JP3361765B2 - Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus

Info

Publication number
JP3361765B2
JP3361765B2 JP03613599A JP3613599A JP3361765B2 JP 3361765 B2 JP3361765 B2 JP 3361765B2 JP 03613599 A JP03613599 A JP 03613599A JP 3613599 A JP3613599 A JP 3613599A JP 3361765 B2 JP3361765 B2 JP 3361765B2
Authority
JP
Japan
Prior art keywords
refrigerant
foreign matter
heat exchanger
refrigeration cycle
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03613599A
Other languages
Japanese (ja)
Other versions
JP2000009368A (en
Inventor
智彦 河西
光教 倉地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26375177&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3361765(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP03613599A priority Critical patent/JP3361765B2/en
Publication of JP2000009368A publication Critical patent/JP2000009368A/en
Application granted granted Critical
Publication of JP3361765B2 publication Critical patent/JP3361765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、冷凍サイクル装
置の冷媒の交換に関するものである。さらに詳しくは、
熱源機と室内機のみを新規に交換し、熱源機と室内機と
を接続する接続配管を交換しないで、冷媒を新規に交換
する冷凍サイクル装置とその交換方法及び運転方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to replacement of refrigerant in a refrigeration cycle device. For more details,
The present invention relates to a refrigeration cycle apparatus that newly replaces only a heat source unit and an indoor unit and does not replace a connection pipe that connects the heat source unit and the indoor unit, and a replacement method and an operating method thereof.

【0002】[0002]

【従来の技術】従来から一般に用いられているセパレ−
ト形の空気調和装置を図11に示す。図11において、
Aは熱源機であり、圧縮機1、四方弁2、熱源機側熱交
換器3、第1の操作弁4、第2の操作弁7、アキュムレ
−タ8を内蔵している。Bは室内機であり、流量調整器
5(あるいは流量制御弁5)、及び利用側熱交換器6を
備えている。熱源機Aと室内機Bは離れた場所に設置さ
れ、第1の接続配管C、第2の接続配管Dにより接続さ
れて、冷凍サイクルを形成する。
2. Description of the Related Art Separators that have been commonly used from the past
FIG. 11 shows a T-shaped air conditioner. In FIG.
A is a heat source machine, which includes a compressor 1, a four-way valve 2, a heat source machine side heat exchanger 3, a first operation valve 4, a second operation valve 7, and an accumulator 8. Reference numeral B denotes an indoor unit, which includes a flow rate regulator 5 (or a flow rate control valve 5) and a use side heat exchanger 6. The heat source unit A and the indoor unit B are installed at distant places and are connected by the first connection pipe C and the second connection pipe D to form a refrigeration cycle.

【0003】第1の接続配管Cの一端は熱源機側熱交換
器3と第1の操作弁4を介して接続され、第1の接続配
管Cの他の一端は流量調整器5と接続されている。第2
の接続配管Dの一端は四方弁2と第2の操作弁7を介し
て接続され、第2の接続配管Dの他の一端は利用側熱交
換器6と接続されている。また、アキュムレ−タ8のU
字管状の流出配管の下部には返油穴8aが設けられてい
る。
One end of the first connecting pipe C is connected to the heat source side heat exchanger 3 via the first operating valve 4, and the other end of the first connecting pipe C is connected to the flow rate regulator 5. ing. Second
One end of the connecting pipe D is connected to the four-way valve 2 via the second operation valve 7, and the other end of the second connecting pipe D is connected to the use side heat exchanger 6. Also, U of accumulator 8
An oil return hole 8a is provided in the lower portion of the character-shaped outflow pipe.

【0004】この空気調和装置の冷媒の流れを図11に
添って説明する。図中、実線矢印が冷房運転の流れを、
破線矢印が暖房運転の流れを示す。まず、冷房運転の流
れを説明する。圧縮機1で圧縮された高温高圧のガス冷
媒は四方弁2を経て、熱源機側熱交換器3へと流入し、
ここで空気・水など熱源媒体と熱交換して凝縮液化す
る。凝縮液化した冷媒は第1の操作弁4、第1の接続配
管Cを経て流量調整器5へ流入し、ここで低圧まで減圧
されて低圧二相状態となり、利用側熱交換器6で空気な
どの利用側媒体と熱交換して蒸発・ガス化する。 蒸発
・ガス化した冷媒は第2の接続配管D、第2の操作弁
7、四方弁2、アキュムレ−タ8を経て圧縮機1へ戻
る。
The flow of the refrigerant in this air conditioner will be described with reference to FIG. In the figure, the solid arrow indicates the flow of cooling operation,
The dashed arrow indicates the flow of heating operation. First, the flow of the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 passes through the four-way valve 2 and flows into the heat source unit side heat exchanger 3,
Here, heat is exchanged with a heat source medium such as air and water to condense and liquefy. The condensed and liquefied refrigerant flows into the flow rate regulator 5 through the first operation valve 4 and the first connection pipe C, where it is decompressed to a low pressure and becomes a low-pressure two-phase state, and the use side heat exchanger 6 uses air, etc. It heat-exchanges with the medium on the user side to evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the second connecting pipe D, the second operation valve 7, the four-way valve 2 and the accumulator 8.

【0005】次に、暖房運転の流れを説明する。圧縮機
1で圧縮された高温高圧のガス冷媒は四方弁2、第2の
操作弁7、第2の接続配管Dを経て、利用側側熱交換器
6へと流入し、ここで空気など利用側媒体と熱交換器し
て凝縮液化する。凝縮液化した冷媒は流量調整器5へ流
入し、ここで低圧まで減圧されて低圧二相状態となり、
第1の接続配管C、第1の操作弁4を経て、熱源機側熱
交換器3で空気・水などの熱源媒体と熱交換して蒸発・
ガス化する。蒸発・ガス化した冷媒は四方弁2、アキュ
ムレ−タ8を経て圧縮機1へ戻る。
Next, the flow of the heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the user-side heat exchanger 6 through the four-way valve 2, the second operation valve 7, and the second connection pipe D, and the air or the like is used there. Condensate and liquefy by heat exchange with the side medium. The condensed and liquefied refrigerant flows into the flow rate controller 5, where it is decompressed to a low pressure and becomes a low-pressure two-phase state.
After passing through the first connection pipe C and the first operation valve 4, the heat source side heat exchanger 3 exchanges heat with a heat source medium such as air and water to evaporate.
Gasify. The evaporated and gasified refrigerant returns to the compressor 1 through the four-way valve 2 and the accumulator 8.

【0006】従来、このような空気調和装置の冷媒とし
て、CFC(クロロフルオロカ−ボン)やHCFC(ハ
イドロクロロフルオロカ−ボン)が用いられてきたが、
これらの分子に含まれる塩素が成層圏でオゾン層を破壊
するため、CFCは既に全廃され、HCFCも生産規制
が開始されている。
Conventionally, CFC (chlorofluorocarbon) or HCFC (hydrochlorofluorocarbon) has been used as a refrigerant for such an air conditioner.
Since chlorine contained in these molecules destroys the ozone layer in the stratosphere, CFCs have already been completely abolished, and HCFCs have started production regulations.

【0007】これらに替わって、分子に塩素を含まない
HFC(ハイドロフルオロカ−ボン)を使用する空気調
和装置が実用化されている。CFCやHCFCを用いた
空気調和装置が老朽化した場合、これらの冷媒は全廃・
生産規制されているため、HFCを用いた空気調和装置
に入れ替える必要がある。熱源機Aと室内機Bは、HF
Cで使用する冷凍機油・有機材料・熱交換器がHCFC
とは異なるため、HFC専用のものと交換する必要があ
り、かつ元々CFC・HCFC用の熱源機Aと室内機B
は老朽化しているため交換する必要があるものであり、
交換も比較的容易である。
Instead of these, an air conditioner using HFC (hydrofluorocarbon) containing no chlorine in the molecule has been put into practical use. If the air conditioner using CFC or HCFC is deteriorated, these refrigerants will be completely abolished.
Since production is regulated, it is necessary to replace with an air conditioner using HFC. Heat source unit A and indoor unit B are HF
Refrigerator oil, organic materials, and heat exchangers used in C are HCFC
Since it is different from HFC, it is necessary to replace it with a dedicated HFC, and it is originally a heat source unit A and an indoor unit B for CFC / HCFC.
Is old and needs to be replaced,
Exchange is also relatively easy.

【0008】一方、熱源機Aと室内機Bを接続する第1
の接続配管Cと第2の接続配管Dは配管長が長い場合
や、パイプシャフトや天井裏など建物に埋設されている
場合には、新規配管に交換することは困難で、しかも老
朽化もしないため、CFCやHCFCを用いた空気調和
装置で使用していた第1の接続配管Cと第2の接続配管
Dをそのまま使用できれば、配管工事が簡略化できる。
On the other hand, the first connecting the heat source unit A and the indoor unit B
When the connection pipe C and the second connection pipe D have long pipe lengths or are buried in a building such as a pipe shaft or an overhead ceiling, it is difficult to replace them with new pipes and they do not deteriorate. Therefore, if the first connecting pipe C and the second connecting pipe D used in the air conditioner using CFC or HCFC can be used as they are, the piping work can be simplified.

【0009】しかし、CFCやHCFCを用いた空気調
和装置で使用していた第1の接続配管Cと第2の接続配
管Dには、CFCやHCFCを用いた空気調和装置の冷
凍機油である鉱油やCFC・HCFCや冷凍機油の劣化
物がスラッジとなったものが残留している。
However, in the first connecting pipe C and the second connecting pipe D used in the air conditioner using CFC or HCFC, the mineral oil which is the refrigerating machine oil of the air conditioner using CFC or HCFC is used. Sludge from CFCs / HCFCs and deterioration of refrigerating machine oil remains.

【0010】図12は、鉱油混入時のHFC用冷凍機油
とHFC冷媒(R407C)との溶解性を示す臨界溶解
度曲線を示す図で、横軸は油量(wt%)、縦軸は温度
(℃)を示す。HFCを用いた空気調和装置の冷凍機油
(エステル油やエ−テル油などの合成油)に鉱油が一定
量以上混入すると図12に示すように、HFC冷媒との
相溶性が失われ、アキュムレ−タ8に液冷媒が溜まって
いる場合にHFC用冷凍機油が液冷媒の上に分離・浮遊
するため、アキュムレ−タ8の下部にある返油穴8aか
ら圧縮機へ冷凍機油が戻らず圧縮機の摺動部が焼き付
く。また、鉱油が混入するとHFC用冷凍機油が劣化す
る。また、CFC・HCFCが混入するとこれらに含ま
れる塩素成分によりHFC用冷凍機油が劣化する。ま
た、CFC・HCFC用冷凍機油の劣化物がスラッジと
なったものに含まれる塩素成分によりHFC用冷凍機油
が劣化する。
FIG. 12 is a diagram showing a critical solubility curve showing the solubility of HFC refrigerating machine oil and HFC refrigerant (R407C) when mineral oil is mixed, in which the horizontal axis represents the amount of oil (wt%) and the vertical axis represents the temperature ( ° C) is shown. When a certain amount or more of mineral oil is mixed in the refrigerating machine oil (synthetic oil such as ester oil and ether oil) of the air conditioner using HFC, the compatibility with the HFC refrigerant is lost as shown in FIG. When the liquid refrigerant is stored in the compressor 8, the HFC refrigerating machine oil separates and floats on the liquid refrigerant, so the refrigerating machine oil does not return to the compressor from the oil return hole 8a at the bottom of the accumulator 8 The sliding part of is seized. Further, if mineral oil is mixed, the HFC refrigerating machine oil is deteriorated. Further, if CFC / HCFC is mixed, the chlorine component contained therein deteriorates the HFC refrigerating machine oil. Further, the chlorine component contained in the sludge formed by the deteriorated product of the CFC / HCFC refrigerating machine oil deteriorates the HFC refrigerating machine oil.

【0011】このため、従来はCFCやHCFCを用い
た空気調和装置で使用していた第1の接続配管Cと第2
の接続配管Dを、洗浄装置を用いて専用の洗浄液(HC
FC141bやHCFC225)で洗浄することが行わ
れている(以下、これを洗浄方法1と称する)。また、
特開平7-83545号公報に開示された方法がある。これ
は、図13に示すように、洗浄装置を用いずに、HFC
用熱源機A、HFC用室内機B、第1の接続配管C、第
2の接続配管Dを接続し(ステップ100)、HFC、
HFC用冷凍機油を充填した後に(ステップ101)運
転することで洗浄し(ステップ102)、その後で空気
調和装置内の冷媒と冷凍機油を回収し新しい冷媒と冷凍
機油を充填してから(ステップ103)、再度運転によ
る洗浄を実施する、ということを所定回数繰り返す(ス
テップ104、105)ことが、提案されている(以
下、これを洗浄方法2と称する)。
For this reason, the first connecting pipe C and the second connecting pipe C, which have been used in the air conditioner using CFC or HCFC in the past, are used.
The connection pipe D of the
Cleaning with FC141b or HCFC225) is performed (hereinafter, this is referred to as cleaning method 1). Also,
There is a method disclosed in JP-A-7-83545. As shown in FIG. 13, this is the HFC without using the cleaning device.
Heat source unit A, HFC indoor unit B, first connection pipe C, second connection pipe D are connected (step 100), HFC,
After the HFC refrigerating machine oil is filled (step 101), it is washed by operating (step 102), and then the refrigerant and the refrigerating machine oil in the air conditioner are recovered and filled with a new refrigerant and the refrigerating machine oil (step 103). ), It is proposed to repeat the cleaning by the operation a predetermined number of times (steps 104 and 105) (hereinafter, this is referred to as cleaning method 2).

【0012】[0012]

【発明が解決しようとする課題】上記した従来の洗浄方
法1では以下に示すような問題があった。第1に、使用
する洗浄液がHCFCであり、オゾン層破壊係数がゼロ
でないため、空気調和装置の冷媒をHCFCからHFC
へと代替することと矛盾する。特に、HCFC141b
はオゾン破壊係数が0.11と大きく問題である。
The above conventional cleaning method 1 has the following problems. First, since the cleaning liquid used is HCFC and the ozone depletion potential is not zero, the refrigerant of the air conditioner is changed from HCFC to HFC.
It is inconsistent with substituting for. In particular, HCFC141b
Has a large ozone depletion coefficient of 0.11.

【0013】第2に、使用する洗浄液は可燃性・毒性が
完全に安全なものではないことがあげられる。HCFC
141bは可燃性で、低毒性である。HCFC225は
不燃だが、低毒性である。第3に、沸点が高く(HCF
C141bは32℃、HCFC225は51.1〜5
6.1℃)、外気温度がこの沸点より低い場合、特に冬
期には、洗浄後に洗浄液が液状態で、第1の接続配管C
と第2の接続配管Dに残留する。これら洗浄液はHCF
Cであることから、塩素成分を含んでおり、HFC用冷
凍機油が劣化する。
Secondly, the cleaning liquid used is not completely safe in flammability and toxicity. HCFC
141b is flammable and has low toxicity. HCFC225 is nonflammable but has low toxicity. Third, the boiling point is high (HCF
C141b is 32 ℃, HCFC225 is 51.1-5
6.1 ° C.), when the outside air temperature is lower than this boiling point, especially in the winter, the cleaning liquid is in a liquid state after cleaning, and the first connecting pipe C
And remains in the second connection pipe D. These cleaning solutions are HCF
Since it is C, it contains a chlorine component and the refrigerating machine oil for HFC deteriorates.

【0014】第4に、洗浄液は環境上全量回収する必要
があり、かつ上記第3の問題点が発生しないように高温
の窒素ガスなどで再洗浄するなど、洗浄工事の手間がか
かる。
Fourthly, it is necessary to recover the entire cleaning liquid from the environmental point of view, and the cleaning work is troublesome, such as re-cleaning with high-temperature nitrogen gas so that the above-mentioned third problem does not occur.

【0015】また、上記の従来の洗浄方法2では、以下
に示すような問題があった。第1に、HFC冷媒による
洗浄が、特開平7-83545号公報の実施例では3回必要で
あり、また各洗浄運転で使用したHFC冷媒は不純物を
含むため、回収後その場での再利用は不可能である。つ
まり、通常の充填冷媒量の3倍の冷媒が必要であり、コ
スト・環境上問題である。
Further, the above conventional cleaning method 2 has the following problems. First, cleaning with HFC refrigerant is required three times in the example of Japanese Patent Laid-Open No. 7-83545, and since the HFC refrigerant used in each cleaning operation contains impurities, it can be reused on the spot after recovery. Is impossible. In other words, a refrigerant that is three times the normal amount of the refrigerant to be filled is required, which is a cost and environmental problem.

【0016】第2に、冷凍機油も各洗浄運転後に入れ替
えるため、通常の充填冷凍機油量の3倍の冷凍機油が必
要であり、コスト・環境上問題である。また、HFC用
冷凍機油はエステル油またはエ−テル油であり、吸湿性
が高いため、交換用冷凍機油の水分管理も必要となる。
また、冷凍機油を、洗浄する人間が封入するため、過不
足が生じる危険性もあり、その後の運転において支障を
来す可能性がある(過充填時は油圧縮による圧縮部破
壊、モ−タ過熱をきたし、不足充填時は潤滑不良をきた
す)。
Secondly, since the refrigerating machine oil is also replaced after each cleaning operation, the refrigerating machine oil needs to be three times the normal amount of the filled refrigerating machine oil, which is a cost and environmental problem. Further, since the HFC refrigerating machine oil is an ester oil or an ether oil and has a high hygroscopic property, it is also necessary to control the water content of the replacement refrigerating machine oil.
Further, since the person who cleans the refrigerating machine oil encloses it, there is a risk of excess or deficiency, and there is a possibility that it may interfere with the subsequent operation. It causes overheating and causes insufficient lubrication when it is insufficiently filled).

【0017】この発明は、上述のような従来の課題を解
決するためになされたもので、環境保護上問題のあると
される冷媒を用いた既設の冷凍サイクル装置を、環境保
護上問題のないとされる冷媒に置換する冷凍サイクル装
置と、その置換方法ならびに運転方法を提供しようとす
るものである。
The present invention has been made in order to solve the above-mentioned conventional problems, and an existing refrigeration cycle apparatus using a refrigerant which is considered to have a problem in terms of environmental protection has no problem in terms of environmental protection. A refrigerating cycle device for substituting a refrigerating medium with such a refrigerant, a method for substituting the same, and a method for operating the same.

【0018】[0018]

【課題を解決するための手段】本願の請求項1の発明に
よる冷凍サイクル装置は、CFC冷媒やHCFC冷媒の
冷凍サイクル装置で使用した接続配管を再利用し、圧縮
機から熱源側熱交換器と流量調整器と利用側熱交換器を
順次に経て上記圧縮機にHFC冷媒を循環させる第1の
冷媒回路を備えた冷凍サイクル装置であって、上記利用
側熱交換器と上記圧縮機との間に、上記接続配管に残留
していた残留異物を流入してきた上記HFC冷媒中から
捕捉する異物捕捉手段を備えたことを特徴とするもので
ある。本願の請求項の発明による冷凍サイクル装置
は、CFC冷媒やHCFC冷媒の冷凍サイクル装置で使
用した接続配管を再利用し、圧縮機から熱源機側熱交換
器と流量調整器と利用側熱交換器とアキュムレータとを
順次に経て上記圧縮機にHFC冷媒を循環させる第1の
冷媒回路を備えた冷凍サイクル装置であって、上記利用
側熱交換器と上記アキュムレータとの間に、上記接続配
管に残留していた残留異物を流入してきた上記HFC冷
媒中から捕捉する異物捕捉手段を備えたことを特徴とす
るものである。
According to the invention of claim 1 of the present application,
The refrigeration cycle device is based on CFC and HCFC refrigerants.
Reuse the connecting pipe used in the refrigeration cycle device and compress it.
From the machine to the heat source side heat exchanger, flow rate regulator, and usage side heat exchanger
First, the HFC refrigerant is circulated through the compressor in sequence.
A refrigeration cycle apparatus having a refrigerant circuit, the above-mentioned use
Residual in the connection pipe between the side heat exchanger and the compressor
From the above HFC refrigerant that has flowed in residual foreign matter
It is characterized in that it is provided with a foreign matter capturing means for capturing.
There is . The refrigeration cycle apparatus according to the invention of claim 2 of the present application is used in a refrigeration cycle apparatus for CFC refrigerant or HCFC refrigerant.
The first refrigerant circuit that circulates the HFC refrigerant through the compressor through the heat source side heat exchanger, the flow rate controller, the use side heat exchanger, and the accumulator in order by reusing the used connection pipe. A refrigeration cycle apparatus provided with the connection arrangement between the heat exchanger on the utilization side and the accumulator.
The HFC cooling that has flowed in the residual foreign matter remaining in the pipe.
It is characterized in that it is provided with a foreign matter capturing means for capturing it from the medium .

【0019】請求項の発明による冷凍サイクル装置
は、CFC冷媒やHCFC冷媒の冷凍サイクル装置で使
用した接続配管を再利用し、圧縮機から熱源機側熱交換
器と流量調整器と利用側熱交換器とアキュムレータとを
順次に経て上記圧縮機にHFC冷媒を循環させる第1の
冷媒回路を備えた冷凍サイクル装置であって、上記利用
側熱交換器と上記アキュムレータとの間の冷媒回路をバ
イパスするとともに、上記接続配管に残留していた残留
異物を流入してきた上記HFC冷媒中から捕捉する異物
捕捉手段を有する第1バイパス路を備えたことを特徴と
するものである。
The refrigeration cycle device according to the invention of claim 3 is used in a refrigeration cycle device for CFC refrigerant or HCFC refrigerant.
The first refrigerant circuit that circulates the HFC refrigerant through the compressor through the heat source side heat exchanger, the flow rate controller, the use side heat exchanger, and the accumulator in order by reusing the used connection pipe. A refrigeration cycle apparatus provided with the refrigerant which bypasses the refrigerant circuit between the utilization side heat exchanger and the accumulator, and which remains in the connection pipe.
The present invention is characterized by including a first bypass passage having a foreign matter capturing means for capturing the foreign matter from the HFC refrigerant that has flowed in .

【0020】請求項の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記熱源機側熱交換器と上記
流量調整器との間の冷媒回路をバイパスするとともに、
冷媒の冷却手段を有する第2バイパス路を備え、さら
に、上記第1バイパス路の上記異物捕捉手段の上流側に
冷媒の加熱手段を備えたことを特徴とするものである。
A refrigeration cycle apparatus according to a fourth aspect of the present invention bypasses the refrigerant circuit between the heat source side heat exchanger and the flow rate regulator of the first refrigerant circuit, and
A second bypass passage having a cooling means for the refrigerant is provided, and a heating means for the refrigerant is further provided on the upstream side of the foreign substance capturing means of the first bypass passage.

【0021】請求項の発明による冷凍サイクル装置
は、上記第1バイパス路の上記加熱手段の上流側に第1
流量制御手段を備え、さらに、上記第2バイパス路の上
記冷却手段の下流側に第2流量制御手段を備えたことを
特徴とするものである。
In a refrigeration cycle apparatus according to a fifth aspect of the present invention, a first refrigerating cycle apparatus is provided upstream of the heating means in the first bypass passage.
It is characterized in that it is provided with a flow rate control means, and further provided with a second flow rate control means downstream of the cooling means of the second bypass passage.

【0022】[0022]

【0023】[0023]

【0024】請求項の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記圧縮機と上記熱源機側熱
交換器との間に、冷媒の油成分を分離する油分離手段を
備えたことを特徴とするものである。
A refrigeration cycle apparatus according to a sixth aspect of the present invention comprises an oil separating means for separating an oil component of the refrigerant between the compressor of the first refrigerant circuit and the heat source side heat exchanger. It is characterized by that.

【0025】請求項の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記熱源機側熱交換器と上記
流量調整器との間の冷媒回路をバイパスするとともに、
冷媒の油成分を分離する油分離手段を有する第3バイパ
ス路を備えたことを特徴とするものである。
In the refrigeration cycle apparatus according to the invention of claim 7 , the refrigerant circuit between the heat source side heat exchanger and the flow rate regulator of the first refrigerant circuit is bypassed, and
It is characterized by being provided with a third bypass passage having an oil separating means for separating an oil component of the refrigerant.

【0026】請求項の発明による冷凍サイクル装置
は、上記第2バイパス路の上記冷却手段の上流側に冷媒
の油成分を分離する油分離手段を備えたことを特徴とす
るものである。
The refrigeration cycle apparatus according to an eighth aspect of the present invention is characterized in that an oil separating means for separating an oil component of the refrigerant is provided upstream of the cooling means in the second bypass passage.

【0027】請求項9の発明による冷凍サイクル装置
は、CFC冷媒やHCFC冷媒の冷凍サイクル装置で使
用した接続配管を再利用し、圧縮機から熱源機側熱交換
器と流量調整器と利用側熱交換器とを順次に経て上記圧
縮機にHFC冷媒を循環させる第1の冷媒回路と、上記
圧縮機から上記利用側熱交換器と上記流量調整器と上記
熱源機側熱交換器とを順次に経て上記圧縮機にHFC冷
媒を循環させる第2の冷媒回路とを備えた冷凍サイクル
装置であって、上記第1の冷媒回路の上記利用側熱交換
器と上記圧縮機との間で、かつ、上記第2の冷媒回路の
上記熱源機側熱交換器と上記圧縮機との間に、上記接続
配管に残留していた残留異物を流入してきた上記HFC
冷媒中から捕捉する異物捕捉手段を備えたことを特徴と
するものである。請求項10の発明による冷凍サイクル
装置は、CFC冷媒やHCFC冷媒の冷凍サイクル装置
で使用した接続配管を再利用し、圧縮機から熱源機側熱
交換器と流量調整器と利用側熱交換器とアキュムレータ
とを順次に経て上記圧縮機にHFC冷媒を循環させる第
1の冷媒回路と、上記圧縮機から上記利用側熱交換器と
上記流量調整器と上記熱源機側熱交換器と上記アキュム
レータとを順次に経て上記圧縮機にHFC冷媒を循環さ
せる第2の冷媒回路とを備えた冷凍サイクル装置であっ
て、上記第1の冷媒回路の上記利用側熱交換器と上記ア
キュムレータとの間で、かつ、上記第2の冷媒回路の上
記熱源機側熱交換器と上記アキュムレータとの間に、
記接続配管に残留していた残留異物を流入してきた上記
HFC冷媒中から捕捉する異物捕捉手段を備えたことを
特徴とするものである。
A refrigeration cycle apparatus according to the invention of claim 9
Is used in refrigeration cycle equipment for CFC and HCFC refrigerants.
Reusing the connection pipe used for heat exchange from the compressor to the heat source side
The pressure, the flow regulator, and the heat exchanger on the use side
A first refrigerant circuit for circulating the HFC refrigerant in the compressor;
From the compressor to the utilization side heat exchanger, the flow rate regulator, and the
HFC cooling is applied to the above compressor through the heat source side heat exchanger in sequence.
Refrigeration cycle provided with a second refrigerant circuit for circulating a medium
A device, wherein the heat exchange on the utilization side of the first refrigerant circuit
Between the compressor and the compressor, and of the second refrigerant circuit.
Between the heat source machine side heat exchanger and the compressor, the connection
The above HFC that has flowed in the residual foreign matter remaining in the piping
It is characterized in that it is provided with a foreign matter capturing means for capturing from the refrigerant.
To do . A refrigeration cycle apparatus according to the invention of claim 10 is a refrigeration cycle apparatus for CFC refrigerant or HCFC refrigerant.
The first refrigerant circuit for reusing the connection pipe used in step 1, and circulating the HFC refrigerant through the compressor through the heat source side heat exchanger, the flow rate regulator, the use side heat exchanger, and the accumulator in order. And a second refrigerant circuit that circulates HFC refrigerant from the compressor to the utilization side heat exchanger, the flow rate regulator, the heat source side heat exchanger, and the accumulator in this order. It is a refrigeration cycle device
Te, between the said use side heat exchanger and the accumulator of the first refrigerant circuit, and, between the second of said heat source unit side heat exchanger and the accumulator in the refrigerant circuit, the upper
The residual foreign matter remaining in the connecting pipe has flowed in.
The present invention is characterized in that a foreign matter capturing means for capturing the HFC refrigerant is provided.

【0028】請求項11の発明による冷凍サイクル装置
は、CFC冷媒やHCFC冷媒の冷凍サイクル装置で使
用した接続配管を再利用し、圧縮機から熱源機側熱交換
器と流量調整器と利用側熱交換器とアキュムレータとを
順次に経て上記圧縮機にHFC冷媒を循環させる第1の
冷媒回路と、上記圧縮機から上記利用側熱交換器と上記
流量調整器と上記熱源機側熱交換器と上記アキュムレー
タとを順次に経て上記圧縮機にHFC冷媒を循環させる
第2の冷媒回路とを備えた冷凍サイクル装置であって
上記第1の冷媒回路の上記利用側熱交換器と上記アキュ
ムレータとの間の冷媒回路をバイパスし、かつ、上記第
2の冷媒回路の上記上記流量調整器と上記熱源機側熱交
換器との間の冷媒回路をバイパスするとともに、上記接
続配管に残留していた残留異物を流入してきた上記HF
C冷媒中から捕捉する異物捕捉手段を有する第1バイパ
ス路を備えたことを特徴とするものである。
The refrigeration cycle apparatus according to the invention of claim 11 is used in a refrigeration cycle apparatus for CFC refrigerant or HCFC refrigerant.
A first refrigerant circuit for recirculating the used connection pipe, and circulating the HFC refrigerant through the compressor through the heat source side heat exchanger, the flow rate regulator, the use side heat exchanger, and the accumulator in this order. A second refrigerant circuit that circulates an HFC refrigerant from the compressor to the utilization side heat exchanger, the flow rate regulator, the heat source side heat exchanger, and the accumulator in this order. A refrigeration cycle apparatus ,
Bypassing the refrigerant circuit between the utilization side heat exchanger and the accumulator of the first refrigerant circuit, and between the flow rate regulator and the heat source unit side heat exchanger of the second refrigerant circuit. thereby bypassing the refrigerant circuit between said contact
The above HF that has flowed in the residual foreign matter remaining in the connecting pipe
It is characterized in that it is provided with a first bypass passage having a foreign matter trapping means for trapping it in the C refrigerant .

【0029】請求項12の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記熱源機側熱交換器と上記
流量調整器との間の冷媒回路をバイパスし、かつ、上記
第2の冷媒回路の上記圧縮機と上記利用側熱交換器との
間の冷媒回路をバイパスするとともに、冷媒の冷却手段
を有する第2バイパス路を備え、さらに、上記第1バイ
パス路の上記異物捕捉手段の上流側に冷媒の加熱手段を
備えたことを特徴とするものである。
In the refrigeration cycle apparatus according to the twelfth aspect of the present invention, the refrigerant circuit between the heat source side heat exchanger and the flow rate regulator of the first refrigerant circuit is bypassed, and the second refrigerant is used. The refrigerant circuit between the compressor and the use side heat exchanger of the circuit is bypassed, and a second bypass passage having a cooling means for the refrigerant is provided, and further the upstream of the foreign matter trapping means in the first bypass passage. It is characterized in that a heating means for the refrigerant is provided on the side.

【0030】請求項13の発明による冷凍サイクル装置
は、上記第1バイパス路の上記加熱手段の上流側に第1
流量制御手段を備え、さらに、上記第2バイパス路の上
記冷却手段の下流側に第2流量制御手段を備えたことを
特徴とするものである。
According to a thirteenth aspect of the present invention, there is provided a refrigeration cycle apparatus in which a first bypass passage is provided upstream of the heating means.
It is characterized in that it is provided with a flow rate control means, and further provided with a second flow rate control means downstream of the cooling means of the second bypass passage.

【0031】[0031]

【0032】[0032]

【0033】請求項14の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記圧縮機と上記熱源機側熱
交換器との間で、かつ、上記第2の冷媒回路の上記圧縮
機と上記利用側熱交換器との間に、冷媒の油成分を分離
する油分離手段を備えたことを特徴とするものである。
The refrigeration cycle apparatus according to the invention of claim 14 is between the compressor of the first refrigerant circuit and the heat source side heat exchanger and the compressor of the second refrigerant circuit. An oil separation means for separating an oil component of the refrigerant is provided between the heat exchanger on the use side and the heat exchanger on the use side.

【0034】請求項15の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記圧縮機と上記熱源機側熱
交換器との間で、かつ、上記第2の冷媒回路の上記圧縮
機と上記冷却手段との間に、冷媒の油成分を分離する油
分離手段を備えたことを特徴とするものである。
According to a fifteenth aspect of the present invention, there is provided a refrigeration cycle device between the compressor of the first refrigerant circuit and the heat source unit side heat exchanger, and the compressor of the second refrigerant circuit. An oil separation means for separating the oil component of the refrigerant is provided between the cooling means and the cooling means.

【0035】請求項16の発明による冷凍サイクル装置
は、上記第1の冷媒回路の上記熱源機側熱交換器と上記
流量調整器との間の冷媒回路をバイパスし、かつ、上記
第2の冷媒回路の上記圧縮機と上記利用側熱交換器との
間の冷媒回路をバイパスするとともに、冷媒の油成分を
分離する油分離手段を有する第3バイパス路を備えたこ
とを特徴とするものである。
In the refrigeration cycle apparatus according to the sixteenth aspect of the present invention, the refrigerant circuit between the heat source side heat exchanger and the flow rate regulator of the first refrigerant circuit is bypassed, and the second refrigerant is used. The refrigerant circuit between the compressor and the utilization side heat exchanger of the circuit is bypassed, and a third bypass passage having an oil separating means for separating an oil component of the refrigerant is provided. .

【0036】請求項17の発明による冷凍サイクル装置
は、上記第2バイパス路の上記冷却手段の上流側に冷媒
の油成分を分離する油分離手段を備えたことを特徴とす
るものである。
A refrigeration cycle apparatus according to a seventeenth aspect of the present invention is characterized in that an oil separating means for separating an oil component of the refrigerant is provided upstream of the cooling means in the second bypass passage.

【0037】請求項18の発明による冷凍サイクル装置
は、上記流量調整器と上記利用側熱交換器とをバイパス
制御できる室内機バイパス路を備えたことを特徴とする
ものである。
The refrigeration cycle apparatus according to the eighteenth aspect of the present invention is characterized in that it is provided with an indoor unit bypass passage capable of performing bypass control of the flow rate regulator and the use side heat exchanger.

【0038】請求項19の発明による冷凍サイクル装置
は、上記油分離手段により分離された油成分を上記異物
捕捉手段より下流側で上記アキュムレータに戻す還流路
を備えたことを特徴とするものである。
A refrigeration cycle apparatus according to a nineteenth aspect of the present invention is characterized by comprising a reflux passage for returning the oil component separated by the oil separating means to the accumulator downstream of the foreign matter capturing means. .

【0039】請求項20の発明による冷凍サイクル装置
は、上記第2バイパス路の上記油分離手段の下流側に冷
媒に鉱油を注入する鉱油注入手段を備えたことを特徴と
するものである。
A refrigeration cycle apparatus according to a twentieth aspect of the present invention is characterized by comprising mineral oil injecting means for injecting mineral oil into the refrigerant on the downstream side of the oil separating means in the second bypass passage.

【0040】請求項21の発明による冷凍サイクル装置
は、上記第2バイパス路の上記油分離手段の下流側に冷
媒に水を注入する水注入手段を備えたことを特徴とする
ものである。
A refrigeration cycle apparatus according to a twenty-first aspect of the invention is characterized in that water supply means for injecting water into the refrigerant is provided downstream of the oil separation means in the second bypass passage.

【0041】請求項22の発明による冷凍サイクル装置
は、上記冷媒回路に冷媒中の水分を吸着する水分吸着手
段を備えたことを特徴とするものである。
A refrigeration cycle apparatus according to a twenty-second aspect of the invention is characterized in that the refrigerant circuit is provided with a water adsorbing means for adsorbing water in the refrigerant.

【0042】請求項23の発明による冷凍サイクル装置
は、上記異物捕捉手段は、上記冷媒回路の一部で冷媒の
流速を低下させて冷媒中の異物を分離するようにしたこ
とを特徴とするものである。
The refrigeration cycle apparatus according to the twenty- third aspect of the present invention is characterized in that the foreign matter capturing means separates the foreign matter in the refrigerant by reducing the flow velocity of the refrigerant in a part of the refrigerant circuit. Is.

【0043】請求項24の発明による冷凍サイクル装置
は、上記異物捕捉手段は、冷媒を鉱油中に通すことによ
り冷媒中の異物を捕捉するようにしたことを特徴とする
ものである。
The refrigeration cycle apparatus according to the twenty-fourth aspect of the present invention is characterized in that the foreign matter capturing means captures the foreign matter in the refrigerant by passing the refrigerant through mineral oil.

【0044】請求項25の発明による冷凍サイクル装置
は、上記異物捕捉手段は、冷媒を鉱油中に通すことによ
り冷媒中のCFC及びHCFCを溶解するようにしたこ
とを特徴とするものである。
The refrigeration cycle apparatus according to a twenty-fifth aspect of the present invention is characterized in that the foreign matter trapping means dissolves CFC and HCFC in the refrigerant by passing the refrigerant through mineral oil.

【0045】請求項26の発明による冷凍サイクル装置
は、上記異物捕捉手段は、冷媒をフィルタに通すことに
より冷媒中の異物を捕捉するようにしたことを特徴とす
るものである。
The refrigeration cycle apparatus according to a twenty-sixth aspect of the present invention is characterized in that the foreign matter capturing means captures the foreign matter in the refrigerant by passing the refrigerant through a filter.

【0046】請求項27の発明による冷凍サイクル装置
は、上記異物捕捉手段は、冷媒をイオン交換樹脂に通す
ことにより冷媒中の塩素イオンを捕捉するようにしたこ
とを特徴とするものである。
The refrigeration cycle apparatus according to the twenty-seventh aspect of the present invention is characterized in that the foreign matter capturing means captures chlorine ions in the refrigerant by passing the refrigerant through an ion exchange resin.

【0047】請求項28の発明による冷凍サイクル装置
は、上記第1バイパス路、第2バイパス路、又は第3バ
イパス路を上記冷媒回路から切り離し自在に設けたこと
を特徴とするものである。
The refrigeration cycle apparatus according to the twenty-eighth aspect of the present invention is characterized in that the first bypass passage, the second bypass passage, or the third bypass passage is provided so as to be detachable from the refrigerant circuit.

【0048】請求項29の発明による冷凍サイクル装置
は、圧縮機、熱源機側熱交換器、アキュムレータを有す
る熱源機と、流量調整器、利用側熱交換器を有する室内
機とを備え、CFC冷媒やHCFC冷媒で使用していた
第1の接続配管と第2の接続配管を再利用し、上記第1
の接続配管と第2の接続配管で熱源機と室内機とを接続
したHFC冷媒を使用する冷凍サイクル装置であって、
上記第1の接続配管と第2の接続配管とに残留する鉱油
を流入してきた上記HFC冷媒中から捕捉する異物捕捉
手段を備えたことを特徴とするものである。 請求項30
の発明による冷凍サイクル装置は、圧縮機、熱源機側熱
交換器、アキュムレータを有する熱源機と、流量調整
器、利用側熱交換器を有する室内機とを備え、CFC冷
媒やHCFC冷媒で使用していた第1の接続配管と第2
の接続配管を再利用し、上記第1の接続配管と第2の接
続配管で熱源機と室内機とを接続したHFC冷媒を使用
する冷凍サイクル装置であって、上記第1の接続配管と
第2の接続配管とに残留する固形異物及び液体異物を流
入してきた上記HFC冷媒中から捕捉する異物捕捉手段
を備えたことを特徴とするものである。 請求項31の発
明による冷凍サイクル装置は、圧縮機、熱源機側熱交換
器、アキュムレータを有する熱源機と、流量調整器、利
用側熱交換器を有する室内機とを備え、CFC冷媒やH
CFC冷媒で使用していた第1の接続配管と第2の接続
配管を再利用し、上記第1の接続配管と第2の接続配管
で熱源機と室内機とを接続したHFC冷媒を使用する冷
凍サイクル装置であって、上記第1の接続配管と第2の
接続配管とに残留する残留異物を流入してきた上記HF
C冷媒中から捕捉する異物捕捉手段を備えたことを特徴
とするものである。
A refrigeration cycle apparatus according to claim 29
Has a compressor, heat source side heat exchanger, and accumulator
A room with a heat source unit, a flow controller, and a heat exchanger on the use side
And was used as a CFC or HCFC refrigerant.
Reusing the first connecting pipe and the second connecting pipe,
The heat source unit and the indoor unit are connected by the connection pipe of and the second connection pipe
A refrigeration cycle apparatus using the above HFC refrigerant,
Mineral oil remaining in the first connecting pipe and the second connecting pipe
Foreign matter trapped from the above HFC refrigerant flowing in
It is characterized by having means. Claim 30
The refrigeration cycle apparatus according to the invention of claim
Heat source machine with exchanger and accumulator, and flow rate adjustment
And an indoor unit having a heat exchanger on the use side,
The first connecting pipe and the second used for the medium and HCFC refrigerant
Reuse the connecting pipe of the above, and connect the first connecting pipe and the second connecting pipe.
Uses HFC refrigerant that connects the heat source unit and the indoor unit with a continuous pipe
A refrigeration cycle apparatus for
Flow solid foreign matter and liquid foreign matter remaining in the second connecting pipe.
Foreign matter capturing means for capturing the HFC refrigerant from the inside
It is characterized by having. Claim 31
Refrigeration cycle device by Ming, heat exchange on the compressor and heat source side
Source, which has a heater and an accumulator, a flow controller,
An indoor unit having a heat exchanger on the side of
First connection pipe and second connection used for CFC refrigerant
Reuse the pipes and connect the above-mentioned first and second connecting pipes.
Cooling using HFC refrigerant that connects the heat source unit and the indoor unit with
A freeze cycle device, comprising the first connecting pipe and the second connecting pipe.
The above-mentioned HF that has flowed in residual foreign matter remaining in the connecting pipe
Characterized by having foreign matter capturing means for capturing from C refrigerant
It is what

【0049】また、請求項32の発明による冷凍サイク
ル装置の形成方法は、圧縮機から熱源機側熱交換器と流
量調整器と利用側熱交換器とアキュムレータとを順次に
経て上記圧縮機に冷媒を循環させる第1の冷媒回路と、
上記圧縮機から上記利用側熱交換器と上記流量調整器と
上記熱源機側熱交換器と上記アキュムレータとを順次に
経て上記圧縮機に冷媒を循環させる第2の冷媒回路とを
備え、CFC冷媒またはHCFC冷媒を用いる既存の冷
凍サイクル装置において、上記圧縮機と上記熱源機側熱
交換器と上記流量調整器と上記利用側熱交換器と上記ア
キュムレータとをHFC冷媒を用いるものに置換すると
ともに、上記流量調整器及び上記利用側熱交換器に接続
された既存の冷媒配管を用いて請求項1〜31のいずれ
かに記載の冷凍サイクル装置を形成することを特徴とす
るものである。
According to the thirty-second aspect of the present invention, in the method for forming a refrigeration cycle apparatus, the refrigerant is passed from the compressor to the heat source side heat exchanger, the flow rate regulator, the utilization side heat exchanger, and the accumulator in this order to the compressor. A first refrigerant circuit that circulates
A second refrigerant circuit for circulating a refrigerant from the compressor to the usage side heat exchanger, the flow rate regulator, the heat source side heat exchanger, and the accumulator in order, and a CFC refrigerant. Or in the existing refrigeration cycle apparatus using an HCFC refrigerant, while replacing the compressor, the heat source side heat exchanger, the flow rate regulator, the use side heat exchanger, and the accumulator with one using an HFC refrigerant , The refrigeration cycle apparatus according to any one of claims 1 to 31 is formed by using an existing refrigerant pipe connected to the flow rate adjuster and the usage-side heat exchanger.

【0050】[0050]

【0051】また、請求項34の発明による冷凍サイク
ル装置の室外機は、圧縮機と熱源側熱交換器を含む室外
機と、流量調整器と利用側熱交換器を含む室内機とを、
冷媒配管で接続して構成する冷凍サイクル装置の室外機
において、該室外機に内蔵された冷媒配管に、上記接続
配管に残留していた残留異物を流入してきた上記CFC
冷媒中から捕捉する異物捕捉手段を備えたことを特徴と
するものである
The refrigerating cycle according to the invention of claim 34
The outdoor unit of the unit is an outdoor unit that includes the compressor and the heat source side heat exchanger.
And an indoor unit including a flow rate regulator and a heat exchanger on the use side,
An outdoor unit of a refrigeration cycle device configured by connecting with a refrigerant pipe
In the refrigerant pipe built in the outdoor unit,
The above CFC that has flowed in the residual foreign matter remaining in the pipe
It is characterized in that it is provided with a foreign matter capturing means for capturing from the refrigerant.
To do .

【0052】また、請求項35の発明による冷凍サイク
ル装置の室外機は、圧縮機と四方弁と熱源側熱交換器を
含む室外機と、流量調整器と利用側熱交換器を含む室内
機とを、冷媒配管で接続して構成する冷凍サイクル装置
の室外機において、上記四方弁と上記圧縮機との間の上
記冷媒配管に、上記接続配管に残留していた残留異物を
流入してきた上記CFC冷媒中から捕捉するを捕獲する
異物捕捉手段を備えたことを特徴とするとするものであ
A refrigeration cycle according to the invention of claim 35
The outdoor unit of the unit is a compressor, a four-way valve, and a heat source side heat exchanger.
Including the outdoor unit, and the room including the flow rate regulator and the heat exchanger on the use side
Refrigeration cycle device configured by connecting to the machine with a refrigerant pipe
In the outdoor unit of the above, between the four-way valve and the compressor
In the refrigerant pipe, remove the residual foreign matter remaining in the connecting pipe.
Capture captured from the inflowing CFC refrigerant
It is characterized in that it is provided with a foreign matter capturing means.
It

【0053】[0053]

【0054】[0054]

【0055】[0055]

【0056】[0056]

【0057】[0057]

【0058】[0058]

【0059】[0059]

【発明の実施の形態】以下、図面を参照してこの発明の
実施の形態について説明する。なお、各図中、同一又は
相当する部分には、同一符号を付して説明を省略または
簡略化する。 実施の形態1.図1は、この発明の実施の形態1による
冷凍サイクル装置の一例として、空気調和装置の冷媒回
路を示す図である。図1において、Aは熱源機であり、
圧縮機1、四方弁2、熱源機側熱交換器3、第1の操作
弁4、第2の操作弁7、アキュムレ−タ8、油分離器9
(油分離手段)、及び異物捕捉手段13を内蔵してい
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts will be denoted by the same reference numerals and description thereof will be omitted or simplified. Embodiment 1. FIG. 1 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle device according to Embodiment 1 of the present invention. In FIG. 1, A is a heat source machine,
Compressor 1, four-way valve 2, heat source side heat exchanger 3, first operating valve 4, second operating valve 7, accumulator 8, oil separator 9
(Oil separation means) and foreign matter capturing means 13 are built in.

【0060】油分離器9は、圧縮機1の吐出配管に設け
られ、圧縮機1から冷媒とともに吐出される冷凍機油を
分離する。異物捕捉手段13は、四方弁2とアキュムレ
−タ8の間に設けられている。9aは油分離器9の底部
より端を発し、異物捕捉手段13の出口より下流側に至
るバイパス路である。また、アキュムレ−タ8のU字管
状の流出配管の下部には返油穴8aが設けられている。
Bは室内機であり、流量調整器5(あるいは流量調整弁
5)、及び利用側熱交換器6を備えている。
The oil separator 9 is provided in the discharge pipe of the compressor 1 and separates refrigerating machine oil discharged from the compressor 1 together with the refrigerant. The foreign matter capturing means 13 is provided between the four-way valve 2 and the accumulator 8. Reference numeral 9a is a bypass passage that starts from the bottom of the oil separator 9 and reaches the downstream side from the outlet of the foreign matter capturing means 13. An oil return hole 8a is provided in the lower portion of the U-shaped tubular outflow pipe of the accumulator 8.
Reference numeral B denotes an indoor unit, which includes a flow rate regulator 5 (or a flow rate regulation valve 5) and a use side heat exchanger 6.

【0061】Cは、第1の接続配管であり、その一端は
熱源機側熱交換器3と第1の操作弁4を介して接続さ
れ、他の一端は流量調整器5と接続されている。Dは、
第2の接続配管であり、その一端は四方弁2と第2の操
作弁7を介して接続され、他の一端は利用側熱交換器6
と接続されている。熱源機Aと室内機Bは離れた場所に
設置され、第1の接続配管C、第2の接続配管Dにより
接続されて、冷凍サイクルを形成する。なお、この空気
調和装置は冷媒としてHFCを使うものである。
C is a first connection pipe, one end of which is connected to the heat source side heat exchanger 3 via the first operation valve 4 and the other end of which is connected to the flow rate regulator 5. . D is
It is a second connection pipe, one end of which is connected via the four-way valve 2 and the second operation valve 7, and the other end of which is the use side heat exchanger 6.
Connected with. The heat source unit A and the indoor unit B are installed at distant places and are connected by the first connection pipe C and the second connection pipe D to form a refrigeration cycle. This air conditioner uses HFC as a refrigerant.

【0062】次に、CFCやHCFCを使った空気調和
装置が老朽化した場合の、空気調和装置交換の手順を示
す。CFCまたはHCFCを回収し、熱源機Aと室内機
Bを図1に示すものと交換する。第1の接続配管Cと第
2の接続配管DはHCFCを使った空気調和装置のもの
を再利用する。熱源機Aには予めHFCが充填されてい
るので、第1の操作弁4と第2の操作弁7は閉じたま
ま、室内機B、第1の接続配管C、第2の接続配管Dを
接続状態で真空引きをし、その後第1の操作弁4と第2
の操作弁7の開弁とHFCの追加充填を実施する。その
後、通常の空調運転兼洗浄運転を実施する。
Next, the procedure of air conditioner replacement when the air conditioner using CFC or HCFC is deteriorated will be described. CFC or HCFC is collected, and the heat source unit A and the indoor unit B are replaced with those shown in FIG. As the first connecting pipe C and the second connecting pipe D, those of the air conditioner using the HCFC are reused. Since the heat source device A is filled with HFC in advance, the indoor unit B, the first connection pipe C, and the second connection pipe D are kept closed while the first operation valve 4 and the second operation valve 7 are closed. Vacuum is drawn in the connected state, and then the first operation valve 4 and the second
The operation valve 7 is opened and HFC is additionally charged. After that, the normal air conditioning operation and washing operation are performed.

【0063】次に、通常の空調運転兼洗浄運転の内容を
図1に添って説明する。図中実線矢印が冷房運転の流れ
を、破線矢印が暖房運転の流れを示す。まず冷房運転に
ついて説明する。圧縮機1で圧縮された高温高圧のガス
冷媒はHFC用冷凍機油と共に圧縮機1を吐出され、油
分離器9へ流入する。
Next, the contents of the normal air conditioning operation and cleaning operation will be described with reference to FIG. In the figure, the solid line arrow shows the flow of the cooling operation, and the broken line arrow shows the flow of the heating operation. First, the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil and flows into the oil separator 9.

【0064】ここで、HFC用の冷凍機油は完全に分離
され、ガス冷媒のみが、四方弁2を経て、熱源機側熱交
換器3へと流入し、ここで空気・水など熱源媒体と熱交
換器して凝縮液化する。凝縮液化した冷媒は第1の操作
弁4を経て第1の接続配管Cに流入する。HFCの液冷
媒が第1の接続配管Cを流れるときに、第1の接続配管
Cに残留しているCFC・HCFC・鉱油・鉱油劣化物
(以下残留異物と称する)を少しずつ洗浄してHFCの
液冷媒と共に流れ、流量調整器5へ流入し、ここで低圧
まで減圧されて低圧二相状態となり、利用側熱交換器6
で空気などの利用側媒体と熱交換して蒸発・ガス化す
る。
Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant flows into the heat source unit side heat exchanger 3 through the four-way valve 2, where the heat source medium such as air and water and the heat source medium are separated. Use a exchanger to condense and liquefy. The condensed and liquefied refrigerant flows into the first connection pipe C via the first operation valve 4. When the HFC liquid refrigerant flows through the first connecting pipe C, the HFC is washed by gradually cleaning CFC / HCFC / mineral oil / mineral oil deteriorated substances (hereinafter referred to as residual foreign matter) remaining in the first connecting pipe C. Flowing along with the liquid refrigerant in the flow rate regulator 5, where it is decompressed to a low pressure and is in a low-pressure two-phase state.
At the same time, it exchanges heat with the medium on the use side such as air to evaporate and gasify.

【0065】蒸発・ガス化した冷媒は、第1の接続配管
Cの残留異物と共に第2の接続配管Dに流入する。第2
の接続配管に残留している残留異物は、ここを流れる冷
媒がガス状のため、配管内面に付着した残留異物の一部
はガス冷媒中にミスト状になって流れるが、大半の液状
の残留異物はガス冷媒の流速より遅い流速で、ガス・液
境界面に発生するせん断力によりガス冷媒に引きずられ
る形で、配管内面を環状に流れるため、洗浄時間は第1
の接続配管Cよりは遅いが、確実に洗浄される。
The evaporated and gasified refrigerant flows into the second connection pipe D together with the foreign matter remaining in the first connection pipe C. Second
As for the residual foreign matter remaining in the connection pipe of, since the refrigerant flowing here is in a gaseous state, a part of the residual foreign matter adhering to the inner surface of the pipe flows as a mist in the gas refrigerant, but most of the residual liquid remains. Foreign matter flows at a slower flow rate than that of the gas refrigerant and is dragged by the gas refrigerant by the shearing force generated at the gas-liquid interface, and flows in a ring shape on the inner surface of the pipe.
Although it is slower than the connection pipe C, the cleaning is surely performed.

【0066】その後、ガス冷媒は、第1の接続配管Cの
残留異物と第2の接続配管Dの残留異物と共に、第2の
操作弁7、四方弁2を経て異物捕捉手段13へ流入す
る。残留異物は、沸点の違いにより相が異なり、固体異
物・液体異物・気体異物の3種類に分類される。異物捕
捉手段13では、固体異物と液体異物は完全にガス冷媒
と分離・捕捉される。気体異物はその一部が捕捉され、
一部は捕捉されない。その後ガス冷媒は、異物捕捉手段
13で捕捉されなかった気体異物と共にアキュムレ−タ
8を経て圧縮機1へ戻る。なお、冷房運転時の冷媒回
路、すなわち、圧縮機1から熱源機側熱交換器3と流量
調整器5と利用側熱交換器6とアキュムレータ8とを順
次に経て再び圧縮機1に戻る冷媒回路を、本明細書で
は、第1の冷媒回路とする。
After that, the gas refrigerant flows into the foreign matter capturing means 13 through the second operation valve 7 and the four-way valve 2 together with the residual foreign matter in the first connecting pipe C and the residual foreign matter in the second connecting pipe D. The residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gas foreign matter. The foreign matter capturing means 13 completely separates and captures the solid foreign matter and the liquid foreign matter from the gas refrigerant. Part of the foreign gas is captured,
Some are not captured. Thereafter, the gas refrigerant returns to the compressor 1 through the accumulator 8 together with the gas foreign matter not captured by the foreign matter capturing means 13. In addition, the refrigerant circuit during the cooling operation, that is, the refrigerant circuit that returns from the compressor 1 to the heat source machine side heat exchanger 3, the flow rate controller 5, the usage side heat exchanger 6, and the accumulator 8 in sequence to the compressor 1 again. Is referred to as a first refrigerant circuit in this specification.

【0067】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、異物捕
捉手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留してい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
The HFC refrigerating machine oil that has been completely separated from the gas refrigerant in the oil separator 9 merges with the mainstream downstream of the foreign matter capturing means 13 via the bypass 9a and returns to the compressor 1. The refrigerating machine oil for HFC does not mix with the mineral oil remaining in the first connecting pipe C and the second connecting pipe D, and is HFC.
However, the HFC refrigerating machine oil is not deteriorated by the mineral oil.

【0068】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その一例を図2に示す。図2は、HFC用冷凍
機油に塩素が混入している場合(175℃)の劣化の時
間変化を示す図で、横軸は時間(hr)、縦軸は全酸価
(mgKOH/g)を示す。異物捕捉手段13を1回通
る間に捕捉されなかった気体異物は、HFC冷媒の循環
と共に何回も異物捕捉手段13を通るので、HFC用冷
凍機油の劣化するよりも速く、異物捕捉手段13で捕捉
すればよい。
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. The HFC refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gas foreign matter is captured while passing through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gas foreign matter are mixed. Deterioration of HFC refrigeration oil is a chemical reaction and does not proceed rapidly. An example thereof is shown in FIG. FIG. 2 is a diagram showing the time change of deterioration when chlorine is mixed in the HFC refrigeration oil (175 ° C.), the horizontal axis represents time (hr), and the vertical axis represents total acid value (mgKOH / g). Show. Gaseous foreign matter that is not captured during one passage through the foreign matter capturing means 13 passes through the foreign matter capturing means 13 many times as the HFC refrigerant circulates, so that the foreign matter capturing means 13 is faster than the HFC refrigerating machine oil is deteriorated. Just capture it.

【0069】次に暖房運転の流れを説明する。圧縮機1
で圧縮された高温高圧のガス冷媒はHFC用冷凍機油と
共に圧縮機1を吐出され、油分離器9へ流入する。ここ
で、HFC用の冷凍機油は完全に分離され、ガス冷媒の
みが四方弁2、第2の操作弁7を経て第2の接続配管D
へ流入する。
Next, the flow of heating operation will be described. Compressor 1
The high-temperature and high-pressure gas refrigerant compressed by is discharged from the compressor 1 together with the HFC refrigerating machine oil and flows into the oil separator 9. Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant passes through the four-way valve 2 and the second operation valve 7 and then the second connecting pipe D.
Flow into.

【0070】第2の接続配管に残留している残留異物
は、ここを流れる冷媒がガス状のため、配管内面に付着
した残留異物の一部はガス冷媒中にミスト状になって流
れるが、大半の液状の残留異物はガス冷媒の流速より遅
い流速で、ガス・液境界面に発生するせん断力によりガ
ス冷媒に引きずられる形で、配管内面を環状に流れるた
め、洗浄時間は冷房運転時における第1の接続配管Cよ
りは遅いが、確実に洗浄される。
Regarding the residual foreign matter remaining in the second connecting pipe, since the refrigerant flowing therethrough is in a gaseous state, some of the residual foreign matter adhering to the inner surface of the pipe flows in the gas refrigerant in the form of mist. Most liquid residual foreign matter flows at a slower speed than the flow rate of the gas refrigerant, and flows in an annular shape on the inner surface of the pipe in a form that is dragged by the gas refrigerant due to the shearing force generated at the gas-liquid interface, so the cleaning time is Although it is slower than the first connecting pipe C, it is certainly washed.

【0071】その後、ガス冷媒は、第2の接続配管Dの
残留異物と共に、利用側側熱交換器6へと流入し、ここ
で空気など利用側媒体と熱交換して凝縮液化する。凝縮
液化した冷媒は流量調整器5へ流入し、ここで低圧まで
減圧されて低圧二相状態となり、第1の接続配管Cに流
入する。気液二相状態のため、流速も速く、かつ液冷媒
と共に、残留異物は洗浄され、冷房運転時の第1の接続
配管より速い速度で洗浄される。
After that, the gas refrigerant flows into the utilization side heat exchanger 6 together with the residual foreign matter in the second connection pipe D, where it exchanges heat with the utilization side medium such as air to be condensed and liquefied. The condensed and liquefied refrigerant flows into the flow rate controller 5, where it is decompressed to a low pressure, enters a low-pressure two-phase state, and flows into the first connection pipe C. Due to the gas-liquid two-phase state, the flow velocity is high, and the residual foreign matter is cleaned together with the liquid refrigerant, and is cleaned at a speed faster than that of the first connecting pipe during the cooling operation.

【0072】第2の接続配管Dと第1の接続配管Cから
洗浄された残留異物と共に、気液二相状態の冷媒は、第
1の操作弁4を経て、熱源機側熱交換器3で空気・水な
どの熱源媒体と熱交換して蒸発・ガス化する。蒸発・ガ
ス化した冷媒は四方弁2を経て異物捕捉手段13に流入
する。
The refrigerant in the gas-liquid two-phase state, together with the residual foreign matter washed from the second connecting pipe D and the first connecting pipe C, passes through the first operation valve 4 and is transferred to the heat source unit side heat exchanger 3. Evaporates and gasifies by exchanging heat with heat source media such as air and water. The evaporated and gasified refrigerant flows into the foreign matter capturing means 13 via the four-way valve 2.

【0073】残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。異物捕捉手段13では、固体異物と液体異物は完全
にガス冷媒と分離・捕捉される。気体異物はその一部が
捕捉され、一部は捕捉されない。その後、ガス冷媒は、
異物捕捉手段13で捕捉されなかった気体異物と共にア
キュムレ−タ8を経て圧縮機1へ戻る。なお、暖房運転
時の冷媒回路、すなわち、圧縮機1から利用側熱交換器
6と流量調整器5と熱源機側熱交換器3とアキュムレー
タ8とを順次に経て再び圧縮機1に戻る冷媒回路を、本
明細書では、第2の冷媒回路とする。
The residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gas foreign matter. The foreign matter capturing means 13 completely separates and captures the solid foreign matter and the liquid foreign matter from the gas refrigerant. Part of the foreign gas is captured, and part is not captured. After that, the gas refrigerant is
It returns to the compressor 1 through the accumulator 8 together with the gaseous foreign matter not captured by the foreign matter capturing means 13. In addition, the refrigerant circuit during the heating operation, that is, the refrigerant circuit that returns from the compressor 1 to the usage side heat exchanger 6, the flow rate regulator 5, the heat source side heat exchanger 3 and the accumulator 8 in sequence to the compressor 1 again. Is referred to as a second refrigerant circuit in this specification.

【0074】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油はバイパス路9aを経て、異物捕捉
手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留してい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream downstream of the foreign substance capturing means 13 through the bypass 9a, and returns to the compressor 1. The refrigerating machine oil for HFC does not mix with the mineral oil remaining in the connecting pipe C of the second connecting pipe D and the second connecting pipe D.
However, the HFC refrigerating machine oil is not deteriorated by the mineral oil.

【0075】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物は、HFC冷媒が冷媒回路を1サイクル循
環して、異物捕捉手段13を1回通る間には一部が捕捉
されるだけで、HFC用冷凍機油と気体異物は混合され
るが、HFC用冷凍機油の劣化は化学反応で、急激には
進まない。その一例を図2に示す。異物捕捉手段13を
1回通る間に捕捉されなかった、気体異物はHFC冷媒
の循環と共に何回も異物捕捉手段13を通るので、HF
C用冷凍機油の劣化するよりも速く、異物捕捉手段13
で捕捉すればよい。
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. The HFC refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gas foreign matter is captured while passing through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gas foreign matter are mixed. The deterioration of refrigerating machine oil for HFC is a chemical reaction and does not proceed rapidly. An example thereof is shown in FIG. Since the gaseous foreign matter that has not been captured while passing through the foreign matter capturing means 13 once passes through the foreign matter capturing means 13 many times as the HFC refrigerant circulates, HF
The foreign matter capturing means 13 is faster than the C refrigerator oil is deteriorated.
You can capture with.

【0076】次に、異物捕捉手段13の一例について説
明する。図3は異物捕捉手段13の一例を図示したもの
である。51は円筒状の容器、52は容器51の上部に
設けられた流出配管、53は容器51の上部内面に、円
錐の扇状の側面形状に形成・設置されたフィルタ、54
は容器51に予め充填されている鉱油、55は容器51
の下部側面に設けられた流入配管、55aは流入配管5
5の容器51の内部にある部分の配管側面に多数設けら
れた流出穴である。
Next, an example of the foreign matter capturing means 13 will be described. FIG. 3 shows an example of the foreign matter capturing means 13. Reference numeral 51 is a cylindrical container, 52 is an outflow pipe provided on the upper part of the container 51, 53 is a filter formed and installed on the inner surface of the upper part of the container 51 in the shape of a conical fan shape, 54
Is mineral oil pre-filled in the container 51, and 55 is the container 51
Inflow pipe provided on the lower side surface of the
No. 5 is an outflow hole provided in a large number on the side surface of the pipe inside the container 51.

【0077】フィルタ53は、例えば細線を編みこんだ
メッシュ状のもであったり、焼結金属で形成され、各隙
間は数ミクロンから数十ミクロンで、これ以上の固体異
物が通過することはできない。また、容器51の上部空
間に微量存在する可能性のあるミスト状の液体異物も、
フィルタ53を通過しようとすると、ここで捕捉され重
力により容器側面方向に流れて容器51の下部に落下す
る。56は塩素イオンを捕捉するイオン交換樹脂であ
る。図1においては、流出配管52はイオン交換樹脂5
6を経てアキュムレ−タ8に、流入配管55は四方弁2
に接続されている。
The filter 53 is, for example, in the form of a mesh in which fine wires are woven, or is formed of sintered metal, and each gap is several microns to several tens of microns, and solid foreign matter cannot pass therethrough. . In addition, mist-like liquid foreign matter that may exist in a small amount in the upper space of the container 51,
When it tries to pass through the filter 53, it is captured here and flows toward the side surface of the container due to gravity, and falls to the lower part of the container 51. 56 is an ion exchange resin that captures chlorine ions. In FIG. 1, the outflow pipe 52 is the ion exchange resin 5
Inlet pipe 55 is connected to accumulator 8 via 6
It is connected to the.

【0078】流入配管55より流入したガス冷媒は、流
出穴55aを経て、鉱油54の中を泡状になって通過
し、フィルタ53、イオン交換樹脂56を経て、流出配
管52より流出する。流入配管55よりガス冷媒と共に
流入した固体異物は、流出穴55aより鉱油54の中へ
流出後に、鉱油54が抵抗になって速度が低下し、重力
により、容器51の底部に沈殿する。また、鉱油54が
なくても、容器51の断面積は流入配管55の断面積よ
りも大きく、容器51の内部に入ると、冷媒(気体)の
流速は低下するので、個体異物は重力の作用により冷媒
(気体)と分離され、容器51の下部に沈殿する。ま
た、鉱油54の中でのガス流速が大きく、鉱油54の上
部まで、固体異物が万一吹き上げられても、フィルタ5
3により捕捉される。
The gas refrigerant flowing in through the inflow pipe 55 passes through the outflow hole 55a in the mineral oil 54 in the form of bubbles, passes through the filter 53 and the ion exchange resin 56, and flows out through the outflow pipe 52. The solid foreign matter that has flown in together with the gas refrigerant through the inflow pipe 55 flows out into the mineral oil 54 through the outflow hole 55a, and the mineral oil 54 becomes a resistance to decrease the speed, and settles on the bottom of the container 51 due to gravity. Even if there is no mineral oil 54, the cross-sectional area of the container 51 is larger than the cross-sectional area of the inflow pipe 55, and when entering the inside of the container 51, the flow velocity of the refrigerant (gas) decreases, so that solid foreign matter acts on gravity. Is separated from the refrigerant (gas) by and is deposited in the lower part of the container 51. Further, even if the solid foreign matter is blown up to the upper part of the mineral oil 54 due to the large gas flow velocity in the mineral oil 54, the filter 5
Captured by 3.

【0079】流入配管55よりガス冷媒と共に流入した
液体異物は、流出穴55aより鉱油54の中へ流出後
に、鉱油54が抵抗になって速度が低下し、気液分離さ
れて、鉱油54と共に滞留する。また、鉱油54がなく
ても、容器51の断面積は流入配管55の断面積よりも
大きく、容器51の内部に入ると、冷媒(気体)の流速
は低下するので、液体異物は重力の作用により冷媒(気
体)と分離され、容器51の下部に滞留する。鉱油54
の中でのガス流速が大きく、鉱油54の液面が乱れて、
鉱油がミスト状になり、ガス冷媒の流れにのったとして
も、フィルタ53により捕捉され、前述のようにここで
捕捉され重力により容器51の側面方向に流れて容器5
1の下部に落下する。
The liquid foreign matter that has flowed in together with the gas refrigerant through the inflow pipe 55 flows out into the mineral oil 54 through the outflow hole 55a, and the mineral oil 54 becomes a resistance to reduce the speed, and is separated into gas and liquid and stays with the mineral oil 54. To do. Even if there is no mineral oil 54, the cross-sectional area of the container 51 is larger than the cross-sectional area of the inflow pipe 55, and when entering the inside of the container 51, the flow velocity of the refrigerant (gas) decreases, so that the liquid foreign matter acts by gravity. Are separated from the refrigerant (gas) by and are retained in the lower portion of the container 51. Mineral oil 54
The gas flow velocity in the inside is high, the liquid level of mineral oil 54 is disturbed,
Even if the mineral oil becomes a mist and flows in the flow of the gas refrigerant, it is captured by the filter 53, is captured here as described above, and flows toward the side surface of the container 51 due to gravity, thereby causing the container 5 to flow.
It falls to the bottom of 1.

【0080】流入配管55よりガス冷媒と共に流入した
気体異物は、流出穴55aを経て、鉱油54の中を泡状
になって通過し、フィルタ53、イオン交換樹脂56を
経て、流出配管52より流出する。気体異物中の主成分
はCFCまたはHCFCだが、これらは鉱油54に溶解
する。一例を図4に示す。図4(a)は鉱油とCFCと
の溶解度曲線、図4(b)は鉱油とHCFCとの溶解度
曲線を示す図である。図において、横軸は温度(℃)、
縦軸はCFC又はHCFCの圧力(kg/cm2)であ
り、CFC又はHCFCの濃度(wt%)をパラメータ
として溶解度曲線を示している。
The foreign matters flowing in together with the gas refrigerant from the inflow pipe 55 pass through the outflow hole 55a in the mineral oil 54 in the form of bubbles, pass through the filter 53 and the ion exchange resin 56, and flow out from the outflow pipe 52. To do. The main component in the gaseous foreign matter is CFC or HCFC, but these are dissolved in the mineral oil 54. An example is shown in FIG. FIG. 4A is a solubility curve between mineral oil and CFC, and FIG. 4B is a solubility curve between mineral oil and HCFC. In the figure, the horizontal axis is temperature (° C),
The vertical axis represents the pressure (kg / cm 2 ) of CFC or HCFC, and shows the solubility curve using the concentration (wt%) of CFC or HCFC as a parameter.

【0081】流入配管55よりガス冷媒と共に流入した
気体異物は、流出穴55aを経て、鉱油54の中を泡状
になることで、鉱油54との接触が増え、CFCやHC
FCはより確実に鉱油54に溶解する。しかし、HFC
は鉱油には溶解しないので、全てが流出配管52から流
出される。このようにして、容器51の内部で固体異物
と液体異物は完全に分離・捕捉される。また、気体異物
の主成分であるCFCやHCFCも何回か、この部分を
通過する間に、大部分が溶解・捕捉される。
The foreign matters flowing in together with the gas refrigerant through the inflow pipe 55 are bubbled in the mineral oil 54 through the outflow holes 55a, so that the contact with the mineral oil 54 is increased and the CFC and HC are increased.
FC is more reliably dissolved in mineral oil 54. However, HFC
Does not dissolve in mineral oil, so all of it flows out of the outflow pipe 52. In this way, the solid foreign matter and the liquid foreign matter are completely separated and captured inside the container 51. Also, CFC and HCFC, which are the main components of the gaseous foreign matter, are mostly dissolved and captured while passing through this portion several times.

【0082】また、残留異物中のCFCやHCFC以外
の塩素成分は、冷媒回路中では微量の存在する水に溶け
て塩素イオンとして存在するので、何回かイオン交換樹
脂56を通過することにより捕捉される。
Further, chlorine components other than CFCs and HCFCs in the residual foreign matter are dissolved in the trace amount of water in the refrigerant circuit and are present as chlorine ions, so that they are captured by passing through the ion exchange resin 56 several times. To be done.

【0083】次に、油分離器9について説明する。高性
能油分離器の例としては、実公平5-19721号公報に示さ
れたものがある。図5にその内部構造図を示す。71は
上シェル71a及び下シェル71bにより構成される円
形胴体部を有する密閉容器、72は先端に網状体73を
有する入口管であり、入口管72は上シェル71aの略
中央部を貫通して容器71に突出して取り付けられてい
る。78は網状体73の上部に設けられた、多数の小孔
を有するパンチングメタルなどにより構成される円形の
均速板、79は均速板78の上部に形成される上部空間
であり、冷媒流出空間となるものである。74は冷媒流
出空間79に端部を持つ出口管、77は排油管である。
Next, the oil separator 9 will be described. An example of a high performance oil separator is disclosed in Japanese Utility Model Publication No. 5-19721. FIG. 5 shows its internal structure. Reference numeral 71 is a closed container having a circular body portion composed of an upper shell 71a and a lower shell 71b, and 72 is an inlet pipe having a mesh body 73 at the tip, and the inlet pipe 72 penetrates the substantially central portion of the upper shell 71a. The container 71 is attached so as to project. Reference numeral 78 denotes a circular speed equalizing plate, which is provided on the upper part of the mesh body 73 and is made of punching metal or the like having a large number of small holes, and 79 denotes an upper space formed above the speed controlling plate 78. It is a space. 74 is an outlet pipe having an end portion in the refrigerant outflow space 79, and 77 is an oil drain pipe.

【0084】このような、高性能油分離器を直列に複数
個接続することで、分離効率100%の油分離器を得る
ことができる。図6に、図5の構造の油分離器における
ガス冷媒の流速と分離効率の実験結果を示す。図におい
て、横軸は容器内平均流速(m/s)、縦軸は分離効率
(%)を示す。直列油分離器の最初の油分離器の内径を
最大の流速が0.13m/s以下となるようにすること
で、一般に圧縮機1から吐出される冷凍機油は冷媒流量
比で1.5wt%以下のため、最初の油分離器の2次側
では、冷凍機油は冷媒流量比で0.05wt%以下にな
っている。
By connecting a plurality of such high-performance oil separators in series, an oil separator having a separation efficiency of 100% can be obtained. FIG. 6 shows the experimental results of the flow velocity and separation efficiency of the gas refrigerant in the oil separator having the structure of FIG. In the figure, the horizontal axis represents the average flow velocity in the container (m / s), and the vertical axis represents the separation efficiency (%). By setting the inner diameter of the first oil separator of the in-line oil separator so that the maximum flow velocity is 0.13 m / s or less, refrigerating machine oil generally discharged from the compressor 1 has a refrigerant flow rate ratio of 1.5 wt%. Because of the following, on the secondary side of the first oil separator, the refrigerant flow rate of the refrigerating machine oil is 0.05 wt% or less.

【0085】この比率では、ガス冷媒と冷凍機油の気液
二相流の流動様式は噴霧流となっているので、2番目の
油分離器も同径以上とし、かつ流入配管のメッシュを焼
結金属など目を非常に細かくすることで、完全に冷凍機
油を分離することができる。このように、既存の油分離
器の寸法や複数組み合せることで、分離効率100%の
油分離器を実現することは可能であり、図1に示す油分
離器9はこのようなものである。
At this ratio, since the gas-liquid two-phase flow of the gas refrigerant and the refrigerating machine oil is a spray flow, the second oil separator has the same diameter or more and the mesh of the inflow pipe is sintered. Refrigerating machine oil can be completely separated by making the eyes such as metal very fine. As described above, it is possible to realize an oil separator having a separation efficiency of 100% by combining the dimensions of existing oil separators or combining a plurality of oil separators. The oil separator 9 shown in FIG. .

【0086】以上のように、油分離器9と異物捕捉手段
13を熱源機Aに内蔵することで、熱源機Aと室内機B
のみを新規に交換し、第1の接続配管Cと第2の接続配
管Dを交換しないで、老朽化したCFCまたはHCFC
を用いた空気調和装置を新しいHFCを用いた空気調和
装置に入れ替えることができる。このような方法によれ
ば、既設配管再利用方法として、従来の洗浄方法1とは
違って、洗浄装置を用いて専用の洗浄液(HCFC14
1bやHCFC225)で洗浄するということをしない
ので、オゾン層破壊の可能性は全く無く、また可燃性・
毒性も皆無で、洗浄液残留の懸念も無く、洗浄液を回収
する必要も無い。
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the heat source unit A, the heat source unit A and the indoor unit B
CFC or HCFC that has deteriorated over time without replacing only the first connecting pipe C and the second connecting pipe D with a new one.
The air conditioner using HFC can be replaced with a new air conditioner using HFC. According to such a method, unlike the conventional cleaning method 1, as a method for reusing the existing pipe, a cleaning liquid (HCFC14
1b and HCFC225) are not used, so there is no possibility of ozone layer depletion and flammability.
There is no toxicity, there is no concern about residual cleaning liquid, and there is no need to collect cleaning liquid.

【0087】また、従来の洗浄方法2と違って、洗浄運
転を3回繰り返してHFC冷媒やHFC冷凍機油を3回
入れ替える必要がないため、必要なHFCや冷凍機油は
1台分で済むためコスト・環境上有利である。また、交
換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危
険性も全く発生しない。また、HFC用冷凍機油の非相
溶化や冷凍機油の劣化の恐れも無い。
Further, unlike the conventional cleaning method 2, it is not necessary to repeat the cleaning operation 3 times to replace the HFC refrigerant or the HFC refrigerating machine oil 3 times, so that only one HFC or refrigerating machine oil is required, which is a cost.・ Environmentally advantageous. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no risk of excess or deficiency of the refrigerating machine oil. Further, there is no fear of incompatibility of the HFC refrigerating machine oil or deterioration of the refrigerating machine oil.

【0088】この実施の形態では、室内機Bが1台接続
された例について説明したが、室内機Bが並列または直
列に複数台接続された空気調和装置でも同様の効果を奏
することは言うまでもない。また、熱源機側熱交換器3
と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含む)が
設置されていても同様の効果を奏することは明らかであ
る。また、熱源機Aが複数台並列に接続された空気調和
装置においても同様の効果を奏することは明らかであ
る。また、空気調和装置に限らず、蒸気圧縮式の冷凍サ
イクル応用品で、熱源機側熱交換器が内蔵されたユニッ
トと利用側熱交換器が内蔵されたユニットが離れて設置
されるものであれば、同様の効果を奏することは明らか
である。
In this embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that an air conditioner in which a plurality of indoor units B are connected in parallel or in series produces the same effect. . Also, the heat source side heat exchanger 3
Even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with, it is clear that the same effect can be obtained. Further, it is clear that the same effect can be obtained in an air conditioner in which a plurality of heat source units A are connected in parallel. Not only the air conditioner but also a vapor compression type refrigeration cycle applied product in which the unit containing the heat source side heat exchanger and the unit containing the use side heat exchanger are installed separately. For example, it is clear that the same effect is achieved.

【0089】実施の形態2.図7は、この発明の実施の
形態2による冷凍サイクル装置の一例として、空気調和
装置の冷媒回路を示す図である。図7において、符号B
〜D、1〜9及び8a、9aは、実施の形態1と同様の
ものであるから、詳細な説明を省略する。
Embodiment 2. FIG. 7: is a figure which shows the refrigerant circuit of an air conditioning apparatus as an example of the refrigerating-cycle apparatus by Embodiment 2 of this invention. In FIG. 7, reference numeral B
Since D to 1 to 9 and 8a and 9a are the same as those in the first embodiment, detailed description will be omitted.

【0090】次に、12aは高温高圧のガス冷媒を冷却
・液化する冷却手段(冷却装置)、12bは低圧二相冷
媒をガス化する加熱手段(加熱装置)、13は上記加熱
手段12bの出口部に直列に設けられた異物捕捉手段
(異物捕捉装置)である。14aは上記異物捕捉手段1
3の出口部に設けられた第1の電磁弁、14bは上記加
熱手段12bの入口部に設けられた第2の電磁弁であ
る。
Next, 12a is a cooling means (cooling device) for cooling and liquefying a high-temperature and high-pressure gas refrigerant, 12b is a heating means (heating device) for gasifying a low-pressure two-phase refrigerant, and 13 is an outlet of the heating means 12b. The foreign matter catching means (foreign matter catching device) provided in series in the section. 14a is the foreign matter capturing means 1
The first solenoid valve is provided at the outlet of No. 3, and the second solenoid valve 14b is provided at the inlet of the heating means 12b.

【0091】10は第1の切換弁であり、熱源機側熱交
換器3の冷房運転時の出口端、四方弁2の暖房運転時の
出口端、上記冷却手段12aの入口端、上記電磁弁14a
の出口端の4箇所のうち、運転モ−ドに応じて、以下の
ような接続切換を行うものである。すなわち、冷房洗浄
運転時には熱源機側熱交換器3の冷房運転時の出口端と
冷却手段12aの入口端とを接続し、かつ電磁弁14aの
出口端と四方弁2の冷房運転時の入口端(暖房運転時の
出口端)を接続する。また、暖房洗浄運転時には、四方
弁2の暖房運転時の出口端と冷却手段12aの入口端と
を接続し、かつ電磁弁14aの出口端と熱源機側熱交換
器3の暖房運転時の入口端(冷房運転時の出口端)とを
接続する。
Reference numeral 10 denotes a first switching valve, which is an outlet end of the heat source unit side heat exchanger 3 during cooling operation, an outlet end of the four-way valve 2 during heating operation, an inlet end of the cooling means 12a, and the solenoid valve. 14a
The following connection switching is performed among the four locations at the exit end of the, according to the operation mode. That is, during the cooling cleaning operation, the outlet end of the heat source unit side heat exchanger 3 during the cooling operation is connected to the inlet end of the cooling means 12a, and the outlet end of the solenoid valve 14a and the inlet end of the four-way valve 2 during the cooling operation are connected. Connect (exit end at heating operation). Also, during the heating cleaning operation, the outlet end of the four-way valve 2 during the heating operation and the inlet end of the cooling means 12a are connected, and the outlet end of the solenoid valve 14a and the heat source side heat exchanger 3 inlet during the heating operation. Connect to the end (exit end during cooling operation).

【0092】11は第2の切換弁であり、冷房洗浄運転
時及び冷房通常運転時には、冷却手段12aの出口端を
第1の操作弁4に接続し、暖房洗浄運転時及び暖房通常
運転時には、冷却手段12aの出口端を第2の操作弁7
に接続し、かつ、冷房洗浄運転時には電磁弁12bの入
口端を第2の操作弁7に接続し、暖房洗浄運転時には電
磁弁12bの入口端を第1の操作弁4に接続するもので
ある。14cは第3の電磁弁であり、第1の切換弁10
の熱源機側熱交換器3への接続端と、第2の切換弁11
の第1の操作弁4への接続端との間を接続する配管途中
に設けられた電磁弁である。14dは第4の電磁弁であ
り、第1の切換弁10の四方弁2への接続端と、第2の
切換弁11の第2の操作弁7への接続端との間を接続す
る配管途中に設けられた電磁弁である。
Reference numeral 11 denotes a second switching valve, which connects the outlet end of the cooling means 12a to the first operation valve 4 during the cooling / cleaning operation and the normal cooling operation, and during the heating / cleaning operation and the normal heating operation. The outlet end of the cooling means 12a is connected to the second operation valve 7
And the inlet end of the electromagnetic valve 12b is connected to the second operation valve 7 during the cooling and cleaning operation, and the inlet end of the electromagnetic valve 12b is connected to the first operation valve 4 during the heating and cleaning operation. . 14c is a third solenoid valve, and the first switching valve 10
Of the second switching valve 11 to the heat source unit side heat exchanger 3 of
Is a solenoid valve provided in the middle of a pipe connecting between the first operation valve 4 and the connection end thereof. Reference numeral 14d denotes a fourth solenoid valve, which is a pipe connecting between a connection end of the first switching valve 10 to the four-way valve 2 and a connection end of the second switching valve 11 to the second operation valve 7. It is a solenoid valve provided on the way.

【0093】上記第1の切換弁10は、熱源機側熱交換
器3の冷房運転時の出口端から冷却手段12aの入口端
への冷媒の流通は許容するがその逆は許容しないように
設けられた逆止弁10a、四方弁2の暖房運転時の出口
端から冷却手段12aの入口端への冷媒の流通は許容す
るがその逆は許容しないように設けられた逆止弁10
b、第1の電磁弁14aの出口端から熱源機側熱交換器
3の冷房運転時の出口端への冷媒の流通は許容するがそ
の逆は許容しないように設けられた逆止弁10c、第1
の電磁弁14aの出口端から四方弁2の暖房運転時の出
口端への冷媒の流通は許容するがその逆は許容しないよ
うに設けられた逆止弁10dより構成されているため、
電気信号によらず各接続端の圧力により自己切換可能な
切換弁である。
The first switching valve 10 is provided so as to allow the flow of the refrigerant from the outlet end of the heat source unit side heat exchanger 3 during the cooling operation to the inlet end of the cooling means 12a, but not vice versa. The check valve 10a and the check valve 10 provided so as to allow the refrigerant to flow from the outlet end of the four-way valve 2 during the heating operation to the inlet end of the cooling means 12a but not the other way around.
b, a check valve 10c provided to allow the flow of the refrigerant from the outlet end of the first solenoid valve 14a to the outlet end of the heat source device side heat exchanger 3 during the cooling operation, but not vice versa, First
Since the refrigerant is allowed to flow from the outlet end of the electromagnetic valve 14a to the outlet end of the four-way valve 2 during the heating operation, but not the opposite, the check valve 10d is provided.
It is a switching valve capable of self-switching by the pressure of each connection end regardless of an electric signal.

【0094】上記冷却手段12aの冷却源は、空気・水
のいずれでもよく、上記加熱手段12bの加熱源も空気
・水のいずれでも、あるいはヒ−タ−でもよい。また、
冷却手段12aと加熱手段12bは、第1の切換弁10
と第2の切換弁11に挟まれた、高温高圧側の配管と低
温低圧側の配管を熱的に接触させて、たとえば、二重管
の外側配管として高温高圧側の配管、内側配管として低
温低圧側の配管で構成することでもよい。すなわち、加
熱手段12bと冷却手段12aとの間で熱移動させても
よい。
The cooling source of the cooling means 12a may be either air or water, and the heating source of the heating means 12b may be either air or water or a heater. Also,
The cooling means 12a and the heating means 12b are the first switching valve 10
The high-temperature and high-pressure side pipe and the low-temperature and low-pressure side pipe sandwiched between the second switching valve 11 and the second switching valve 11 are brought into thermal contact with each other. It may be configured with a low-pressure side pipe. That is, heat may be transferred between the heating means 12b and the cooling means 12a.

【0095】以上のような構成により、熱源機Aは、油
分離器9、分離油のバイパス路9a、冷却手段12a、
加熱手段12b、異物捕捉手段13、第1の切換弁1
0、第2の切換弁11、第1の電磁弁14a、第2の電
磁弁14b、第3の電磁弁14c、第4の電磁弁14d
を内蔵している。なお、加熱手段12bおよび異物捕捉
手段13を含む冷媒回路部分を、本明細書では、第1の
バイパス路とする。また、冷却手段12aを含む冷媒回
路部分を、本明細書では、第2のバイパス路とする。な
おまた、この空気調和装置は冷媒としてHFCを使うも
のである。
With the above-described structure, the heat source device A includes the oil separator 9, the separated oil bypass passage 9a, the cooling means 12a,
Heating means 12b, foreign matter capturing means 13, first switching valve 1
0, the second switching valve 11, the first solenoid valve 14a, the second solenoid valve 14b, the third solenoid valve 14c, the fourth solenoid valve 14d.
Built in. The refrigerant circuit portion including the heating means 12b and the foreign matter capturing means 13 is referred to as a first bypass passage in this specification. Further, the refrigerant circuit portion including the cooling means 12a is referred to as a second bypass passage in this specification. Furthermore, this air conditioner uses HFC as a refrigerant.

【0096】次に、CFCやHCFCを使った空気調和
装置が老朽化した場合の、空気調和装置交換の手順を示
す。CFCまたはHCFCを回収し、熱源機Aと室内機
Bを図7に示すものと交換する。第1の接続配管Cと第
2の接続配管Dは、HCFCを使った空気調和装置のも
のを再利用する。熱源機Aには予めHFCが充填されて
いるので、第1の操作弁4と第2の操作弁7は閉じたま
ま、室内機B、第1の接続配管C、第2の接続配管Dを
接続状態で真空引きをし、その後第1の操作弁4と第2
の操作弁7の開弁とHFCの追加充填を実施する。その
後、まず洗浄運転を実施し、その後通常の空調運転を実
施する。
Next, the procedure of air conditioner replacement when the air conditioner using CFC or HCFC is deteriorated will be described. CFC or HCFC is collected, and the heat source unit A and the indoor unit B are replaced with those shown in FIG. As the first connection pipe C and the second connection pipe D, those of the air conditioner using the HCFC are reused. Since the heat source device A is filled with HFC in advance, the indoor unit B, the first connection pipe C, and the second connection pipe D are kept closed while the first operation valve 4 and the second operation valve 7 are closed. Vacuum is drawn in the connected state, and then the first operation valve 4 and the second
The operation valve 7 is opened and HFC is additionally charged. After that, the cleaning operation is first performed, and then the normal air conditioning operation is performed.

【0097】次に、洗浄運転の内容を図7に添って説明
する。図中、実線矢印が冷房洗浄運転の流れを、破線矢
印が暖房洗浄運転の流れを示す。まず冷房洗浄運転につ
いて説明する。圧縮機1で圧縮された高温高圧のガス冷
媒は、HFC用冷凍機油と共に圧縮機1を吐出され、油
分離器9へ流入する。ここで、HFC用の冷凍機油は完
全に分離され、ガス冷媒のみが、四方弁2を経て、熱源
機側熱交換器3へと流入し、ここで空気・水など熱源媒
体と熱交換器してある程度凝縮液化する。
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, the solid line arrow shows the flow of the cooling cleaning operation, and the broken line arrow shows the flow of the heating cleaning operation. First, the cooling cleaning operation will be described. The high-temperature high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil, and flows into the oil separator 9. Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant flows through the four-way valve 2 into the heat source machine side heat exchanger 3, where it is exchanged with a heat source medium such as air and water. To some extent liquefy.

【0098】ある程度凝縮液化した冷媒は第1の切換弁
10を経て冷却手段12aに流入し、ここで完全に凝縮
液化して、第2の切換弁11、第1の操作弁4を経て第
1の接続配管Cに流入する。HFCの液冷媒が第1の接
続配管Cを流れるときに、第1の接続配管Cに残留して
いるCFC・HCFC・鉱油・鉱油劣化物(以下残留異
物と称する)を少しずつ洗浄してHFCの液冷媒と共に
流れ、流量調整器5へ流入し、ここで低圧まで減圧され
て低圧二相状態となり、利用側熱交換器6で空気などの
利用側媒体と熱交換してある程度蒸発・ガス化する。
The refrigerant which has been condensed and liquefied to some extent flows into the cooling means 12a through the first switching valve 10, where it is completely condensed and liquefied, and then passes through the second switching valve 11 and the first operating valve 4 to the first switching valve 11. Flowing into the connecting pipe C of. When the HFC liquid refrigerant flows through the first connecting pipe C, the HFC is washed by gradually cleaning CFC / HCFC / mineral oil / mineral oil deteriorated substances (hereinafter referred to as residual foreign matter) remaining in the first connecting pipe C. Flow into the flow rate controller 5, where it is decompressed to a low pressure and becomes a low-pressure two-phase state, and heat is exchanged with a use-side medium such as air in the use-side heat exchanger 6 to some extent evaporate and gasify To do.

【0099】ある程度蒸発・ガス化した気液二相状態の
冷媒は第1の接続配管Cの残留異物と共に第2の接続配
管Dに流入する。第2の接続配管Dに残留している残留
異物は、ここを流れる冷媒が気液二相状態のため、流速
も速く、かつ液冷媒と共に、残留異物は洗浄され、第1
の接続配管Cより速い速度で洗浄される。
The gas-liquid two-phase refrigerant that has been vaporized and gasified to some extent flows into the second connection pipe D together with the foreign matter remaining in the first connection pipe C. The residual foreign matter remaining in the second connection pipe D has a high flow velocity because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the residual foreign matter is washed with the liquid refrigerant.
It is cleaned at a faster speed than the connection pipe C of.

【0100】その後、ある程度蒸発・ガス化した気液二
相状態の冷媒は、第1の接続配管Cの残留異物と第2の
接続配管Dの残留異物と共に、第2の操作弁7、第2の
切換弁11、第2の電磁弁14bを経て、加熱手段12
bへ流入し、ここで完全に蒸発・ガス化され、異物捕捉
手段13へ流入する。残留異物は、沸点の違いにより相
が異なり、固体異物・液体異物・気体異物の3種類に分
類される。異物捕捉手段13では、固体異物と液体異物
は完全にガス冷媒と分離・捕捉される。
After that, the gas-liquid two-phase refrigerant that has been vaporized and gasified to some extent, together with the residual foreign matter in the first connecting pipe C and the residual foreign matter in the second connecting pipe D, the second operating valve 7, the second operating valve 7, Through the switching valve 11 and the second solenoid valve 14b of the heating means 12
b, where it is completely evaporated and gasified, and then flows into the foreign matter capturing means 13. The residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gas foreign matter. The foreign matter capturing means 13 completely separates and captures the solid foreign matter and the liquid foreign matter from the gas refrigerant.

【0101】気体異物はその一部が捕捉され、一部は捕
捉されない。その後ガス冷媒は、異物捕捉手段13で捕
捉されなかった気体異物と共に第1の電磁弁14a、第
1の切換弁10、四方弁2、アキュムレ−タ8を経て圧
縮機1へ戻る。油分離器9で、ガス冷媒と完全に分離さ
れたHFC用冷凍機油はバイパス路9aを経て、異物捕
捉手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留してい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
Part of the gaseous foreign matter is trapped and part of it is not trapped. After that, the gas refrigerant returns to the compressor 1 through the first electromagnetic valve 14a, the first switching valve 10, the four-way valve 2 and the accumulator 8 together with the gas foreign matter not captured by the foreign matter capturing means 13. The HFC refrigerating machine oil that has been completely separated from the gas refrigerant in the oil separator 9 merges with the mainstream downstream of the foreign substance capturing means 13 through the bypass 9a and returns to the compressor 1, so that the first connecting pipe CFC and the second connecting pipe D do not mix with the residual mineral oil, and HFC refrigerating machine oil is HFC.
However, the HFC refrigerating machine oil is not deteriorated by the mineral oil.

【0102】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その一例を図2に示す。異物捕捉手段13を1
回通る間に捕捉されなかった、気体異物はHFC冷媒の
循環と共に何回も異物捕捉手段13を通るので、HFC
用冷凍機油の劣化するよりも速く、異物捕捉手段13で
捕捉すればよい。
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. The HFC refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gas foreign matter is captured while passing through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gas foreign matter are mixed. Deterioration of HFC refrigeration oil is a chemical reaction and does not proceed rapidly. An example thereof is shown in FIG. Foreign matter capturing means 13
The foreign gas that has not been captured while passing through the HFC refrigerant passes through the foreign material capturing means 13 many times as the HFC refrigerant circulates.
The foreign matter catching means 13 may catch the refrigerating machine oil faster than it deteriorates.

【0103】次に暖房洗浄運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機
油と共に圧縮機1を吐出され、油分離器9へ流入する。
ここで、HFC用の冷凍機油は完全に分離され、ガス冷
媒のみが四方弁2、第1の切換弁10を経て冷却手段1
2aへ流入する。
Next, the flow of the heating and cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil and flows into the oil separator 9.
Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant passes through the four-way valve 2 and the first switching valve 10 to cool the cooling means 1.
It flows into 2a.

【0104】ここで、ガス冷媒は冷却され、ある程度凝
縮・液化する。ある程度凝縮・液化された気液二相状態
の冷媒は第2の切換弁11、第2の操作弁7を経て第2
の接続配管Dへ流入する。第2の接続配管に残留してい
る残留異物は、ここを流れる冷媒が気液二相状態のた
め、流速も速く、かつ液冷媒と共に、残留異物は洗浄さ
れ、冷房洗浄運転時の第1の接続配管Cより速い速度で
洗浄される。
Here, the gas refrigerant is cooled and condensed and liquefied to some extent. The gas-liquid two-phase refrigerant that has been condensed and liquefied to some extent passes through the second switching valve 11 and the second operation valve 7 to the second switching valve 11.
Flowing into the connection pipe D of. The residual foreign matter remaining in the second connection pipe has a high flow velocity because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the residual foreign matter is cleaned together with the liquid refrigerant, so It is cleaned at a speed faster than that of the connecting pipe C.

【0105】その後、ある程度凝縮・液化した冷媒は、
第2の接続配管Dの残留異物と共に、利用側側熱交換器
6へと流入し、ここで空気など利用側媒体と熱交換器し
て完全に凝縮液化する。凝縮液化した冷媒は流量調整器
5へ流入し、ここで低圧まで減圧されて低圧二相状態と
なり、第1の接続配管Cに流入する。気液二相状態のた
め、流速も速く、かつ液冷媒と共に、残留異物は洗浄さ
れ、冷房洗浄運転時の第1の接続配管Cより速い速度で
洗浄される。第2の接続配管Dと第1の接続配管Cから
洗浄された残留異物と共に、気液二相状態の冷媒は、第
1の操作弁4、第2の切換弁11、第2の電磁弁14b
を経て、加熱手段12bで加熱され、蒸発・ガス化さ
れ、異物捕捉手段13へ流入する。
After that, the refrigerant condensed and liquefied to some extent is
Together with the residual foreign matter in the second connection pipe D, it flows into the usage-side heat exchanger 6, where it is heat-exchanged with the usage-side medium such as air and is completely condensed and liquefied. The condensed and liquefied refrigerant flows into the flow rate controller 5, where it is decompressed to a low pressure, enters a low-pressure two-phase state, and flows into the first connection pipe C. Because of the gas-liquid two-phase state, the flow velocity is high, and the residual foreign matter is cleaned together with the liquid refrigerant, and is cleaned at a speed faster than that of the first connecting pipe C during the cooling cleaning operation. Along with the residual foreign matter washed from the second connection pipe D and the first connection pipe C, the refrigerant in the gas-liquid two-phase state is the first operation valve 4, the second switching valve 11, the second solenoid valve 14b.
After that, it is heated by the heating means 12b, evaporated and gasified, and flows into the foreign matter capturing means 13.

【0106】残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。異物捕捉手段13では、固体異物と液体異物は完全
にガス冷媒と分離・捕捉される。気体異物はその一部が
捕捉され、一部は捕捉されない。その後ガス冷媒は、異
物捕捉手段13で捕捉されなかった気体異物と共に、第
1の切換弁10、四方弁2を経て、熱源機側熱交換器3
へ流入し、ここでは送風機などを停止して熱交換させず
に通過させ、アキュムレ−タ8を経て圧縮機1へ戻る。
The residual foreign matter has different phases depending on the difference in boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gas foreign matter. The foreign matter capturing means 13 completely separates and captures the solid foreign matter and the liquid foreign matter from the gas refrigerant. Part of the foreign gas is captured, and part is not captured. After that, the gas refrigerant passes through the first switching valve 10 and the four-way valve 2 together with the gas foreign matter that has not been captured by the foreign matter capturing means 13, and then the heat source unit side heat exchanger 3
In this case, the blower or the like is stopped to pass through it without heat exchange, and then returns to the compressor 1 via the accumulator 8.

【0107】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油はバイパス路9aを経て、異物捕捉
手段13の下流で本流と合流して、圧縮機1へ戻るの
で、第1の接続配管Cや第2の接続配管Dに残留したい
た鉱油と混ざることはなく、HFC用冷凍機油はHFC
に対して非相溶化することはなく、またHFC用冷凍機
油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream downstream of the foreign matter capturing means 13 via the bypass 9a, and returns to the compressor 1. The refrigerating machine oil for HFC does not mix with the residual mineral oil remaining in the connecting pipe C and the second connecting pipe D of HFC.
However, the HFC refrigerating machine oil is not deteriorated by the mineral oil.

【0108】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その一例を図2に示す。異物捕捉手段13を1
回通る間に捕捉されなかった気体異物は、HFC冷媒の
循環と共に何回も異物捕捉手段13を通るので、HFC
用冷凍機油の劣化するよりも速く、異物捕捉手段13で
捕捉すればよい。異物捕捉手段13、油分離器9は、実
施の形態1に示すものと全く同一のため、ここでは説明
を省略する。
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. The HFC refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gas foreign matter is captured while passing through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gas foreign matter are mixed. Deterioration of HFC refrigeration oil is a chemical reaction and does not proceed rapidly. An example thereof is shown in FIG. Foreign matter capturing means 13
The foreign gas that has not been captured while passing through the HFC refrigerant passes through the foreign material capturing means 13 many times as the HFC refrigerant circulates.
The foreign matter catching means 13 may catch the refrigerating machine oil faster than it deteriorates. Since the foreign matter capturing means 13 and the oil separator 9 are exactly the same as those shown in the first embodiment, the description thereof is omitted here.

【0109】次に、通常空調運転について、図8に添っ
て説明する。図中、実線矢印が冷房通常運転の流れを、
破線矢印が暖房通常運転の流れを示す。まず冷房通常運
転について説明する。圧縮機1で圧縮された高温高圧の
ガス冷媒は、HFC用冷凍機油と共に圧縮機1を吐出さ
れ、油分離器9へ流入する。ここで、HFC用の冷凍機
油は完全に分離され、ガス冷媒のみが、四方弁2を経
て、熱源機側熱交換器3へと流入し、ここで空気・水な
ど熱源媒体と熱交換して凝縮液化する。
Next, the normal air conditioning operation will be described with reference to FIG. In the figure, the solid arrow indicates the flow of normal cooling operation,
The dashed arrow indicates the flow of normal heating operation. First, the normal cooling operation will be described. The high-temperature high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil, and flows into the oil separator 9. Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant flows into the heat source machine side heat exchanger 3 through the four-way valve 2 and exchanges heat with a heat source medium such as air and water. Condensate and liquefy.

【0110】凝縮液化した冷媒は、その大部分が第3の
電磁弁14cを経由し、一方、一部が第1の切換弁1
0、冷却手段12a、第2の切換弁11を経由して、こ
れらが合流後、第1の操作弁4に流入し、第1の接続配
管Cを経て、流量調整器5へ流入し、ここで低圧まで減
圧されて低圧二相状態となり、利用側熱交換器6で空気
などの利用側媒体と熱交換して蒸発・ガス化する。蒸発
・ガス化した冷媒は第2の接続配管D、第2の操作弁
7、第4の電磁弁14d、四方弁2、アキュムレ−タ8
を経て圧縮機1へ戻る。
Most of the condensed and liquefied refrigerant passes through the third solenoid valve 14c, while a part thereof passes through the first switching valve 1
0, the cooling means 12a, and the second switching valve 11, after merging, they flow into the first operation valve 4, the first connection pipe C, the flow rate controller 5, and the like. The pressure is reduced to a low pressure in 2 to form a low-pressure two-phase state, and heat is exchanged with a use-side medium such as air in the use-side heat exchanger 6 to evaporate and gasify. The evaporated and gasified refrigerant is the second connection pipe D, the second operation valve 7, the fourth solenoid valve 14d, the four-way valve 2, the accumulator 8
After that, the compressor 1 is returned to.

【0111】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、四方弁
2の下流で本流と合流して、圧縮機1へ戻る。第1の電
磁弁14a、第2の電磁弁14bは閉じられているの
で、異物捕捉手段13は閉鎖空間として隔離されてお
り、洗浄運転中に捕捉した異物が、再び運転回路中に戻
ることがない。また、実施の形態1と比べると、異物捕
捉手段13を経由しないため、圧縮機1の吸入圧力損失
が小さく、能力の低下が小さい。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream downstream of the four-way valve 2 through the bypass 9a and returns to the compressor 1. Since the first solenoid valve 14a and the second solenoid valve 14b are closed, the foreign matter capturing means 13 is isolated as a closed space, and the foreign matter captured during the cleaning operation may return to the operation circuit again. Absent. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not used, the suction pressure loss of the compressor 1 is small and the reduction in capacity is small.

【0112】次に暖房通常運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒は、HFC用冷凍
機油と共に圧縮機1を吐出され、油分離器9へ流入す
る。ここで、HFC用の冷凍機油は完全に分離され、ガ
ス冷媒のみが四方弁2を経て、大部分が第4の電磁弁1
4dを経由して、一方、一部が第1の切換弁10、冷却
手段12a、第2の切換弁11を経由して、これらが合
流後、第2の操作弁7に流入し、第2の接続配管Dを経
て、利用側側熱交換器6へと流入し、ここで空気など利
用側媒体と熱交換器して完全に凝縮液化する。
Next, the flow of the normal heating operation will be described. The high-temperature high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil, and flows into the oil separator 9. Here, the refrigerating machine oil for HFC is completely separated, only the gas refrigerant passes through the four-way valve 2, and most of it is the fourth solenoid valve 1.
4d, on the other hand, partly through the first switching valve 10, the cooling means 12a, and the second switching valve 11, after they merge, they flow into the second operation valve 7, Through the connection pipe D of the above, and flows into the heat exchanger 6 on the use side, where it is heat-exchanged with a medium on the use side such as air to be completely condensed and liquefied.

【0113】凝縮液化した冷媒は流量調整器5へ流入
し、ここで低圧まで減圧されて低圧二相状態となり、第
1の接続配管C、第1の操作弁4、第3の電磁弁14c
を経て、熱源機側熱交換器3へ流入し、ここで空気・水
などの熱源媒体と熱交換して蒸発・ガス化する。蒸発・
ガス化した冷媒は四方弁2、アキュムレ−タ8を経て圧
縮機1へ戻る。
The condensed and liquefied refrigerant flows into the flow rate controller 5, where it is decompressed to a low pressure to be in a low-pressure two-phase state, and the first connecting pipe C, the first operation valve 4 and the third solenoid valve 14c are provided.
Through the heat source unit side heat exchanger 3, where heat is exchanged with a heat source medium such as air and water to evaporate and gasify. evaporation·
The gasified refrigerant returns to the compressor 1 via the four-way valve 2 and the accumulator 8.

【0114】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、圧縮機
1へ戻る。第1の電磁弁14a、第2の電磁弁14bは
閉じられているので、異物捕捉手段13は閉鎖空間とし
て隔離されているので、洗浄運転中に捕捉した異物が、
再び運転回路中に戻ることがない。また、実施の形態1
と比べると、異物捕捉手段13を経由しないため、圧縮
機1の吸入圧力損失が小さく、能力の低下が小さい。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 returns to the compressor 1 via the bypass passage 9a. Since the first electromagnetic valve 14a and the second electromagnetic valve 14b are closed, the foreign matter capturing means 13 is isolated as a closed space, so that the foreign matter captured during the cleaning operation is
Never return to the driving circuit again. In addition, the first embodiment
Compared with, the suction pressure loss of the compressor 1 is small and the deterioration of the capacity is small because it does not pass through the foreign matter capturing means 13.

【0115】以上のように、油分離器9と異物捕捉手段
13を熱源機Aに内蔵することで、熱源機Aと室内機B
のみを新規に交換し、第1の接続配管Cと第2の接続配
管Dを交換しないで、老朽化したCFCまたはHCFC
を用いた空気調和装置を新しいHFCを用いた空気調和
装置に入れ替えることができる。このような方法によれ
ば、既設配管再利用方法として、従来の洗浄方法1とは
違って、洗浄装置を用いて専用の洗浄液(HCFC14
1bやHCFC225)で洗浄するということをしない
ので、オゾン層破壊の可能性は全く無く、また可燃性・
毒性も皆無で、洗浄液残留の懸念も無く、洗浄液を回収
する必要も無い。
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the heat source unit A, the heat source unit A and the indoor unit B
CFC or HCFC that has deteriorated over time without replacing only the first connecting pipe C and the second connecting pipe D with a new one.
The air conditioner using HFC can be replaced with a new air conditioner using HFC. According to such a method, unlike the conventional cleaning method 1, as a method for reusing the existing pipe, a cleaning liquid (HCFC14
1b and HCFC225) are not used, so there is no possibility of ozone layer depletion and flammability.
There is no toxicity, there is no concern about residual cleaning liquid, and there is no need to collect cleaning liquid.

【0116】また、従来の洗浄方法2と違って、洗浄運
転を3回繰り返してHFC冷媒やHFC冷凍機油を3回
入れ替える必要がないため、必要なHFCや冷凍機油は
1台分で済むためコスト・環境上有利である。また、交
換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危
険性も全く発生しない。また、HFC用冷凍機油の非相
溶化や冷凍機油の劣化の恐れも無い。
Further, unlike the conventional cleaning method 2, it is not necessary to repeat the cleaning operation 3 times to replace the HFC refrigerant or the HFC refrigerating machine oil 3 times.・ Environmentally advantageous. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no risk of excess or deficiency of the refrigerating machine oil. Further, there is no fear of incompatibility of the HFC refrigerating machine oil or deterioration of the refrigerating machine oil.

【0117】第1の電磁弁14a、第2の電磁弁14
b、第3の電磁弁14c、第4の電磁弁14dを設けた
ことで、洗浄運転時には異物捕捉手段13を通過して上
記に示す洗浄効果を得つつ、洗浄運転後の通常運転時に
は、第1の電磁弁14a、第2の電磁弁14bは閉じ
て、異物捕捉手段13は閉鎖空間として隔離されている
ので、洗浄運転中に捕捉した異物が、再び運転回路中に
戻ることがない。また、実施の形態1と比べると、異物
捕捉手段13を経由しないため、圧縮機1の吸入圧力損
失が小さく、能力の低下が小さい。
First solenoid valve 14a, second solenoid valve 14
By providing b, the third solenoid valve 14c, and the fourth solenoid valve 14d, while passing through the foreign matter capturing means 13 during the cleaning operation to obtain the above-described cleaning effect, during the normal operation after the cleaning operation, Since the first solenoid valve 14a and the second solenoid valve 14b are closed and the foreign matter capturing means 13 is isolated as a closed space, the foreign matter captured during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not used, the suction pressure loss of the compressor 1 is small and the reduction in capacity is small.

【0118】また、冷却手段12a、加熱手段12b、
第1の切換弁10、第2の切換弁11を設けたので、冷
房・暖房に関わらず、洗浄運転時に第1の接続配管C、
第2の接続配管Dに液冷媒または気液二相冷媒が流れる
ので、残留異物を洗浄するのに、洗浄効果が高く、洗浄
時間を短くすることができる。また、冷却手段12a、
加熱手段12bにより熱交換量を制御できるので、外気
温度や室内の負荷に関係なく、任意の条件時にほぼ同一
の洗浄運転が可能で、効果・手間が一定化する。
Further, the cooling means 12a, the heating means 12b,
Since the first switching valve 10 and the second switching valve 11 are provided, the first connecting pipe C during the cleaning operation regardless of cooling / heating.
Since the liquid refrigerant or the gas-liquid two-phase refrigerant flows in the second connection pipe D, the cleaning effect is high and the cleaning time can be shortened for cleaning the residual foreign matter. Also, the cooling means 12a,
Since the amount of heat exchange can be controlled by the heating means 12b, almost the same cleaning operation can be performed under any condition regardless of the outside air temperature and the load inside the room, and the effect and labor are constant.

【0119】この実施の形態では、室内機Bが1台接続
された例について説明したが、室内機Bが並列または直
列に複数台接続された空気調和装置でも同様の効果を奏
することは言うまでもない。また、熱源機側熱交換器3
と直列または並列に氷蓄熱槽や水蓄熱槽(お湯を含む)
が設置されていても同様の効果を奏することは明らかで
ある。また、熱源機Aが複数台並列に接続された空気調
和装置においても同様の効果を奏することは明らかであ
る。また、空気調和装置に限らず、蒸気圧縮式の冷凍サ
イクル応用品で、熱源機側熱交換器が内蔵されたユニッ
トと利用側熱交換器が内蔵されたユニットが離れて設置
されるものであれば、同様の効果を奏することは明らか
である。
In this embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that an air conditioner in which a plurality of indoor units B are connected in parallel or in series produces the same effect. . Also, the heat source side heat exchanger 3
Ice storage tank or water storage tank (including hot water) in series or in parallel with
It is clear that the same effect can be obtained even when the is installed. Further, it is clear that the same effect can be obtained in an air conditioner in which a plurality of heat source units A are connected in parallel. Not only the air conditioner but also a vapor compression type refrigeration cycle applied product in which the unit containing the heat source side heat exchanger and the unit containing the use side heat exchanger are installed separately. For example, it is clear that the same effect is achieved.

【0120】実施の形態3.図9は、この発明の実施の
形態3による冷凍サイクル装置の一例として、空気調和
装置の冷媒回路を示す図である。図9において、符号B
〜D、1〜8及び8aは、実施の形態1及び2で説明し
たものと同様のものであるから、詳細な説明を省略す
る。また、符号10、11、12a、12b、13は、
実施の形態2で説明したものと同様のものであるから、
詳細な説明を省略する。
Third Embodiment FIG. 9 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle device according to Embodiment 3 of the present invention. In FIG. 9, reference numeral B
Since D to D, 1 to 8 and 8a are the same as those described in the first and second embodiments, detailed description will be omitted. Further, reference numerals 10, 11, 12a, 12b and 13 are
Since it is the same as that described in the second embodiment,
Detailed description is omitted.

【0121】次に、図9において、9は油分離器で、実
施の形態1、2と同様のものであるが、第1の切換弁1
0と冷却手段12aの間に設けられている点が異なる。
また、9aは油分離器9の底部に端を発して異物捕捉手
段13の下流側に戻るバイパス路で、実施の形態1、2
と同様のものだが、戻し位置が異物捕捉手段13と第1
の切換弁10との間である点が異なる。また、15は第
2の切換弁11と加熱手段12bとの間に設けられた第
1流量制御手段、16は冷却手段12aと第2の切換弁
11との間に設けられた第2の流量制御手段である。
Next, referring to FIG. 9, an oil separator 9 is the same as that of the first and second embodiments, but the first switching valve 1 is used.
0 and the cooling means 12a are different.
Further, 9a is a bypass path which starts from the bottom of the oil separator 9 and returns to the downstream side of the foreign matter capturing means 13 in Embodiments 1 and 2.
But the return position is the same as that of the foreign matter capturing means 13 and the first
Of the switching valve 10 of FIG. Further, 15 is a first flow rate control means provided between the second switching valve 11 and the heating means 12b, and 16 is a second flow rate provided between the cooling means 12a and the second switching valve 11. It is a control means.

【0122】CCは第1の接続配管Cと第1の操作弁4
の間に設けられた第3の接続配管、DDは第2の接続配
管Dと第2の操作弁7の間に設けられた第4の接続配管
である。17aは第3の接続配管CCに設けられた第3
の操作弁、17bは第4の接続配管DDに設けられた第
4の操作弁、17cは第3の接続配管CCの第1の操作
弁4と第3の操作弁17aとの間の配管と第1の切換弁
10との間に設けられた第5の操作弁、17dは第3の
接続配管CCの第3の操作弁17aより第1の接続配管
C側の部分と第2の切換弁11との間に設けられた第6
の操作弁、17eは第4の接続配管DDの第2の操作弁
7と第4の操作弁17bとの間の配管とと第1の切換弁
10との間に設けられた第7の操作弁、17fは第4の
接続配管DDの第4の操作弁17bより第2の接続配管
D側の部分と第2の切換弁11との間に設けられた第8
の操作弁である。
CC is the first connecting pipe C and the first operating valve 4
Is a third connection pipe provided between the second connection pipe D and the second operation valve 7, and a third connection pipe DD is provided between the second connection pipe D and the second operation valve 7. 17a is the third provided on the third connection pipe CC.
17b is a fourth operation valve provided in the fourth connection pipe DD, and 17c is a pipe between the first operation valve 4 and the third operation valve 17a of the third connection pipe CC. A fifth operating valve provided between the first switching valve 10 and 17d is a portion of the third connecting pipe CC closer to the first connecting pipe C than the third operating valve 17a and the second switching valve. Sixth provided between 11 and
And 17e is a seventh operation provided between the first switching valve 10 and the pipe of the fourth connection pipe DD between the second operation valve 7 and the fourth operation valve 17b. The valve 17f is an eighth valve provided between the second switching valve 11 and a portion of the fourth connection pipe DD closer to the second connection pipe D than the fourth operation valve 17b.
It is the operation valve of.

【0123】Eは以上のように構成された洗浄機であ
り、油分離器9、バイパス路9a、冷却手段12a、加
熱手段12b、異物捕捉手段13、第1の切換弁10、
第2の切換弁11、第1の流量制御手段15、第2の流
量制御手段16を内蔵したものである。この洗浄機E
は、第5〜第8の操作弁17c〜17fの部分から、全
体の空気調和装置から脱着可能に接続されている。な
お、本明細書では、加熱手段12bおよび異物捕捉手段
13を含む冷媒回路部分を、実施の形態2で記載したよ
うに、第1のバイパス路とする。また、油分離器9の有
無に係わらず、冷却手段12aを含む冷媒回路部分を、
第2のバイパス路とする。さらに、冷却手段12aを含
まず、油分離器9だけが存在する場合を想定して、これ
を第3のバイパス路とする。
E is a washing machine constructed as described above, and includes an oil separator 9, a bypass 9a, a cooling means 12a, a heating means 12b, a foreign matter capturing means 13, a first switching valve 10,
The second switching valve 11, the first flow rate control means 15, and the second flow rate control means 16 are incorporated. This washing machine E
Is detachably connected to the entire air conditioner from the fifth to eighth operation valves 17c to 17f. In the present specification, the refrigerant circuit portion including the heating means 12b and the foreign matter capturing means 13 will be referred to as the first bypass passage as described in the second embodiment. Further, regardless of the presence or absence of the oil separator 9, the refrigerant circuit portion including the cooling means 12a is
It will be the second bypass. Further, assuming that only the oil separator 9 is present without including the cooling means 12a, this will be referred to as a third bypass passage.

【0124】また、18aは第1の接続配管Cと流量調
整器5との間に設けられた第5の電磁弁、18bは第2
の接続配管Dと利用側熱交換器6との間に設けられた第
6の電磁弁、18cは第5の電磁弁18aの第1の接続
配管C側接続端と第6の電磁弁18bの第2の接続配管
D側接続端とを接続するバイパス路18dの配管途中に
設けられた第7の電磁弁である。Fは、第5〜7の電磁
弁18a〜18cを内蔵した室内バイパス機である。な
お、この空気調和装置は冷媒としてHFCを使うもので
ある。
18a is a fifth solenoid valve provided between the first connecting pipe C and the flow rate regulator 5, and 18b is a second solenoid valve.
Is a sixth solenoid valve provided between the connection pipe D and the use side heat exchanger 6, and 18c is a connection end of the fifth solenoid valve 18a on the first connection pipe C side and a sixth solenoid valve 18b. It is a seventh electromagnetic valve provided in the middle of the piping of the bypass passage 18d that connects the second connection piping D side connection end. F is an indoor bypass machine having built-in fifth to seventh electromagnetic valves 18a to 18c. This air conditioner uses HFC as a refrigerant.

【0125】次に、CFCやHCFCを使った空気調和
装置が老朽化した場合の、空気調和装置交換の手順を示
す。CFCまたはHCFCを回収し、熱源機Aと室内機
Bを図9に示すものと交換する。第1の接続配管Cと第
2の接続配管DはHCFCを使った空気調和装置のもの
を再利用する。第3の接続配管CCと第4の接続配管D
Dは新規に敷設する。洗浄機Eを、第5、第6の操作弁
17c、17dを介して第3の接続配管CCに、かつ、
第7、第8の操作弁17e、17fを介して第4の接続
配管DDに接続する。第1の接続配管C、第2の接続配
管Dを室内バイパス機Fを介して室内機Bに接続する。
Next, the procedure of air conditioner replacement when the air conditioner using CFC or HCFC is deteriorated will be described. The CFC or HCFC is collected, and the heat source unit A and the indoor unit B are replaced with those shown in FIG. As the first connecting pipe C and the second connecting pipe D, those of the air conditioner using the HCFC are reused. Third connection pipe CC and fourth connection pipe D
D will be newly installed. The washing machine E is connected to the third connection pipe CC via the fifth and sixth operation valves 17c and 17d, and
It is connected to the fourth connection pipe DD via the seventh and eighth operation valves 17e and 17f. The first connecting pipe C and the second connecting pipe D are connected to the indoor unit B via the indoor bypass unit F.

【0126】熱源機Aには予めHFCが充填されている
ので、第1の操作弁4と第2の操作弁7は閉じたまま、
室内機B、第1の接続配管C、第2の接続配管D、第3
の接続配管CC、第4の接続配管DD、洗浄機E、室内
バイパス機Fを接続状態で真空引きをし、その後第1の
操作弁4と第2の操作弁7の開弁とHFCの追加充填を
実施する。
Since the heat source unit A is preliminarily filled with HFC, the first operation valve 4 and the second operation valve 7 remain closed,
Indoor unit B, first connection pipe C, second connection pipe D, third
Of the connection pipe CC, the fourth connection pipe DD, the washing machine E, and the indoor bypass machine F are connected to each other, and then the first operation valve 4 and the second operation valve 7 are opened and HFC is added. Perform filling.

【0127】その後、まず、第3,第4の操作弁17
a,17bを閉弁し、第4〜第8の操作弁17c〜17
fを開弁し、第5,6の電磁弁18a,18bを閉弁
し、第7の電磁弁18cを開弁することで洗浄運転を実
施する。その後、第3,第4の操作弁17a,17bを
開弁し、第4〜第8の操作弁17c〜17fを閉弁し、
第5,6の電磁弁18a,18bを開弁し、第7の電磁
弁18cを閉弁することで通常の空調運転を実施する。
Then, first, the third and fourth operation valves 17
a, 17b are closed, and the 4th-8th operation valves 17c-17
The cleaning operation is performed by opening f, closing the fifth and sixth electromagnetic valves 18a and 18b, and opening the seventh electromagnetic valve 18c. After that, the third and fourth operation valves 17a and 17b are opened, and the fourth to eighth operation valves 17c to 17f are closed.
Normal air conditioning operation is performed by opening the fifth and sixth electromagnetic valves 18a and 18b and closing the seventh electromagnetic valve 18c.

【0128】次に、洗浄運転の内容を図9に添って説明
する。図中、実線矢印が冷房洗浄運転の流れを、破線矢
印が暖房洗浄運転の流れを示す。まず冷房洗浄運転につ
いて説明する。圧縮機1で圧縮された高温高圧のガス冷
媒はHFC用冷凍機油と共に圧縮機1を吐出され、四方
弁2を経て、熱源機側熱交換器3へと流入し、ここで空
気・水など熱源媒体と熱交換せずに通過し、第1の操作
弁4、第5の操作弁17c、第1の切換弁10を経て油
分離器9へ流入する。
Next, the contents of the cleaning operation will be described with reference to FIG. In the figure, the solid line arrow shows the flow of the cooling cleaning operation, and the broken line arrow shows the flow of the heating cleaning operation. First, the cooling cleaning operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigerating machine oil, passes through the four-way valve 2 and flows into the heat source side heat exchanger 3, where a heat source such as air and water is supplied. It passes through without heat exchange with the medium and flows into the oil separator 9 via the first operation valve 4, the fifth operation valve 17c, and the first switching valve 10.

【0129】ここで、HFC用の冷凍機油は完全に分離
され、ガス冷媒のみが、冷却手段12aに流入し、ここ
で凝縮液化して、第2の流量制御手段16で少し減圧さ
れて気液二相状態となる。この気液二相状態の冷媒は第
2の切換弁11、第6の操作弁17dを経て第1の接続
配管Cに流入する。
Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a where it is condensed and liquefied, and is slightly decompressed by the second flow rate control means 16 to be gas-liquid. It becomes a two-phase state. The refrigerant in the gas-liquid two-phase state flows into the first connection pipe C via the second switching valve 11 and the sixth operation valve 17d.

【0130】HFCの気液二相冷媒が第1の接続配管C
を流れるときに、第1の接続配管Cに残留しているCF
C・HCFC・鉱油・鉱油劣化物(以下残留異物と称す
る)を気液二相状態のため比較的速く洗浄してHFCの
気液二相冷媒と共に流れ、第7の電磁弁18cを経て、
接続配管Cの残留異物と共に第2の接続配管Dに流入す
る。
The HFC gas-liquid two-phase refrigerant is the first connecting pipe C.
CF remaining in the first connecting pipe C when flowing through
C / HCFC / mineral oil / mineral oil deteriorated matter (hereinafter referred to as residual foreign matter) is washed relatively quickly because of the gas-liquid two-phase state, and flows together with the HFC gas-liquid two-phase refrigerant, and passes through the seventh solenoid valve 18c,
The residual foreign matter in the connection pipe C flows into the second connection pipe D.

【0131】第2の接続配管Dに残留している残留異物
は、ここを流れる冷媒が気液二相状態のため、流速も速
く、かつ液冷媒と共に、残留異物は洗浄され、比較的速
い速度で洗浄される。その後、気液二相状態の冷媒は、
第1の接続配管Cの残留異物と第2の接続配管Dの残留
異物と共に、第8の操作弁17f、第2の切換弁11を
経て、第1の流量制御手段15で低圧まで減圧されて、
加熱手段12bへ流入し、ここで蒸発・ガス化され、異
物捕捉手段13へ流入する。
The residual foreign matter remaining in the second connecting pipe D has a high flow velocity because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the residual foreign matter is washed with the liquid refrigerant, resulting in a relatively high speed. To be washed. Then, the refrigerant in the gas-liquid two-phase state,
Along with the residual foreign matter in the first connecting pipe C and the residual foreign matter in the second connecting pipe D, the pressure is reduced to a low pressure by the first flow rate control means 15 via the eighth operation valve 17f and the second switching valve 11. ,
It flows into the heating means 12b, where it is vaporized and gasified, and then flows into the foreign matter capturing means 13.

【0132】残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。異物捕捉手段13では、固体異物と液体異物は完全
にガス冷媒と分離・捕捉される。気体異物はその一部が
捕捉され、一部は捕捉されない。
The residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gaseous foreign matter. The foreign matter capturing means 13 completely separates and captures the solid foreign matter and the liquid foreign matter from the gas refrigerant. Part of the foreign gas is captured, and part is not captured.

【0133】その後ガス冷媒は、異物捕捉手段13で捕
捉されなかった気体異物と共に第1の切換弁10、第7
の操作弁17e、第2の操作弁7、四方弁2、アキュム
レ−タ8を経て圧縮機1へ戻る。油分離器9で、ガス冷
媒と完全に分離されたHFC用冷凍機油は、バイパス路
9aを経て、異物捕捉手段13の下流側で本流と合流し
て、圧縮機1へ戻るので、第1の接続配管Cや第2の接
続配管Dに残留したいた鉱油と混ざることはなく、HF
C用冷凍機油はHFCに対して非相溶化することはな
く、またHFC用冷凍機油は鉱油により劣化することは
ない。
After that, the gas refrigerant together with the gas foreign matters not captured by the foreign matter capturing means 13 are the first switching valve 10 and the seventh switching valve.
The operation valve 17e, the second operation valve 7, the four-way valve 2, and the accumulator 8 are returned to the compressor 1. The HFC refrigerating machine oil that has been completely separated from the gas refrigerant in the oil separator 9 merges with the mainstream on the downstream side of the foreign matter capturing means 13 through the bypass 9a, and returns to the compressor 1. It does not mix with the mineral oil remaining in the connection pipe C and the second connection pipe D, and HF
The C refrigerating machine oil is not incompatible with HFC, and the HFC refrigerating machine oil is not deteriorated by mineral oil.

【0134】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その一例を図2に示す。異物捕捉手段13を1
回通る間に捕捉されなかった、気体異物はHFC冷媒の
循環と共に何回も異物捕捉手段13を通るので、HFC
用冷凍機油の劣化するよりも速く、異物捕捉手段13で
捕捉すればよい。
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. The HFC refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gas foreign matter is captured while passing through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gas foreign matter are mixed. Deterioration of HFC refrigeration oil is a chemical reaction and does not proceed rapidly. An example thereof is shown in FIG. Foreign matter capturing means 13
The foreign gas that has not been captured while passing through the HFC refrigerant passes through the foreign material capturing means 13 many times as the HFC refrigerant circulates.
The foreign matter catching means 13 may catch the refrigerating machine oil faster than it deteriorates.

【0135】次に暖房洗浄運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒はHFC用冷凍機
油と共に圧縮機1を吐出され、四方弁2、第2の操作弁
7、第7の操作弁17e、第1の切換弁10を経て油分
離器9へ流入する。ここで、HFC用の冷凍機油は完全
に分離され、ガス冷媒のみが冷却手段12aへ流入す
る。ここで、ガス冷媒は冷却され、凝縮・液化する。
Next, the flow of the heating and cleaning operation will be described. The high-temperature high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1 together with the HFC refrigeration oil, and the four-way valve 2, the second operation valve 7, the seventh operation valve 17e, and the first switching valve 10 are discharged. After that, it flows into the oil separator 9. Here, the refrigerating machine oil for HFC is completely separated, and only the gas refrigerant flows into the cooling means 12a. Here, the gas refrigerant is cooled and condensed / liquefied.

【0136】凝縮・液化された液冷媒は、第2の流量制
御手段16で少し減圧され、気液二相状態となり、第2
の切換弁11、第8の操作弁17fを経て第2の接続配
管Dへ流入する。第2の接続配管に残留している残留異
物は、ここを流れる冷媒が気液二相状態のため、流速も
速く、かつ液冷媒と共に、残留異物は洗浄され、比較的
速い速度で洗浄される。
The condensed and liquefied liquid refrigerant is slightly decompressed by the second flow rate control means 16 to be in a gas-liquid two-phase state,
Through the switching valve 11 and the eighth operation valve 17f, and flows into the second connection pipe D. The residual foreign matter remaining in the second connection pipe has a high flow velocity because the refrigerant flowing therethrough is in a gas-liquid two-phase state, and the residual foreign matter is washed with the liquid refrigerant and is washed at a relatively high speed. .

【0137】その後、その気液二相冷媒は、第2の接続
配管Dの残留異物と共に、第7の電磁弁18cを経て、
第1の接続配管Cに流入する。ここでは、気液二相状態
のため、流速も速く、かつ液冷媒と共に、残留異物は洗
浄され、比較的速い速度で洗浄される。
Then, the gas-liquid two-phase refrigerant passes through the seventh electromagnetic valve 18c together with the residual foreign matter in the second connecting pipe D,
It flows into the first connection pipe C. Here, because of the gas-liquid two-phase state, the flow velocity is high, and the residual foreign matter is washed with the liquid refrigerant, and is washed at a relatively high speed.

【0138】第2の接続配管Dと第1の接続配管Cから
洗浄された残留異物と共に、気液二相状態の冷媒は、第
6の操作弁17d、第2の切換弁11を経て、第1の流
量制御手段15で低圧まで減圧されて、加熱手段12b
へ流入し、ここで蒸発・ガス化され、異物捕捉手段13
へ流入する。残留異物は、沸点の違いにより相が異な
り、固体異物・液体異物・気体異物の3種類に分類され
る。
The refrigerant in the gas-liquid two-phase state, together with the residual foreign matter washed from the second connecting pipe D and the first connecting pipe C, passes through the sixth operating valve 17d and the second switching valve 11, The flow rate control means 15 of No. 1 reduces the pressure to a low pressure, and the heating means 12b
Flowing in, where it is vaporized and gasified, and foreign matter capturing means 13
Flow into. The residual foreign matter has different phases depending on the boiling point, and is classified into three types: solid foreign matter, liquid foreign matter, and gas foreign matter.

【0139】異物捕捉手段13では、固体異物と液体異
物は完全にガス冷媒と分離・捕捉される。気体異物はそ
の一部が捕捉され、一部は捕捉されない。その後ガス冷
媒は、異物捕捉手段13で捕捉されなかった気体異物と
共に、第1の切換弁10、第5の操作弁17cを経て、
熱源機側熱交換器3へ流入し、ここでは送風機などを停
止して熱交換させずに通過させ、アキュムレ−タ8を経
て圧縮機1へ戻る。
The foreign matter capturing means 13 completely separates and captures the solid foreign matter and the liquid foreign matter from the gas refrigerant. Part of the foreign gas is captured, and part is not captured. After that, the gas refrigerant passes through the first switching valve 10 and the fifth operation valve 17c together with the gas foreign matter not captured by the foreign matter capturing means 13,
The heat flows into the heat source side heat exchanger 3, where the blower or the like is stopped to pass without heat exchange, and returns to the compressor 1 via the accumulator 8.

【0140】油分離器9で、ガス冷媒と完全に分離され
たHFC用冷凍機油は、バイパス路9aを経て、異物捕
捉手段13の下流側で本流と合流して、圧縮機1へ戻る
ので、第1の接続配管Cや第2の接続配管Dに残留して
いた鉱油と混ざることはなく、HFC用冷凍機油はHF
Cに対して非相溶化することはなく、またHFC用冷凍
機油は鉱油により劣化することはない。
The HFC refrigerating machine oil completely separated from the gas refrigerant in the oil separator 9 merges with the main stream on the downstream side of the foreign matter capturing means 13 through the bypass 9a, and returns to the compressor 1. Refrigerating machine oil for HFC does not mix with the mineral oil remaining in the first connecting pipe C and the second connecting pipe D, and is HF.
It does not become incompatible with C, and the HFC refrigerating machine oil is not deteriorated by mineral oil.

【0141】また、固形異物もHFC用冷凍機油と混合
することはなく、HFC用冷凍機油は劣化しない。ま
た、気体異物はHFC冷媒が冷媒回路を1サイクル循環
して、異物捕捉手段13を1回通る間には一部が捕捉さ
れるだけで、HFC用冷凍機油と気体異物は混合される
が、HFC用冷凍機油の劣化は化学反応で、急激には進
まない。その一例を図2に示す。異物捕捉手段13を1
回通る間に捕捉されなかった気体異物は、HFC冷媒の
循環と共に何回も異物捕捉手段13を通るので、HFC
用冷凍機油の劣化するよりも速く、異物捕捉手段13で
捕捉すればよい。異物捕捉手段13、油分離器9は、実
施の形態1に示すものと全く同一のため、ここでは説明
を省略する。
Further, solid foreign matters are not mixed with the HFC refrigerating machine oil, and the HFC refrigerating machine oil does not deteriorate. The HFC refrigerant circulates through the refrigerant circuit for one cycle, and only a part of the gas foreign matter is captured while passing through the foreign matter capturing means 13 once, and the HFC refrigerating machine oil and the gas foreign matter are mixed. Deterioration of HFC refrigeration oil is a chemical reaction and does not proceed rapidly. An example thereof is shown in FIG. Foreign matter capturing means 13
The foreign gas that has not been captured while passing through the HFC refrigerant passes through the foreign material capturing means 13 many times as the HFC refrigerant circulates.
The foreign matter catching means 13 may catch the refrigerating machine oil faster than it deteriorates. Since the foreign matter capturing means 13 and the oil separator 9 are exactly the same as those shown in the first embodiment, the description thereof is omitted here.

【0142】次に、通常空調運転について、図10に添
って説明する。図中、実線矢印が冷房通常運転の流れ
を、破線矢印が暖房通常運転の流れを示す。まず冷房通
常運転について説明する。圧縮機1で圧縮された高温高
圧のガス冷媒は圧縮機1を吐出され、四方弁2を経て、
熱源機側熱交換器3へと流入し、ここで空気・水など熱
源媒体と熱交換器して凝縮液化する。凝縮液化した冷媒
は、第1の操作弁4、第3の操作弁17a、第1の接続
配管C、第5の電磁弁18aを経て、流量調整器5へ流
入し、ここで低圧まで減圧されて低圧二相状態となり、
利用側熱交換器6で空気などの利用側媒体と熱交換して
蒸発・ガス化する。
Next, the normal air conditioning operation will be described with reference to FIG. In the figure, the solid line arrow indicates the flow of the normal cooling operation, and the broken line arrow indicates the flow of the normal heating operation. First, the normal cooling operation will be described. The high-temperature high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, passes through the four-way valve 2,
It flows into the heat source unit side heat exchanger 3, where it is condensed with the heat source medium such as air and water by a heat exchanger. The condensed and liquefied refrigerant flows into the flow rate regulator 5 through the first operation valve 4, the third operation valve 17a, the first connection pipe C, and the fifth electromagnetic valve 18a, and is depressurized to a low pressure here. Becomes a low-pressure two-phase state,
The use side heat exchanger 6 exchanges heat with a use side medium such as air to evaporate and gasify.

【0143】蒸発・ガス化した冷媒は、第6の電磁弁1
8b、第2の接続配管D、第4の操作弁17b、第2の
操作弁7、四方弁2、アキュムレ−タ8を経て圧縮機1
へ戻る。第5〜8の操作弁17c〜17fは閉じられて
いるので、異物捕捉手段13は閉鎖空間として隔離され
ているので、洗浄運転中に捕捉した異物が、再び運転回
路中に戻ることがない。また、実施の形態1と比べる
と、異物捕捉手段13を経由しないため、圧縮機1の吸
入圧力損失が小さく、能力の低下が小さい。
The evaporated and gasified refrigerant is used for the sixth solenoid valve 1
8b, the second connection pipe D, the fourth operation valve 17b, the second operation valve 7, the four-way valve 2, the accumulator 8 and the compressor 1
Return to. Since the fifth to eighth operation valves 17c to 17f are closed, the foreign matter capturing means 13 is isolated as a closed space, so that the foreign matter captured during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not used, the suction pressure loss of the compressor 1 is small and the reduction in capacity is small.

【0144】次に暖房通常運転の流れを説明する。圧縮
機1で圧縮された高温高圧のガス冷媒は、圧縮機1を吐
出され、四方弁2を経て、第2の操作弁7に流入し、第
4の操作弁17b、第2の接続配管D、第6の電磁弁1
8bを経て、利用側側熱交換器6へと流入し、ここで空
気など利用側媒体と熱交換器して凝縮液化する。
Next, the flow of the normal heating operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is discharged from the compressor 1, passes through the four-way valve 2 and flows into the second operation valve 7, the fourth operation valve 17b, and the second connection pipe D. , 6th solenoid valve 1
After passing through 8b, it flows into the use side heat exchanger 6, where it is heat-exchanged with the use side medium such as air to be condensed and liquefied.

【0145】凝縮液化した冷媒は、流量調整器5へ流入
し、ここで低圧まで減圧されて低圧二相状態となり、第
5の電磁弁18a、第1の接続配管C、第3の操作弁1
7a、第1の操作弁4、熱源機側熱交換器3へ流入し、
ここで空気・水などの熱源媒体と熱交換して蒸発・ガス
化する。蒸発・ガス化した冷媒は、四方弁2、アキュム
レ−タ8を経て圧縮機1へ戻る。
The condensed and liquefied refrigerant flows into the flow rate controller 5, where it is decompressed to a low pressure and becomes a low-pressure two-phase state, and the fifth solenoid valve 18a, the first connecting pipe C, and the third operating valve 1 are connected.
7a, the first operation valve 4, the heat source side heat exchanger 3 flows in,
Here, heat is exchanged with a heat source medium such as air and water to evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 via the four-way valve 2 and the accumulator 8.

【0146】第5〜8の操作弁17c〜17fは閉じら
れているので、異物捕捉手段13は閉鎖空間として隔離
されているので、洗浄運転中に捕捉した異物が、再び運
転回路中に戻ることがない。また、実施の形態1と比べ
ると、異物捕捉手段13を経由しないため、圧縮機1の
吸入圧力損失が小さく、能力の低下が小さい。また、実
施の形態2と違って、冷却手段12aへは冷媒が流れな
いので、暖房能力のロスもない。
Since the fifth to eighth operation valves 17c to 17f are closed, the foreign matter capturing means 13 is isolated as a closed space, so that the foreign matter captured during the cleaning operation returns to the operation circuit again. There is no. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not used, the suction pressure loss of the compressor 1 is small and the reduction in capacity is small. Further, unlike the second embodiment, since the refrigerant does not flow to the cooling means 12a, there is no loss of heating capacity.

【0147】以上のように、油分離器9と異物捕捉手段
13を洗浄機Eに内蔵することで、熱源機Aと室内機B
のみを新規に交換し、第1の接続配管Cと第2の接続配
管Dを交換しないで、老朽化したCFCまたはHCFC
を用いた空気調和装置を新しいHFCを用いた空気調和
装置に入れ替えることができる。このような方法によ
り、既設配管再利用方法として、従来の洗浄方法1とは
違って、洗浄装置を用いて専用の洗浄液(HCFC14
1bやHCFC225)で洗浄するということをしない
ので、オゾン層破壊の可能性は全く無く、また可燃性・
毒性も皆無で、洗浄液残留の懸念も無く、洗浄液を回収
する必要も無い。
As described above, by incorporating the oil separator 9 and the foreign matter capturing means 13 in the cleaning machine E, the heat source machine A and the indoor machine B
CFC or HCFC that has deteriorated over time without replacing only the first connecting pipe C and the second connecting pipe D with a new one.
The air conditioner using HFC can be replaced with a new air conditioner using HFC. By such a method, unlike the conventional cleaning method 1 as a method for reusing existing pipes, a cleaning liquid (HCFC14
1b and HCFC225) are not used, so there is no possibility of ozone layer depletion and flammability.
There is no toxicity, there is no concern about residual cleaning liquid, and there is no need to collect cleaning liquid.

【0148】また、従来の洗浄方法2と違って、洗浄運
転を3回繰り返してHFC冷媒やHFC冷凍機油を3回
入れ替える必要がないため、必要なHFCや冷凍機油は
1台分で済むためコスト・環境上有利である。また、交
換用冷凍機油の管理も不要で、かつ冷凍機油過不足の危
険性も全く発生しない。また、HFC用冷凍機油の非相
溶化や冷凍機油の劣化の恐れも無い。
Further, unlike the conventional cleaning method 2, it is not necessary to repeat the cleaning operation 3 times to replace the HFC refrigerant or the HFC refrigerating machine oil 3 times, so that only one HFC or refrigerating machine oil is required and the cost is reduced.・ Environmentally advantageous. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no risk of excess or deficiency of the refrigerating machine oil. Further, there is no fear of incompatibility of the HFC refrigerating machine oil or deterioration of the refrigerating machine oil.

【0149】また、第5〜8の操作弁17c〜17fを
設けたことで、洗浄運転時には異物捕捉手段13を通過
して上記に示す洗浄効果を得つつ、洗浄運転後の通常運
転時には、第5〜8の操作弁17c〜17fは閉じて、
異物捕捉手段13は閉鎖空間として隔離されているの
で、洗浄運転中に捕捉した異物が、再び運転回路中に戻
ることがない。また、実施の形態1と比べると、異物捕
捉手段13を経由しないため、圧縮機1の吸入圧力損失
が小さく、能力の低下が小さい。
Further, since the fifth to eighth operation valves 17c to 17f are provided, the foreign matter capturing means 13 is passed during the cleaning operation to obtain the above-described cleaning effect, and at the time of the normal operation after the cleaning operation, 5-8 operating valves 17c-17f are closed,
Since the foreign matter capturing means 13 is isolated as a closed space, the foreign matter captured during the cleaning operation does not return to the operation circuit again. Further, as compared with the first embodiment, since the foreign matter capturing means 13 is not used, the suction pressure loss of the compressor 1 is small and the reduction in capacity is small.

【0150】また、冷却却手段12a、加熱手段12
b、第1の切換弁10、第2の切換弁11を設けたの
で、冷房・暖房に関わらず、洗浄運転時に第1の接続配
管C、第2の接続配管Dに液冷媒または気液二相冷媒が
流れるので、残留異物を洗浄するのに、洗浄効果が高
く、洗浄時間を短くすることができる。また、冷却手段
12a、加熱手段12bにより熱交換量を制御できるの
で、外気温度や室内の負荷に関係なく、任意の条件時に
ほぼ同一の洗浄運転が可能で、効果・手間が一定化す
る。
Further, the cooling means 12a and the heating means 12
Since b, the first switching valve 10 and the second switching valve 11 are provided, liquid refrigerant or gas-liquid two is connected to the first connection pipe C and the second connection pipe D during the cleaning operation regardless of cooling / heating. Since the phase refrigerant flows, the cleaning effect is high and the cleaning time can be shortened for cleaning the residual foreign matter. Further, since the amount of heat exchange can be controlled by the cooling means 12a and the heating means 12b, almost the same cleaning operation can be performed under any condition regardless of the outside air temperature or the load inside the room, and the effect and time can be made constant.

【0151】また、第1の流量制御手段15と第2の流
量制御手段16を設けたので、第1、第2の接続配管
C,Dを流れる冷媒を必ず気液二相状態とすることがで
きるので、さらに残留異物を洗浄するのに、洗浄効果が
高く、洗浄時間を短くすることができる。また、第1、
第2の接続配管C,Dを流れる気液二相冷媒の圧力と乾
き度も制御できるので、さらに任意の条件時にほぼ同一
の洗浄運転が可能で、効果・手間が一定化する。
Further, since the first flow rate control means 15 and the second flow rate control means 16 are provided, the refrigerant flowing through the first and second connection pipes C and D can always be in the gas-liquid two-phase state. Therefore, the cleaning effect is high and the cleaning time can be shortened for cleaning the residual foreign matter. Also, the first
Since the pressure and dryness of the gas-liquid two-phase refrigerant flowing through the second connection pipes C and D can also be controlled, almost the same cleaning operation can be performed under any condition, and the effect and labor are constant.

【0152】また、室内バイパス機Fを設けたので、第
1、第2の接続配管C,Dを流れる冷媒の状態をほぼ同
じにできるので、均一な洗浄運転が可能で、効果・手間
が一定化する。また、残留異物が新しい室内機Bに流入
することがないので、室内機Bの汚染を防ぐことができ
る。
Further, since the indoor bypass machine F is provided, the states of the refrigerants flowing through the first and second connecting pipes C and D can be made almost the same, so that uniform cleaning operation is possible and the effect and time are constant. Turn into. Moreover, since the residual foreign matter does not flow into the new indoor unit B, the indoor unit B can be prevented from being contaminated.

【0153】また、油分離器9、バイパス路9a、冷却
手段12a、加熱手段12b、異物捕捉手段13、第1
の切換弁10、上記第2の切換弁11、第1の流量制御
手段15、第2の流量制御手段16を洗浄機Eに内蔵し
たので、熱源機Aを小型化・低コスト化できる。また、
熱源機Aは、第1,第2の接続配管C,Dを新規に敷設
する場合にも共通の熱源機とすることができる。
Further, the oil separator 9, the bypass 9a, the cooling means 12a, the heating means 12b, the foreign matter capturing means 13, the first
Since the switching valve 10, the second switching valve 11, the first flow rate control means 15, and the second flow rate control means 16 are built in the cleaning machine E, the heat source machine A can be downsized and the cost can be reduced. Also,
The heat source device A can be a common heat source device even when the first and second connecting pipes C and D are newly installed.

【0154】また、洗浄機Eが第5〜第8の操作弁17
c〜17fの部分で全体の空気調和装置から脱着可能に
接続されているので、洗浄運転後にこれら操作弁を閉じ
てから洗浄機Eの内部の冷媒を回収し、空気調和装置か
ら取り外し、別の同様の空気調和装置に取り付けて、洗
浄運転を実施することができる。
Further, the washing machine E has the fifth to eighth operation valves 17
Since the parts c to 17f are detachably connected to the entire air conditioner, after closing the operation valves after the washing operation, the refrigerant inside the washer E is recovered, removed from the air conditioner, and removed. The cleaning operation can be performed by mounting the air conditioner on the same air conditioner.

【0155】この実施の形態では、室内機Bが1台接続
された例について説明したが、室内機Bが並列または直
列に複数台接続された空気調和装置でも同様の効果を奏
することは言うまでもない。また、熱源機側熱交換器3
と直列または並列に氷蓄熱槽や水蓄熱槽(湯を含む)が
設置されていても同様の効果を奏することは明らかであ
る。
In this embodiment, an example in which one indoor unit B is connected has been described, but it goes without saying that an air conditioner in which a plurality of indoor units B are connected in parallel or in series produces the same effect. . Also, the heat source side heat exchanger 3
Even if an ice heat storage tank or a water heat storage tank (including hot water) is installed in series or in parallel with, it is clear that the same effect can be obtained.

【0156】また、熱源機Aが複数台並列に接続された
空気調和装置においても同様の効果を奏することは明ら
かである。また、空気調和装置に限らず、蒸気圧縮式の
冷凍サイクル応用品で、熱源機側熱交換器が内蔵された
ユニットと利用側熱交換器が内蔵されたユニットが離れ
て設置されるものであれば、同様の効果を奏することは
明らかである。また、この実施の形態では、洗浄機Eは
ひとつの空気調和装置に1個だけ設置されているが、複
数個設置されても同様の効果を呈することは明白であ
る。
Further, it is apparent that the same effect can be obtained in an air conditioner in which a plurality of heat source units A are connected in parallel. Not only the air conditioner but also a vapor compression type refrigeration cycle applied product in which the unit containing the heat source side heat exchanger and the unit containing the use side heat exchanger are installed separately. For example, it is clear that the same effect is achieved. Further, in this embodiment, only one washing machine E is installed in one air conditioner, but it is obvious that the same effect can be obtained even if a plurality of washing machines E are installed.

【0157】実施の形態4.この発明の実施の形態4に
おいては、実施の形態3の図9において、洗浄機Eの油
分離器9と第2の切換弁11の間に、鉱油を注入する注
入口を設けるか、鉱油のタンクを設ける。洗浄運転時
に、この鉱油を第1、第2の接続配管C,Dに供給し、
冷凍機油がスラッジ化した残留異物をこの鉱油に溶解さ
せることで、洗浄し、異物捕捉手段13で、実施の形態
3と同様に捕捉させる。
Fourth Embodiment In Embodiment 4 of the present invention, in FIG. 9 of Embodiment 3, an inlet for injecting mineral oil is provided between the oil separator 9 and the second switching valve 11 of the washing machine E, or Provide a tank. During the washing operation, this mineral oil is supplied to the first and second connecting pipes C and D,
The residual foreign matter in which the refrigerating machine oil has sludged is dissolved in this mineral oil for cleaning, and the foreign matter capturing means 13 captures the foreign matter in the same manner as in the third embodiment.

【0158】実施の形態5.この発明の実施の形態5に
おいては、実施の形態3の図9において、洗浄機Eの油
分離器9と第2の切換弁11の間に、水を注入する注入
口を設けるか、水のタンクを設ける。洗浄運転時に、こ
の水を第1、第2の接続配管C,Dに供給し、塩化鉄を
イオン化させることで、洗浄し、異物捕捉手段13で、
実施の形態3と同様に捕捉させる。このときの水分のう
ち、低圧冷媒に過飽和分は液体水分となるが、この水分
は鉱油より密度が大きいので、異物捕捉手段13の底部
に滞留する。低圧冷媒に飽和した水分は、熱源機Aまた
は第1、第2、第3、第4の接続配管C,D,CC,D
Dのいずれかにドライヤ(水分吸着手段)を設けること
で、ドライヤに吸着させ、冷媒回路内の水分を低減させ
ることができる。
Embodiment 5. FIG. In the fifth embodiment of the present invention, in FIG. 9 of the third embodiment, an injection port for injecting water is provided between the oil separator 9 and the second switching valve 11 of the washing machine E, or water is injected. Provide a tank. During the cleaning operation, this water is supplied to the first and second connecting pipes C and D to ionize the iron chloride for cleaning, and the foreign matter capturing means 13
It is captured as in the third embodiment. Of the water at this time, the supersaturated portion of the low-pressure refrigerant becomes liquid water, but since this water has a higher density than mineral oil, it stays at the bottom of the foreign matter capturing means 13. Moisture saturated with the low-pressure refrigerant is the heat source unit A or the first, second, third, and fourth connection pipes C, D, CC, D.
By providing a dryer (moisture adsorbing means) on any of D, it is possible to adsorb to the dryer and reduce the water content in the refrigerant circuit.

【0159】なお、実施の形態2においても、実施の形
態3で説明したように、室内バイパス機Fを装着するこ
とができる。また、実施の形態5においても、実施の形
態3に類似して、加熱手段12bおよび異物捕捉手段1
3を含む冷媒回路部分(第1のバイパス路)と、冷却手
段12aを含む冷媒回路部分(第2のバイパス路)と
を、冷媒回路本管から閉鎖あるいは分離することができ
る。その他、逐一に例示しないが、この発明は、そのよ
うな組み合わせあるいは変形をも含むものである。
In the second embodiment, as described in the third embodiment, the indoor bypass machine F can be installed. Further, also in the fifth embodiment, similar to the third embodiment, the heating means 12b and the foreign matter capturing means 1 are provided.
The refrigerant circuit portion including 3 (first bypass passage) and the refrigerant circuit portion including the cooling means 12a (second bypass passage) can be closed or separated from the refrigerant circuit main pipe. Although not illustrated one by one, the present invention also includes such combinations or modifications.

【0160】[0160]

【発明の効果】この発明は以上のように構成されている
ので、以下のような効果を奏する。請求項1に記載の発
明によれば、冷房回路において、利用側熱交換器から圧
縮機への冷媒回路に、冷媒中の異物を捕捉する異物捕捉
手段を備えたので、既設の接続配管から洗浄した冷媒中
の固体異物と液体異物を十分に分離して捕捉することが
できる。気体異物は、冷媒が異物捕捉手段を何回か通る
うちに捕捉することができる。請求項に記載の発明に
よれば、冷房回路において、利用側熱交換器からアキュ
ムレータへの冷媒回路に、冷媒中の異物を捕捉する異物
捕捉手段を備えたので、既設の接続配管から洗浄した冷
媒中の固体異物と液体異物を十分に分離して捕捉するこ
とができる。気体異物は、冷媒が異物捕捉手段を何回か
通るうちに捕捉することができる。
Since the present invention is configured as described above, it has the following effects. According to claim 1,
According to Ming, in the cooling circuit, the pressure from the utilization side heat exchanger is
Foreign matter capture to capture foreign matter in the refrigerant in the refrigerant circuit to the compressor
Since it is equipped with a means, in the refrigerant washed from the existing connection pipe
The solid foreign matter and the liquid foreign matter can be sufficiently separated and captured.
it can. In the case of gaseous foreign matter, the refrigerant passes through the foreign matter capturing means several times.
Can be caught out . According to the invention described in claim 2 , in the cooling circuit, the refrigerant circuit from the utilization side heat exchanger to the accumulator is provided with the foreign matter capturing means for capturing the foreign matter in the refrigerant, so that the existing connection pipe is used for cleaning. The solid foreign matter and the liquid foreign matter in the refrigerant can be sufficiently separated and captured. The gaseous foreign matter can be captured while the refrigerant passes through the foreign matter capturing means several times.

【0161】また、請求項に記載の発明によれば、冷
房回路において、利用側熱交換器からアキュムレータへ
の冷媒回路をバイパスする第1バイパス路を設け、冷媒
中の異物を捕捉する異物捕捉手段を備えたので、既設の
接続配管から洗浄した冷媒中の固体異物と液体異物を十
分に分離して捕捉することができる。気体異物は、冷媒
が異物捕捉手段を何回か通るうちに捕捉することができ
る。
According to the third aspect of the present invention, in the cooling circuit, the first bypass passage that bypasses the refrigerant circuit from the heat exchanger on the utilization side to the accumulator is provided to trap foreign matter in the refrigerant. Since the means is provided, the solid foreign matter and the liquid foreign matter in the refrigerant washed from the existing connection pipe can be sufficiently separated and captured. The gaseous foreign matter can be captured while the refrigerant passes through the foreign matter capturing means several times.

【0162】また、請求項に記載の発明によれば、請
求項に記載の発明において、熱源機側熱交換器から流
量調整器への冷媒回路をバイパスする第2バイパス路を
設けて冷媒の冷却手段を備え、さらに、第1バイパス路
の異物捕捉手段の上流側に冷媒の加熱手段を備えた。こ
れにより、既設の接続配管から洗浄した冷媒中の異物を
十分に分離して捕捉することができるうえに、さらに冷
媒の加熱手段と冷却手段とを設けたので、洗浄運転時に
室内機への接続配管に液冷媒または気液二相冷媒が流れ
るので、残留異物を洗浄するのに、洗浄効果が高く、洗
浄時間を短くすることができる。また、加熱手段及び冷
却手段により熱交換量を制御できるので、外気温度や室
内の負荷に関係なく、任意の条件時にほぼ同一の洗浄運
転が可能で、効果・手間が一定化する。
Further, according to the invention described in claim 4 , in the invention described in claim 3 , the second bypass passage for bypassing the refrigerant circuit from the heat source side heat exchanger to the flow rate regulator is provided to provide the refrigerant. And a heating means for the refrigerant on the upstream side of the foreign matter trapping means in the first bypass passage. As a result, foreign matter in the cleaned refrigerant can be sufficiently separated and captured from the existing connection pipe, and further, the heating means and the cooling means for the refrigerant are provided, so that the connection to the indoor unit during the cleaning operation can be achieved. Since the liquid refrigerant or the gas-liquid two-phase refrigerant flows through the pipe, the cleaning effect is high and the cleaning time can be shortened for cleaning the residual foreign matter. Further, since the amount of heat exchange can be controlled by the heating means and the cooling means, almost the same cleaning operation can be performed under any condition regardless of the outside air temperature and the load inside the room, and the effect and labor can be made constant.

【0163】また、請求項に記載の発明によれば、請
求項に記載の発明において、第1バイパス路の加熱手
段の上流側に第1流量制御手段を備え、さらに、第2バ
イパス路の冷却手段の下流側に第2流量制御手段を備え
た。すなわち、熱源機から室内機への接続配管に流入
し、もしくは、室内機への接続配管から流出する冷媒の
流量を制御する流量制御手段を設けた。これにより、室
内機への接続配管を流れる冷媒を必ず気液二相状態とす
ることができるので、さらに残留異物を洗浄するのに洗
浄効果が高く、洗浄時間を短くすることができる。ま
た、接続配管を流れる気液二相冷媒の圧力と乾き度も制
御できるので、さらに任意の条件時にほぼ同一の洗浄運
転が可能で、効果・手間が一定化する。
According to the invention of claim 5 , in the invention of claim 4 , a first flow rate control means is provided on the upstream side of the heating means of the first bypass passage, and further the second bypass passage is provided. The second flow rate control means was provided on the downstream side of the cooling means. That is, the flow rate control means for controlling the flow rate of the refrigerant flowing into the connecting pipe from the heat source unit to the indoor unit or flowing out from the connecting pipe to the indoor unit is provided. As a result, the refrigerant flowing through the connection pipe to the indoor unit can be in a gas-liquid two-phase state without fail, so that the cleaning effect is high for further cleaning the residual foreign matter, and the cleaning time can be shortened. In addition, since the pressure and dryness of the gas-liquid two-phase refrigerant flowing through the connecting pipe can be controlled, more or less the same cleaning operation can be performed under any condition, and the effect and labor are constant.

【0164】[0164]

【0165】[0165]

【0166】また、請求項に記載の発明によれば、請
求項1〜に記載の発明において、圧縮機から熱源機側
熱交換器への冷媒回路に、冷媒の油成分を分離する油分
離手段を備えた。これにより、冷媒回路に異物捕捉手段
を設け、冷媒から異物を十分に分離して捕捉するととも
に、油分離器を設けて、新規冷媒用の冷凍機油を冷媒か
ら十分に分離し、新規の冷凍機油が室内機側に流入する
のを防止することができる。したがって、洗浄した冷媒
中の異物と新規の冷凍機油(例えば、HFC用冷凍機
油)とが、混合することはなく、新規の冷凍機油が劣化
しない。
According to the invention described in claim 6 , in the invention described in claims 1 to 5 , the oil for separating the oil component of the refrigerant is provided in the refrigerant circuit from the compressor to the heat source side heat exchanger. Equipped with a separating means. Thereby, the foreign matter trapping means is provided in the refrigerant circuit to sufficiently separate and trap the foreign matter from the refrigerant, and the oil separator is provided to sufficiently separate the refrigerating machine oil for the new refrigerant from the refrigerant, and thereby the new refrigerating machine oil. Can be prevented from flowing into the indoor unit side. Therefore, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0167】また、請求項に記載の発明によれば、請
求項の発明において、熱源機側熱交換器から流量調整
器への冷媒回路をバイパスする第3バイパス路を設け、
冷媒の油成分を分離する油分離手段を備えた。これによ
り、洗浄機の冷媒回路に異物捕捉手段を設け、冷媒から
異物を十分に分離して捕捉するとともに、油分離器を設
けて、新規冷媒用の冷凍機油を冷媒から十分に分離し、
新規の冷凍機油が室内機側に流入するのを防止できるす
ることができる。したがって、洗浄した冷媒中の異物と
新規の冷凍機油(例えば、HFC用冷凍機油)とが、混
合することはなく、新規の冷凍機油が劣化しない。
Further, according to the invention of claim 7 , in the invention of claim 3 , a third bypass passage for bypassing the refrigerant circuit from the heat source side heat exchanger to the flow rate regulator is provided,
An oil separation means for separating the oil component of the refrigerant was provided. Thereby, the foreign matter trapping means is provided in the refrigerant circuit of the washing machine to sufficiently separate and trap the foreign matter from the refrigerant, and the oil separator is provided to sufficiently separate the refrigerating machine oil for the new refrigerant from the refrigerant,
It is possible to prevent new refrigerating machine oil from flowing into the indoor unit side. Therefore, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0168】また、請求項に記載の発明によれば、請
求項の発明において、第2バイパス路の冷却手段の上
流側に冷媒の油成分を分離する油分離手段を備えた。こ
れにより、冷媒の加熱手段と冷却手段とにより、接続配
管中の異物の洗浄効果をさらにあげるとともに異物の捕
捉効果を上げ、かつ、油分離器により、新規の冷凍機油
が室内機側に流入するのを防止できる。また、洗浄した
冷媒中の異物と新規の冷凍機油(例えば、HFC用冷凍
機油)とが、混合することはなく、新規の冷凍機油が劣
化しない。
Further, according to the invention of claim 8 , in the invention of claim 4 , an oil separating means for separating the oil component of the refrigerant is provided upstream of the cooling means of the second bypass passage. Thereby, the heating means and the cooling means of the refrigerant further enhance the cleaning effect of foreign matter in the connection pipe and enhance the foreign matter capturing effect, and the oil separator allows new refrigerating machine oil to flow into the indoor unit side. Can be prevented. Further, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0169】請求項9に記載の発明によれば、冷房回路
における利用側熱交換器から圧縮機への冷媒回路で、か
つ、暖房回路における熱源機側熱交換器から圧縮機への
冷媒回路に、冷媒中の異物を捕捉する異物捕捉手段を備
えた。これにより、既設の接続配管から洗浄した冷媒中
の固体異物と液体異物を十分に分離して捕捉することが
できる。気体異物は、冷媒が異物捕捉手段を何回か通る
うちに捕捉することができる。請求項10に記載の発明
によれば、冷房回路における利用側熱交換器からアキュ
ムレータへの冷媒回路で、かつ、暖房回路における熱源
機側熱交換器からアキュムレータへの冷媒回路に、冷媒
中の異物を捕捉する異物捕捉手段を備えた。これによ
り、既設の接続配管から洗浄した冷媒中の固体異物と液
体異物を十分に分離して捕捉することができる。気体異
物は、冷媒が異物捕捉手段を何回か通るうちに捕捉する
ことができる。
According to the invention described in claim 9, the cooling circuit
In the refrigerant circuit from the user side heat exchanger to the compressor in
From the heat source side heat exchanger to the compressor in the heating circuit
The refrigerant circuit is equipped with foreign matter capturing means for capturing foreign matter in the refrigerant.
I got it. As a result, in the refrigerant washed from the existing connection pipe
The solid foreign matter and the liquid foreign matter can be sufficiently separated and captured.
it can. In the case of gaseous foreign matter, the refrigerant passes through the foreign matter capturing means several times.
Can be caught out . According to the invention of claim 10, the foreign matter in the refrigerant is in the refrigerant circuit from the utilization side heat exchanger to the accumulator in the cooling circuit and in the refrigerant circuit from the heat source side heat exchanger to the accumulator in the heating circuit. And a foreign matter capturing means for capturing. Thus, the solid foreign matter and the liquid foreign matter in the refrigerant washed from the existing connection pipe can be sufficiently separated and captured. The gaseous foreign matter can be captured while the refrigerant passes through the foreign matter capturing means several times.

【0170】請求項11に記載の発明によれば、冷房回
路における利用側熱交換器からアキュムレータへの冷媒
回路をバイパスし、かつ、暖房回路における流量制御器
から熱源機側熱交換器への冷媒回路をバイパスする第1
バイパス路を設け、冷媒中の異物を捕捉する異物捕捉手
段を備えた。これにより、既設の接続配管から洗浄した
冷媒中の固体異物と液体異物を十分に分離して捕捉する
ことができる。気体異物は、冷媒が異物捕捉手段を何回
か通るうちに捕捉することができる。
According to the eleventh aspect of the invention, the refrigerant circuit from the utilization side heat exchanger to the accumulator in the cooling circuit is bypassed, and the refrigerant from the flow rate controller to the heat source side heat exchanger in the heating circuit is bypassed. First to bypass the circuit
A bypass passage was provided and foreign matter capturing means for capturing foreign matter in the refrigerant was provided. Thus, the solid foreign matter and the liquid foreign matter in the refrigerant washed from the existing connection pipe can be sufficiently separated and captured. The gaseous foreign matter can be captured while the refrigerant passes through the foreign matter capturing means several times.

【0171】請求項12に記載の発明によれば、請求項
11に記載の発明において、冷房回路で熱源機側熱交換
器から流量制御器への冷媒回路をバイパスし、かつ、暖
房回路で圧縮機から利用側熱交換器への冷媒回路をバイ
パスする第2バイパス路を設けて冷媒の冷却手段を備
え、さらに、第1バイパス路の異物捕捉手段の上流側に
冷媒の加熱手段を備えた。これにより、既設の接続配管
から洗浄した冷媒中の異物を十分に分離して捕捉するこ
とができるうえに、さらに冷媒の加熱手段と冷却手段と
を設けたので、冷房・暖房に関わらず、洗浄運転時に室
内機への接続配管に液冷媒または気液二相冷媒が流れる
ので、残留異物を洗浄するのに、洗浄効果が高く、洗浄
時間を短くすることができる。また、加熱手段及び冷却
手段により熱交換量を制御できるので、外気温度や室内
の負荷に関係なく、任意の条件時にほぼ同一の洗浄運転
が可能で、効果・手間が一定化する。
According to the twelfth aspect of the invention, in the eleventh aspect of the invention, the cooling circuit bypasses the refrigerant circuit from the heat source side heat exchanger to the flow rate controller, and the heating circuit compresses the refrigerant circuit. A second bypass path for bypassing the refrigerant circuit from the machine to the utilization side heat exchanger is provided with a cooling means for the refrigerant, and a heating means for the refrigerant is provided on the upstream side of the foreign matter capturing means in the first bypass path. As a result, foreign matter in the refrigerant that has been washed from the existing connection pipe can be sufficiently separated and captured, and further, since the refrigerant heating means and cooling means are provided, cleaning is performed regardless of cooling or heating. Since the liquid refrigerant or the gas-liquid two-phase refrigerant flows through the connecting pipe to the indoor unit during operation, the cleaning effect is high and the cleaning time can be shortened for cleaning the residual foreign matter. Further, since the amount of heat exchange can be controlled by the heating means and the cooling means, almost the same cleaning operation can be performed under any condition regardless of the outside air temperature and the load inside the room, and the effect and labor can be made constant.

【0172】請求項13に記載の発明によれば、請求項
12の発明において、第1バイパス路の加熱手段の上流
側に第1流量制御手段を備え、さらに、第2バイパス路
の冷却手段の下流側に第2流量制御手段を備えた。すな
わち、熱源機から室内機への接続配管に流入し、もしく
は、室内機への接続配管から流出する冷媒の流量を制御
する流量制御手段を設けた。これにより、室内機への接
続配管を流れる冷媒を必ず気液二相状態とすることがで
きるので、さらに残留異物を洗浄するのに洗浄効果が高
く、洗浄時間を短くすることができる。また、接続配管
を流れる気液二相冷媒の圧力と乾き度も制御できるの
で、さらに任意の条件時にほぼ同一の洗浄運転が可能
で、効果・手間が一定化する。
According to the invention of claim 13, in the invention of claim 12, a first flow rate control means is provided on the upstream side of the heating means of the first bypass passage, and further the cooling means of the second bypass passage is provided. The second flow rate control means was provided on the downstream side. That is, the flow rate control means for controlling the flow rate of the refrigerant flowing into the connecting pipe from the heat source unit to the indoor unit or flowing out from the connecting pipe to the indoor unit is provided. As a result, the refrigerant flowing through the connection pipe to the indoor unit can be in a gas-liquid two-phase state without fail, so that the cleaning effect is high for further cleaning the residual foreign matter, and the cleaning time can be shortened. In addition, since the pressure and dryness of the gas-liquid two-phase refrigerant flowing through the connecting pipe can be controlled, more or less the same cleaning operation can be performed under any condition, and the effect and labor are constant.

【0173】[0173]

【0174】[0174]

【0175】請求項14に記載の発明によれば、請求項
9〜13の発明において、冷房回路における圧縮機から
熱源機側熱交換器への冷媒回路で、かつ、暖房回路にお
ける圧縮機から利用側熱交換器への冷媒回路に、冷媒の
油成分を分離する油分離手段を備えた。これにより、冷
媒回路に異物捕捉手段を設け、冷媒から異物を十分に分
離して捕捉するとともに、油分離器を設けて、新規冷媒
用の冷凍機油を冷媒から十分に分離し、新規の冷凍機油
が室内機側に流入するのを防止することができる。した
がって、洗浄した冷媒中の異物と新規の冷凍機油(例え
ば、HFC用冷凍機油)とが、混合することはなく、新
規の冷凍機油が劣化しない。
According to the fourteenth aspect of the invention, in the invention of the ninth to thirteenth aspects, it is used as a refrigerant circuit from the compressor in the cooling circuit to the heat source side heat exchanger and from the compressor in the heating circuit. The refrigerant circuit to the side heat exchanger was equipped with an oil separation means for separating the oil component of the refrigerant. Thereby, the foreign matter trapping means is provided in the refrigerant circuit to sufficiently separate and trap the foreign matter from the refrigerant, and the oil separator is provided to sufficiently separate the refrigerating machine oil for the new refrigerant from the refrigerant, and thereby the new refrigerating machine oil. Can be prevented from flowing into the indoor unit side. Therefore, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0176】請求項15に記載の発明によれば、請求項
12の発明において、冷房回路における圧縮機から熱源
機側熱交換器への冷媒回路で、かつ、暖房回路における
圧縮機から冷却手段への冷媒回路に、冷媒の油成分を分
離する油分離手段を備えた。これにより、冷媒の加熱手
段と冷却手段とにより、接続配管中の異物の洗浄効果を
さらにあげるとともに異物の捕捉効果を上げ、かつ、油
分離器により、新規の冷凍機油が室内機側に流入するの
を防止できる。また、洗浄した冷媒中の異物と新規の冷
凍機油(例えば、HFC用冷凍機油)とが、混合するこ
とはなく、新規の冷凍機油が劣化しない。
According to the fifteenth aspect of the present invention, in the twelfth aspect of the present invention, the refrigerant circuit is from the compressor in the cooling circuit to the heat source side heat exchanger, and the compressor is in the heating circuit from the cooling means. The refrigerant circuit of No. 1 was equipped with an oil separation means for separating the oil component of the refrigerant. Thereby, the heating means and the cooling means of the refrigerant further enhance the cleaning effect of foreign matter in the connection pipe and enhance the foreign matter capturing effect, and the oil separator allows new refrigerating machine oil to flow into the indoor unit side. Can be prevented. Further, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0177】請求項16に記載の発明によれば、請求項
11の発明において、冷房回路で熱源機側熱交換器から
流量制御器への冷媒回路をバイパスし、かつ、暖房回路
で圧縮機から利用側熱交換器への冷媒回路をバイパスす
る第3バイパス路を設け、冷媒の油成分を分離する油分
離手段を備えた。これにより、洗浄機の冷媒回路に異物
捕捉手段を設け、冷媒から異物を十分に分離して捕捉す
るとともに、油分離器を設けて、新規冷媒用の冷凍機油
を冷媒から十分に分離し、新規の冷凍機油が室内機側に
流入するのを防止することができる。したがって、洗浄
した冷媒中の異物と新規の冷凍機油(例えば、HFC用
冷凍機油)とが、混合することはなく、新規の冷凍機油
が劣化しない。
According to the sixteenth aspect of the present invention, in the eleventh aspect of the invention, the cooling circuit bypasses the refrigerant circuit from the heat source side heat exchanger to the flow rate controller, and the heating circuit changes from the compressor. A third bypass passage for bypassing the refrigerant circuit to the heat exchanger on the use side was provided, and an oil separation means for separating the oil component of the refrigerant was provided. Thereby, the foreign matter capturing means is provided in the refrigerant circuit of the washing machine to sufficiently separate and capture the foreign matter from the refrigerant, and the oil separator is provided to sufficiently separate the refrigerating machine oil for the new refrigerant from the refrigerant. It is possible to prevent the refrigerating machine oil from flowing into the indoor unit side. Therefore, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0178】請求項17に記載の発明によれば、請求項
12の発明において、第2バイパス路の冷却手段の上流
側に冷媒の油成分を分離する油分離手段を備えた。これ
により、冷媒の加熱手段と冷却手段とにより、接続配管
中の異物の洗浄効果をさらにあげるとともに異物の捕捉
効果を上げ、かつ、油分離器により、新規の冷凍機油が
室内機側に流入するのを防止できる。また、洗浄した冷
媒中の異物と新規の冷凍機油(例えば、HFC用冷凍機
油)とが、混合することはなく、新規の冷凍機油が劣化
しない。
According to the seventeenth aspect of the invention, in the twelfth aspect of the invention, the oil separating means for separating the oil component of the refrigerant is provided upstream of the cooling means of the second bypass passage. Thereby, the heating means and the cooling means of the refrigerant further enhance the cleaning effect of foreign matter in the connection pipe and enhance the foreign matter capturing effect, and the oil separator allows new refrigerating machine oil to flow into the indoor unit side. Can be prevented. Further, the foreign matter in the cleaned refrigerant and the new refrigerating machine oil (for example, HFC refrigerating machine oil) are not mixed, and the new refrigerating machine oil does not deteriorate.

【0179】請求項18に記載の発明によれば、冷媒が
室内機をバイパスする室内バイパス機を設けたので、室
内機の両側に接続される接続配管を流れる冷媒の状態を
ほぼ同じにできるので、均一な洗浄運転が可能で、効果
・手間が一定化する。また、残留異物が置換された新し
い室内機に流入することがないので、新しい室内機の汚
染を防ぐことができる。
According to the eighteenth aspect of the present invention, since the indoor bypass unit for bypassing the indoor unit with the refrigerant is provided, the states of the refrigerant flowing through the connecting pipes connected to both sides of the indoor unit can be made substantially the same. , Uniform cleaning operation is possible, and the effect and labor are constant. Moreover, since the residual foreign matter does not flow into the replaced new indoor unit, the contamination of the new indoor unit can be prevented.

【0180】請求項19に記載の発明によれば、油分離
手段により分離された油成分を異物捕捉手段より下流側
でアキュムレータに戻す還流路を備えた。これにより、
圧縮機から吐出された冷媒中の冷凍機油(例えば、HF
C用冷凍機油)を、冷媒から分離して、異物を捕捉され
た後の冷媒ともに圧縮機へ戻すので、冷凍機油が接続配
管に残留していた鉱油と混ざることはなく、HFC用冷
凍機油はHFCに対して非相溶化することはない。ま
た、HFC用冷凍機油が鉱油により劣化することはな
い。
According to the nineteenth aspect of the present invention, there is provided the reflux passage for returning the oil component separated by the oil separating means to the accumulator downstream of the foreign matter capturing means. This allows
Refrigerating machine oil (for example, HF) in the refrigerant discharged from the compressor.
(Refrigerating machine oil for C) is separated from the refrigerant and returned to the compressor together with the refrigerant after the foreign matter is captured, so the refrigerating machine oil does not mix with the mineral oil remaining in the connecting pipe, and the HFC refrigerating machine oil is It does not become incompatible with HFC. Further, the HFC refrigerating machine oil is not deteriorated by the mineral oil.

【0181】請求項20に記載の発明によれば、第2バ
イパス路の油分離手段の下流側に冷媒に鉱油を注入する
鉱油注入手段を備えた。これにより、室内機に接続され
た接続配管に流入する冷媒に鉱油を注入することができ
るので、冷凍機油がスラッジ化した接続配管中の残留異
物を、この鉱油に溶解させることで、洗浄し、異物捕捉
手段で、捕捉することができる。
According to the twentieth aspect of the invention, the mineral oil injection means for injecting the mineral oil into the refrigerant is provided on the downstream side of the oil separation means of the second bypass passage. With this, since it is possible to inject mineral oil into the refrigerant flowing into the connection pipe connected to the indoor unit, the residual foreign matter in the connection pipe in which the refrigerating machine oil is sludged is dissolved in this mineral oil for cleaning, It can be captured by the foreign matter capturing means.

【0182】請求項21に記載の発明によれば、第2バ
イパス路の油分離手段の下流側に冷媒に水を注入する水
注入手段を備えた。これにより、室内機に接続された接
続配管に流入する冷媒に水を注入することができるの
で、接続配管中の塩化鉄をイオン化させることで、洗浄
し、異物捕捉手段で捕捉することができる。
According to the twenty-first aspect of the invention, the water injection means for injecting water into the refrigerant is provided on the downstream side of the oil separation means of the second bypass passage. As a result, water can be injected into the refrigerant flowing into the connection pipe connected to the indoor unit, so that iron chloride in the connection pipe can be ionized to clean and to be captured by the foreign matter capturing means.

【0183】請求項22に記載の発明によれば、冷媒回
路に冷媒中の水分を吸着する水分吸着手段を備えた。こ
れにより、塩化鉄の洗浄のために注入して過飽和になっ
た水分を吸着し低減させることができる。
According to the twenty-second aspect of the invention, the refrigerant circuit is provided with the water adsorption means for adsorbing the water in the refrigerant. As a result, it is possible to adsorb and reduce water that has been supersaturated by pouring for cleaning iron chloride.

【0184】請求項23に記載の発明によれば、異物捕
捉手段により、冷媒の流速を低下させて冷媒中の異物を
分離するようにしたので、冷媒中の異物を分離すること
ができる。
According to the twenty- third aspect of the invention, since the foreign matter capturing means reduces the flow velocity of the refrigerant to separate the foreign matter in the refrigerant, the foreign matter in the refrigerant can be separated.

【0185】請求項24に記載の発明によれば、異物捕
捉手段において、冷媒を鉱油中に通すことにより、冷媒
中の異物を捕捉することができる。
According to the twenty-fourth aspect of the present invention, the foreign matter trapping means can trap the foreign matter in the refrigerant by passing the refrigerant through the mineral oil.

【0186】請求項25に記載の発明によれば、異物捕
捉手段において、冷媒を鉱油中に通すことにより、冷媒
中のCFC及びHCFCを溶解し捕捉することができ
る。
[0186] According to the invention described in claim 25, in the extraneous matter catching means, by passing the refrigerant in mineral oil, it is a Turkey be captured by dissolving CFC and HCFC in the refrigerant.

【0187】請求項26に記載の発明によれば、異物捕
捉手段において、冷媒をフィルタに通すことにより、冷
媒中の異物を捕捉することができる。
According to the twenty-sixth aspect of the invention, the foreign matter in the refrigerant can be trapped by passing the refrigerant through the filter in the foreign matter catching means.

【0188】請求項27に記載の発明によれば、異物捕
捉手段において、冷媒をイオン交換樹脂に通すことによ
り、冷媒中の塩素イオンを捕捉することができる。
According to the twenty-seventh aspect of the invention, in the foreign matter capturing means, the chlorine ions in the refrigerant can be captured by passing the refrigerant through the ion exchange resin.

【0189】請求項28に記載の発明によれば、第1バ
イパス路、第2バイパス路、及び第3バイパス路を冷媒
回路から切り離し自在に設けた。これにより、異物捕捉
手段を含むバイパス路の部分を冷媒配管の本管と分離す
ることができ、洗浄運転後はバイパス路を閉じて、通常
運転をすることができる。したがって、洗浄運転中に捕
捉した異物が、再び運転回路中に戻ることがない。ま
た、異物捕捉手段を経由しないため、圧縮機の吸入圧力
損失が小さく、能力の低下が小さい。また、バイパス路
に油分離器と異物捕捉手段とを含んで洗浄機を構成した
場合には、洗浄機の部分を、冷媒配管の本管と分離する
ことができ、洗浄運転後は洗浄機を閉じて、通常運転を
することができる。さらに、洗浄機を冷凍サイクル装置
の全体から切り離し、脱着可能に接続できるので、洗浄
運転後に洗浄機取り外すことができる。
According to the twenty-eighth aspect of the invention, the first bypass passage, the second bypass passage, and the third bypass passage are provided so as to be detachable from the refrigerant circuit. As a result, the portion of the bypass passage including the foreign matter capturing means can be separated from the main pipe of the refrigerant pipe, and after the washing operation, the bypass passage can be closed and normal operation can be performed. Therefore, the foreign matter captured during the cleaning operation does not return to the operation circuit again. Further, since the foreign matter capturing means is not used, the suction pressure loss of the compressor is small and the performance is not deteriorated. Further, when the washing machine is configured to include the oil separator and the foreign matter capturing means in the bypass passage, the washing machine portion can be separated from the main pipe of the refrigerant pipe, and the washing machine can be used after the washing operation. Can be closed for normal operation. Furthermore, since the washing machine can be detached from the entire refrigeration cycle apparatus and detachably connected, the washing machine can be removed after the washing operation.

【0190】請求項29〜31の発明によれば、CFC
冷媒やHCFC冷媒で使用していた第1の接続配管と第
2の接続配管を再利用し、第1の接続配管と第2の接続
配管とに残留する鉱油、固形異物及び液体異物、残留異
物等を、流入してきたHFC冷媒中から捕捉する異物捕
捉手段を備えたので、既設の接続配管から洗浄した冷媒
中の鉱油、或いは固体異物と液体異物を十分に分離して
捕捉することができる。気体異物は、冷媒が異物捕捉手
段を何回か通るうちに捕捉することができる
According to the inventions of claims 29 to 31, the CFC
The first connecting pipe and the first connecting pipe used for the refrigerant and HCFC refrigerant
Reuse the second connection pipe, and connect the first connection pipe and the second connection pipe.
Mineral oil, solid foreign matter and liquid foreign matter remaining in the piping
Foreign matter capture that captures things from the inflowing HFC refrigerant
Since it is equipped with a trapping means, the refrigerant washed from the existing connection pipe
Sufficiently separate mineral oil or solid foreign matter from liquid foreign matter
Can be captured. For gaseous foreign matter, the refrigerant is
It can be captured in several passes through the steps .

【0191】請求項32記載の発明によれば、(第1
の冷媒)を用いる既存の冷凍サイクル装置において、機
器を(第2の冷媒)を用いるものに置換し、既存の冷媒
配管を用いて、上記の各発明の冷凍サイクル装置を形成
することができる。これにより、既設の冷媒配管中の異
物を捕捉し、新規の冷凍機油が既設の接続配管に流入し
ないようにして、熱源機と室内機のみを新規に交換し、
熱源機と室内機とを接続する接続配管を交換しないで、
老朽化した旧冷媒(例えば、CFCまたはHCFC)を
用いた冷凍サイクル装置を新しい冷媒(例えば、HF
C)を用いた冷凍サイクル装置に入れ替えることができ
る。また、接続配管を、専用の洗浄液で洗浄するという
ことをしないので、オゾン層破壊の可能性は全く無く、
また可燃性・毒性も皆無で、洗浄液残留の懸念も無く、
洗浄液を回収する必要も無い。また、必要なHFCや冷
凍機油は必要最小限ですむのでコスト・環境上有利であ
る。また、交換用冷凍機油の管理も不要で、かつ冷凍機
油過不足の危険性も全く発生しない。また、HFC用冷
凍機油の非相溶化や冷凍機油の劣化の恐れも無い。
[0191] According to the invention described in claim 32, (first
In the existing refrigeration cycle apparatus using (refrigerant), the device can be replaced with one using (second refrigerant), and the existing refrigerant piping can be used to form the refrigeration cycle apparatus of each of the above inventions. With this, foreign substances in the existing refrigerant pipe are captured, new refrigerating machine oil is prevented from flowing into the existing connecting pipe, and only the heat source unit and the indoor unit are newly replaced,
Do not replace the connection pipe that connects the heat source unit and the indoor unit,
A refrigeration cycle device using an old aging refrigerant (eg, CFC or HCFC) is replaced with a new refrigerant (eg, HF).
It can be replaced with a refrigeration cycle device using C). Also, since the connecting pipe is not washed with a dedicated washing liquid, there is no possibility of ozone layer depletion,
In addition, there is no flammability and toxicity, and there is no concern about residual cleaning liquid.
There is no need to collect the cleaning liquid. In addition, the required HFC and refrigeration oil are minimized, which is advantageous in terms of cost and environment. Further, there is no need to manage the refrigerating machine oil for replacement, and there is no risk of excess or deficiency of the refrigerating machine oil. Further, there is no fear of incompatibility of the HFC refrigerating machine oil or deterioration of the refrigerating machine oil.

【0192】また、請求項33または34に記載の発明
によれば、室外機に内蔵された冷媒配管に、CFC冷媒
やHCFC冷媒で使用していた既設の接続配管に残留し
ていた残留異物を、流入してきたHFC冷媒中から捕捉
する異物捕捉手段を備えたので、既設の接続配管から洗
浄したHFC冷媒中の固体異物と液体異物を十分に分離
して捕捉することができる。また、気体異物は、HFC
冷媒が異物捕捉手段を何回か通るうちに捕捉することが
できる
The invention according to claim 33 or 34
According to the above, the CFC refrigerant is installed in the refrigerant pipe built in the outdoor unit.
And remaining in the existing connection pipe used for HCFC refrigerant.
Trapped residual foreign matter from the flowing HFC refrigerant
Since it is equipped with a foreign matter trapping means, it can be washed from the existing connection pipe.
Sufficiently separates solid foreign substances and liquid foreign substances in the purified HFC refrigerant
Can be captured. In addition, the foreign gas is HFC
If the refrigerant passes through the foreign matter capturing means several times, it may be captured.
I can .

【0193】[0193]

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1による冷凍サイクル
装置の一例として、空気調和装置の冷媒回路を示す図。
FIG. 1 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle device according to Embodiment 1 of the present invention.

【図2】 HFC用冷凍機油に塩素が混入している場合
(175℃)の劣化の時間変化を示す図で。
FIG. 2 is a diagram showing a time change of deterioration when chlorine is mixed in the HFC refrigeration oil (175 ° C.).

【図3】図3は異物捕捉手段13の一例を図示したもの
である。
FIG. 3 illustrates an example of a foreign matter capturing unit 13.

【図4】鉱油とCFCとの溶解度曲線、及び鉱油とHC
FCとの溶解度曲線を示す図。
FIG. 4 is a solubility curve of mineral oil and CFC, and mineral oil and HC.
The figure which shows the solubility curve with FC.

【図5】 油分離器の構造を示す図。FIG. 5 is a diagram showing a structure of an oil separator.

【図6】 油分離器におけるガス冷媒の流速と分離効率
の関係を示す図。
FIG. 6 is a diagram showing the relationship between the flow velocity of gas refrigerant and separation efficiency in an oil separator.

【図7】 この発明の実施の形態2による冷凍サイクル
装置の一例として、空気調和装置の冷媒回路を示す図。
FIG. 7 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle device according to Embodiment 2 of the present invention.

【図8】 この発明の実施の形態2による冷凍サイクル
装置の通常空調運転の状態を示す図。
FIG. 8 is a diagram showing a state of normal air conditioning operation of the refrigeration cycle apparatus according to Embodiment 2 of the present invention.

【図9】 この発明の実施の形態3による冷凍サイクル
装置の一例として、空気調和装置の冷媒回路を示す図。
FIG. 9 is a diagram showing a refrigerant circuit of an air conditioner as an example of a refrigeration cycle device according to a third embodiment of the present invention.

【図10】 この発明の実施の形態3による冷凍サイク
ル装置の通常空調運転の状態を示す図。
FIG. 10 is a diagram showing a state of normal air conditioning operation of the refrigeration cycle apparatus according to Embodiment 3 of the present invention.

【図11】 従来のセパレ−ト形の空気調和装置の冷媒
回路を示す図。
FIG. 11 is a diagram showing a refrigerant circuit of a conventional separate type air conditioner.

【図12】 鉱油混入時のHFC用冷凍機油とHFC冷
媒との溶解性を示す臨界溶解度曲線を示す図。
FIG. 12 is a diagram showing a critical solubility curve showing solubility of HFC refrigerating machine oil and HFC refrigerant when mineral oil is mixed.

【図13】 従来の空気調和装置の洗浄方法を説明する
図。
FIG. 13 is a diagram illustrating a conventional method for cleaning an air conditioner.

【符号の説明】[Explanation of symbols]

A 熱源機、 B 室内機、 C 第1の接続配管、
D 第2の接続配管、E 洗浄機、 CC 第3の接続
配管、 DD 第4の接続配管、 1 圧縮機1、 2
四方弁2、 3 熱源機側熱交換器、 4 第1の操
作弁、 5流量調整器、 6 利用側熱交換器、 7
第2の操作弁、 8 アキュムレ−タ、 9 油分離
器、 10 第1の切換弁、 11 第2の切換弁、
12a 冷却手段、 12b 加熱手段、 13 異
物捕捉手段、 14a〜14d第1〜第4の電磁弁、
15 第1の流量制御手段、 16 第2の流量制御手
段、 17a〜17f 第3〜第8の操作弁、 18a
〜18c 第5〜第7の電磁弁、 51 容器、 52
流出配管、 53 フィルタ、 54 鉱油、 55
流入配管、 56 イオン交換樹脂。
A heat source unit, B indoor unit, C first connection pipe,
D 2nd connection pipe, E Cleaning machine, CC 3rd connection pipe, DD 4th connection pipe, 1 Compressor 1, 2
Four-way valve 2, 3 Heat source side heat exchanger, 4 First operation valve, 5 Flow rate regulator, 6 Use side heat exchanger, 7
2nd operation valve, 8 accumulator, 9 oil separator, 10 1st switching valve, 11 2nd switching valve,
12a cooling means, 12b heating means, 13 foreign matter capturing means, 14a to 14d first to fourth solenoid valves,
15 first flow rate control means, 16 second flow rate control means, 17a to 17f third to eighth operation valves, 18a
-18c 5th-7th electromagnetic valve, 51 container, 52
Outflow piping, 53 filter, 54 mineral oil, 55
Inflow piping, 56 ion exchange resin.

フロントページの続き (56)参考文献 特開 平9−236363(JP,A) 特開 昭58−130967(JP,A) 特開 平5−5580(JP,A) 特開 平9−196518(JP,A) 特開 平7−110179(JP,A) 特開 平8−86519(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 43/00 - 47/00 F25B 1/00 Continuation of the front page (56) Reference JP-A-9-236363 (JP, A) JP-A-58-130967 (JP, A) JP-A-5-5580 (JP, A) JP-A-9-196518 (JP , A) JP-A-7-110179 (JP, A) JP-A-8-86519 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 43/00-47/00 F25B 1/00

Claims (34)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CFC冷媒やHCFC冷媒の冷凍サイク
ル装置で使用した接続配管を再利用し、圧縮機から熱源
側熱交換器と流量調整器と利用側熱交換器を順次に経て
上記圧縮機にHFC冷媒を循環させる第1の冷媒回路を
備えた冷凍サイクル装置であって、上記利用側熱交換器
と上記圧縮機との間に、上記接続配管に残留していた残
留異物を流入してきた上記HFC冷媒中から捕捉する異
物捕捉手段を備えたことを特徴とする冷凍サイクル装
置。
1. A refrigeration cycle of CFC refrigerant or HCFC refrigerant
Reusing the connecting pipe used in the
After passing through the side heat exchanger, the flow rate regulator, and the use side heat exchanger
The first refrigerant circuit for circulating the HFC refrigerant in the compressor
A refrigeration cycle apparatus having the above-mentioned utilization side heat exchanger
Between the compressor and the compressor, the
The foreign matter trapped in the HFC refrigerant that has flowed in the foreign matter
A refrigeration cycle apparatus comprising an object capturing means .
【請求項2】 CFC冷媒やHCFC冷媒の冷凍サイク
ル装置で使用した接続配管を再利用し、圧縮機から熱源
機側熱交換器と流量調整器と利用側熱交換器とアキュム
レータとを順次に経て上記圧縮機にHFC冷媒を循環さ
せる第1の冷媒回路を備えた冷凍サイクル装置であっ
て、 上記利用側熱交換器と上記アキュムレータとの間に、上
記接続配管に残留していた残留異物を流入してきた上記
HFC冷媒中から捕捉する異物捕捉手段を備えた ことを
特徴とする冷凍サイクル装置。
2. A refrigeration cycle of CFC refrigerant or HCFC refrigerant
Reusing the connecting pipe used in the
Machine side heat exchanger, flow controller, user side heat exchanger and accum
The HFC refrigerant is circulated through the above compressor through the
It is a refrigeration cycle device equipped with a first refrigerant circuit that
Between the user side heat exchanger and the accumulator.
The residual foreign matter remaining in the connecting pipe has flowed in.
A refrigeration cycle apparatus comprising: a foreign matter capturing unit that captures the HFC refrigerant .
【請求項3】 CFC冷媒やHCFC冷媒の冷凍サイク
ル装置で使用した接続配管を再利用し、圧縮機から熱源
機側熱交換器と流量調整器と利用側熱交換器とアキュム
レータとを順次に経て上記圧縮機にHFC冷媒を循環さ
せる第1の冷媒回路を備えた冷凍サイクル装置であっ
て、 上記利用側熱交換器と上記アキュムレータとの間の冷媒
回路をバイパスするとともに、上記接続配管に残留して
いた残留異物を流入してきた上記HFC冷媒中から捕捉
する異物捕捉手段を有する第1バイパス路を備えた こと
を特徴とする冷凍サイクル装置。
3. A refrigeration cycle of CFC refrigerant or HCFC refrigerant
Reusing the connecting pipe used in the
Machine side heat exchanger, flow controller, user side heat exchanger and accum
The HFC refrigerant is circulated through the above compressor through the
It is a refrigeration cycle device equipped with a first refrigerant circuit that
Te, refrigerant between said utilization side heat exchanger and the accumulator
Bypass the circuit and leave it in the connecting pipe.
Captured residual foreign matter from the above HFC refrigerant
A refrigeration cycle apparatus comprising: a first bypass path having foreign matter capturing means for
【請求項4】 上記第1の冷媒回路の上記熱源機側熱交
換器と上記流量調整器との間の冷媒回路をバイパスする
とともに、冷媒の冷却手段を有する第2バイパス路を備
え、 さらに、上記第1バイパス路の上記異物捕捉手段の上流
側に冷媒の加熱手段を備えたことを特徴とする請求項3
に記載の 冷凍サイクル装置。
4. The heat source unit side heat exchange of the first refrigerant circuit.
Bypasses the refrigerant circuit between the converter and the flow regulator
In addition, a second bypass passage having a cooling means for the refrigerant is provided.
In addition , further upstream of the foreign matter capturing means of the first bypass path.
4. A cooling medium heating means is provided on the side.
Refrigeration cycle device described in .
【請求項5】 上記第1バイパス路の上記加熱手段の上
流側に第1流量制御手段を備え、さらに、上記第2バイ
パス路の上記冷却手段の下流側に第2流量制 御手段を備
えたことを特徴とする請求項4に記載の冷凍サイクル装
置。
5. The heating means of the first bypass passage.
A first flow rate control means is provided on the flow side, and further the second bypass is provided.
Bei the second flow control means downstream of the cooling means of the path path
The refrigeration cycle apparatus according to claim 4, wherein the refrigeration cycle apparatus is provided.
【請求項6】 上記第1の冷媒回路の上記圧縮機と上記
熱源機側熱交換器との間に、冷媒の油成分を分離する油
分離手段を備えたことを特徴とする請求項1〜5のいず
れかに記載の冷凍サイクル装置。
6. The compressor and the compressor of the first refrigerant circuit.
Oil that separates the oil component of the refrigerant between the heat source side heat exchanger
6. Any one of claims 1 to 5, characterized in that it comprises a separating means.
The refrigeration cycle apparatus described therein.
【請求項7】 上記第1の冷媒回路の上記熱源機側熱交
換器と上記流量調整器との間の冷媒回路をバイパスする
とともに、冷媒の油成分を分離する油分離手段を有する
第3バイパス路を備えたことを特徴とする請求項3に記
載の冷凍サイクル装置。
7. The heat source unit side heat exchange of the first refrigerant circuit.
Bypasses the refrigerant circuit between the converter and the flow regulator
At the same time, it has an oil separation means for separating the oil component of the refrigerant.
The third aspect is characterized in that the third bypass route is provided.
On-board refrigeration cycle equipment.
【請求項8】 上記第2バイパス路の上記冷却手段の上
流側に冷媒の油成分を分離する油分離手段を備えたこと
を特徴とする請求項4に記載の冷凍サイクル装置。
8. The cooling means of the second bypass passage.
An oil separation means for separating the oil component of the refrigerant was provided on the flow side.
The refrigeration cycle apparatus according to claim 4, wherein .
【請求項9】 CFC冷媒やHCFC冷媒の冷凍サイク
ル装置で使用した接続配管を再利用し、圧縮機から熱源
機側熱交換器と流量調整器と利用側熱交換器とを順次に
経て上記圧縮機にHFC冷媒を循環させる第1の冷媒回
路と、上記圧縮機から上記利用側熱交換器と上記流量調
整器と上記熱源機側熱交換器とを順次に経て上記圧縮機
にHFC冷媒を循環させる第2の冷媒回路とを備えた冷
凍サイクル装置であって、 上記第1の冷媒回路の上記利用側熱交換器と上記圧縮機
との間で、かつ、上記第2の冷媒回路の上記熱源機側熱
交換器と上記圧縮機との間に、上記接続配管に残留して
いた残留異物を流入してきた上記HFC冷媒中から捕捉
する異物捕捉手段を備えた ことを特徴とする冷凍サイク
ル装置。
9. A refrigeration cycle of CFC refrigerant or HCFC refrigerant
Reusing the connecting pipe used in the
The machine side heat exchanger, the flow rate regulator, and the use side heat exchanger are sequentially installed.
Through the first refrigerant circuit for circulating the HFC refrigerant through the compressor.
From the compressor to the utilization side heat exchanger and the flow rate control.
The compressor through the regulator and the heat exchanger on the heat source side
A second refrigerant circuit for circulating the HFC refrigerant in the
A freezing cycle apparatus, wherein the utilization side heat exchanger of the first refrigerant circuit and the compressor
Between the heat source unit side heat of the second refrigerant circuit and
Between the exchanger and the compressor, the
Captured residual foreign matter from the above HFC refrigerant
A refrigeration cycle apparatus comprising: foreign matter capturing means for
【請求項10】 CFC冷媒やHCFC冷媒の冷凍サイ
クル装置で使用した接続配管を再利用し、圧縮機から熱
源機側熱交換器と流量調整器と利用側熱交換器とアキュ
ムレータとを順次に経て上記圧縮機にHFC冷媒を循環
させる第1の冷媒回路と、上記圧縮機から上記利用側熱
交換器と上記流量調整器と上記熱源機側熱交換器と上記
アキュムレータとを順次に経て上記圧縮機にHFC冷媒
を循環させる第2の冷媒回路とを備えた冷凍サイクル装
置であって、 上記第1の冷媒回路の上記利用側熱交換器と上記アキュ
ムレータとの間で、かつ、上記第2の冷媒回路の上記熱
源機側熱交換器と上記アキュムレータとの間に、上記接
続配管に残留していた残留異物を流入してきた上記HF
C冷媒中から捕捉する異物捕捉手段を備えたことを特徴
とする冷凍サイクル装置。
10. A refrigeration cycle of CFC refrigerant or HCFC refrigerant
The first, which recycles the connection pipe used in the Clu device and circulates the HFC refrigerant through the compressor through the heat source side heat exchanger, the flow rate controller, the use side heat exchanger, and the accumulator in order. A refrigerant circuit, and a second refrigerant circuit for circulating HFC refrigerant from the compressor to the compressor through the utilization side heat exchanger, the flow rate regulator, the heat source side heat exchanger, and the accumulator in order. Refrigeration cycle equipment with
Between the utilization side heat exchanger and the accumulator of the first refrigerant circuit, and between the heat source unit side heat exchanger and the accumulator of the second refrigerant circuit, Contact
The above HF that has flowed in the residual foreign matter remaining in the connecting pipe
A refrigeration cycle apparatus comprising: foreign matter capturing means for capturing from C refrigerant .
【請求項11】 CFC冷媒やHCFC冷媒の冷凍サイ
クル装置で使用した接続配管を再利用し、圧縮機から熱
源機側熱交換器と流量調整器と利用側熱交換器とアキュ
ムレータとを順次に経て上記圧縮機にHFC冷媒を循環
させる第1の冷媒回路と、上記圧縮機から上記利用側熱
交換器と上記流量調整器と上記熱源機側熱交換器と上記
アキュムレータとを順次に経て上記圧縮機にHFC冷媒
を循環させる第2の冷媒回路とを備えた冷凍サイクル装
置であって、 上記第1の冷媒回路の上記利用側熱交換器と上記アキュ
ムレータとの間の冷媒回路をバイパスし、かつ、上記第
2の冷媒回路の上記上記流量調整器と上記熱源機側熱交
換器との間の冷媒回路をバイパスするとともに、上記接
続配管に残留していた残留異物を流入してきた上記HF
C冷媒中から捕捉する異物捕捉手段を有する第1バイパ
ス路を備えたことを特徴とする冷凍サイクル装置。
11. A refrigeration cycle of CFC refrigerant or HCFC refrigerant
The first, which recycles the connection pipe used in the Clu device and circulates the HFC refrigerant through the compressor through the heat source side heat exchanger, the flow rate controller, the use side heat exchanger, and the accumulator in order. A refrigerant circuit, and a second refrigerant circuit for circulating HFC refrigerant from the compressor to the compressor through the utilization side heat exchanger, the flow rate regulator, the heat source side heat exchanger, and the accumulator in order. Refrigeration cycle equipment with
And bypassing the refrigerant circuit between the utilization side heat exchanger of the first refrigerant circuit and the accumulator, and the flow rate regulator and the heat source unit side of the second refrigerant circuit. thereby bypassing the refrigerant circuit between the heat exchanger, the contact
The above HF that has flowed in the residual foreign matter remaining in the connecting pipe
A refrigeration cycle apparatus comprising: a first bypass passage having a foreign matter trapping means for trapping from the C refrigerant .
【請求項12】 上記第1の冷媒回路の上記熱源機側熱
交換器と上記流量調整器との間の冷媒回路をバイパス
し、かつ、上記第2の冷媒回路の上記圧縮機と上記利用
側熱交換器との間の冷媒回路をバイパスするとともに、
冷媒の冷却手段を有する第2バイパス路を備え、 さらに、上記第1バイパス路の上記異物捕捉手段の上流
側に冷媒の加熱手段を備えたことを特徴とする請求項1
1に記載の冷凍サイクル装置。
12. The refrigerant circuit between the heat source side heat exchanger and the flow rate regulator of the first refrigerant circuit is bypassed, and the compressor and the utilization side of the second refrigerant circuit are bypassed. Bypass the refrigerant circuit with the heat exchanger,
A second bypass passage having a cooling means for the refrigerant is provided, and a heating means for the refrigerant is further provided on the upstream side of the foreign matter capturing means of the first bypass passage.
The refrigeration cycle apparatus according to 1.
【請求項13】 上記第1バイパス路の上記加熱手段の
上流側に第1流量制御手段を備え、さらに、上記第2バ
イパス路の上記冷却手段の下流側に第2流量制御手段を
備えたことを特徴とする請求項12に記載の冷凍サイク
ル装置。
13. A first flow rate control means is provided on the upstream side of the heating means of the first bypass path, and a second flow rate control means is provided on the downstream side of the cooling means of the second bypass path. The refrigeration cycle apparatus according to claim 12, wherein.
【請求項14】 上記第1の冷媒回路の上記圧縮機と上
記熱源機側熱交換器との間で、かつ、上記第2の冷媒回
路の上記圧縮機と上記利用側熱交換器との間に、冷媒の
油成分を分離する油分離手段を備えたことを特徴とする
請求項9〜13のいずれかに記載の冷凍サイクル装置。
14. The compressor and the upper part of the first refrigerant circuit.
Between the heat source unit side heat exchanger and the second refrigerant circuit
Between the compressor and the utilization side heat exchanger of the passage, of the refrigerant
An oil separating means for separating an oil component is provided.
The refrigeration cycle apparatus according to any one of claims 9 to 13 .
【請求項15】 上記第1の冷媒回路の上記圧縮機と上
記熱源機側熱交換器との間で、かつ、上記第2の冷媒回
路の上記圧縮機と上記冷却手段との間に、冷媒の油成分
を分離する油分離手段を備えたことを特徴とする請求項
12に記載の冷凍サイクル装置。
15. The compressor and the upper part of the first refrigerant circuit.
Between the heat source unit side heat exchanger and the second refrigerant circuit
Between the compressor and the cooling means of the passage, the oil component of the refrigerant
An oil separation means for separating the oil is provided.
The refrigeration cycle apparatus according to item 12 .
【請求項16】 上記第1の冷媒回路の上記熱源機側熱
交換器と上記流量調整器との間の冷媒回路をバイパス
し、かつ、上記第2の冷媒回路の上記圧縮機と上記利用
側熱交換器との間の冷媒回路をバイパスするとともに、
冷媒の油成分を分離する油分離手段を有する第3バイパ
ス路を備えたことを特徴とする請求項11に記載の冷凍
サイクル装置。
16. The heat source unit side heat of the first refrigerant circuit
Bypasses the refrigerant circuit between the exchanger and the flow regulator
And the compressor and the utilization of the second refrigerant circuit
While bypassing the refrigerant circuit between the side heat exchanger,
Third Viper Having Oil Separating Means For Separating Oil Component Of Refrigerant
The refrigeration cycle apparatus according to claim 11, wherein the refrigeration cycle apparatus is provided with a drainage passage .
【請求項17】 上記第2バイパス路の上記冷却手段の
上流側に冷媒の油成分を分離する油分離手段を備えたこ
とを特徴とする請求項12に記載の冷凍サイクル装置。
17. The cooling means of the second bypass passage
An oil separation means for separating the oil component of the refrigerant is provided on the upstream side.
The refrigeration cycle apparatus according to claim 12, wherein:
【請求項18】 上記流量調整器と上記利用側熱交換器
とをバイパス制御できる室内機バイパス路を備えたこと
を特徴とする請求項1〜17のいずれかに記載の冷凍サ
イクル装置。
18. The flow rate regulator and the utilization side heat exchanger
It was equipped with an indoor unit bypass that can control the bypass of
The refrigeration cycle apparatus according to any one of claims 1 to 17, characterized in that .
【請求項19】 上記油分離手段により分離された油成
分を上記異物捕捉手段より下流側で上記アキュムレータ
に戻す還流路を備えたことを特徴とする請求項7〜8、
14〜17のいずれかに記載の冷凍サイクル装置。
19. An oil separator separated by the oil separating means.
A part of the accumulator downstream of the foreign matter capturing means.
9. A return path for returning to the above is provided.
The refrigeration cycle apparatus according to any one of 14 to 17 .
【請求項20】 上記第2バイパス路の上記油分離手段
の下流側に冷媒に鉱油を注入する鉱油注入手段を備えた
ことを特徴とする請求項5または12に記載の冷凍サイ
クル装置。
20. The oil separating means of the second bypass passage.
Equipped with mineral oil injection means for injecting mineral oil into the refrigerant on the downstream side of
The refrigeration cycle apparatus according to claim 5 or 12, characterized in that .
【請求項21】 上記第2バイパス路の上記油分離手段
の下流側に冷媒に水を注入する水注入手段を備えたこと
を特徴とする請求項5または12に記載の冷凍サイクル
装置。
21. The oil separating means of the second bypass passage.
Was equipped with water injection means for injecting water into the refrigerant on the downstream side of the
The refrigeration cycle apparatus according to claim 5 or 12, characterized in that .
【請求項22】 上記冷媒回路に冷媒中の水分を吸着す
る水分吸着手段を備えたことを特徴とする請求項21に
記載の冷凍サイクル装置。
22. Adsorb moisture in the refrigerant to the refrigerant circuit
22. The method according to claim 21, further comprising:
The refrigeration cycle device described .
【請求項23】 上記異物捕捉手段は、上記冷媒回路の
一部で冷媒の流速を低下させて冷媒中の異物を分離する
ようにしたことを特徴とする請求項1〜17のいずれか
に記載の冷凍サイクル装置。
23. The foreign matter capturing means is provided in the refrigerant circuit.
Partly reduce the flow velocity of the refrigerant to separate foreign matter in the refrigerant
The method according to any one of claims 1 to 17, characterized in that
The refrigeration cycle apparatus according to 1.
【請求項24】 上記異物捕捉手段は、冷媒を鉱油中に
通すことにより冷媒中の異物を捕捉するようにしたこと
を特徴とする請求項1〜17のいずれかに記載の冷凍サ
イクル装置。
24. The foreign matter capturing means uses a refrigerant in mineral oil.
Foreign matter in the refrigerant was captured by passing it through
The refrigeration cycle apparatus according to any one of claims 1 to 17, characterized in that .
【請求項25】 上記異物捕捉手段は、冷媒を鉱油中に
通すことにより冷媒中のCFC及びHCFCを溶解する
ようにしたことを特徴とする請求項1〜17に記載の
凍サイクル装置。
25. The foreign matter capturing means uses a refrigerant in mineral oil.
Dissolves CFC and HCFC in the refrigerant by passing
The cooling / freezing cycle device according to claim 1, wherein the cooling / freezing cycle device is provided.
【請求項26】 上記異物捕捉手段は、冷媒をフィルタ
に通すことにより冷媒中の異物を捕捉するようにしたこ
とを特徴とする請求項1〜16のいずれかに記載の冷凍
サイクル装置。
26. The foreign matter capturing means filters the refrigerant.
Foreign matter in the refrigerant by trapping it through
The refrigeration cycle apparatus according to any one of claims 1 to 16, characterized in that .
【請求項27】 上記異物捕捉手段は、冷媒をイオン交
換樹脂に通すことにより冷媒中の塩素イオンを捕捉する
ようにしたことを特徴とする請求項1〜17のいずれか
に記載の冷凍サイクル装置。
27. The foreign matter capturing means uses a coolant for ion exchange.
Capture chlorine ions in the refrigerant by passing through a replacement resin
The method according to any one of claims 1 to 17, characterized in that
The refrigeration cycle apparatus according to 1.
【請求項28】 上記第1バイパス路、第2バイパス
路、又は第3バイパス路を上記冷媒回路から切り離し自
在に設けたことを特徴とする請求項3,4,7,11,
12,16のいずれかに記載の冷凍サイクル装置。
28. The first bypass path and the second bypass path
Disconnect the line or the third bypass line from the refrigerant circuit.
It is provided in the present, The claim 3, 4, 7, 11,
The refrigeration cycle apparatus according to any one of 12 and 16 .
【請求項29】 圧縮機、熱源機側熱交換器、アキュム
レータを有する熱源機と、流量調整器、利用側熱交換器
を有する室内機とを備え、CFC冷媒やHCFC冷媒で
使用していた第1の接続配管と第2の接続配管を再利用
し、上記第1の接続配管と第2の接続配管で熱源機と室
内機とを接続したHFC冷媒を使用する冷凍サイクル装
置であって、上記第1の接続配管と第2の接続配管とに
残留する鉱油を流入してきた上記HFC冷媒中から捕捉
する異物捕捉手段を備えたことを特徴とする冷凍サイク
ル装置
29. Compressor, heat source side heat exchanger, accumulator
Heat source device having a heat exchanger, flow rate regulator, and heat exchanger on the use side
Equipped with an indoor unit having CFC refrigerant or HCFC refrigerant
Reuse the used first and second connection pipes
Then, the heat source device and the room are connected by the first connection pipe and the second connection pipe.
Refrigeration cycle equipment using HFC refrigerant connected to internal unit
The first connection pipe and the second connection pipe.
Captures residual mineral oil from the above HFC refrigerant
Refrigeration cycle characterized by comprising foreign matter capturing means for
Device .
【請求項30】 圧縮機、熱源機側熱交換器、アキュム
レータを有する熱源機と、流量調整器、利用側熱交換器
を有する室内機とを備え、CFC冷媒やHCFC冷媒で
使用していた第1の接続配管と第2の接続配管を再利用
し、上記第1の接続配管と第2の接続配管で熱源機と室
内機とを接続したHFC冷媒を使用する冷凍サイクル装
置であって、上記第1の接続配管と第2の接続配管とに
残留する固形異物及び液体異物を流入してきた上記HF
C冷媒中から捕捉する異物捕捉手段を備えたことを特徴
とする冷凍サイクル装置
30. A compressor, a heat source side heat exchanger, an accumulator
Heat source device having a heat exchanger, flow rate regulator, and heat exchanger on the use side
Equipped with an indoor unit having CFC refrigerant or HCFC refrigerant
Reuse the used first and second connection pipes
Then, the heat source device and the room are connected by the first connection pipe and the second connection pipe.
Refrigeration cycle equipment using HFC refrigerant connected to internal unit
The first connection pipe and the second connection pipe.
The above-mentioned HF that has flowed in the remaining solid foreign matter and liquid foreign matter
Characterized by having foreign matter capturing means for capturing from C refrigerant
Refrigeration cycle device .
【請求項31】 圧縮機、熱源機側熱交換器、アキュム
レータを有する熱源機と、流量調整器、利用側熱交換器
を有する室内機とを備え、CFC冷媒やHCFC冷媒で
使用していた第1の接続配管と第2の接続配管を再利用
し、上記第1 の接続配管と第2の接続配管で熱源機と室
内機とを接続したHFC冷媒を使用する冷凍サイクル装
置であって、上記第1の接続配管と第2の接続配管とに
残留する残留異物を流入してきた上記HFC冷媒中から
捕捉する異物捕捉手段を備えたことを特徴とする冷凍サ
イクル装置
31. A compressor, a heat source side heat exchanger, an accumulator
Heat source device having a heat exchanger, flow rate regulator, and heat exchanger on the use side
Equipped with an indoor unit having CFC refrigerant or HCFC refrigerant
Reuse the used first and second connection pipes
Then , the heat source device and the room are connected by the first connection pipe and the second connection pipe.
Refrigeration cycle equipment using HFC refrigerant connected to internal unit
The first connection pipe and the second connection pipe.
From the HFC refrigerant that has flowed in residual residual foreign matter
Frozen server characterized by comprising foreign matter capturing means for capturing
Uccle device .
【請求項32】 圧縮機から熱源機側熱交換器と流量調
整器と利用側熱交換器とアキュムレータとを順次に経て
上記圧縮機に冷媒を循環させる第1の冷媒回路と、上記
圧縮機から上記利用側熱交換器と上記流量調整器と上記
熱源機側熱交換器と上記アキュムレータとを順次に経て
上記圧縮機に冷媒を循環させる第2の冷媒回路とを備
え、<第1の冷媒>CFC冷媒またはHCFC冷媒を用
いる既存の冷凍サイクル装置において、 上記圧縮機と上記熱源機側熱交換器と上記流量調整器と
上記利用側熱交換器と上記アキュムレータとを<第2の
冷媒>HFC冷媒を用いるものに置換するとともに、上
記流量調整器及び上記利用側熱交換器に接続された既存
の冷媒配管を用いて請求項1〜31のいずれかに記載の
冷凍サイクル装置を形成することを特徴とする冷凍サイ
クル装置の形成方法。
32. A first refrigerant circuit for circulating a refrigerant to the compressor through a heat source side heat exchanger, a flow rate regulator, a use side heat exchanger, and an accumulator in order from the compressor, and from the compressor. A second refrigerant circuit that circulates a refrigerant through the compressor through the usage-side heat exchanger, the flow rate regulator, the heat-source-unit-side heat exchanger, and the accumulator in order, <first refrigerant> In an existing refrigeration cycle apparatus using a CFC refrigerant or an HCFC refrigerant , the compressor, the heat source side heat exchanger, the flow rate regulator, the usage side heat exchanger, and the accumulator are <second refrigerant> HFC refrigerant. Is used, and the refrigeration cycle apparatus according to any one of claims 1 to 31 is formed by using an existing refrigerant pipe connected to the flow rate regulator and the use side heat exchanger. A method for forming a refrigeration cycle device, which is characterized.
【請求項33】 圧縮機と熱源側熱交換器を含む室外機
と、流量調整器と利用側熱交換器を含む室内機とを、C
FC冷媒やHCFC冷媒で使用していた第1の配管と第
2の配管で接続して構成する冷凍サイクル装置の室外機
において、該室外機に内蔵された冷媒配管に、上記第1
の配管および第2の配管に残留していた残留異物を流入
してきた上記HFC冷媒中から捕捉する異物捕捉手段を
備えたことを特徴とする冷凍サイクル装置の室外機
33. An outdoor unit including a compressor and a heat source side heat exchanger.
And an indoor unit including a flow rate controller and a heat exchanger on the use side, C
No. 1 pipe and No. 1 used in FC refrigerant and HCFC refrigerant
Outdoor unit of refrigeration cycle device configured by connecting with 2 pipes
In the refrigerant pipe built in the outdoor unit,
Residual foreign matter that has remained in the second pipe and the second pipe
Foreign matter capturing means for capturing the HFC refrigerant from the above
An outdoor unit of a refrigeration cycle device, which is characterized by being provided .
【請求項34】 圧縮機と四方弁と熱源側熱交換器を含
む室外機と、流量調整器と利用側熱交換器を含む室内機
とを、CFC冷媒やHCFC冷媒で使用していた第1の
配管と第2の配管で接続して構成する冷凍サイクル装置
の室外機において、上記四方弁と上記圧縮機との間の冷
媒配管に、上記第1の配管および第2の配管に残留して
いた残留異物を流入してきた上記HFC冷媒中から捕捉
する異物捕捉手段を備えたことを特徴とする冷凍サイク
ル装置の室外機
34. A compressor, a four-way valve and a heat source side heat exchanger are included.
The outdoor unit and the indoor unit including the flow rate regulator and the heat exchanger on the use side.
And were used as CFC and HCFC refrigerants.
Refrigeration cycle device configured by connecting with piping and second piping
In the outdoor unit, the cooling between the four-way valve and the compressor
In the medium pipe, remaining in the first pipe and the second pipe
Captured residual foreign matter from the above HFC refrigerant
Refrigeration cycle characterized by comprising foreign matter capturing means for
The outdoor unit of the device .
JP03613599A 1998-04-24 1999-02-15 Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus Expired - Lifetime JP3361765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03613599A JP3361765B2 (en) 1998-04-24 1999-02-15 Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11471798 1998-04-24
JP10-114717 1998-04-24
JP03613599A JP3361765B2 (en) 1998-04-24 1999-02-15 Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002230937A Division JP4176413B2 (en) 1998-04-24 2002-08-08 Operation method of refrigeration cycle apparatus

Publications (2)

Publication Number Publication Date
JP2000009368A JP2000009368A (en) 2000-01-14
JP3361765B2 true JP3361765B2 (en) 2003-01-07

Family

ID=26375177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03613599A Expired - Lifetime JP3361765B2 (en) 1998-04-24 1999-02-15 Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus

Country Status (1)

Country Link
JP (1) JP3361765B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070293A1 (en) 2003-02-07 2004-08-19 Daikin Industries, Ltd. Refrigerant pipe washing method, air conditioner replacement method, and air conditioner

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491629B2 (en) * 2001-03-28 2004-01-26 三菱電機株式会社 Piping cleaning device and piping cleaning method
JP4454224B2 (en) * 2002-12-27 2010-04-21 三洋電機株式会社 Oil recovery method for air conditioner and air conditioner
JP4370478B2 (en) 2007-03-28 2009-11-25 日立アプライアンス株式会社 Refrigeration cycle equipment
JP2010002075A (en) * 2008-06-18 2010-01-07 Daikin Ind Ltd Air conditioning device
AU2020320527B9 (en) * 2019-07-31 2023-08-24 Daikin Industries, Ltd. Freezing apparatus
JP7049310B2 (en) * 2019-12-25 2022-04-06 ダイキン工業株式会社 Refrigeration equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004070293A1 (en) 2003-02-07 2004-08-19 Daikin Industries, Ltd. Refrigerant pipe washing method, air conditioner replacement method, and air conditioner
US8844300B2 (en) 2003-02-07 2014-09-30 Daikin Industries, Ltd. Refrigerant pipe washing method, air conditioner updating method, and air conditioner

Also Published As

Publication number Publication date
JP2000009368A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
US6510698B2 (en) Refrigeration system, and method of updating and operating the same
EP1524479B1 (en) Refrigeration cycle device
JP3361765B2 (en) Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP3361771B2 (en) Operation method of refrigeration cycle device
JP4169875B2 (en) Refrigeration cycle equipment
JP4409075B2 (en) Cleaning operation method of refrigeration cycle apparatus
JP4391559B2 (en) Refrigerant changing method of refrigerant circuit for refrigeration apparatus and refrigeration apparatus
JP3431552B2 (en) Refrigeration air conditioner and method for updating refrigeration air conditioner
WO2004090442A1 (en) Refrigeration device
JP4472200B2 (en) Refrigeration / air-conditioning apparatus and operation method thereof
JP4176413B2 (en) Operation method of refrigeration cycle apparatus
JP4128796B2 (en) Refrigeration cycle equipment
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
JP3751091B2 (en) Water removal trial operation method of refrigeration cycle apparatus and refrigeration cycle apparatus
JP4425457B2 (en) Refrigeration cycle apparatus and operation method thereof
JP4517834B2 (en) How to use existing refrigerant piping
JP3700723B2 (en) Refrigeration equipment
JP2003139444A (en) Refrigerant replacement method for air conditioner, cleaner, and air conditioner
JP2005083637A (en) Refrigeration unit
JP2002267293A (en) Method for replacing refrigerant of refrigeration cycle device
JP2001263871A (en) Refrigerating unit
JP2004308934A (en) Freezing apparatus and method of washing piping
JP2004340430A (en) Freezer device
JP2004132597A (en) Pipe cleaning device and pipe cleaning method
JP2004361014A (en) Refrigerating cycle device and refrigerant replacing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071018

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081018

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091018

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101018

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111018

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121018

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131018

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term