことによって系内に残存する旧冷媒用の潤滑油濃度を低減できる。しかしながら、延長配管が長いビル用マルチエアコン、あるいは利用側にショーケース等の様々な負荷がつながって複雑な冷媒回路となる冷凍機は、短時間の運転では容易に旧冷媒用の冷凍機油濃度を低減させることができない。
【0004】
この発明はこのような従来の課題を解決するためになされたものであり、旧冷媒として用いられていた、例えばHCFC系もしくはCFC系の旧冷媒を、新冷媒である例えばHFC系冷媒に置換するにあたり、既設機器中に残留していた旧冷媒用の潤滑油である鉱油と、新冷媒用の潤滑油であるエステル油やエーテル油等とが混合した場合でも、既設機器中に残留していた鉱油を分離回収し、新規のエステル油もしくはエーテル油の劣化を抑え、既設機器を使用する冷凍機や空調機の施工を容易にし、冷凍サイクルの信頼性を高めることを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、第1の絞り装置、蒸発器を環状に接続して構成された冷媒回路を備え、前記圧縮機および前記凝縮機を含む室外機を構成するとともに、この室外機において前記冷媒回路における前記凝縮器と前記第1の絞り装置の間と、前記蒸発器と前記圧縮機の間とを、第2の絞り装置を有する第1バイパス配管で接続し、
この第1バイパス配管の分岐部から前記第1の絞り装置の間の延長配管、および、前記蒸発器から前記第1バイパス配管の合流部の間の延長配管、および、少なくとも前記蒸発器を含む室内機のうち、少なくとも1つは既設のものを流用し、
ハイドロフロオロカーボン系冷媒を作動媒体として用い、ハイドロフロオロカーボン系冷媒に対し相溶性のある相溶油を冷凍機油として用いる冷凍サイクル装置において、
前記第1バイパス配管の前記合流部前記圧縮機の間の前記冷媒回路に、ハイドロフロオロカーボン系冷媒および相溶油は透過させるが、ハイドロフロオロカーボン系冷媒に非相溶な非相溶油の透過は抑制する網状または多孔状の膜体を内蔵した油分離部を設け、膜体により油分離部内の冷媒流路の全部または一部を塞ぐようにしたものである。
【0006】
また、上記構成において、油分離部から圧縮機に至る冷媒を加熱して気化させる冷媒気化手段を備えているものである。
【0007】
そして、上記した各構成において、油分離部手前の冷媒回路に気液分離器を配置し、気液分離器内の上部と圧縮機の吸込側とを冷媒配管で接続したものである。
【0008】
さらに、段落0007の構成において、冷媒回路における、気液分離器から油分離部の間と油分離部から圧縮機の間とを第2バイパス配管で接続し、第2バイパス配管と、気液分離器から油分離部の間と、油分離部から圧縮機の間とに、それぞれの冷媒流路を開閉する開閉弁を配備したものである。
【0009】
また、上記した各構成において、液冷媒の表面張力値と冷凍機油の表面張力値の間の表面張力値を有する材料で、油分離部の膜体を構成したものである。
【0010】
そして、上記した各構成において、ハイドロフロオロカーボン系冷媒を用いる冷凍サイクル装置用の冷凍機油が、エステル油またはエーテル油であるものである。
【0011】
さらに、上記した各構成において、第1バイパス配管の分岐部から絞り装置の間の延長配管および蒸発器から第1バイパス配管の合流部の間の延長配管として、建物などに設置されている既設の延長配管を用いたものである。
【0012】
【発明の実施の形態】
発明の実施の形態1.
図1は本発明の実施の形態1による冷凍サイクル装置の冷媒回路を示す構成図である。
図1に示した冷凍サイクル装置は、圧縮機1、熱源側熱交換器(凝縮器)2、絞り装置7a,7b,7c、利用側熱交換器(蒸発器)6a,6b,6cおよび油分離部3が、冷媒配管26,27、液延長配管8、ガス延長配管9、冷媒配管P1および冷媒配管P4を介して環状に接続された冷媒回路を備えている。熱源側熱交換器2と絞り装置7の間となる冷媒配管27の分岐部22と、利用側熱交換器6と圧縮機1の間となる冷媒配管P1の合流部23とは、流量調整器4を有する第1バイパス配管5a,5bで接続されている。前記の圧縮機1、熱源側熱交換器2、油分離部3、流量調整器4および第1バイパス配管5a,5bから主に室外機Aが構成される。また、利用側熱交換器6a,6b,6cおよび絞り装置7a,7b,7cとから主に室内機B,C,Dが構成される。室外機Aと室内機B,C,Dは、液延長配管8とガス延長配管9を用いフランジ部24,25で接続されている。この冷凍サイクル装置は、ハイドロフロオロカーボン(HFC)系冷媒を作動媒体として用い、HFC系冷媒に対し相溶性のあるエステル油を冷凍機油として用いている。
【0013】
尚、この冷凍サイクル装置では、ハイドロクロロフルオロカーボン(HCFC)系冷媒またはクロロフルオロカーボン(CFC)系冷媒を用いた冷凍サイクル装置で使用していた液延長配管8、ガス延長配管9、室内機B,C,Dをそのまま流用し、室外機AとしてはHFC系冷媒を用いたものを新設した。但し、本発明の冷凍サイクル装置は、構成機器の全てを新設したものも含まれる。
【0014】
次に、油分離部3について説明する。油分離部3は例えば図2に示す容器構造を有している。図2において、10は流入管、11は流出管、12は膜体である。油分離部3は、内蔵する膜体12により、横置容器内(冷媒流路)の下部が塞がれて分離領域13と流出領域14に仕切られている。膜体12は網状または多孔状の材料で構成されている。
【0015】
ところで、R410A,R407C,R134a,R404AといったHFC系冷媒(液)、あるいは鉱油、エステル油、エーテル油といった一般的な冷凍サイクル装置用の冷凍機油の粘性係数は下記の表1の通りであり、冷凍機油(表では空調機用油)の粘性係数は液冷媒の100倍以上である。従って、多孔構造の流路、例えばメッシュや膜などを通過する際には極めて大きな速度差を生じる。例えば、エステル油の溶解したHFC系冷媒はいち早く膜体12を通過し、鉱油は分離領域13に保持されることとなる。結果として、エステル油および液冷媒から鉱油を分離することができる。
【0016】
【表1】

Figure 0004128796
【0017】
さらに、HFC液冷媒と冷凍サイクル装置用冷凍機油との間には、上記の表1に示すように、表面張力にも大きな差がある。
そこで、HFC液冷媒の表面張力値とエステル油(冷凍機油)の表面張力値の間の表面張力値を有する材料、例えばフッ素樹脂で膜体12を構成する。これにより毛細管現象が働いて、液冷媒はフッ素樹脂からなる膜体12を通過しやすくなるのに対し、鉱油は通過しにくくなる。従って、液冷媒と鉱油の分離効率をいっそう向上させることができる。
このように既設配管や既設室内機に残留する鉱油がHFC液冷媒に非相溶であることと、これらの粘性係数および表面張力に大きな差があることに注目し、本発明を完成するに至ったのである。
【0018】
上記のような構成による冷凍サイクル装置の動作について説明する。圧縮機1から吐出された高温・高圧のガス冷媒は、熱源側熱交換器2で放熱して凝縮・液化し、液延長配管8を流れる。この時、HFC系冷媒の冷凍サイクル装置で用いている相溶油である、例えばエステル油の一部も圧縮機1から吐出され、冷媒に伴って熱源側熱交換器2、液延長配管8を流れる。液延長配管8、ガス延長配管9、室内機B,C,Dには、HCFC系冷媒またはCFC系冷媒の冷凍サイクル装置で用いていた潤滑油である、例えば鉱油が残留している。HCFC系冷媒またはCFC系冷媒の冷凍サイクル装置で用いていた潤滑油はHFC系冷媒には非相溶である。そこで、液延長配管8を流れる液冷媒は、残留している鉱油を、液冷媒と鉱油の間に生じるせん断力によりひきずりながら流れていく。液延長配管8を流れた液冷媒は、室内機B,C,Dに入って蒸発・気化し、室内機B,C,D内に残留した鉱油をひきずりながらガス延長配管9に流入する。続いて、冷媒はガス延長配管9に残留する鉱油をひきずりながら第1バイパス配管5a、流量調整器4、第1バイパス配管5bから流入した液冷媒と合流したのち、油分離部3に流入する。流入管10(図2)より油分離部3内へ流入したHFC液冷媒、エステル油、鉱油は分離領域13で液二相に分離する。ガス冷媒は膜体12の上部に設けられた空間から流出領域14に流入し、流出管11から流出する。分離領域13内では、HFC液冷媒が相溶油であるエステル油を溶解した状態で下相に移動し、非相溶油である鉱油が上相に分離する。そして、膜体12は、HFC系冷媒およびエステル油を透過させるがHFC系冷媒に非相溶な鉱油の透過は抑制する。従って、鉱油は油分離部3内に保持され、冷媒およびエステル油のみが圧縮機1へ戻されるのである。
【0019】
他方、図3に油分離部3の更なる構成例を示す。15は容器上部に接続された流入管、16は容器底部に接続された第1の流出管、17は容器上部にガス流出用に接続された第2の流出管、18は既述の膜体12と同様の機能を有する膜体である。この例では、油分離部3内の流路全体が膜体18で塞がれている。
そこで、流入管15より流入した液冷媒、エステル油、鉱油は油分離部3内で二相に分離し、下相の液冷媒およびエステル油が膜体18を通過し、第1の流出管16から流出する。また、ガス冷媒は上部の第2の流出管17から流出するため、ガス冷媒の流出が容易になっている。
【0020】
尚、本実施の形態1では、相溶油としてエステル油を用いたが、HFC系冷媒と相溶である、エーテル油等を用いても同様の効果が得られることは言うまでもない。
【0021】
発明の実施の形態2.
図4はこの発明の実施の形態2による冷凍サイクル装置の冷媒回路を示す構成図である。
図4において、21は冷媒配管27に添設された冷媒熱交換器から成る冷媒気化手段である。その他の符号は図1と同様または相当するものであるから説明を省略する。
【0022】
そこで、油分離部3から流出した液冷媒は、冷媒気化手段21で冷媒配管27の冷媒との熱交換により加熱されてガス冷媒となり圧縮機1へ戻る。そのため、液冷媒が圧縮機1に直接戻ることはなく、圧縮機1での液圧縮による故障を未然に防ぐことができる。これにより、冷凍サイクル装置の信頼性が向上する。
【0023】
発明の実施の形態3.
図5はこの発明の実施の形態3による冷凍サイクル装置の冷媒回路を示す構成図である。
図5において、冷媒流通方向にみて油分離部3手前に気液分離器31が配置されている。気液分離器31は合流部23との間が冷媒配管P1で接続され、油分離部3との間が冷媒配管P3で接続され、気液分離器31内の上部と圧縮機1の吸込側の間が冷媒配管P2で接続されている。その他の符号は図1と同様または相当するものであるから説明を省略する。
【0024】
圧縮機1から吐出された高温・高圧のガス冷媒は、熱源側熱交換器2で放熱して凝縮・液化し、液延長配管8を流れる。この時、HFC系冷媒の冷凍サイクル装置で用いている相溶油である、例えばエステル油の一部も圧縮機1から吐出され、冷媒に伴って熱源側熱交換器2、液廷長配管8を流れる。液延長配管8、ガス延長配管9、室内機B,C,Dには、HCFC系冷媒またはCFC系冷媒の冷凍サイクル装置で用いていた冷凍機油である、例えば鉱油が残留している。HCFC系冷媒またはCFC系冷媒の冷凍サイクル装置で用いていた冷凍機油はHFC系冷媒には非相溶である。そして、液延長配管8中の液冷媒は、残留する鉱油を、液冷媒と鉱油の間に生じるせん断力によりひきずりながら流れていく。液延長配管8を流れた液冷媒は、室内機B,C,Dに入って蒸発・気化し、室内機B,C,D内に残留した鉱油をひきずりながらガス延長配管9に流入する。続いて、冷媒はガス延長配管9に残留する鉱油をひきずりながら第1バイパス配管5a、流量調整器4、第1バイパス配管5bから流入した液冷媒と合流したのち冷媒配管P1から気液分離器31に流入する。気液分離器31では、分離されたガス冷媒が冷媒配管P2を流れて圧縮機1に戻る。また、気液分離器31で分離された液冷媒、エステル油、鉱油は冷媒配管P3を流れて油分離部3に流入し、油分離部3内で二相分離するとともに、鉱油が保持され、液冷媒およびエステル油は冷媒配管P4から流出し、圧縮機1へ戻る。
【0025】
このように気液分離器31を用いることにより、流速の速いガス冷媒が冷媒配管P2を流れるため、メインの冷媒回路を冷媒配管P1、気液分離器31、冷媒配管P2とすることができる。つまり、油分離部3はメインの冷媒回路からバイパスした位置に設置されていることとなり、液冷媒、鉱油、エステル油のみが油分離部3に流入する。従って、油分離部3内で二相分離した液冷媒およびエステル油と鉱油との界面が安定し、安定した分離が可能となる。
【0026】
なお、本実施の形態3では、相溶油としてエステル油を用いたが、HFC冷媒と相溶である、エーテル油等を用いても同様の効果が得られる。また、実施の形態2で説明したように、油分離部3を流出した液冷媒を気化させる冷媒気化手段を設ければ、さらに冷凍サイクル装置の信頼性が向上することは言うまでもない。
【0027】
発明の実施の形態4.
図6はこの発明の実施の形態4による冷凍サイクル装置の冷媒回路を示す構成図である。
図6において、41は圧縮機、42は四方切換弁、43は熱源側熱交換器、44は気液分離器、45は膜体12(図2参照)や膜体18(図3参照)を内蔵する油分離部、46は熱交換器式の冷媒気化手段、48は絞り装置、47,49,50は開閉弁であり、主にこれらを冷媒配管P2,P3,P4,P5で接続することにより室外機Eが構成されている。気液分離器44から油分離部45の間の冷媒配管P3と、油分離部45から圧縮機41の間の冷媒配管P4とが第2バイパス配管Pnで接続されている。開閉弁50は第2バイパス配管Pnの途中に配備されてその冷媒流路を開閉する。開閉弁47は冷媒配管P3の途中に配備されてその冷媒流路を開閉する。開閉弁49は冷媒配管P4の途中に配備されてその冷媒流路を開閉するようになっている。また、51a,51b,51cは利用側熱交換器、52a,52b,52cは絞り装置であり、これらにより室内機F,G,Hが構成される。さらに、53は液延長配管、54はガス延長配管である。
【0028】
上記のような構成の冷凍サイクル装置を施工するにあたり、HCFC系冷媒またはCFC系冷媒を充填していたユニットに用いられていた液延長配管およびガス延長配管、もしくは液延長配管、ガス延長配管および室内機を流用するとともに、HFC系冷媒を用い、冷凍機油にエステル油、エーテル油等のようにHFC系冷媒に相溶な油を用いた室外機を新設する場合を考える。この場合、液延長配管、ガス延長配管および室内機には、HFC系冷媒に非相溶で従来使用してきた冷凍機油、例えば鉱油が残留している。このような状態で冷凍サイクル装置を冷房運転した場合の動作と鉱油の回収方法について説明する。
【0029】
圧縮機41から吐出された高温・高圧のガス冷媒は、熱源側熱交換器43で放熱して凝縮・液化し、液延長配管53を流れる。液延長配管53を流れる液冷媒は、液延長配管53内に残留する鉱油を、液冷媒と鉱油の間に生じるせん断力でひきずりながら液延長配管53から搬出していく。液延長配管53を流れた液冷媒は室内機F,G,Hに入って蒸発・気化したのちガス延長配管54を流れ、ガス延長配管54内の鉱油を搬出していく。ガス延長配管54を流れたガス冷媒は室外機Eに戻り、四方切換弁42および気液分離器44を介して圧縮機41へ戻る。この時、圧縮機41から持ち出されたエステル油は冷媒に伴って既設の液延長配管53、室内機F,G,H、ガス延長配管54中を流通し、これら既設機器中に残留していた鉱油と混合し、冷媒とともに気液分離器44に入る。
【0030】
既設機器から回収した鉱油を分離する場合には、開閉弁47を開き、鉱油およびエステル油を気液分離器44から油分離部45に導く。また、絞り装置48で高圧の液冷媒を低圧の二相冷媒まで絞ったのちに油分離部45に導き、油分離部45内で二相分離させる。そして、開閉弁49を開くことにより、エステル油の溶解している液冷媒は冷媒気化手段46に導かれて蒸発・気化した後、エステル油とともに圧縮機41へ戻る。この時、第2バイパス配管Pnの開閉弁50は閉じられているので、油分離部45としては、例えば図2で説明したような構造が使用できる。
【0031】
こうして、液延長配管53、室内機F,G,H、ガス延長配管54内の鉱油が洗浄された後に、絞り装置48および開閉弁47,49を閉じるとともに開閉弁50を開くことにより、油分離部45を経ずともエステル油を圧縮機41に戻すことが可能となり、圧縮機41で冷凍機油が枯渇することもない。さらに、絞り装置48および開閉弁47,49を閉じているため、油分離部45に保持された鉱油は冷媒回路から切り離されることとなる。従って、鉱油が圧縮機41に戻る心配がなく、冷凍サイクル装置の信頼性が向上する。
【0032】
さらに、油分離部45は圧縮機41、四方切換弁42、熱源側熱交換器43、絞り装置52a,52b,52c、利用側熱交換器51a,51b,51c、気液分離器44を繋ぐメインの冷媒回路からバイパスした位置に設置されているため、メインの冷媒回路の急速な流速により二相分離の状態が阻害されることもなく、安定してエステル油および液冷媒を開閉弁49および冷媒気化手段46から圧縮機41へ戻すことができる。
【0033】
次に、暖房運転をした場合の動作と鉱油の回収方法について説明する。圧縮機41から吐出された高温・高圧のガス冷媒は、四方切換弁42を経てガス延長配管54を流れる。このガス冷媒は、ガス延長配管54内に残留する鉱油を、ガス冷媒と鉱油の間に生じるせん断力でひきずりながらガス延長配管54から搬出していく。ガス延長配管54からのガス冷媒は室内機F,G,Hに入り、利用側熱交換器51a,51b,51cで放熱して凝縮・液化し、絞り装置52a,52b,52cで低圧に二相に減圧されたのちに液延長配管53へ至る。この冷媒は液延長配管53内に残留していた鉱油を洗浄しながら流れ、熱源側熱交換器43で蒸発・気化したのちに四方切換弁42および気液分離器44を介して圧縮機41へ戻る。この時、圧縮機41から持ち出されたエステル油は冷媒に伴って既設の液延長配管53、室内機F,G,H、ガス延長配管54中を流通し、これら既設機器中に残留していた鉱油と混合し、冷媒とともに気液分離器44に入る。そして、冷房運転時と同様に絞り装置48および開閉弁47,49,50を動作させることにより、気液分離器44内に流入したエステル油および鉱油は圧縮機41に戻され、鉱油は油分離部45内に保持される。
【0034】
このように気液分離器44の流路下流側に油分離部45を設け、油分離部45の前後に絞り装置48および開閉弁47,49を設け、さらに第2バイパス配管Pnに開閉弁50を設けたことにより、鉱油洗浄運転つまり鉱油を分離する運転と、鉱油洗浄終了時に鉱油を保持しておく運転とに任意に切り替えることができる。
【0035】
尚、本実施の形態4では、HFC系冷媒を用いた冷凍サイクル用の潤滑油としてエステル油を用いたが、HFC系冷媒と相溶性のあるエーテル油を用いても同様の効果を奏することは言うまでもない。
【0036】
【発明の効果】
この発明は以上のように構成されているので、以下のような効果を奏する。
本願発明による冷凍サイクル装置では、冷媒回路における蒸発器と圧縮機の間に、HFC系冷媒および相溶油は透過させるがHFC系冷媒に非相溶な非相溶油の透過は抑制する網状または多孔状の膜体を内蔵した油分離部を設けたので、CFC系冷媒またはHCFC系冷媒用に使用していた旧冷凍機油を膜体で捕捉でき、HFC系冷媒およびそれに相溶する冷凍機油(相溶油)のみを透過させて圧縮機へ戻すことができる。そのため、室外機を新規に交換するだけで施工工事を完了させることができ、短時間でかつ低コストで既設の延長配管及び/または室内機の利用が可能となる。
【0037】
また、本願発明による冷凍サイクル装置は、油分離部から圧縮機に至る冷媒が冷媒気化手段により加熱されて気化するため、圧縮機に液冷媒が戻ることを防止できる。従って、圧縮機、さらには冷凍サイクル装置の信頼性が向上するとともに、長期に亘って冷凍サイクル装置の使用が可能となる。
【0038】
また、本願発明による冷凍サイクル装置では、油分離部手前の冷媒回路に気液分離器を配置し、気液分離器内の上部と圧縮機の吸込側とを冷媒配管で接続してあるので、流速の早いガス冷媒は気液分離器上部から冷媒配管を経て圧縮機の吸込側へと流れる。従って、油分離部内で二相に分離した液冷媒と非相溶油との液面が安定し、安定した相分離が可能となる。
【0039】
また、本願発明による冷凍サイクル装置では、気液分離器から油分離部の間と油分離部から圧縮機の間とをつなぐ第2バイパス配管の開閉弁、気液分離器から油分離部の間の開閉弁、油分離部から圧縮機の間の開閉弁および第1バイパス配管の絞り装置を全て閉じると、冷媒流路から油分離部が遮断される。従って、既設の延長配管及び/または室内機に残留した旧冷凍機油の洗浄が完了した際、回収した旧冷凍機油を冷媒流路から遮断できる。そのため、長期間、冷凍サイクル装置を使用しても旧冷凍機油が圧縮機に流入することがなく、機器の信頼性が向上する。
【0040】
また、本願発明による冷凍サイクル装置では、液冷媒の表面張力値と冷凍機油の表面張力値の間の表面張力値を有する材料で油分離器の膜体を構成してあるので、毛管現象によりHFC系の液冷媒は膜体を透過しやすくなる一方、旧冷凍機油は透過しにくくなる。これにより、液冷媒と旧冷凍機油との分離効率を上げることができる。
【0041】
また、本願発明による冷凍サイクル装置では、HFC系冷媒用の冷凍機油として用いたエステル油またはエーテル油はHFC系冷媒に対し相溶性があるので、HFC系冷媒とは非相溶の旧冷凍機油を、HFC系冷媒とエステル油またはエーテル油から効率よく分離させることができる。
【0042】
また、本願発明による冷凍サイクル装置では、建物に設置されている既設の延長配管を利用するので延長配管にかかるコストを節約することができ、既設物の有効利用を図ることができる。
【0043】
また、本願発明による冷凍サイクル装置では、建物に設置されている既設の室内機を利用するので室内機にかかるコストを節約することができ、既設物を有効に利用して冷凍サイクル装置のリニューアルが可能となる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による冷凍サイクル装置の冷媒回路を示す構成図である。
【図2】 この発明の実施の形態1の油分離部の内部を示した図である。
【図3】 この発明の実施の形態1の油分離部の内部を示した図である。
【図4】 この発明の実施の形態2による冷凍サイクル装置の冷媒回路を示す構成図である。
【図5】 この発明の実施の形態3による冷凍サイクル装置の冷媒回路を示す構成図である。
【図6】 この発明の実施の形態4による冷凍サイクル装置の冷媒回路を示す構成図である。
【符号の説明】
1 圧縮機、2 熱源側熱交換器、3 油分離部、4 流量調整器、5a 第1バイパス配管、5b 第1バイパス配管、6a,6b,6c 利用側熱交換器、7a,7b,7c 絞り装置、8 液延長配管、9 ガス延長配管、12 膜体、18 膜体、21 冷媒気化手段、22 分岐部、23 合流部、26 冷媒配管、27 冷媒配管、31 気液分離器、41 圧縮機、42 四方切換弁、43 熱源側熱交換器、44 気液分離器、45 油分離部、46 冷媒気化手段、47 開閉弁、48 絞り装置、49,50 開閉弁、51a,51b,51c 利用側熱交換器、52a,52b,52c 絞り装置、53 液延長配管、54 ガス延長配管、A 室外機、B,C,D 室内機、E 室外機、F,G,H 室内機、P1,P2,P3,P4,P5 冷媒配管、Pn 第2バイパス配管。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration cycle apparatus that uses a chlorofluorocarbon (CFC) refrigerant or a hydrochlorofluorocarbon (HCFC) refrigerant that has been used so far by replacing it with a hydrofluorocarbon (HFC) refrigerant. Updated the outdoor unit to a new one using HFC refrigerant, and separated the existing piping used for CFC refrigerant or HCFC refrigerant and the lubricating oil remaining in the existing indoor unit into a part of the refrigerant circuit. The present invention relates to a refrigeration cycle apparatus that can divert existing piping and existing indoor units by storing them.
[0002]
[Prior art]
As an existing pipe utilization technique in a conventional refrigeration cycle apparatus, for example, there is one disclosed in Japanese Patent Laid-Open No. 6-249551. This is intended to recover the mineral oil remaining in the existing pipes and make the existing pipes available for retrofitting, mainly for car air conditioners.
[0003]
[Problems to be solved by the invention]
When the existing piping such as a car air conditioner is short by the above-described technology, the concentration of the lubricant for old refrigerant remaining in the system can be reduced by repeating the cleaning operation. However, a multi-air conditioner for buildings with a long extension pipe or a refrigerator that has a complicated refrigerant circuit connected to various loads such as a showcase on the user side can easily increase the oil concentration for the old refrigerant in a short operation. It cannot be reduced.
[0004]
The present invention has been made to solve such a conventional problem. For example, an old HCFC or CFC refrigerant used as an old refrigerant is replaced with a new refrigerant such as an HFC refrigerant. In this case, even when mineral oil, which is the lubricant for the old refrigerant that was remaining in the existing equipment, and ester oil, ether oil, etc., which are the lubricant for the new refrigerant, were mixed, they remained in the existing equipment. The purpose is to separate and recover mineral oil, suppress the deterioration of new ester oil or ether oil, facilitate the construction of refrigerators and air conditioners that use existing equipment, and increase the reliability of the refrigeration cycle.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a refrigeration cycle apparatus according to the present invention includes a compressor, a condenser, a first throttling device, and a refrigerant circuit configured by annularly connecting an evaporator, the compressor and the with configuring the outdoor unit including a condenser, and between the condenser and the first throttle device in the refrigerant circuit in the outdoor unit, and between the compressor and the evaporator, a second throttle device Connected by a first bypass pipe having
The first from said branching portion of the bypass pipe extending pipe between the first throttle device, and the extension piping between the merging section of the first bypass pipe from the evaporator, and the indoor including at least the evaporator At least one of the machines will use existing ones,
In a refrigeration cycle apparatus using a hydrofluorocarbon-based refrigerant as a working medium, and using a compatible oil as a refrigerating machine oil compatible with the hydrofluorocarbon-based refrigerant,
The refrigerant circuit between the compressor and the merging portion of the first bypass pipe, hydro fluorocarbon-based refrigerant and the phase溶油is transmitting, incompatible incompatible with hydro fluorocarbon-based refrigerant An oil separation part incorporating a net-like or porous film body that suppresses permeation of oil is provided, and all or a part of the refrigerant flow path in the oil separation part is blocked by the film body.
[0006]
Further, in the above configuration, a refrigerant vaporization unit that heats and vaporizes the refrigerant from the oil separation unit to the compressor is provided.
[0007]
And in each above-mentioned composition, a gas-liquid separator is arranged in a refrigerant circuit before an oil separation part, and the upper part in a gas-liquid separator and the suction side of a compressor are connected with refrigerant piping.
[0008]
Further, in the configuration of paragraph 0007 , in the refrigerant circuit, the gas-liquid separator and the oil separator are connected to each other and the oil separator to the compressor by a second bypass pipe, and the second bypass pipe and the gas-liquid separator are connected. On-off valves that open and close the respective refrigerant flow paths are provided between the oil separator and the oil separator and between the oil separator and the compressor.
[0009]
Further, in each of the above-described configurations, the film body of the oil separation unit is configured by a material having a surface tension value between the surface tension value of the liquid refrigerant and the surface tension value of the refrigerating machine oil.
[0010]
In each configuration described above, the refrigerating machine oil for the refrigeration cycle apparatus using the hydrofluorocarbon refrigerant is ester oil or ether oil.
[0011]
Furthermore, in each of the above-described configurations, the existing piping installed in a building or the like as an extension pipe between the branch portion of the first bypass pipe and the expansion device and an extension pipe between the evaporator and the junction of the first bypass pipe. An extension pipe is used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 of the Invention
FIG. 1 is a configuration diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
The refrigeration cycle apparatus shown in FIG. 1 includes a compressor 1, a heat source side heat exchanger (condenser) 2, expansion devices 7a, 7b, and 7c, use side heat exchangers (evaporators) 6a, 6b, and 6c, and oil separation. The part 3 includes a refrigerant circuit connected in an annular shape via the refrigerant pipes 26 and 27, the liquid extension pipe 8, the gas extension pipe 9, the refrigerant pipe P1, and the refrigerant pipe P4. The branch part 22 of the refrigerant pipe 27 between the heat source side heat exchanger 2 and the expansion device 7 and the junction part 23 of the refrigerant pipe P1 between the use side heat exchanger 6 and the compressor 1 are flow rate regulators. 4 are connected by first bypass pipes 5a and 5b. The outdoor unit A is mainly composed of the compressor 1, the heat source side heat exchanger 2, the oil separator 3, the flow rate regulator 4, and the first bypass pipes 5a and 5b. In addition, indoor units B, C, and D are mainly composed of the use side heat exchangers 6a, 6b, and 6c and the expansion devices 7a, 7b, and 7c. The outdoor unit A and the indoor units B, C, and D are connected by flange portions 24 and 25 using a liquid extension pipe 8 and a gas extension pipe 9. This refrigeration cycle apparatus uses a hydrofluorocarbon (HFC) refrigerant as a working medium, and uses ester oil compatible with the HFC refrigerant as a refrigerator oil.
[0013]
In this refrigeration cycle apparatus, the liquid extension pipe 8, the gas extension pipe 9, the indoor units B, C used in the refrigeration cycle apparatus using a hydrochlorofluorocarbon (HCFC) refrigerant or a chlorofluorocarbon (CFC) refrigerant. , D were used as they were, and an outdoor unit A using an HFC refrigerant was newly established. However, the refrigeration cycle apparatus of the present invention includes those in which all the components are newly installed.
[0014]
Next, the oil separation unit 3 will be described. The oil separation unit 3 has, for example, a container structure shown in FIG. In FIG. 2, 10 is an inflow pipe, 11 is an outflow pipe, and 12 is a membrane body. The oil separation unit 3 is partitioned into a separation region 13 and an outflow region 14 by closing a lower portion of the horizontal container (refrigerant flow path) by a built-in film body 12. The film body 12 is made of a net-like or porous material.
[0015]
By the way, the viscosity coefficients of HFC refrigerants (liquids) such as R410A, R407C, R134a, and R404A, or refrigeration oils for general refrigeration cycle devices such as mineral oil, ester oil, and ether oil are as shown in Table 1 below. The viscosity coefficient of machine oil (air conditioner oil in the table) is 100 times or more that of liquid refrigerant. Therefore, an extremely large speed difference is generated when passing through a porous flow path, for example, a mesh or a membrane. For example, the HFC-based refrigerant in which ester oil is dissolved quickly passes through the membrane body 12, and the mineral oil is held in the separation region 13. As a result, mineral oil can be separated from ester oil and liquid refrigerant.
[0016]
[Table 1]
Figure 0004128796
[0017]
Furthermore, as shown in Table 1 above, there is a large difference in surface tension between the HFC liquid refrigerant and the refrigerating machine oil for the refrigeration cycle apparatus.
Therefore, the film body 12 is made of a material having a surface tension value between the surface tension value of the HFC liquid refrigerant and the surface tension value of the ester oil (refrigeration machine oil), for example, a fluororesin. As a result, a capillary phenomenon works to make it easier for liquid refrigerant to pass through the film body 12 made of a fluororesin, whereas mineral oil does not easily pass. Therefore, the separation efficiency between the liquid refrigerant and the mineral oil can be further improved.
In this way, focusing on the fact that the mineral oil remaining in the existing piping and the existing indoor unit is incompatible with the HFC liquid refrigerant and that there is a large difference in the viscosity coefficient and surface tension, the present invention has been completed. It was.
[0018]
The operation of the refrigeration cycle apparatus configured as above will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat in the heat source side heat exchanger 2, condenses and liquefies, and flows through the liquid extension pipe 8. At this time, for example, a part of the ester oil, which is a compatible oil used in the refrigeration cycle apparatus of the HFC refrigerant, is also discharged from the compressor 1, and the heat source side heat exchanger 2 and the liquid extension pipe 8 are connected with the refrigerant. Flowing. In the liquid extension pipe 8, the gas extension pipe 9, and the indoor units B, C, and D, for example, mineral oil, which is the lubricating oil used in the refrigeration cycle apparatus of the HCFC refrigerant or the CFC refrigerant, remains. The lubricating oil used in the refrigeration cycle apparatus for HCFC refrigerant or CFC refrigerant is incompatible with the HFC refrigerant. Therefore, the liquid refrigerant flowing in the liquid extension pipe 8 flows while dragging the remaining mineral oil by the shearing force generated between the liquid refrigerant and the mineral oil. The liquid refrigerant that has flowed through the liquid extension pipe 8 enters the indoor units B, C, and D, evaporates and vaporizes, and flows into the gas extension pipe 9 while dragging the mineral oil remaining in the indoor units B, C, and D. Subsequently, the refrigerant merges with the liquid refrigerant flowing in from the first bypass pipe 5 a, the flow rate regulator 4, and the first bypass pipe 5 b while dragging the mineral oil remaining in the gas extension pipe 9, and then flows into the oil separation unit 3. The HFC liquid refrigerant, ester oil, and mineral oil that have flowed into the oil separation unit 3 from the inflow pipe 10 (FIG. 2) are separated into two phases in the separation region 13. The gas refrigerant flows into the outflow region 14 from the space provided in the upper part of the film body 12 and flows out from the outflow pipe 11. In the separation region 13, the HFC liquid refrigerant moves to the lower phase in a state where the ester oil that is the compatible oil is dissolved, and the mineral oil that is the incompatible oil is separated into the upper phase. And the film body 12 permeate | transmits an HFC type refrigerant | coolant and ester oil, but suppresses permeation | transmission of the mineral oil incompatible with an HFC type refrigerant | coolant. Accordingly, the mineral oil is held in the oil separation unit 3, and only the refrigerant and the ester oil are returned to the compressor 1.
[0019]
On the other hand, the further structural example of the oil separation part 3 is shown in FIG. 15 is an inflow pipe connected to the top of the container, 16 is a first outflow pipe connected to the bottom of the container, 17 is a second outflow pipe connected to the top of the container for gas outflow, and 18 is the film body described above. 12 is a film body having the same function as 12. In this example, the entire flow path in the oil separation unit 3 is blocked by the film body 18.
Therefore, the liquid refrigerant, ester oil, and mineral oil that have flowed in from the inflow pipe 15 are separated into two phases in the oil separator 3, and the lower phase liquid refrigerant and ester oil pass through the film body 18, and the first outflow pipe 16. Spill from. Further, since the gas refrigerant flows out from the upper second outflow pipe 17, the outflow of the gas refrigerant is facilitated.
[0020]
In the first embodiment, ester oil is used as the compatible oil. Needless to say, the same effect can be obtained by using ether oil or the like that is compatible with the HFC refrigerant.
[0021]
Embodiment 2 of the Invention
4 is a block diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
In FIG. 4, reference numeral 21 denotes a refrigerant vaporization means including a refrigerant heat exchanger attached to the refrigerant pipe 27. Other reference numerals are the same as or equivalent to those in FIG.
[0022]
Therefore, the liquid refrigerant flowing out from the oil separation unit 3 is heated by heat exchange with the refrigerant in the refrigerant pipe 27 by the refrigerant vaporization means 21 to become a gas refrigerant and return to the compressor 1. Therefore, the liquid refrigerant does not return directly to the compressor 1, and failure due to liquid compression in the compressor 1 can be prevented beforehand. Thereby, the reliability of the refrigeration cycle apparatus is improved.
[0023]
Embodiment 3 of the Invention
5 is a block diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
In FIG. 5, a gas-liquid separator 31 is disposed in front of the oil separator 3 in the refrigerant flow direction. The gas-liquid separator 31 is connected to the junction 23 by a refrigerant pipe P1 and is connected to the oil separator 3 by a refrigerant pipe P3. The upper part in the gas-liquid separator 31 and the suction side of the compressor 1 Are connected by a refrigerant pipe P2. Other reference numerals are the same as or equivalent to those in FIG.
[0024]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 dissipates heat in the heat source side heat exchanger 2, condenses and liquefies, and flows through the liquid extension pipe 8. At this time, for example, a part of the ester oil, which is a compatible oil used in the refrigeration cycle apparatus of the HFC refrigerant, is also discharged from the compressor 1, and the heat source side heat exchanger 2 and the liquid length pipe 8 are accompanied by the refrigerant. Flowing. In the liquid extension pipe 8, the gas extension pipe 9, and the indoor units B, C, and D, for example, mineral oil, which is the refrigeration oil used in the refrigeration cycle apparatus of the HCFC refrigerant or CFC refrigerant, remains. Refrigerating machine oil used in the refrigeration cycle apparatus for HCFC refrigerant or CFC refrigerant is incompatible with HFC refrigerant. Then, the liquid refrigerant in the liquid extension pipe 8 flows while dragging the remaining mineral oil by the shearing force generated between the liquid refrigerant and the mineral oil. The liquid refrigerant that has flowed through the liquid extension pipe 8 enters the indoor units B, C, and D, evaporates and vaporizes, and flows into the gas extension pipe 9 while dragging the mineral oil remaining in the indoor units B, C, and D. Subsequently, the refrigerant merges with the liquid refrigerant flowing in from the first bypass pipe 5a, the flow regulator 4 and the first bypass pipe 5b while pulling the mineral oil remaining in the gas extension pipe 9, and then from the refrigerant pipe P1 to the gas-liquid separator 31. Flow into. In the gas-liquid separator 31, the separated gas refrigerant flows through the refrigerant pipe P <b> 2 and returns to the compressor 1. Further, the liquid refrigerant, ester oil, and mineral oil separated by the gas-liquid separator 31 flow through the refrigerant pipe P3 and flow into the oil separation unit 3 and are separated into two phases in the oil separation unit 3, and the mineral oil is retained. The liquid refrigerant and ester oil flow out of the refrigerant pipe P4 and return to the compressor 1.
[0025]
By using the gas-liquid separator 31 in this way, a gas refrigerant having a high flow rate flows through the refrigerant pipe P2, and thus the main refrigerant circuit can be the refrigerant pipe P1, the gas-liquid separator 31, and the refrigerant pipe P2. That is, the oil separation unit 3 is installed at a position bypassed from the main refrigerant circuit, and only the liquid refrigerant, mineral oil, and ester oil flow into the oil separation unit 3. Therefore, the interface between the liquid refrigerant and the ester oil and the mineral oil separated in two phases in the oil separation unit 3 is stable, and stable separation is possible.
[0026]
In the third embodiment, ester oil is used as the compatible oil, but the same effect can be obtained by using ether oil or the like that is compatible with the HFC refrigerant. Further, as described in the second embodiment, it is needless to say that the reliability of the refrigeration cycle apparatus can be further improved by providing the refrigerant vaporization means for vaporizing the liquid refrigerant that has flowed out of the oil separation unit 3.
[0027]
Embodiment 4 of the Invention
6 is a block diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
6, 41 is a compressor, 42 is a four-way switching valve, 43 is a heat source side heat exchanger, 44 is a gas-liquid separator, 45 is a membrane body 12 (see FIG. 2) and a membrane body 18 (see FIG. 3). Built-in oil separation unit, 46 is a heat exchanger type refrigerant vaporizing means, 48 is a throttle device, 47, 49, 50 are on-off valves, which are mainly connected by refrigerant pipes P2, P3, P4, P5. Thus, an outdoor unit E is configured. A refrigerant pipe P3 between the gas-liquid separator 44 and the oil separator 45 and a refrigerant pipe P4 between the oil separator 45 and the compressor 41 are connected by a second bypass pipe Pn. The on-off valve 50 is provided in the middle of the second bypass pipe Pn to open and close the refrigerant flow path. The on-off valve 47 is arranged in the middle of the refrigerant pipe P3 to open and close the refrigerant flow path. The on-off valve 49 is arranged in the middle of the refrigerant pipe P4 so as to open and close the refrigerant flow path. In addition, 51a, 51b, 51c are utilization side heat exchangers, and 52a, 52b, 52c are expansion devices, and these constitute the indoor units F, G, H. Further, 53 is a liquid extension pipe, and 54 is a gas extension pipe.
[0028]
In constructing the refrigeration cycle apparatus configured as described above, the liquid extension pipe and the gas extension pipe, or the liquid extension pipe, the gas extension pipe and the room used in the unit filled with the HCFC refrigerant or the CFC refrigerant. Consider a case where a new outdoor unit is used that uses an HFC refrigerant and uses an oil compatible with the HFC refrigerant such as ester oil or ether oil as the refrigeration oil. In this case, in the liquid extension pipe, the gas extension pipe, and the indoor unit, the refrigerating machine oil, for example, mineral oil, that has been conventionally used incompatible with the HFC refrigerant remains. An operation when the refrigeration cycle apparatus is air-cooled in such a state and a method for recovering mineral oil will be described.
[0029]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 41 dissipates heat in the heat source side heat exchanger 43 to condense and liquefy, and flows through the liquid extension pipe 53. The liquid refrigerant flowing through the liquid extension pipe 53 carries out the mineral oil remaining in the liquid extension pipe 53 from the liquid extension pipe 53 while dragging with the shearing force generated between the liquid refrigerant and the mineral oil. The liquid refrigerant that has flowed through the liquid extension pipe 53 enters the indoor units F, G, H, evaporates and vaporizes, and then flows through the gas extension pipe 54 to carry out the mineral oil in the gas extension pipe 54. The gas refrigerant that has flowed through the gas extension pipe 54 returns to the outdoor unit E, and returns to the compressor 41 via the four-way switching valve 42 and the gas-liquid separator 44. At this time, the ester oil taken out from the compressor 41 circulated in the existing liquid extension pipe 53, the indoor units F, G, H, and the gas extension pipe 54 along with the refrigerant, and remained in these existing devices. It is mixed with mineral oil and enters the gas-liquid separator 44 together with the refrigerant.
[0030]
When separating the mineral oil recovered from the existing equipment, the on-off valve 47 is opened, and the mineral oil and the ester oil are guided from the gas-liquid separator 44 to the oil separator 45. In addition, after the high-pressure liquid refrigerant is squeezed to the low-pressure two-phase refrigerant by the expansion device 48, the high-pressure liquid refrigerant is guided to the oil separation unit 45, and two-phase separation is performed in the oil separation unit 45. Then, by opening the on-off valve 49, the liquid refrigerant in which the ester oil is dissolved is guided to the refrigerant vaporization means 46 and evaporated / vaporized, and then returns to the compressor 41 together with the ester oil. At this time, since the on-off valve 50 of the second bypass pipe Pn is closed, for example, the structure as described in FIG.
[0031]
Thus, after the mineral oil in the liquid extension pipe 53, the indoor units F, G, and H and the gas extension pipe 54 is washed, the expansion device 48 and the on-off valves 47 and 49 are closed and the on-off valve 50 is opened to separate the oil. The ester oil can be returned to the compressor 41 without passing through the section 45, and the compressor oil is not exhausted by the compressor 41. Further, since the expansion device 48 and the on-off valves 47 and 49 are closed, the mineral oil held in the oil separation unit 45 is separated from the refrigerant circuit. Therefore, there is no fear that the mineral oil returns to the compressor 41, and the reliability of the refrigeration cycle apparatus is improved.
[0032]
Further, the oil separator 45 connects the compressor 41, the four-way switching valve 42, the heat source side heat exchanger 43, the expansion devices 52a, 52b, 52c, the use side heat exchangers 51a, 51b, 51c, and the gas-liquid separator 44. Since the two-phase separation state is not hindered by the rapid flow rate of the main refrigerant circuit, the ester oil and the liquid refrigerant are stably supplied to the on-off valve 49 and the refrigerant. The vaporization means 46 can return to the compressor 41.
[0033]
Next, the operation in the case of heating operation and the method for recovering mineral oil will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 41 flows through the gas extension pipe 54 via the four-way switching valve 42. This gas refrigerant carries out the mineral oil remaining in the gas extension pipe 54 from the gas extension pipe 54 while dragging by the shearing force generated between the gas refrigerant and the mineral oil. The gas refrigerant from the gas extension pipe 54 enters the indoor units F, G, and H, dissipates heat in the use side heat exchangers 51a, 51b, and 51c, condenses and liquefies, and two-phases to a low pressure in the expansion devices 52a, 52b, and 52c. The pressure is then reduced to the liquid extension pipe 53. This refrigerant flows while washing the mineral oil remaining in the liquid extension pipe 53, evaporates and vaporizes in the heat source side heat exchanger 43, and then passes to the compressor 41 via the four-way switching valve 42 and the gas-liquid separator 44. Return. At this time, the ester oil taken out from the compressor 41 circulated in the existing liquid extension pipe 53, the indoor units F, G, H, and the gas extension pipe 54 along with the refrigerant, and remained in these existing devices. It is mixed with mineral oil and enters the gas-liquid separator 44 together with the refrigerant. Then, by operating the expansion device 48 and the on-off valves 47, 49, 50 in the same manner as in the cooling operation, the ester oil and mineral oil that have flowed into the gas-liquid separator 44 are returned to the compressor 41, and the mineral oil is separated into oil. It is held in the part 45.
[0034]
As described above, the oil separation part 45 is provided on the downstream side of the flow path of the gas-liquid separator 44, the throttle device 48 and the opening / closing valves 47 and 49 are provided before and after the oil separation part 45, and the opening / closing valve 50 is provided in the second bypass pipe Pn. Thus, the operation can be arbitrarily switched between the mineral oil cleaning operation, that is, the operation of separating the mineral oil, and the operation of holding the mineral oil at the end of the mineral oil cleaning.
[0035]
In the fourth embodiment, ester oil is used as the lubricating oil for the refrigeration cycle using the HFC refrigerant. However, the same effect can be obtained even if ether oil compatible with the HFC refrigerant is used. Needless to say.
[0036]
【The invention's effect】
Since this invention is comprised as mentioned above, there exist the following effects.
In the refrigeration cycle apparatus according to the present invention , the HFC-based refrigerant and the compatible oil are permeated between the evaporator and the compressor in the refrigerant circuit, but the permeation of the incompatible oil that is incompatible with the HFC-based refrigerant is suppressed. Since the oil separation unit with a porous membrane body is provided, the old refrigeration oil used for the CFC refrigerant or HCFC refrigerant can be captured by the membrane body, and the HFC refrigerant and the refrigeration oil compatible with it ( Only compatible oil) can be permeated and returned to the compressor. Therefore, the construction work can be completed by simply replacing the outdoor unit, and the existing extension pipe and / or the indoor unit can be used in a short time and at a low cost.
[0037]
Further, the refrigeration cycle apparatus according to the present invention can prevent the liquid refrigerant from returning to the compressor because the refrigerant from the oil separator to the compressor is heated and vaporized by the refrigerant vaporization means. Accordingly, the reliability of the compressor and further the refrigeration cycle apparatus is improved, and the refrigeration cycle apparatus can be used for a long time.
[0038]
Further, in the refrigeration cycle apparatus according to the present invention , the gas-liquid separator is arranged in the refrigerant circuit in front of the oil separation unit, and the upper part in the gas-liquid separator and the suction side of the compressor are connected by the refrigerant pipe. The gas refrigerant having a high flow velocity flows from the upper part of the gas-liquid separator to the suction side of the compressor through the refrigerant pipe. Therefore, the liquid surfaces of the liquid refrigerant and the incompatible oil separated into two phases in the oil separation unit are stabilized, and stable phase separation is possible.
[0039]
In the refrigeration cycle apparatus according to the present invention , the on-off valve of the second bypass pipe that connects between the gas-liquid separator and the oil separator and between the oil separator and the compressor, and between the gas-liquid separator and the oil separator. When the on-off valve, the on-off valve between the oil separation unit and the compressor and the throttling device of the first bypass pipe are all closed, the oil separation unit is shut off from the refrigerant flow path. Therefore, when the cleaning of the old refrigeration oil remaining in the existing extension pipe and / or indoor unit is completed, the recovered old refrigeration oil can be shut off from the refrigerant flow path. Therefore, even if the refrigeration cycle apparatus is used for a long time, the old refrigeration oil does not flow into the compressor, and the reliability of the equipment is improved.
[0040]
In the refrigeration cycle apparatus according to the present invention , the membrane body of the oil separator is made of a material having a surface tension value between the surface tension value of the liquid refrigerant and the surface tension value of the refrigerating machine oil. The liquid refrigerant of the system is easy to permeate the film body, while the old refrigerating machine oil is difficult to permeate. Thereby, the separation efficiency between the liquid refrigerant and the old refrigerating machine oil can be increased.
[0041]
In the refrigeration cycle apparatus according to the present invention , since the ester oil or ether oil used as the refrigerating machine oil for the HFC refrigerant is compatible with the HFC refrigerant, the old refrigerating machine oil that is incompatible with the HFC refrigerant is used. It is possible to efficiently separate the HFC-based refrigerant from the ester oil or ether oil.
[0042]
In the refrigeration cycle apparatus according to the present invention , since the existing extension pipe installed in the building is used, the cost for the extension pipe can be saved, and the existing equipment can be used effectively.
[0043]
Further, in the refrigeration cycle apparatus according to the present invention , since the existing indoor unit installed in the building is used, the cost of the indoor unit can be saved, and the refrigeration cycle apparatus can be renewed by effectively using the existing unit. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a diagram showing the inside of an oil separation unit according to Embodiment 1 of the present invention.
FIG. 3 is a diagram showing the inside of an oil separation unit according to Embodiment 1 of the present invention.
FIG. 4 is a configuration diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 2 of the present invention.
FIG. 5 is a configuration diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 3 of the present invention.
FIG. 6 is a configuration diagram showing a refrigerant circuit of a refrigeration cycle apparatus according to Embodiment 4 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Heat source side heat exchanger, 3 Oil separation part, 4 Flow regulator, 5a 1st bypass piping, 5b 1st bypass piping, 6a, 6b, 6c Use side heat exchanger, 7a, 7b, 7c Restriction Device, 8 liquid extension pipe, 9 gas extension pipe, 12 film body, 18 film body, 21 refrigerant vaporization means, 22 branching section, 23 merge section, 26 refrigerant pipe, 27 refrigerant pipe, 31 gas liquid separator, 41 compressor , 42 Four-way switching valve, 43 Heat source side heat exchanger, 44 Gas-liquid separator, 45 Oil separator, 46 Refrigerant vaporization means, 47 Open / close valve, 48 Throttle device, 49, 50 Open / close valve, 51a, 51b, 51c Use side Heat exchanger, 52a, 52b, 52c expansion device, 53 liquid extension pipe, 54 gas extension pipe, A outdoor unit, B, C, D indoor unit, E outdoor unit, F, G, H indoor unit, P1, P2, P3, P4, P5 Refrigerant piping, Pn 2nd buy Pass piping.

Claims (6)

圧縮機、凝縮器、第1の絞り装置、蒸発器を環状に接続して構成された冷媒回路を備え、前記圧縮機および前記凝縮機を含む室外機を構成するとともに、この室外機において前記冷媒回路における前記凝縮器と前記第1の絞り装置の間と、前記蒸発器と前記圧縮機の間とを、第2の絞り装置を有する第1バイパス配管で接続し、
この第1バイパス配管の分岐部から前記第1の絞り装置の間の延長配管、および、前記蒸発器から前記第1バイパス配管の合流部の間の延長配管、および、少なくとも前記蒸発器を含む室内機のうち、少なくとも1つは既設のものを流用し、
ハイドロフロオロカーボン系冷媒を作動媒体として用い、ハイドロフロオロカーボン系冷媒に対し相溶性のある相溶油を冷凍機油として用いる冷凍サイクル装置において、
前記第1バイパス配管の前記合流部前記圧縮機の間の前記冷媒回路に、ハイドロフロオロカーボン系冷媒および相溶油は透過させるが、ハイドロフロオロカーボン系冷媒に非相溶な非相溶油の透過は抑制する網状または多孔状の膜体を内蔵した油分離部を設け、膜体によりこの油分離部内の冷媒流路の全部または一部を塞ぐようにしたことを特徴とする冷凍サイクル装置。
A refrigerant circuit configured by annularly connecting a compressor, a condenser, a first throttling device, and an evaporator, and constituting an outdoor unit including the compressor and the condenser; and the refrigerant in the outdoor unit and between the said condenser in the circuit first throttle device, and between the compressor and the evaporator, and connected by a first bypass pipe having a second throttle device,
The first from said branching portion of the bypass pipe extending pipe between the first throttle device, and the extension piping between the merging section of the first bypass pipe from the evaporator, and the indoor including at least the evaporator At least one of the machines will use existing ones,
In a refrigeration cycle apparatus using a hydrofluorocarbon-based refrigerant as a working medium, and using a compatible oil as a refrigerating machine oil compatible with the hydrofluorocarbon-based refrigerant,
The refrigerant circuit between the compressor and the merging portion of the first bypass pipe, hydro fluorocarbon-based refrigerant and the phase溶油is transmitting, incompatible incompatible with hydro fluorocarbon-based refrigerant transmission of oil provided the oil separation unit with a built-inhibiting net or porous membrane material, characterized in that so as to close all or part of the refrigerant flow path in the oil separation portion by a membrane body refrigeration cycle apparatus.
油分離部から圧縮機に至る冷媒を加熱して気化させる冷媒気化手段を備えていることを特徴とする請求項第1項に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to claim 1, further comprising a refrigerant vaporization unit that heats and vaporizes the refrigerant from the oil separation unit to the compressor. 油分離部手前の冷媒回路に気液分離器を配置し、気液分離器内の上部と圧縮機の吸込側とを冷媒配管で接続したことを特徴とする請求項第1項または第2項に記載の冷凍サイクル装置。  The gas-liquid separator is arranged in the refrigerant circuit before the oil separation unit, and the upper part in the gas-liquid separator and the suction side of the compressor are connected by a refrigerant pipe. The refrigeration cycle apparatus described in 1. 冷媒回路における、気液分離器から油分離部の間と油分離部から圧縮機の間とを第2バイパス配管で接続し、第2バイパス配管と、気液分離器から油分離部の間と、油分離部から圧縮機の間とに、それぞれの冷媒流路を開閉する開閉弁を配備したことを特徴とする請求項第3項に記載の冷凍サイクル装置。In the refrigerant circuit, between the gas-liquid separator and the oil separator , and between the oil separator and the compressor are connected by a second bypass pipe, and between the second bypass pipe and the gas-liquid separator and the oil separator. The refrigeration cycle apparatus according to claim 3, further comprising an on-off valve that opens and closes each refrigerant flow path between the oil separation unit and the compressor. 液冷媒の表面張力値と冷凍機油の表面張力値の間の表面張力値を有する材料で、油分離部の膜体を構成したことを特徴とする請求項第1項から第4項のいずれか一項に記載の冷凍サイクル装置。  5. The film body of the oil separation part is formed of a material having a surface tension value between the surface tension value of the liquid refrigerant and the surface tension value of the refrigerating machine oil. 5. The refrigeration cycle apparatus according to one item. ハイドロフロオロカーボン系冷媒を用いる冷凍サイクル装置用の冷媒機油が、エステル油またはエーテル油であることを特徴とする請求項第1項から第5項のいずれか一項に記載の冷凍サイクル装置。  The refrigeration cycle apparatus according to any one of claims 1 to 5, wherein refrigerant oil for a refrigeration cycle apparatus using a hydrofluorocarbon-based refrigerant is ester oil or ether oil.
JP2002123470A 2002-04-25 2002-04-25 Refrigeration cycle equipment Expired - Fee Related JP4128796B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002123470A JP4128796B2 (en) 2002-04-25 2002-04-25 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002123470A JP4128796B2 (en) 2002-04-25 2002-04-25 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2003322436A JP2003322436A (en) 2003-11-14
JP4128796B2 true JP4128796B2 (en) 2008-07-30

Family

ID=29538748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002123470A Expired - Fee Related JP4128796B2 (en) 2002-04-25 2002-04-25 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4128796B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267311A1 (en) 2008-03-18 2010-12-29 Daikin Industries, Ltd. Freezing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107652B2 (en) * 2007-10-03 2012-12-26 日立アプライアンス株式会社 Refrigeration cycle equipment
JP5762441B2 (en) * 2011-01-20 2015-08-12 三菱電機株式会社 Refrigeration cycle equipment
JP2013257121A (en) * 2012-06-14 2013-12-26 Mitsubishi Electric Corp Refrigerating device
JP2017145975A (en) * 2016-02-15 2017-08-24 三菱電機株式会社 Refrigeration cycle device, process of manufacture of refrigeration cycle device, drop-in method for refrigeration cycle device, and replace method for refrigeration cycle device
CN107314476B (en) * 2017-05-27 2023-08-29 珠海格力电器股份有限公司 Air conditioning unit and control method thereof
CN107314582B (en) * 2017-07-10 2023-08-15 珠海格力电器股份有限公司 Flash evaporator and water chilling unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2267311A1 (en) 2008-03-18 2010-12-29 Daikin Industries, Ltd. Freezing device

Also Published As

Publication number Publication date
JP2003322436A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
AU2013264087B2 (en) Refrigeration apparatus
JP5049889B2 (en) Refrigeration equipment
EP2667120B1 (en) Refrigeration cycle apparatus
JP2005308392A (en) Air conditioner
EP2865970A1 (en) Freezer
JP4128796B2 (en) Refrigeration cycle equipment
JP2005300157A (en) Air conditioner
JP3361771B2 (en) Operation method of refrigeration cycle device
JP5634597B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the gas-liquid separator
JP2000179957A (en) Air conditioner
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP2001280763A (en) Refrigerating and air conditioning system
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP3361765B2 (en) Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP4409075B2 (en) Cleaning operation method of refrigeration cycle apparatus
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
JP4186764B2 (en) Refrigeration equipment
JP4567182B2 (en) Extraction / separation mechanism, heat source unit of refrigeration cycle apparatus, refrigeration cycle apparatus, and renewal method of refrigeration cycle apparatus
JP4393786B2 (en) Refrigeration or air conditioner and method for updating the same
JP2000146369A (en) Air conditioner
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JP5393623B2 (en) Gas-liquid separator and refrigeration cycle apparatus equipped with the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080515

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110523

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120523

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130523

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140523

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees