JP3491629B2 - Piping cleaning device and piping cleaning method - Google Patents

Piping cleaning device and piping cleaning method

Info

Publication number
JP3491629B2
JP3491629B2 JP2001343973A JP2001343973A JP3491629B2 JP 3491629 B2 JP3491629 B2 JP 3491629B2 JP 2001343973 A JP2001343973 A JP 2001343973A JP 2001343973 A JP2001343973 A JP 2001343973A JP 3491629 B2 JP3491629 B2 JP 3491629B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
cleaning
compressor
pipe cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001343973A
Other languages
Japanese (ja)
Other versions
JP2002357377A (en
Inventor
史武 畝崎
智彦 河西
博文 高下
修 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001343973A priority Critical patent/JP3491629B2/en
Publication of JP2002357377A publication Critical patent/JP2002357377A/en
Application granted granted Critical
Publication of JP3491629B2 publication Critical patent/JP3491629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、配管の洗浄装置
に関するものであり、特に冷凍空調装置において使用す
る冷媒を交換すると同時に冷凍機油も交換する場合の配
管に残留する冷凍機油を洗浄する洗浄装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pipe cleaning device, and more particularly to a cleaning device for cleaning refrigerating machine oil remaining in a pipe when a refrigerant used in a refrigerating and air-conditioning system is replaced and refrigerating machine oil is also replaced at the same time. It is about.

【0002】[0002]

【従来の技術】従来から一般に用いられているセパレー
ト形の冷凍空調装置を図27に示す。図27において、
28は熱源機であり、圧縮機1、四方弁29,熱源側熱
交換器30、第1の接続弁12c、第2の接続弁12
d、アキュムレータ10を内蔵している。22は室内機
であり、電子膨張弁24、及び利用側熱交換器23を備
えている。熱源機28と室内機22は離れた場所に設置
され、第1の接続配管4、第2の接続配管6により接続
されて、冷凍サイクルを形成する。
2. Description of the Related Art FIG. 27 shows a separate type refrigerating and air-conditioning apparatus generally used conventionally. In FIG. 27,
Reference numeral 28 denotes a heat source machine, which includes a compressor 1, a four-way valve 29, a heat source side heat exchanger 30, a first connection valve 12c, and a second connection valve 12.
d, the accumulator 10 is built in. An indoor unit 22 includes an electronic expansion valve 24 and a use side heat exchanger 23. The heat source unit 28 and the indoor unit 22 are installed at distant places and are connected by the first connecting pipe 4 and the second connecting pipe 6 to form a refrigeration cycle.

【0003】第1の接続配管4の一端は四方弁29と第
1の接続弁12cを介して接続され、第1の接続配管4
の他の一端は利用側熱交換器23と接続されている。第
2の接続配管6の一端は熱源側熱交換器30と第2の接
続弁12dを介して接続され、第2の接続配管6の他の
一端は電子膨張弁24と接続されている。また、アキュ
ムレータ10のU字管状の流出配管の下部には返油穴1
0aが設けられている。
One end of the first connecting pipe 4 is connected to the four-way valve 29 via the first connecting valve 12c.
The other end is connected to the use side heat exchanger 23. One end of the second connection pipe 6 is connected to the heat source side heat exchanger 30 via the second connection valve 12d, and the other end of the second connection pipe 6 is connected to the electronic expansion valve 24. Further, an oil return hole 1 is provided at the bottom of the U-shaped tubular outflow pipe of the accumulator 10.
0a is provided.

【0004】この冷凍空調装置の冷媒の流れを図27に
て説明する。図中、実線矢印が冷房運転の流れを、波線
矢印が暖房運転の流れを示す。まず、冷房運転の流れを
説明する。圧縮機1で圧縮された高温高圧のガス冷媒は
四方弁29を経て、熱源側熱交換器30へと流入し、こ
こで空気・水など熱源媒体と熱交換して凝縮液化する。
凝縮液化した冷媒は第2の接続弁12d、第2の接続配
管6を経て電子膨張弁24へ流入し、ここで低圧まで減
圧されて低圧気液二相状態となり、利用側熱交換器23
で空気などの利用側媒体と熱交換して蒸発・ガス化す
る。蒸発ガス化した冷媒は第1の接続配管4、第1の接
続弁12c、四方弁29、アキュムレータ10を経て圧
縮機1へ戻る。
The flow of the refrigerant in this refrigerating and air conditioning system will be described with reference to FIG. In the figure, the solid line arrow shows the flow of the cooling operation, and the broken line arrow shows the flow of the heating operation. First, the flow of the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the heat source side heat exchanger 30 through the four-way valve 29, and exchanges heat with a heat source medium such as air and water to be condensed and liquefied.
The condensed and liquefied refrigerant flows into the electronic expansion valve 24 through the second connecting valve 12d and the second connecting pipe 6, where it is depressurized to a low pressure and becomes a low pressure gas-liquid two-phase state, and the use side heat exchanger 23
At the same time, it exchanges heat with the medium on the use side such as air to evaporate and gasify. The evaporated gasified refrigerant returns to the compressor 1 via the first connection pipe 4, the first connection valve 12c, the four-way valve 29, and the accumulator 10.

【0005】次に暖房運転の流れを説明する。圧縮機1
で圧縮された高温高圧のガス冷媒は四方弁29,第1の
接続弁12c、第1の接続配管4を経て、利用側熱交換
器23へと流入し、ここで空気など利用側媒体と熱交換
して凝縮液化する。凝縮液化した冷媒は電子膨張弁24
へと流入し、ここで低圧まで減圧されて低圧気液二相状
態となり、第2の接続配管6、第2の接続弁12dを経
て、熱源側熱交換器30で空気・水などの熱源媒体と熱
交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四
方弁29、アキュムレータ10を経て圧縮機1へ戻る。
Next, the flow of heating operation will be described. Compressor 1
The high-temperature and high-pressure gas refrigerant compressed by means of the four-way valve 29, the first connection valve 12c, and the first connection pipe 4 flows into the heat exchanger 23 on the use side, where heat and a medium on the use side such as air and heat are exchanged. Replace and condense and liquefy. The condensed and liquefied refrigerant is the electronic expansion valve 24.
Into the low-pressure gas-liquid two-phase state where it is depressurized to a low pressure, passes through the second connection pipe 6 and the second connection valve 12d, and is heated in the heat-source-side heat exchanger 30 as a heat source medium such as air or water. Heat exchange with and evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 via the four-way valve 29 and the accumulator 10.

【0006】従来、このような冷凍空調装置の多くには
CFC(クロロフルオロカーボン)系冷媒やHCFC
(ハイドロクロロフルオロカーボン)系冷媒が用いられ
てきたが、これらの分子に含まれる塩素が成層圏でオゾ
ン層を破壊するため、CFC系冷媒は既に全廃され、H
CFC系冷媒も生産規制が開始されている。
[0006] Conventionally, most of such refrigerating and air-conditioning systems are CFC (chlorofluorocarbon) type refrigerants and HCFCs.
(Hydrochlorofluorocarbon) type refrigerants have been used, but since chlorine contained in these molecules destroys the ozone layer in the stratosphere, CFC type refrigerants have already been completely abolished, and
Production restrictions on CFC-based refrigerants have also started.

【0007】これらに替わって、分子に塩素を含まない
HFC(ハイドロフルオロカーボン)系冷媒を使用する
冷凍空調装置が実用化されている。CFC系冷媒やHC
FC系冷媒を用いた冷凍空調装置が老朽化した場合、こ
れらの冷媒は全廃・生産規制されているため、HFC系
冷媒を用いた冷凍空調装置等に入れ替える必要がある。
In place of these, a refrigerating and air-conditioning system using an HFC (hydrofluorocarbon) type refrigerant which does not contain chlorine in its molecule has been put into practical use. CFC type refrigerant and HC
When the refrigerating and air-conditioning system using the FC type refrigerant is aged, it is necessary to replace it with a refrigerating and air-conditioning system using the HFC type refrigerant because these refrigerants are completely abolished and production is regulated.

【0008】冷凍空調装置が熱源機28と室内機22お
よびこれらを接続する接続配管4と6で構成されるセパ
レート型であった場合、熱源機28と室内機22は、H
FC系冷媒で使用する冷凍機油・有機材料・熱交換器が
HCFC系冷媒やCFC系冷媒のそれらとは異なるた
め、HFC系冷媒専用のものと交換する必要がある。さ
らに元々CFC系冷媒やHCFC系冷媒用の熱源機28
と室内機22は老朽化しているため交換する必要がある
ものであり、交換も比較的容易である。
When the refrigerating and air-conditioning system is a separate type constituted by the heat source unit 28, the indoor unit 22 and the connecting pipes 4 and 6 connecting them, the heat source unit 28 and the indoor unit 22 are
Since the refrigerating machine oil / organic material / heat exchanger used for the FC-based refrigerant is different from those of the HCFC-based refrigerant and the CFC-based refrigerant, it is necessary to replace it with a dedicated HFC-based refrigerant. Originally, the heat source unit 28 for CFC-based refrigerants and HCFC-based refrigerants
Since the indoor unit 22 has deteriorated and needs to be replaced, the replacement is relatively easy.

【0009】一方、接続配管4、6については、配管長
が長い場合や、パイプシャフトあるいは天井裏など建物
に埋設されている場合、新規配管に交換することは困難
で、しかも老朽化しにくいため、CFC系冷媒やHCF
C系冷媒を用いた冷凍サイクル装置で使用していた接続
配管4、6をそのまま使用できれば、配管工事が簡略化
できる。
On the other hand, the connection pipes 4 and 6 are difficult to replace with new pipes when the pipes are long or buried in a building such as a pipe shaft or a ceiling, and are less likely to deteriorate. CFC refrigerant and HCF
If the connection pipes 4 and 6 used in the refrigeration cycle device using the C-based refrigerant can be used as they are, the piping work can be simplified.

【0010】[0010]

【発明が解決しようとする課題】しかし、CFC系冷媒
やHCFC系冷媒を用いた冷凍空調装置で使用していた
接続配管4、6には、CFC系冷媒やHCFC系冷媒を
用いた冷凍空調装置の冷凍機油である鉱油が残留してい
る。
However, the connecting pipes 4 and 6 used in the refrigerating and air-conditioning apparatus using the CFC-based refrigerant or the HCFC-based refrigerant are connected to the refrigerating and air-conditioning apparatus using the CFC-based refrigerant or the HCFC-based refrigerant. Mineral oil, which is the refrigerating machine oil, remains.

【0011】図28は、鉱油混入時のHFC系冷媒用冷
凍機油とHFC系冷媒(R407C)との溶解性を示す
臨界溶解度曲線を示す図で、横軸は油量(wt%)、縦
軸は温度(℃)を示す。冷凍機油は冷媒と混在している
場合、冷媒に溶解して相溶する状態と溶解せず分離する
状態とがあり、相溶と分離の境界点は温度に依存してい
る。相溶する範囲は下限温度と上限温度に挟まれた温度
域にあり、その溶解特性が図28の臨界溶解度曲線にて
表されている。HFC系冷媒を用いた冷凍空調装置の冷
凍機油(エステル油やエーテル油などの合成油)に鉱油
が混入し、その鉱油量が増加するにつれて相溶する温度
範囲が狭くなる。そして一定量以上混入すると、図28
に示すように、HFC系冷媒との相容性が失われ、アキ
ュムレータ10に液冷媒が貯まっている場合にHFC系
冷媒用冷凍機油が液冷媒の上層に分離・浮遊するため、
アキュムレータ10の下部にある返油穴10aから圧縮
機1へ冷凍機油が戻らず圧縮機1の摺動部が焼き付く恐
れがある。また、従来のCFC系冷媒では、潤滑油に鉱
油が用いられていたのに対し、HFC系冷媒では潤滑油
に合成油が用いられているので、鉱油が既設冷媒配管に
残存していると、新設の冷媒回路において、異物(コン
タミネーション)が生じ、絞り機構を閉塞したり、圧縮
機を損傷するという問題があった。
FIG. 28 is a diagram showing a critical solubility curve showing the solubility of the refrigerating machine oil for HFC type refrigerant and the HFC type refrigerant (R407C) when mineral oil is mixed. Indicates temperature (° C.). When the refrigerating machine oil is mixed with the refrigerant, it may be dissolved in the refrigerant to be compatible with it or may be separated without being dissolved, and the boundary point of compatibility and separation depends on the temperature. The compatible range is in the temperature range between the lower limit temperature and the upper limit temperature, and the dissolution characteristics are represented by the critical solubility curve in FIG. Mineral oil is mixed in refrigerating machine oil (synthetic oil such as ester oil and ether oil) of a refrigerating and air-conditioning apparatus using an HFC-based refrigerant, and as the amount of the mineral oil increases, the compatible temperature range becomes narrower. Then, if a certain amount or more is mixed, FIG.
As shown in, the compatibility with the HFC-based refrigerant is lost, and when the liquid refrigerant is stored in the accumulator 10, the HFC-based refrigerant refrigerating machine oil separates and floats in the upper layer of the liquid refrigerant,
The refrigerating machine oil may not return to the compressor 1 from the oil return hole 10a in the lower part of the accumulator 10, and the sliding part of the compressor 1 may be seized. Further, in the conventional CFC-based refrigerant, mineral oil was used as the lubricating oil, whereas in the HFC-based refrigerant, synthetic oil was used as the lubricating oil, so if the mineral oil remains in the existing refrigerant pipe, In the newly installed refrigerant circuit, there is a problem that foreign matter (contamination) occurs, which blocks the throttle mechanism and damages the compressor.

【0012】また前記問題に対応して従来ではCFC系
冷媒やHCFC系冷媒を用いた冷凍空調装置で使用して
いた接続配管4、6を、洗浄装置を用いて鉱油を溶解す
る専用の洗浄液(HCFC141bやHCFC225)
で液封させ、配管中に残存する鉱油を溶解洗浄すること
が行われている。
In response to the above problem, the connection pipes 4 and 6 which have been used in the refrigerating and air-conditioning apparatus using the CFC-based refrigerant or the HCFC-based refrigerant in the related art are washed with a dedicated cleaning liquid (dissolving mineral oil). HCFC141b and HCFC225)
It is performed by liquid-sealing and dissolving and cleaning the mineral oil remaining in the pipe.

【0013】この場合には以下に示すような問題があっ
た。第1に使用する洗浄液がHCFC系冷媒であり、オ
ゾン破壊係数が0でないため、冷凍空調装置の冷媒をH
CFC系冷媒からHFC系冷媒へと代替することと矛盾
する。特に、HCFC141bはオゾン破壊係数が0.
11と大きく、この冷媒を使用して配管を洗浄すること
は問題である。
In this case, there are the following problems. First, the cleaning liquid used is an HCFC refrigerant, and the ozone depletion potential is not 0.
This is inconsistent with the replacement of CFC refrigerants with HFC refrigerants. In particular, HCFC141b has an ozone depletion coefficient of 0.
It is as large as 11, and it is a problem to clean the piping by using this refrigerant.

【0014】また第2に、使用する洗浄液は可燃性・毒
性が完全に安全なものではないことがあげられる。HC
FC141bは可燃性で、低毒性であり、また、HCF
C225は不燃性だが、低毒性である。
Secondly, the cleaning liquid used is not completely safe in flammability and toxicity. HC
FC141b is flammable, low toxicity, and HCF
C225 is nonflammable but has low toxicity.

【0015】さらに第3に洗浄液の沸点が高いため(H
CFC141bは32℃、HCFC225は51〜56
℃)洗浄後の洗浄液が蒸発しにくく配管に付着したまま
で、これらを回収するためには窒素ガスで洗浄液をブロ
ーして洗浄するなど、回収行程に時間を要する。
Third, since the cleaning liquid has a high boiling point (H
32 ° C for CFC141b, 51-56 for HCFC225
(° C) The cleaning liquid after cleaning is less likely to evaporate and remains attached to the pipes, and in order to recover them, it takes time for the recovery process such as cleaning by blowing the cleaning liquid with nitrogen gas.

【0016】また前記のような環境上の問題のない、ま
たは回収しやすい洗浄液を用いて洗浄を行おうとして
も、このような洗浄液で鉱油に溶解性のあるものはほと
んど存在しないため、洗浄が速やかに行われないという
問題があった。
Further, even if an attempt is made to perform cleaning using a cleaning liquid which does not cause environmental problems as described above or is easy to collect, there is almost no such cleaning liquid that is soluble in mineral oil. There was a problem that it was not done promptly.

【0017】この発明は、このような問題点を解消する
ためになされたものであり、配管の洗浄を迅速にかつ環
境に支障なく行える洗浄装置を得るとともに、冷凍空調
装置において使用する冷媒を交換するために装置の更新
を行なうときに配管の洗浄を行ない、洗浄した既設配管
を用いることで配管の再設置工事を簡略化する冷凍空調
装置を提供することを目的とする。また、この発明は冷
凍空調用熱源機を用いた配管洗浄運転による汎用性や洗
浄作業の確実な完了を得ると共に、冷媒の入れ替えが簡
単で信頼性の高い冷凍空調装置の取替え方法を得ること
を目的とするものである。
The present invention has been made in order to solve such a problem, and provides a cleaning device which can clean a pipe quickly and without causing an environmental problem, and replaces a refrigerant used in a refrigerating and air-conditioning device. Therefore, it is an object of the present invention to provide a refrigerating and air-conditioning apparatus that simplifies the re-installation work of the pipe by cleaning the pipe when updating the device and using the washed existing pipe. Further, the present invention provides versatility and reliable completion of cleaning work by pipe cleaning operation using a heat source device for refrigeration and air conditioning, and also provides a method for replacing refrigeration and air conditioning equipment with high reliability and easy replacement of refrigerant. It is intended.

【0018】[0018]

【課題を解決するための手段】この発明における配管洗
浄装置は、圧縮機、凝縮器、膨張装置、蒸発器を接続
し、圧縮機で搬送される冷媒によって既設配管を洗浄し
て被洗浄物を回収する回収装置と、既設配管に流入する
冷媒が、乾き度0.2〜0.9の気液二相流となるよう
に、凝縮器の熱交換能力、膨張装置の流動抵抗及び蒸発
器の熱交換能力の少なくともいずれか1つを制御する制
御装置とを備えたものである。
[Means for Solving the Problems] Pipe washing according to the present invention
Purifier connects compressor, condenser, expander, evaporator
Clean the existing pipe with the refrigerant conveyed by the compressor.
Flow into the existing equipment and the collection device that collects the object to be cleaned.
Refrigerant to be a gas-liquid two-phase flow with a dryness of 0.2 to 0.9
In addition, the heat exchange capacity of the condenser, the flow resistance of the expansion device and the evaporation
Control that controls at least one of the heat exchange capabilities of the reactor
It is equipped with a control device.

【0019】さらに、圧縮機の吐出側配管に吐出温度セ
ンサを備え、吐出温度センサにより検知される吐出温度
が予め定められた所定目標値以下となるように制御装置
を制御するものである。
Further, the discharge temperature sensor is connected to the discharge side pipe of the compressor.
Sensor equipped with a sensor, the discharge temperature detected by the discharge temperature sensor
Is controlled so that is less than or equal to a predetermined target value.
Is to control.

【0020】さらに、凝縮器で得られる冷媒の凝縮熱の
一部または全部を蒸発器における蒸発熱として熱交換す
る高低圧熱交換器を設けたものである。
In addition, the heat of condensation of the refrigerant obtained in the condenser
Part or all of it is exchanged as heat of vaporization in the evaporator
It is equipped with a high and low pressure heat exchanger.

【0021】さらに、冷媒の物理状態が予め定められた
目標値となるように、高低圧熱交換器の熱交換量を変化
させるものである。
Further, the physical state of the refrigerant is predetermined.
Change the heat exchange rate of the high and low pressure heat exchanger to reach the target value.
It is what makes me.

【0022】さらに、高低圧熱交換器から流出する蒸発
した冷媒を冷却するガス冷却手段を備え、ガス冷却手段
の冷却能力を冷媒の物理状態に応じて変化させるもので
ある。
Further, the evaporation flowing out of the high and low pressure heat exchanger
A gas cooling means for cooling the formed refrigerant,
That changes the cooling capacity of the refrigerant depending on the physical state of the refrigerant.
is there.

【0023】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で
搬送される冷媒によって既設配管を洗浄して被洗浄物を
回収する回収装置と、既設配管に流入する冷媒が気液二
相流となるように、凝縮器の熱交換能力、膨張装置の流
動抵抗及び蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、圧縮機の吐出側配管に高圧圧
力センサ、凝縮器の出口側配管に凝縮出口温度センサと
を備え、高圧圧力センサから検知される高圧圧力と凝縮
出口温度センサから検知される凝縮器出口温度とから算
出される気液二相冷媒の乾き度が予め定められた所定目
標範囲となるように制御装置を制御するものである。
The pipe cleaning apparatus according to the present invention is
Connect the compressor, condenser, expansion device, evaporator,
Clean the existing pipes with the transported refrigerant to clean the objects to be cleaned.
The recovery device for recovery and the refrigerant that flows into the existing pipe are the gas-liquid two
The heat exchange capacity of the condenser and the flow of the expansion device
At least one of dynamic resistance and heat exchange capacity of evaporator 1
High pressure to the control device that controls the
A force sensor and a condensation outlet temperature sensor on the outlet side piping of the condenser
High pressure and condensation detected by high pressure sensor
Calculated from the condenser outlet temperature detected by the outlet temperature sensor
The dryness of the gas-liquid two-phase refrigerant to be discharged
The control device is controlled so that the standard range is achieved.

【0024】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で
搬送される冷媒によって既設配管を洗浄して被洗浄物を
回収する回収装置と、既設配管に流入する冷媒が気液二
相流となるように、凝縮器の熱交換能力、膨張装置の流
動抵抗及び蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、圧縮機の吸入側配管に低圧圧
力センサとを備え、低圧圧力センサにより検知される低
圧圧力が予め定められた所定目標値以上となるように制
御装置を制御するものである。
The pipe cleaning apparatus according to the present invention is
Connect the compressor, condenser, expansion device, evaporator,
Clean the existing pipes with the transported refrigerant to clean the objects to be cleaned.
The recovery device for recovery and the refrigerant that flows into the existing pipe are the gas-liquid two
The heat exchange capacity of the condenser and the flow of the expansion device
At least one of dynamic resistance and heat exchange capacity of evaporator 1
Control device to control the low pressure and the suction side pipe of the compressor.
With a force sensor, the low pressure detected by the low pressure sensor
Control the pressure so that it exceeds a predetermined target value
It controls the control device.

【0025】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で
搬送される冷媒によって既設配管を洗浄して被洗浄物を
回収する回収装置と、既設配管に流入する冷媒が気液二
相流となるように、凝縮器の熱交換能力、膨張装置の流
動抵抗及び蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、圧縮機の吐出側配管に高圧圧
力センサとを備え、高圧圧力センサにより検知される高
圧圧力が予め定められた所定目標値以上となるように制
御装置を制御するものである。
The pipe cleaning apparatus according to the present invention is
Connect the compressor, condenser, expansion device, evaporator,
Clean the existing pipes with the transported refrigerant to clean the objects to be cleaned.
The recovery device for recovery and the refrigerant that flows into the existing pipe are the gas-liquid two
The heat exchange capacity of the condenser and the flow of the expansion device
At least one of dynamic resistance and heat exchange capacity of evaporator 1
High pressure to the control device that controls the
Equipped with a force sensor,
Control the pressure so that it exceeds a predetermined target value
It controls the control device.

【0026】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器、アキュムレータを
接続し、圧縮機で搬送される冷媒によって既設配管を洗
浄して被洗浄物を回収する回収装置と、既設配管に流入
する冷媒が気液二相流となるように、凝縮器の熱交換能
力、膨張装置の流動抵抗及び蒸発器の熱交換能力の少な
くともいずれか1つを制御する制御装置と、圧縮機の吸
入側配管に低圧圧力センサおよび吸入温度センサとを備
え、低圧圧力センサから検知される低圧圧力と吸入温度
センサから検知される吸入温度により算出される吸入過
熱度がアキュムレータに冷媒が溜まり込まないように予
め定められた所定目標値となるように制御装置を制御す
るものである。
The pipe cleaning apparatus according to the present invention is
Compressors, condensers, expanders, evaporators, accumulators
Connect and wash the existing pipe with the refrigerant carried by the compressor.
Flows into the existing equipment and the collection device that cleans and collects the objects to be cleaned.
The heat exchange capacity of the condenser so that the refrigerant
Force, the flow resistance of the expander and the heat exchange capacity of the evaporator
At least one of the control device and the compressor suction
Equipped with a low pressure sensor and suction temperature sensor in the inlet piping
The low pressure and suction temperature detected by the low pressure sensor
Inhalation excess calculated from the inhalation temperature detected by the sensor
The degree of heat is designed to prevent refrigerant from accumulating in the accumulator.
Control device so that the specified target value
It is something.

【0027】さらに、圧縮機の運転能力は可変である。 Furthermore, the operating capacity of the compressor is variable.

【0028】さらに、圧縮機の運転能力に応じて冷媒の
物理状態の制御目標値を決めるものである。
Further, depending on the operating capacity of the compressor, the refrigerant
It determines the control target value of the physical state.

【0029】さらに、既設配管の流動抵抗に応じて冷媒
の物理状態の制御目標値を決めるものである。
Further, a refrigerant is added depending on the flow resistance of the existing pipe.
The control target value of the physical state of is determined.

【0030】さらに、周囲温度に応じて冷媒の物理状態
の制御目標値を決めるものである。
Furthermore, the physical state of the refrigerant depends on the ambient temperature.
The control target value of is determined.

【0031】また、この発明における配管洗浄装置は、
圧縮機を有する熱源機と、熱源機と被洗浄配管の間に接
続される鉱油回収装置とを有し、熱源機または鉱油回収
装置の少なくともどちらか一方に圧縮機から吐出された
冷媒を凝縮させる熱交換器を備えると共に、鉱油回収装
置に、熱交換器により凝縮された冷媒を減圧させる膨張
装置と、被洗浄配管を流通した冷媒から被洗浄物を分離
回収する被洗浄物回収手段と、熱源機が有する熱源側制
御装置から運転情報を受け、圧縮機の運転容量を制御す
る洗浄側制御装置とを備えたものである。
The pipe cleaning apparatus according to the present invention is
Connect the heat source unit with a compressor and the heat source unit to the pipe to be cleaned.
With a mineral oil recovery device that is connected to the heat source machine or mineral oil recovery
Discharged from compressor to at least one of the devices
Equipped with a heat exchanger that condenses the refrigerant, and a mineral oil recovery device.
Expansion to depressurize the refrigerant condensed by the heat exchanger
Separation of the object to be cleaned from the refrigerant flowing through the device and the piping to be cleaned
The cleaning object recovery means for recovery and the heat source side control of the heat source machine
Controls the operating capacity of the compressor by receiving operating information from the controller.
And a cleaning side control device.

【0032】また、この発明における配管洗浄装置は、
圧縮機と外部に配設した運転制御装置に運転情報を伝送
可能とする熱源側制御装置を有する熱源機と、熱源機と
被洗浄配管との間に接続される鉱油回収装置とを有し、
熱源機または鉱油回収装置の少なくともどちらか一方に
圧縮機から吐出された冷媒を凝縮させる熱交換器を備え
ると共に、鉱油回収装置に、熱交換器により凝縮された
冷媒を減圧させる膨張装置と、被洗浄配管を流通した冷
媒から被洗浄物を分離回収する被洗浄物回収手段と、熱
源側制御装置または/および運転制御装置の間で運転情
報を伝送可能にする洗浄側制御装置とを備え、運転制御
装置は、熱源側制御装置からの運転情報及び洗浄側制御
装置からの運転情報を受け、熱交換器の熱交換量または
膨張装置の絞り量または圧縮機の運転容量のうち少なく
ともいずれか1つを制御するものである。
The pipe cleaning apparatus according to the present invention is
Transmission of operation information to the compressor and operation control device installed outside
A heat source device having a heat source side control device that enables the heat source device;
Having a mineral oil recovery device connected between the pipe to be cleaned,
At least one of the heat source machine and the mineral oil recovery system
Equipped with a heat exchanger that condenses the refrigerant discharged from the compressor
And was condensed by the heat exchanger in the mineral oil recovery unit.
The expansion device that decompresses the refrigerant and the cold that flows through the pipe to be washed.
Cleaning means for separating and recovering the cleaning object from the medium, and heat
Driving information between the source control device and / or the driving control device
Equipped with a cleaning-side control device that can transmit information
The equipment is operating information from the heat source side controller and cleaning side control.
The heat exchange amount of the heat exchanger or
Smaller amount of expansion device throttling or compressor operating capacity
Both control either one.

【0033】さらに、熱源機が有する熱源側制御装置と
鉱油回収装置が有する洗浄側制御装置の間、あるいは外
部に配設した運転制御装置と熱源側制御装置と洗浄側制
御装置との間における運転情報の伝送に不具合が発生し
たときに、熱源機に配設された圧縮機の運転を停止する
機能を熱源側制御装置に備えたものである。
Further, a heat source side control device included in the heat source device,
Between or outside the washing-side control device of the mineral oil recovery device
Operation control device, heat source side control device and cleaning side control
There is a problem in the transmission of driving information between the
Stop the compressor installed in the heat source
The heat source side control device is provided with the function.

【0034】さらに、熱源側制御装置、洗浄側制御装置
または運転制御装置の少なくともいずれか1つに配管洗
浄運転の進行状況を記録する記憶手段もしくは表示する
表示手段を備えたものである。
Further, the heat source side control device and the cleaning side control device
Alternatively, at least one of the operation control devices should be washed with a pipe.
Storage means or display to record the progress of clean operation
It is provided with a display means.

【0035】さらに、熱源側制御装置、洗浄側制御装置
または運転制御装置の少なくともいずれか1 つに有した
記憶手段に配管洗浄運転の完了もしくは未完了を記録す
るものである。
Further, the heat source side control device and the cleaning side control device
Or having at least one of the operation controller
Record the completion or incompletion of the pipe cleaning operation in the storage means.
It is something.

【0036】さらに、配管洗浄運転が未完了で中断した
場合に、配管洗浄運転の進行状況の記録をもとに配管洗
浄運転を再開する機能を洗浄側制御装置または運転制御
装置の少なくともどちらか一方に備えたものである。
Furthermore, the pipe cleaning operation was not completed and was interrupted.
In this case, the pipe cleaning operation should be based on the progress record of the pipe cleaning operation.
Cleaning side control device or operation control function to restart clean operation
It is provided for at least one of the devices.

【0037】さらに、熱源側制御装置に配管洗浄運転の
完了記録がなされていない場合、熱源機において配管洗
浄運転以外の運転を禁止するものである。
Further, the heat source side control device is equipped with a pipe cleaning operation.
If the completion record is not recorded, wash the pipes in the heat source unit.
It prohibits operations other than clean operation.

【0038】また、この発明における配管洗浄方法は、
既設使用の冷凍空調装置を既設配管から取り除くステッ
プと、既設配管に圧縮機を有する配管洗浄装置を取り付
けるステップと、配管洗浄装置により配管洗浄運転を行
なうステップと、配管洗浄装置に設けた制御装置から遠
隔設置された集中管理装置へ伝送される配管洗浄運転中
の情報をもとに、配管洗浄運転中の高圧圧力、低圧圧
力、吐出温度、圧縮機吸入の過熱度、既設配管に流入す
る冷媒の乾き度が適切な目標値に設定されていたかの配
管洗浄運転の適性を判断するステップとを備えたもので
ある。
The pipe cleaning method according to the present invention is
Remove the existing refrigeration and air-conditioning system from the existing piping.
And a pipe cleaning device with a compressor on the existing pipe
And the pipe cleaning device to perform the pipe cleaning operation.
Away from the control step installed in the pipe cleaning device
During pipe cleaning operation that is transmitted to a centralized control device installed at a remote location
High pressure and low pressure during pipe cleaning operation based on
Power, discharge temperature, superheat of compressor suction, flow into existing pipe
Whether the dryness of the refrigerant is set to an appropriate target value.
And a step of judging the suitability of the pipe cleaning operation.
is there.

【0039】さらに、前記配管洗浄運転の適性判定によ
り、運転制御条件または冷媒量調整の変更を行なうステ
ップを備えたものである。
Further, according to the suitability judgment of the pipe cleaning operation,
Change the operation control conditions or the refrigerant amount adjustment.
It is equipped with a table.

【0040】[0040]

【発明の実施の形態】実施の形態1. 以下本発明の実施の形態1を図に基づいて説明する。図
1は実施の形態1による配管洗浄装置の冷媒回路図であ
る。図において、1は圧縮機、2は油分離器、3は凝縮
器、4、6は冷凍空調装置の熱源機と室内機を接続する
既設配管であり、被洗浄配管、5は既設配管4、6の一
端を接続するバイパス管、7は電子膨張弁、8は蒸発
器、9は被洗浄物の分離回収装置、10はアキュムレー
タである。11は配管洗浄装置であり、配管洗浄装置1
1は圧縮機1、油分離器2、凝縮器3、電子膨張弁7、
蒸発器8、分離回収装置9、アキュムレータ10を順次
接続して構成され、既設配管4、6のバイパス管5が接
続されなかったもう一端に接続弁12a、12bを介し
て接続される。圧縮機1は回転数可変の圧縮機となって
おり、回転数を変化させることで搬送する冷媒流量を増
減でき、凝縮器3、蒸発器8はファン(図示せず)によ
って送風される配管洗浄装置11周囲の外気と熱交換を
行う。また13aは圧縮機1の吐出温度を計測する温度
センサ、13bは凝縮器3の出口、被洗浄配管4の入口
の温度を計測する温度センサ、13cは圧縮機1の吸入
温度を計測する温度センサ、14aは配管洗浄装置の高
圧圧力を計測する圧力センサ、14bは配管洗浄装置の
低圧圧力を計測する圧力センサである。15は、温度セ
ンサ13a、13b、13c、圧力センサ14a、14
bの計測値から圧縮機1の回転数、凝縮器3、蒸発器8
のファン風量、電子膨張弁7の開度を制御する計測制御
装置である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a pipe cleaning device according to a first embodiment. In the figure, 1 is a compressor, 2 is an oil separator, 3 is a condenser, 4 and 6 are existing pipes that connect the heat source unit of the refrigerating and air-conditioning system and the indoor unit, pipes to be cleaned 5 are existing pipes 4, A bypass pipe connecting one end of 6, an electronic expansion valve 7, an evaporator 8, a device 9 for separating and collecting objects to be cleaned, and an accumulator 10. Reference numeral 11 is a pipe cleaning device, and a pipe cleaning device 1
1 is a compressor 1, an oil separator 2, a condenser 3, an electronic expansion valve 7,
The evaporator 8, the separation / collection device 9, and the accumulator 10 are sequentially connected to each other, and the bypass pipes 5 of the existing pipes 4 and 6 are connected to the other ends of the pipes 6 and 6 not connected to each other via connection valves 12a and 12b. The compressor 1 is a compressor whose rotation speed is variable, and the flow rate of the refrigerant to be conveyed can be increased / decreased by changing the rotation speed, and the condenser 3 and the evaporator 8 are pipe cleaning blown by a fan (not shown). Heat exchange is performed with the outside air around the device 11. 13a is a temperature sensor for measuring the discharge temperature of the compressor 1, 13b is a temperature sensor for measuring the temperature of the outlet of the condenser 3 and the inlet of the pipe to be cleaned 4, 13c is a temperature sensor for measuring the suction temperature of the compressor 1. , 14a is a pressure sensor for measuring the high pressure of the pipe cleaning device, and 14b is a pressure sensor for measuring the low pressure of the pipe cleaning device. 15 is a temperature sensor 13a, 13b, 13c, pressure sensor 14a, 14
From the measured value of b, the rotation speed of the compressor 1, the condenser 3, the evaporator 8
Is a measurement control device for controlling the fan air flow rate and the opening degree of the electronic expansion valve 7.

【0041】この発明では、図1に示すように冷凍サイ
クルが構成されており、冷凍サイクルを循環する冷媒と
してHFC系混合冷媒であるR407Cが用いられる。
R407Cは、R32/R125/R134aが23/
25/52wt%の割合で混合した非共沸混合冷媒であ
り、冷凍機油としてはこの冷媒と相溶性を有するエステ
ル油が使用される。また既設配管4、6はHCFC系冷
媒を用いた冷凍空調装置が過去に接続されており、この
既設配管にはHCFC系冷媒用の冷凍機油である鉱油が
残存している。R407Cに対する鉱油の溶解度は1%
以下であり、鉱油とはほとんど溶解性がない。
In the present invention, the refrigeration cycle is configured as shown in FIG. 1, and R407C which is an HFC mixed refrigerant is used as the refrigerant circulating in the refrigeration cycle.
R407C has 23 / R32 / R125 / R134a
It is a non-azeotropic mixed refrigerant mixed in a ratio of 25/52 wt%, and as refrigerating machine oil, ester oil compatible with this refrigerant is used. A refrigerating and air-conditioning system using an HCFC refrigerant is connected to the existing pipes 4 and 6 in the past, and mineral oil, which is a refrigerating machine oil for the HCFC refrigerant, remains in this existing pipe. Solubility of mineral oil in R407C is 1%
Below, it is almost insoluble in mineral oil.

【0042】次に本発明の洗浄手順について説明する。
既設配管4、6に接続されている交換の必要な熱源機、
室内機を取り外し、図1のように既設配管4、6に配管
洗浄装置11、およびバイパス管5を接続する。接続後
冷凍サイクル全体を真空引きした後、R407Cを適量
充填する。その後圧縮機1を運転する。このときの冷凍
サイクルの運転状況は以下のようになる。圧縮機1から
吐出された高温高圧のガス冷媒はまず油分離器2を通過
する。この段階でガス冷媒と一緒に圧縮機1から吐出さ
れた冷凍機油は油分離器2で分離され圧縮機1の吸入側
に戻される。高温高圧のガス冷媒はその後凝縮器3によ
ってガスが一部冷却され液となり、高圧の気液二相冷媒
になる。この高圧の気液二相冷媒は既設配管4、バイパ
ス管5、既設配管6を通過しこれらの配管内部の洗浄を
行った後、電子膨張弁7によって低圧の気液二相冷媒に
減圧される。この後蒸発器8で加熱され低圧のガスにな
る。次に分離回収装置9を通過し、この際、既設配管
4、6内で洗浄され配管内付着から引き剥がされた鉱油
が冷媒から分離され、鉱油は分離回収装置9に保持され
る。低圧の冷媒ガスはこの後アキュムレータ10を経て
圧縮機1に吸入される。
Next, the cleaning procedure of the present invention will be described.
A heat source unit that needs to be replaced and is connected to the existing pipes 4 and 6.
The indoor unit is removed, and the pipe cleaning device 11 and the bypass pipe 5 are connected to the existing pipes 4 and 6 as shown in FIG. After connection, the entire refrigeration cycle is evacuated and then R407C is filled in an appropriate amount. Then, the compressor 1 is operated. The operation status of the refrigeration cycle at this time is as follows. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 first passes through the oil separator 2. At this stage, the refrigerating machine oil discharged from the compressor 1 together with the gas refrigerant is separated by the oil separator 2 and returned to the suction side of the compressor 1. The high-temperature high-pressure gas refrigerant is then partially cooled by the condenser 3 to become a liquid, and becomes a high-pressure gas-liquid two-phase refrigerant. This high-pressure gas-liquid two-phase refrigerant passes through the existing pipe 4, the bypass pipe 5, and the existing pipe 6 to wash the inside of these pipes, and then is decompressed to a low-pressure gas-liquid two-phase refrigerant by the electronic expansion valve 7. . After this, it is heated in the evaporator 8 to become a low-pressure gas. Next, it passes through the separation / recovery device 9, and at this time, the mineral oil that has been washed in the existing pipes 4 and 6 and peeled off from the adhesion inside the pipes is separated from the refrigerant, and the mineral oil is retained in the separation / recovery device 9. The low-pressure refrigerant gas is then sucked into the compressor 1 via the accumulator 10.

【0043】このように配管洗浄装置による冷凍サイク
ルを運転させることで被洗浄配管である既設配管に気液
二相混合流、すなわちガスと液の混合された冷媒を流す
ことが可能となる。ここで、既設配管に気液二相冷媒を
流して洗浄を行う理由について説明する。図2は本発明
に関して、洗浄する際の冷媒の状態毎に鉱油の配管残存
量と洗浄時間による洗浄特性を示した図であり、横軸は
洗浄時間、縦軸は洗浄後配管に残留する鉱油量を表して
いる。図2に示すように鉱油の洗浄を行う場合、ガス単
相、液単相、気液二相(ガス液混合)の3つの状態のな
かでは図中の◇印による一点鎖線で表わす気液二相で洗
浄を行ったときの洗浄特性が優れていることがわかる。
By operating the refrigeration cycle by the pipe cleaning device in this manner, it becomes possible to flow a gas-liquid two-phase mixed flow, that is, a refrigerant in which gas and liquid are mixed, in the existing pipe which is the pipe to be cleaned. Here, the reason why the gas-liquid two-phase refrigerant is caused to flow through the existing pipe for cleaning will be described. FIG. 2 is a diagram showing the cleaning characteristics according to the present invention by the residual amount of the mineral oil pipe and the cleaning time for each state of the refrigerant during cleaning, the horizontal axis represents the cleaning time, and the vertical axis represents the mineral oil remaining in the pipe after cleaning. It represents the quantity. When cleaning mineral oil as shown in Fig. 2, among the three states of gas single phase, liquid single phase, and gas-liquid two-phase (gas-liquid mixture), the gas-liquid two indicated by the one-dot chain line in the figure is indicated. It can be seen that the cleaning characteristics are excellent when the cleaning is performed in the phase.

【0044】従来の洗浄ではHCFC225などの洗浄
液を液単相として配管に流し、洗浄液が配管に付着した
鉱油を溶解することで洗浄を行っていた。また、R40
7Cを流して洗浄を行った場合、従来と同様に配管に液
として流して洗浄を行うと、この冷媒と鉱油とは溶解性
がほとんどないので、鉱油をR407Cとのせん断力で
引っ張って移動させて洗浄することになる。この場合、
鉱油の移動速度は冷媒液の流速に比べて著しく遅く、洗
浄を行うのに時間がかかり実用的でない。また配管にR
407Cをガスとして流す方法もあるが、この場合も同
様に鉱油をR407Cとのせん断力で引っ張って移動さ
せて洗浄することになり、鉱油の移動速度が遅く洗浄を
行うのに時間がかかり実用的でない。
In the conventional cleaning, a cleaning liquid such as HCFC225 is flowed as a liquid single phase into a pipe, and the cleaning liquid is dissolved by dissolving the mineral oil adhering to the pipe. Also, R40
When 7C is flowed for cleaning, if it is poured as a liquid in the pipe and washed as in the conventional case, the refrigerant and the mineral oil have almost no solubility. Therefore, the mineral oil is pulled by the shearing force with R407C and moved. Will be washed. in this case,
The moving speed of mineral oil is remarkably slow as compared with the flow speed of the refrigerant liquid, and it takes a long time to perform cleaning, which is not practical. In addition, R for piping
There is also a method of flowing 407C as a gas, but in this case as well, mineral oil is pulled by the shearing force with R407C and moved to be washed in the same manner, and the moving speed of the mineral oil is slow and it takes time to perform the washing. Not.

【0045】一方、気液二相混合流で洗浄する場合、二
相流は気液が混合して流れるため流れの乱れ具合が液単
相、ガス単相を流す場合よりも大きくなる。そのため気
液二相冷媒中の液冷媒の乱れが配管壁面付近で大きくな
り、壁面に付着している鉱油を壁面から引き剥がす作用
を行う。壁面から引き剥がされた鉱油は冷媒中を移動す
るので、移動速度は冷媒と同じとなる。従ってR407
Cとのせん断力で引っ張って移動させて洗浄することに
比べ高速で冷媒を移動させることが可能となり、鉱油の
洗浄が速やかに短時間で行われる。
On the other hand, in the case of cleaning with a gas-liquid two-phase mixed flow, the two-phase flow causes the gas-liquid to mix and flow, so that the turbulence of the flow becomes larger than that in the case where a liquid single phase or a gas single phase flows. Therefore, the turbulence of the liquid refrigerant in the gas-liquid two-phase refrigerant becomes large near the wall surface of the pipe, and the mineral oil adhering to the wall surface is peeled off from the wall surface. Since the mineral oil peeled off from the wall surface moves in the refrigerant, the moving speed becomes the same as that of the refrigerant. Therefore R407
It becomes possible to move the refrigerant at a high speed as compared with the case where the refrigerant is pulled and moved by the shearing force with C to be washed, and the mineral oil is quickly washed in a short time.

【0046】このように気液二相冷媒による鉱油除去の
洗浄特性は、鉱油をせん断力で移動させる能力および配
管から鉱油を引き剥がす能力に依存するが、これらの能
力は冷媒の流速、すなわち流量が大きくなるほど大きく
なるので、配管洗浄においては、冷媒流量が大きいほど
洗浄能力が向上する。従って冷媒流量が増加すると短時
間で洗浄が可能になったり、同一洗浄時間であってもよ
り十分な洗浄が可能となる。
As described above, the cleaning characteristics of the mineral oil removal by the gas-liquid two-phase refrigerant depend on the ability to move the mineral oil by the shearing force and the ability to peel the mineral oil from the pipe. Becomes larger, the cleaning capacity in pipe cleaning improves as the refrigerant flow rate increases. Therefore, when the flow rate of the refrigerant increases, it becomes possible to perform the cleaning in a short time, or to perform more sufficient cleaning even in the same cleaning time.

【0047】配管の洗浄終了後は、圧縮機1の運転を停
止し、接続弁12aを閉じる。その後再度圧縮機1の運
転を行うと、接続弁12aが閉じられているので、圧縮
機1から吐出された冷媒は凝縮器3に追い込まれて蓄積
され、一方既設配管4、6やバイパス管5内の冷媒はア
キュムレータ10ヘ引き出され、所謂ポンプダウン運転
を行うことで、既設配管4、6中に残存するR407C
を回収する。R407Cの沸点は−43℃と低いため、
このポンプダウン運転を行うことで容易に蒸発ガス化す
るため、洗浄液としてのR407Cの回収も容易に行う
ことができる。ポンプダウン運転終了後は接続弁12b
を閉じ、R407Cの回収を終了する。
After the cleaning of the pipe is completed, the operation of the compressor 1 is stopped and the connection valve 12a is closed. Then, when the compressor 1 is operated again, the connection valve 12a is closed, so that the refrigerant discharged from the compressor 1 is driven into and accumulated in the condenser 3, while the existing pipes 4 and 6 and the bypass pipe 5 are stored. The refrigerant inside is drawn out to the accumulator 10 and the so-called pump down operation is performed, so that the R407C remaining in the existing pipes 4 and 6
Collect. Since the boiling point of R407C is as low as -43 ° C,
By performing this pump down operation, the gas is easily vaporized, so that R407C as a cleaning liquid can be easily recovered. Connection valve 12b after pump down operation
Is closed and the recovery of R407C is completed.

【0048】R407C回収後は既設配管から配管洗浄
装置11、バイパス管5を取り外し、新規に交換後設置
される熱源機、室内機を取り付け、既設配管の洗浄およ
び冷凍空調装置の交換を完了する。このように行うこと
で、配管の再設置を行うことなく簡単に冷凍空調装置の
入れ替えが可能となる。
After the recovery of R407C, the pipe cleaning device 11 and the bypass pipe 5 are removed from the existing pipe, the heat source unit and the indoor unit which are newly installed after replacement are attached, and the cleaning of the existing pipe and the replacement of the refrigeration / air-conditioning system are completed. By doing so, it becomes possible to easily replace the refrigerating and air-conditioning device without re-installing the pipe.

【0049】次に、洗浄運転中の配管洗浄装置11の運
転方法について説明する。前述したとおり、洗浄能力を
向上させ、洗浄時間の短時間化や、より十分な洗浄を実
現するためには、冷媒による洗浄流量が大きくなる運転
を実施する必要がある。そこで圧縮機1の運転特性に着
目すると、図3に示されるように圧縮機1の回転数が大
きいほど、また圧縮機1の吸入圧力、すなわち低圧が高
いほど搬送される冷媒流量は増加する。そこで、洗浄運
転においては圧縮機1の回転数は運転に支障のない範囲
でできるだけ高い回転数で運転する。このように運転す
ることで、搬送される冷媒流量は増加し、洗浄能力を向
上できる。ただし、圧縮機吐出側の高圧が圧縮機1など
配管洗浄装置11の許容設計圧力を越える恐れがある場
合や、過負荷運転を行なって、圧縮機1の運転負荷が許
容値を超える恐れがある場合などには、回転数を適宜低
下させて運転し、圧縮機1運転の信頼性を確保する。
Next, a method of operating the pipe cleaning device 11 during the cleaning operation will be described. As described above, in order to improve the cleaning ability, shorten the cleaning time, and realize more sufficient cleaning, it is necessary to perform an operation in which the cleaning flow rate of the refrigerant is large. Therefore, focusing on the operation characteristics of the compressor 1, as shown in FIG. 3, the flow rate of the refrigerant to be conveyed increases as the rotation speed of the compressor 1 increases and as the suction pressure of the compressor 1, that is, the low pressure increases. Therefore, in the cleaning operation, the compressor 1 is operated at a rotation speed as high as possible within a range that does not hinder the operation. By operating in this way, the flow rate of the transported refrigerant is increased, and the cleaning capacity can be improved. However, when the high pressure on the compressor discharge side may exceed the allowable design pressure of the pipe cleaning device 11 such as the compressor 1, or when the overload operation is performed and the operating load of the compressor 1 may exceed the allowable value. In some cases, the rotational speed is appropriately reduced to operate the compressor 1 to ensure the reliability of the operation of the compressor 1.

【0050】なお、圧縮機の回転数を可変させる方法以
外の方法、例えば気筒数(シリンダー数)を変化させる
ことで運転容量を変化させるような場合であっても同様
に、洗浄運転中はできるだけ多くの冷媒流量が流れるよ
うに圧縮機の運転容量を大きく制御し、高圧が圧縮機1
など配管洗浄装置11の許容設計圧力を越える恐れがあ
る場合や、過負荷運転となり、圧縮機1の運転負荷が許
容値を超える恐れがある場合などには、運転容量を適宜
低下させて運転し、圧縮機1運転の信頼性を確保する。
Even when the operating capacity is changed by changing the number of cylinders (number of cylinders) other than the method of changing the number of revolutions of the compressor, it is possible to perform as much as possible during the cleaning operation. The operating capacity of the compressor is largely controlled so that a large amount of refrigerant flows, and the high pressure causes the compressor 1 to operate.
When there is a risk that the allowable design pressure of the pipe cleaning device 11 will be exceeded, or when the operating load of the compressor 1 may exceed the allowable value due to overload operation, the operating capacity should be reduced appropriately. , Ensure reliability of operation of the compressor 1.

【0051】また、洗浄流量を大きくするためには圧縮
機の吸入圧力である冷凍サイクルの低圧側圧力を高くな
るように制御することでも対応できる。例えば、目標洗
浄時間内に洗浄完了できる洗浄流量を予め定めておき、
圧縮機1の回転数が決定されている場合には、図3の相
関から洗浄に必要な流量を確保するための低圧圧力の目
標値を決定することができる。この低圧を実現できるよ
う配管洗浄装置11の各機器の制御を実施する。例えば
洗浄運転中の現在の低圧圧力が目標値より低い場合に
は、電子膨張弁7の開度を大きくしたり、蒸発器8のフ
ァン風量を増加させることで低圧を上昇させる。また凝
縮器3のファン風量を減少させても低圧を上昇させるこ
とができる。この場合、ファン風量の減少により高圧が
上昇し、その上昇に伴って低圧が上昇する。
Further, in order to increase the washing flow rate, it is possible to control by controlling the low pressure side pressure of the refrigeration cycle, which is the suction pressure of the compressor, to be high. For example, a cleaning flow rate at which cleaning can be completed within the target cleaning time is set in advance,
When the rotation speed of the compressor 1 is determined, the target value of the low pressure for securing the flow rate required for cleaning can be determined from the correlation of FIG. Control of each device of the pipe cleaning device 11 is performed so as to realize this low pressure. For example, when the current low pressure during the cleaning operation is lower than the target value, the low pressure is increased by increasing the opening degree of the electronic expansion valve 7 or increasing the fan air volume of the evaporator 8. Further, the low pressure can be raised even if the fan air volume of the condenser 3 is reduced. In this case, the high pressure rises due to the decrease in the fan air volume, and the low pressure rises with the rise.

【0052】なお低圧圧力の目標値を定めているが、運
転中に低圧の値がこの値以上になってもよい。この場合
は、圧縮機1で搬送される冷媒流量がより増加するの
で、洗浄能力がさらに向上し、同一洗浄時間であっても
より十分な洗浄が可能となる。ただし、低圧をあまりに
も高く運転すると、圧縮機1で搬送される冷媒流量が大
きくなりすぎ、圧縮機1が過負荷運転となり運転負荷が
許容値を超える恐れがある場合も発生する。このような
場合は低圧圧力の上限を定めておき、この低圧圧力以上
となる運転を実施しないように、凝縮器3のファン風量
を増加、蒸発器8のファン風量を減少、電子膨張弁7の
開度を小さく制御する。
Although the target value of the low pressure is set, the low pressure value may exceed this value during operation. In this case, since the flow rate of the refrigerant carried by the compressor 1 is further increased, the cleaning ability is further improved and more sufficient cleaning is possible even with the same cleaning time. However, if the low pressure is operated too high, the flow rate of the refrigerant carried by the compressor 1 becomes too large, and the compressor 1 may be overloaded and the operating load may exceed the allowable value. In such a case, the upper limit of the low pressure is set, and the fan air volume of the condenser 3 is increased, the fan air volume of the evaporator 8 is decreased, and the electronic expansion valve 7 is controlled so as not to perform the operation at the low pressure or more. Control the opening small.

【0053】また、洗浄運転中の配管洗浄装置11の運
転方法として、予め高圧圧力の目標値を定めておき、こ
の目標値になるように配管洗浄装置11を運転してもよ
い。高圧が高いと、洗浄する二相冷媒の温度も上昇し、
それに伴い被洗浄油の温度も上昇する。油など液体の粘
性は高温になるほど低下するので、せん断力で鉱油を移
動させる際には、鉱油が移動しやすくなり洗浄能力が向
上する。そこで必要な洗浄能力が得られる温度を予め定
めておき、その温度を実現できる圧力を高圧圧力の目標
値とする。この温度については洗浄能力を考えると30
℃以上に設定されることが望ましい。この高圧圧力の目
標値となるよう配管洗浄装置11を運転する。例えば洗
浄運転中の現在の高圧が目標値より低い場合には、凝縮
器3のファン風量を減少させることで高圧を上昇させ
る。また電子膨張弁7の開度を大きくしたり、蒸発器8
のファン風量を増加させてもよい。こうすることで、低
圧が上昇し、その上昇に伴って高圧を上昇させることが
できる。
As a method of operating the pipe cleaning device 11 during the cleaning operation, a target value of the high pressure may be set in advance and the pipe cleaning device 11 may be operated so as to reach this target value. When the high pressure is high, the temperature of the two-phase refrigerant to be washed also rises,
Along with that, the temperature of the oil to be cleaned also rises. Since the viscosity of liquids such as oil decreases as the temperature rises, when the mineral oil is moved by the shearing force, the mineral oil easily moves and the cleaning ability is improved. Therefore, the temperature at which the required cleaning capacity is obtained is set in advance, and the pressure at which the temperature can be achieved is set as the target value of the high pressure. This temperature is 30 when considering the cleaning ability.
It is desirable to set the temperature above ℃. The pipe cleaning device 11 is operated so as to reach the target value of this high pressure. For example, when the current high pressure during the cleaning operation is lower than the target value, the high pressure is increased by decreasing the fan air flow rate of the condenser 3. In addition, the opening of the electronic expansion valve 7 can be increased and the evaporator 8
The fan air volume may be increased. By doing so, the low pressure rises, and the high pressure can rise with the rise.

【0054】なお高圧圧力の目標値を定めているが、運
転中に高圧の圧力値がこの値以上になってもよい。この
場合は、油の粘性がさらに低下するので、さらなる洗浄
能力の向上が実現できる。ただし、高圧をあまりにも高
く運転すると、圧縮機1など配管洗浄装置11の許容設
計圧力を越える恐れがある場合も発生する。このような
場合は高圧圧力の上限を定めておき、この高圧以上とな
る運転を実施しないように、凝縮器3、蒸発器8のファ
ン風量、電子膨張弁7の開度を制御する。
Although the target value of the high pressure is set, the high pressure value may exceed this value during operation. In this case, since the viscosity of the oil is further reduced, the cleaning ability can be further improved. However, if the high pressure is operated too high, there is a possibility that the allowable design pressure of the pipe cleaning device 11 such as the compressor 1 may be exceeded. In such a case, the upper limit of the high pressure is set, and the fan air flow rates of the condenser 3 and the evaporator 8 and the opening degree of the electronic expansion valve 7 are controlled so that the operation at the high pressure or higher is not performed.

【0055】また、被洗浄配管4、6の配管長が長い場
合には、配管の圧力損失が大きくなるため、高圧をある
程度高くしないと、配管の圧力損失によって低圧が低下
してしまい、圧縮機1で搬送される冷媒流量が洗浄に必
要な流量より低下してしまう場合が発生する。このよう
な状況に対応するためにも、低圧が必要以上に低下しな
いように高圧をある値以上高くなるように運転する。こ
の場合の高圧を高くする制御方法は前述した方法と同じ
方法で実施できる。
Further, when the lengths of the pipes to be cleaned 4 and 6 are long, the pressure loss of the pipes becomes large. Therefore, unless the high pressure is raised to a certain extent, the low pressure is reduced due to the pressure loss of the pipes, and the compressor is reduced. In some cases, the flow rate of the refrigerant conveyed in 1 may be lower than the flow rate required for cleaning. In order to cope with such a situation, the high pressure is operated so as to be higher than a certain value so that the low pressure does not decrease more than necessary. The control method for increasing the high pressure in this case can be carried out by the same method as described above.

【0056】また、洗浄運転中の配管洗浄装置11の運
転方法として、予め圧縮機1の吐出温度の上限を定めて
おいてもよい。前述したように高圧を上昇させる運転を
行った場合、それにともなって吐出温度も上昇しやすく
なる。このとき、吐出温度が圧縮機1内の油の劣化を引
き起こす温度まで上昇すると、圧縮機1の運転信頼性を
低下させるので好ましくない。このような状態を避ける
ため、運転中の吐出温度が吐出温度の上限を越える恐れ
がある場合には、吐出温度を低下させる運転を行う。吐
出温度を低下させるためには、高圧を低下させるかある
いは圧縮機1の吸入温度を低下させることが有効となる
ので、凝縮器3のファン風量を増加させて高圧を低下さ
せたり、蒸発器8のファン風量を低下させるあるいは電
子膨張弁7の開度を大きくすることで、蒸発器8出口の
冷媒過熱度、および吸入温度を低下させたりすることで
吐出温度を低下させる。
As an operating method of the pipe cleaning apparatus 11 during the cleaning operation, the upper limit of the discharge temperature of the compressor 1 may be set in advance. When the operation for raising the high pressure is performed as described above, the discharge temperature is likely to rise accordingly. At this time, if the discharge temperature rises to a temperature that causes deterioration of the oil in the compressor 1, the operating reliability of the compressor 1 is reduced, which is not preferable. In order to avoid such a state, when the discharge temperature during operation may exceed the upper limit of the discharge temperature, the discharge temperature is lowered. In order to lower the discharge temperature, it is effective to lower the high pressure or lower the suction temperature of the compressor 1. Therefore, the fan air volume of the condenser 3 is increased to lower the high pressure, or the evaporator 8 is used. By decreasing the fan air flow rate or increasing the opening degree of the electronic expansion valve 7, the refrigerant superheat degree at the outlet of the evaporator 8 and the suction temperature are decreased, thereby decreasing the discharge temperature.

【0057】また、洗浄運転中の配管洗浄装置11の運
転方法として、圧縮機1の吸入側の冷媒過熱度がとる範
囲を定めておいてもよい。前述したような冷凍サイクル
の低圧、高圧を上昇させる制御を行った場合、各機器の
制御によっては、圧縮機1吸入の冷媒が過熱ガス状態と
ならず、圧縮機に液が戻ったり、あるいは圧縮機1吸入
の冷媒過熱度が大きくなりすぎ、吸入温度が上昇し、そ
れにより吐出温度上昇を引き起こしたりする場合が発生
する。圧縮機1への液戻りや吐出温度の上昇は、圧縮機
1運転の信頼性を低下させるので、圧縮機1の運転にお
ける信頼性を確保するためには、圧縮機1吸入の冷媒過
熱度がとる適切な範囲、例えば過熱度5℃〜10℃の範
囲とし、この範囲内に冷媒過熱度を制御する。冷媒過熱
度の制御は直接的には、電子膨張弁7の開度の大小で制
御できるが、凝縮器3、蒸発器8のファン風量の制御に
より間接的に行っても良い。すなわち、冷媒過熱度が高
い場合には電子膨張弁7の開度を大きくすることで過熱
度を低くするが、他の方法として蒸発器8のファン風量
を低下させることで、蒸発器8での熱交換量を低減さ
せ、過熱度を低くしてもよいし、凝縮器3のファン風量
を低下させ、高圧を高くし、それに付随して低圧も高く
し、外気と蒸発器8での冷媒温度を近接させ蒸発器8で
の熱交換量を低減させ、過熱度を低くしてもよい。ま
た、逆に冷媒過熱度が低い場合にはこれらの操作と反対
の操作を行うことで、過熱度を高く制御する。
As a method of operating the pipe cleaning device 11 during the cleaning operation, the range of the refrigerant superheat on the suction side of the compressor 1 may be set. When the control for increasing the low pressure and the high pressure of the refrigeration cycle as described above is performed, depending on the control of each device, the refrigerant sucked in the compressor 1 does not become the superheated gas state, and the liquid returns to the compressor, or the compression is performed. The refrigerant superheat degree of the suction of the machine 1 becomes too large, and the suction temperature rises, which may cause the discharge temperature to rise. The liquid return to the compressor 1 and the rise of the discharge temperature reduce the reliability of the operation of the compressor 1. Therefore, in order to ensure the reliability of the operation of the compressor 1, the refrigerant superheat degree of the intake of the compressor 1 is An appropriate range is set, for example, a superheat degree of 5 ° C. to 10 ° C., and the refrigerant superheat degree is controlled within this range. The degree of superheat of the refrigerant can be controlled directly by controlling the opening degree of the electronic expansion valve 7, but may be indirectly controlled by controlling the fan air flow rates of the condenser 3 and the evaporator 8. That is, when the degree of refrigerant superheat is high, the degree of superheat is lowered by increasing the opening degree of the electronic expansion valve 7. However, as another method, the fan air volume of the evaporator 8 is reduced, so that The amount of heat exchange may be reduced to reduce the degree of superheat, the fan air flow rate of the condenser 3 may be reduced, the high pressure may be increased, and the low pressure may be increased accordingly. May be brought close to each other to reduce the amount of heat exchange in the evaporator 8 and reduce the degree of superheat. On the contrary, when the refrigerant superheat degree is low, the superheat degree is controlled to be high by performing the operation opposite to these operations.

【0058】また、さらに洗浄運転中の配管洗浄装置1
1の運転方法として、被洗浄配管4に流入する冷媒状態
を気液二相冷媒として、この気液二相冷媒の乾き度を所
定の範囲内になるように制御してもよい。被洗浄配管4
に流入する冷媒状態を気液二相冷媒とした場合、洗浄能
力が向上することは前述の説明の通りである。また気液
二相冷媒であっても、その乾き度が1に近い場合には、
ガスの流れの中を液滴が噴霧状に流れている噴霧流とな
り、ほぼガス単相と同一の流れとなり、乾き度が0に近
い場合には、液の流れの中を気泡が流れている気泡流と
なり、ほぼ液単相と同一の流れとなり、気液二相流とす
ることによる洗浄能力の向上効果が得にくい場合も存在
する。従って同じ気液二相冷媒であっても、洗浄能力を
考えると、乾き度1,乾き度0近辺ではない気液二相
流、即ち乾き度が0.2〜0.9程度の乾き度に設定す
ることが望ましい。このように被洗浄配管4に流入する
冷媒状態を気液二相冷媒として、さらにこの二相冷媒の
乾き度を所定の範囲内になるように制御するために以下
のような制御を実施する。
Further, the pipe cleaning apparatus 1 during the cleaning operation
As the first operating method, the refrigerant state flowing into the pipe to be cleaned 4 may be used as a gas-liquid two-phase refrigerant, and the dryness of the gas-liquid two-phase refrigerant may be controlled to fall within a predetermined range. Pipe to be cleaned 4
As described above, the cleaning ability is improved when the state of the refrigerant flowing into is a gas-liquid two-phase refrigerant. Even if it is a gas-liquid two-phase refrigerant, if its dryness is close to 1,
The droplets are atomized in the gas flow and become almost the same as the gas single phase. When the dryness is close to 0, bubbles are flowing in the liquid flow. There is also a case where it becomes a bubbly flow and becomes almost the same flow as the liquid single phase, and it is difficult to obtain the effect of improving the cleaning ability by the gas-liquid two-phase flow. Therefore, even with the same gas-liquid two-phase refrigerant, considering the cleaning ability, a gas-liquid two-phase flow that is not in the vicinity of dryness 1 and dryness 0, that is, the dryness is about 0.2 to 0.9. It is desirable to set. The following control is carried out to control the state of the refrigerant flowing into the pipe to be cleaned 4 as a gas-liquid two-phase refrigerant and to control the dryness of the two-phase refrigerant within a predetermined range.

【0059】まず、気液二相冷媒の乾き度の検知方法で
あるが、高圧圧力、および凝縮器3の出口温度を計測す
る。洗浄冷媒としてR407Cを用いた場合、その非共
沸性により、圧力、温度、乾き度の相関には図4に示す
ような相関がある。図4は圧力一定の場合における冷媒
の乾き度と温度との関係を示す図で、横軸は冷媒の乾き
度、縦軸は冷媒の温度を示す。図4からは乾き度が増加
するに比例して冷媒の温度も増加することがわかる。従
って圧力、温度を検知することにより、乾き度を求める
ことができる。この乾き度が目標とする乾き度より低
い、例えば0.2より低い場合の制御方法であるが、こ
の場合は凝縮器3での凝縮量が大きすぎるため、凝縮器
3のファン風量を低下させて、凝縮量を低減すること
で、乾き度を高めに制御する。また電子膨張弁7の開度
を大きくしても、蒸発器8のファン風量を低下させても
よい。こうすることで、蒸発器8での過熱度が減少し、
蒸発器8内のガス冷媒が存在する領域が減少し、その分
液冷媒が存在する領域が増加する。そこで蒸発器8内に
存在する冷媒量が増加するため、この増加分の冷媒が凝
縮器3から蒸発器8に移動する。従って凝縮器3での冷
媒量が減少し、結果凝縮器3出口での冷媒乾き度が高い
方向に制御される。乾き度が目標とする乾き度より高い
場合は、これらの操作の反対の操作を行うことで、乾き
度を低く制御する。
First, regarding the method of detecting the dryness of the gas-liquid two-phase refrigerant, the high pressure and the outlet temperature of the condenser 3 are measured. When R407C is used as the cleaning refrigerant, due to its non-azeotropic property, the pressure, temperature, and dryness have a correlation as shown in FIG. FIG. 4 is a diagram showing the relationship between the dryness of the refrigerant and the temperature when the pressure is constant. The horizontal axis represents the dryness of the refrigerant and the vertical axis represents the temperature of the refrigerant. It can be seen from FIG. 4 that the temperature of the refrigerant increases in proportion to the increase in dryness. Therefore, the dryness can be obtained by detecting the pressure and the temperature. This control method is used when the dryness is lower than the target dryness, for example, lower than 0.2. In this case, however, the amount of condensation in the condenser 3 is too large, and the fan air volume of the condenser 3 is reduced. The dryness is controlled to be high by reducing the amount of condensation. Further, the opening degree of the electronic expansion valve 7 may be increased or the fan air volume of the evaporator 8 may be decreased. By doing this, the degree of superheat in the evaporator 8 is reduced,
The area where the gas refrigerant exists in the evaporator 8 decreases, and the area where the separated refrigerant exists increases. Therefore, the amount of the refrigerant existing in the evaporator 8 increases, so that the increased amount of the refrigerant moves from the condenser 3 to the evaporator 8. Therefore, the amount of the refrigerant in the condenser 3 is reduced, and as a result, the dryness of the refrigerant at the outlet of the condenser 3 is controlled to be higher. When the dryness is higher than the target dryness, the dryness is controlled to be low by performing the reverse operation of these operations.

【0060】以上で述べた凝縮器3、蒸発器8の熱交換
量の制御方法はファン風量の増減によって行っている
が、この際ファン風量を減少させる一つの方法として、
ファンそのものを停止させてもよい。またファン風量の
増減で凝縮器3、蒸発器8での熱交換量を増減させる代
わりに、図5に示すように凝縮器3あるいは蒸発器8の
構成を複数に分割された熱交換器に分岐する構成とし
て、分岐された一部を電磁弁などの弁16によって、閉
止、あるいは流れる流量を増減することで、熱交換量を
変化させてもよい。この場合、弁16の開度を閉方向に
制御することで分岐の一部を閉止、あるいは流量を低減
させ熱交換量を低減し、逆に弁16の開度を開方向に制
御することで閉止させる分岐部を減少、あるいは無く
す、あるいは分岐部の流量を低減しないようにし熱交換
量を増加させることもできる。
The method of controlling the heat exchange amount of the condenser 3 and the evaporator 8 described above is performed by increasing / decreasing the fan air volume. At this time, one method for reducing the fan air volume is as follows.
You may stop the fan itself. Further, instead of increasing / decreasing the heat exchange amount in the condenser 3 and the evaporator 8 by increasing / decreasing the fan air volume, the condenser 3 or the evaporator 8 is branched into a plurality of heat exchangers as shown in FIG. In such a configuration, the heat exchange amount may be changed by closing the branched portion with a valve 16 such as a solenoid valve or by increasing or decreasing the flow rate of the flow. In this case, by controlling the opening of the valve 16 in the closing direction, a part of the branch is closed, or the flow rate is reduced to reduce the heat exchange amount, and conversely, the opening of the valve 16 is controlled in the opening direction. It is also possible to reduce or eliminate the branch portion to be closed, or to increase the heat exchange amount without reducing the flow rate of the branch portion.

【0061】また、図6に示すように凝縮器3あるいは
蒸発器8の構成として、これらの熱交換器をバイパスす
るバイパス配管17を設けてもよい。このバイパス配管
17にも閉止、あるいは流量を調節できる電磁弁などの
弁16を設け、熱交換量を減少させたいときは、弁16
の開度を開方向に制御することでバイパス配管17に流
れる流量を増加させ、熱交換量を増加させるときは弁1
6の開度を閉方向に制御することでバイパス配管17に
流れる流量を減少、あるいはバイパス配管17を閉止す
る。このような制御を行うことでファン風量の増減させ
る場合と同様に凝縮器3、蒸発器8の熱交換量の制御を
行うことが可能となる。
Further, as shown in FIG. 6, the condenser 3 or the evaporator 8 may be provided with a bypass pipe 17 for bypassing these heat exchangers. This bypass pipe 17 is also provided with a valve 16 such as a solenoid valve that can be closed or the flow rate can be adjusted.
The flow rate of the bypass pipe 17 is increased by controlling the opening degree of the valve 1 in the opening direction to increase the heat exchange amount.
By controlling the opening degree of 6 in the closing direction, the flow rate of the bypass pipe 17 is reduced or the bypass pipe 17 is closed. By performing such control, it is possible to control the heat exchange amounts of the condenser 3 and the evaporator 8 as in the case of increasing or decreasing the fan air flow.

【0062】また配管洗浄装置11周囲の外気温度が低
い場合には、ファンを停止させても凝縮器3での外気へ
の放熱による熱交換量が大きくなりすぎ、熱交換量を低
減させる制御が十分に実施できない場合も発生する。こ
の場合は凝縮器3、あるいは配管洗浄装置11全体を外
気と断絶する覆いなどを設けてもよい。図7は配管洗浄
装置における凝縮器の構成を示す図、図8、図9および
図10は配管洗浄装置における覆いの設置方法を示す図
である。例えば図7のように凝縮器3が配管洗浄装置1
1内に設置され、外気が装置外郭側面の外気吸込口18
から流入し、そして外郭上面の外気吹出口19へ図に示
すように通風される構成となっている場合、図8に示す
ように外気吸込口18、および外気吹出口19に外気と
遮断する覆い20を設ける。あるいは図9に示すように
配管洗浄装置11全体に覆い20を設ける。こうするこ
とで、外気温度が低い場合での凝縮器3での放熱量を低
減でき、凝縮器3での熱交換量を適切に制御することが
可能となる。なお、これらの覆い20には、ファンを動
作させたときに外気の風路を確保するために、図10の
ように覆いの一部に外気が通過する風路21を設けても
よい。このように外気が通過する風路21を設けること
で、覆い20を設置しても、ファン風量の増減による熱
交換量の制御が実施可能となる。なお覆い20の設置場
所としては、図8、図9に図示されている部分の全てで
なく一部に設置されてあっても同様の効果を得ることが
できる。
When the temperature of the outside air around the pipe cleaning device 11 is low, the amount of heat exchange due to heat dissipation to the outside air in the condenser 3 becomes too large even if the fan is stopped, and control for reducing the amount of heat exchange is performed. It also occurs when it cannot be fully implemented. In this case, the condenser 3 or the entire pipe cleaning device 11 may be provided with a cover or the like for disconnecting it from the outside air. FIG. 7 is a diagram showing a configuration of a condenser in the pipe cleaning device, and FIGS. 8, 9 and 10 are diagrams showing a method of installing a cover in the pipe cleaning device. For example, as shown in FIG. 7, the condenser 3 has a pipe cleaning device 1
1, the outside air is installed in the inside of the device 1
When the structure is such that the air flows in from the outside and is ventilated to the outside air outlet 19 on the upper surface of the outer shell as shown in the figure, the outside air inlet 18 and the outside air outlet 19 are covered with the outside air as shown in FIG. 20 is provided. Alternatively, as shown in FIG. 9, a cover 20 is provided on the entire pipe cleaning device 11. By doing so, it is possible to reduce the heat radiation amount in the condenser 3 when the outside air temperature is low, and it is possible to appropriately control the heat exchange amount in the condenser 3. It should be noted that these covers 20 may be provided with an air passage 21 through which the outside air passes, as shown in FIG. 10, in order to secure an air passage for the outside air when the fan is operated. By thus providing the air passage 21 through which the outside air passes, even if the cover 20 is installed, the heat exchange amount can be controlled by increasing or decreasing the fan air amount. It should be noted that the same effect can be obtained even if the cover 20 is installed not only in all of the portions shown in FIGS. 8 and 9 but also in a part thereof.

【0063】また配管洗浄装置11周囲の外気温度が低
い場合に、ファンを停止させても凝縮器3での熱交換量
が大きくなりすぎる場合の他の対策として、凝縮器3の
冷媒回路上流側、あるいは下流側、あるいは吸込外気を
加熱するヒータなどの加熱装置を設置してもよい。放熱
量が大きくなりすぎる場合は、加熱装置で、冷媒あるい
は吸込外気を加熱することで、冷媒に作用する放熱量の
影響を低減することが可能となり、凝縮器3での熱交換
量を適切に制御することが可能となる。なお、凝縮器3
あるいは蒸発器8の構成として、外気と熱交換する構成
としているが、水熱交など他の媒体で熱交換する形式で
あってもよい。この場合、水量など熱交換器に供給され
る媒体の量を制御することで、ファン風量を制御する場
合と同様の制御を行うことができる。
When the outside air temperature around the pipe cleaning device 11 is low and the amount of heat exchange in the condenser 3 becomes too large even if the fan is stopped, another countermeasure is provided on the upstream side of the refrigerant circuit of the condenser 3. Alternatively, a heating device such as a heater for heating the downstream side or the suctioned outside air may be installed. When the amount of heat radiation becomes too large, the effect of the amount of heat radiation acting on the refrigerant can be reduced by heating the refrigerant or the intake air with a heating device, and the amount of heat exchange in the condenser 3 can be adjusted appropriately. It becomes possible to control. In addition, condenser 3
Alternatively, although the evaporator 8 is configured to exchange heat with the outside air, it may be configured to exchange heat with another medium such as water heat exchange. In this case, by controlling the amount of the medium such as the amount of water supplied to the heat exchanger, the same control as in the case of controlling the fan air flow can be performed.

【0064】また被洗浄配管4、6が長い場合には、配
管での圧力損失が大きくなるため、低圧圧力が低下しな
いよう電子膨張弁7の開度を大きく制御する方法を述べ
たが、電子膨張弁7の構成によっては、開度を最大開度
に設定しても、電子膨張弁7である程度の圧力差を生じ
てしまい、低圧圧力の低下を防止できない場合も発生す
る。このような場合は図11に示すように、電子膨張弁
7に並列にバイパス配管17、およびバイパス配管17
上に電磁弁などの弁16を設け、電子膨張弁7での圧力
差を低減させたい場合には、弁16を開き、バイパス配
管17に冷媒が流れるようにすることで、電子膨張弁7
での圧力差を低減してもよい。こうすることで、被洗浄
配管4、6が長く配管での圧力損失が大きい場合でも、
低圧圧力の低下を防止でき、洗浄に必要な冷媒流量を確
保することができる。
Further, when the pipes 4 and 6 to be cleaned are long, the pressure loss in the pipes becomes large, so the method of controlling the opening of the electronic expansion valve 7 to a large extent so as not to lower the low pressure has been described. Depending on the configuration of the expansion valve 7, even if the opening degree is set to the maximum opening degree, a pressure difference may occur in the electronic expansion valve 7 to some extent, and it may not be possible to prevent the low-pressure pressure from decreasing. In such a case, as shown in FIG. 11, the bypass pipe 17 and the bypass pipe 17 are provided in parallel with the electronic expansion valve 7.
If a valve 16 such as a solenoid valve is provided above and the pressure difference in the electronic expansion valve 7 is desired to be reduced, the valve 16 is opened to allow the refrigerant to flow through the bypass pipe 17, so that the electronic expansion valve 7
The pressure difference at may be reduced. By doing so, even if the pipes 4, 6 to be cleaned are long and the pressure loss in the pipes is large,
It is possible to prevent the low pressure from decreasing and to secure the flow rate of the refrigerant required for cleaning.

【0065】ここまで述べた制御方法では、圧縮機1、
凝縮器3、蒸発器8のファン風量、電子膨張弁7の開度
を制御することで配管洗浄装置11の高圧圧力、低圧圧
力、吐出温度、圧縮機吸入の過熱度、被洗浄配管4に流
入する冷媒の乾き度を制御させる方法について説明した
が、配管洗浄装置11に充填される冷媒量を調節するこ
とで、これらの状態量の制御を行ってもよい。冷媒充填
量を増加させると、配管洗浄装置11運転時の高圧は高
く、低圧は高く、吐出温度は低く、圧縮機吸入の過熱度
は低く、被洗浄配管4に流入する冷媒の乾き度は低く変
化するので、予め設定される高圧、低圧、吐出温度、圧
縮機吸入の過熱度、被洗浄配管4に流入する冷媒の乾き
度の目標値を実現できるように、充填冷媒量を調節す
る。この充填量については、被洗浄配管4、6の設置状
態や外気温度などの情報から予め決められている算出式
によって求められた冷媒量を充填してもよいし、洗浄運
転途中の運転状態と各目標値との偏差から、充填される
冷媒量を増減させてもよい。
In the control method described so far, the compressor 1,
By controlling the fan air volume of the condenser 3 and the evaporator 8 and the opening degree of the electronic expansion valve 7, the high pressure, the low pressure of the pipe cleaning device 11, the discharge temperature, the superheat degree of the compressor suction, and the flow into the pipe 4 to be cleaned. Although the method of controlling the dryness of the refrigerant is described, these state quantities may be controlled by adjusting the refrigerant quantity filled in the pipe cleaning device 11. When the refrigerant charge amount is increased, the high pressure during operation of the pipe cleaning device 11 is high, the low pressure is high, the discharge temperature is low, the superheat of the compressor suction is low, and the dryness of the refrigerant flowing into the pipe to be cleaned 4 is low. Since it changes, the amount of the filled refrigerant is adjusted so that the preset target values of the high pressure, the low pressure, the discharge temperature, the superheat degree of the suction of the compressor, and the dryness degree of the refrigerant flowing into the pipe 4 to be cleaned can be realized. As for this filling amount, the amount of refrigerant obtained by a predetermined calculation formula based on information such as the installation state of the pipes 4 and 6 to be cleaned and the outside air temperature may be filled. The amount of refrigerant to be charged may be increased or decreased based on the deviation from each target value.

【0066】また被洗浄配管4、6での流動抵抗が大き
い場合、例えば被洗浄配管4、6が長い場合や配管径が
小さい場合などは、配管洗浄装置11の洗浄運転での制
御目標値をその被洗浄配管の流動抵抗に応じて変化させ
てもよい。例えば、被洗浄配管4、6での流動抵抗が大
きく、低圧圧力が上昇せず、洗浄に必要な流量を確保で
きない場合には、高圧圧力の目標値を高く修正すること
で、低圧を上昇させ、洗浄に必要な冷媒流量を確保させ
る。あるいは、被洗浄配管4、6での流動抵抗は、気液
二相流が流れる場合、ガスの割合が多くなる、すなわち
高乾き度になるほど増加するので流動抵抗を低減させる
ために、被洗浄配管4、6に流入する冷媒の乾き度の目
標値を低く修正する。このすることで被洗浄配管4、6
での流動抵抗を小さくし低圧を上昇させ、洗浄に必要な
流量を確保させる。なお、被洗浄配管4、6での流動抵
抗については、被洗浄配管4、6の形態についての情報
を洗浄運転前に予め、計測制御装置15にインプットし
ておき、そのインプット値から流動抵抗を判断して、運
転の目標値を変更してもよいし、洗浄運転を実施中に運
転状態から、低圧が引きあがらない場合などは流動抵抗
が大きいと判断して、運転の目標値を変更してもよい。
When the flow resistance in the pipes 4, 6 to be cleaned is large, for example, when the pipes 4, 6 to be cleaned are long or the pipe diameter is small, the control target value in the cleaning operation of the pipe cleaning device 11 is set. It may be changed according to the flow resistance of the pipe to be cleaned. For example, when the flow resistance in the pipes 4 and 6 to be cleaned is large and the low pressure does not rise and the flow rate required for cleaning cannot be secured, the low pressure is increased by correcting the target value of the high pressure to be high. , Ensure the flow rate of the refrigerant required for cleaning. Alternatively, when the gas-liquid two-phase flow flows, the flow resistance in the pipes 4, 6 to be cleaned increases as the proportion of the gas increases, that is, as the dryness increases, so that the flow resistance in the pipes to be cleaned is reduced. The target value of the dryness of the refrigerant flowing into Nos. 4 and 6 is corrected to be low. By doing this, the pipes to be cleaned 4, 6
It reduces the flow resistance in the process and raises the low pressure to secure the flow rate required for cleaning. Regarding the flow resistance in the pipes 4 and 6 to be cleaned, information about the form of the pipes 4 and 6 to be cleaned is input to the measurement control device 15 in advance before the cleaning operation, and the flow resistance is calculated from the input value. The target value for operation may be changed based on the judgment, or if the low pressure does not rise from the operating state during the cleaning operation, it is judged that the flow resistance is large and the target value for the operation is changed. May be.

【0067】以上の配管洗浄装置11の運転では、被洗
浄配管4、6の一端に取り付けられていた室内機を取り
外して洗浄を行った場合について説明したが、図12に
示すように室内機22を取り付けたまま洗浄を行って
も、同様の運転制御を行うことで、洗浄能力を向上させ
た運転を実施できる。図12は配管洗浄装置の他の形態
を示す冷媒回路図であり、図において22は室内機、2
3は利用側熱交換器、24は電子膨張弁、そして図1と
同一部分には同符号を付し、その説明は省略する。この
室内機22については、配管洗浄前から接続されていた
室内機22を被洗浄配管4、6と同時に洗浄を行い、熱
源機の交換後も継続して用いるとしてもよいし、熱源機
の交換と同時に新設の室内機22に交換し、この新設室
内機22を接続したまま洗浄運転を行ってもよい。
In the above operation of the pipe cleaning apparatus 11, the case where the indoor unit attached to one end of the pipes 4 and 6 to be cleaned was detached for cleaning was explained. However, as shown in FIG. Even if the cleaning is performed with the attached, the operation with the improved cleaning ability can be performed by performing the same operation control. FIG. 12 is a refrigerant circuit diagram showing another embodiment of the pipe cleaning device, in which 22 is an indoor unit, 2
3 is a use side heat exchanger, 24 is an electronic expansion valve, and the same parts as those in FIG. As for this indoor unit 22, the indoor unit 22 connected before the pipe cleaning may be cleaned at the same time as the pipes 4 and 6 to be cleaned, and may be continuously used even after the heat source device is replaced, or the heat source device is replaced. At the same time, the indoor unit 22 may be replaced with a new one, and the cleaning operation may be performed while the new indoor unit 22 is connected.

【0068】以上に示したように、配管洗浄装置11の
運転制御において、洗浄に必要な冷媒流量を確保し、被
洗浄配管4に流入する冷媒の温度を高くし、被洗浄配管
4に流入する冷媒状態をある定められた範囲内の乾き度
の気液二相流とすることで、洗浄能力を向上させた運転
を実現するとともに、高圧、圧縮機1の吐出温度、圧縮
機1の吸入乾き度を配管洗浄装置11の運転に問題を生
じさせないように制御することで、配管洗浄装置11の
運転の信頼性を高めることが可能となる。
As described above, in the operation control of the pipe cleaning device 11, the refrigerant flow rate required for cleaning is secured, the temperature of the refrigerant flowing into the pipe to be cleaned 4 is increased, and the refrigerant flows into the pipe to be cleaned 4. By making the refrigerant state a gas-liquid two-phase flow with a dryness within a certain defined range, operation with improved cleaning capability is realized, and at the same time, high pressure, discharge temperature of the compressor 1, suction dry of the compressor 1 By controlling the temperature so as not to cause a problem in the operation of the pipe cleaning device 11, it becomes possible to enhance the reliability of the operation of the pipe cleaning device 11.

【0069】配管を洗浄する洗浄冷媒としてはR407
Cに限るものではなく、他のHFC系の単一冷媒や混合
冷媒でもよく、例えばR32(微燃性・無毒)、R12
5(不燃性・無毒)、R134a(不燃性・無毒)、R
410A(不燃性・無毒)、R404A(不燃性・無
毒)で洗浄を行ってもよい。またプロパンやブタンやイ
ソブタンなどのHC系冷媒およびその混合冷媒、アンモ
ニア、炭酸ガスなどの自然冷媒を用いてもよい。
R407 is used as the cleaning refrigerant for cleaning the piping.
Not limited to C, other HFC-based single or mixed refrigerants may be used, such as R32 (slightly flammable / non-toxic) and R12.
5 (nonflammable / nontoxic), R134a (nonflammable / nontoxic), R
Cleaning may be performed with 410A (nonflammable / nontoxic) and R404A (nonflammable / nontoxic). Further, an HC type refrigerant such as propane, butane, or isobutane and a mixed refrigerant thereof, or a natural refrigerant such as ammonia or carbon dioxide may be used.

【0070】実施の形態2. 以下本発明の実施の形態2を図に基づいて説明する。図
13は実施の形態2における配管洗浄装置の冷媒回路図
である。図において、25は高低圧熱交換器であり、そ
の他の実施の形態1の図1と同一部分には同符合を付
し、説明を省略する。高低圧熱交換器25においては凝
縮器3で一部冷却された高圧の冷媒と、電子膨張弁7か
ら流出した低圧の冷媒との間で熱交換を行う。図14は
この高低圧熱交換器25の回路構成図であり、図におい
て、26は二重管になっており、外側の管に高圧冷媒が
流れ、内側の管に低圧冷媒が対向した向きに流れる構成
となっている。17は低圧側冷媒流におけるバイパス配
管、16はバイパス配管17を流れる冷媒流量を調節す
る電磁弁などの弁であり、弁16の開閉によってバイパ
ス配管17を通過する冷媒流量を調節することで、高低
圧熱交換器25での熱交換量を制御できるようになって
いる。
Embodiment 2. Embodiment 2 of the present invention will be described below with reference to the drawings. FIG. 13 is a refrigerant circuit diagram of the pipe cleaning device in the second embodiment. In the figure, reference numeral 25 is a high / low pressure heat exchanger, the same parts as those in FIG. 1 of the other embodiment 1 are designated by the same reference numerals, and the description thereof will be omitted. In the high / low pressure heat exchanger 25, heat is exchanged between the high pressure refrigerant partially cooled in the condenser 3 and the low pressure refrigerant flowing out from the electronic expansion valve 7. FIG. 14 is a circuit configuration diagram of the high and low pressure heat exchanger 25. In the figure, 26 is a double pipe, in which the high pressure refrigerant flows in the outer pipe and the low pressure refrigerant faces in the inner pipe. It has a flowing structure. Reference numeral 17 is a bypass pipe in the low-pressure side refrigerant flow, 16 is a valve such as a solenoid valve that adjusts the flow rate of the refrigerant flowing through the bypass pipe 17, and by opening and closing the valve 16 to adjust the flow rate of the refrigerant passing through the bypass pipe 17, The amount of heat exchange in the low pressure heat exchanger 25 can be controlled.

【0071】この配管洗浄装置の運転状況を図15のP
H線図に基づいて説明する。図において、横軸にエンタ
ルピーH、縦軸に圧力を示す。図13で示す圧縮機1か
ら吐出された高温高圧のガス冷媒(A)はまず油分離器
2を通過する。この段階でガス冷媒と一緒に圧縮機1か
ら吐出された冷凍機油は油分離器2で分離され圧縮機1
吸入側に戻される。高温高圧のガス冷媒はその後凝縮器
3によって圧縮機の入力分冷却され温度が低下したガス
となる(B)。その後この高圧のガス冷媒はさらに高低
圧熱交換器25によって一部冷却された後(C)、既設
配管4、バイパス管5、既設配管6を通過した後、電子
膨張弁7によって低圧の気液二相冷媒に減圧される
(D)。この後高低圧熱交換器25で加熱され低圧のガ
スになる(E)。このとき、高圧側の熱交換量と低圧側
の熱交換量は同じになるので、BC間のエンタルピ差と
DE間のエンタルピ差は同じ値になる。次に分離回収装
置9を通過し、この際、既設配管4、6内で洗浄された
鉱油が分離され、鉱油は分離回収装置9に保持される。
低圧の冷媒ガスはこの後アキュムレータ10を経て圧縮
機1に吸入される。このように蒸発器8に代えて高低圧
熱交換器25を設けた場合、前述の実施の形態1で示す
ように蒸発器8では外気との熱交換が必要であったた
め、空気側の伝熱効率が悪く、蒸発器8の熱交換器サイ
ズが大きくなったが、高低圧熱交換器25の場合、熱交
換が冷媒と冷媒の間で行われるので、伝熱効率がよく、
高低圧熱交換器25のサイズが小さくなり、配管洗浄装
置11をコンパクトに作成することが可能となる。
The operation status of this pipe cleaning device is shown in P of FIG.
A description will be given based on the H diagram. In the figure, the horizontal axis shows the enthalpy H and the vertical axis shows the pressure. The high-temperature and high-pressure gas refrigerant (A) discharged from the compressor 1 shown in FIG. 13 first passes through the oil separator 2. At this stage, the refrigerating machine oil discharged from the compressor 1 together with the gas refrigerant is separated by the oil separator 2 and the compressor 1
Returned to the suction side. The high-temperature and high-pressure gas refrigerant is then cooled by the condenser 3 by the amount of the input of the compressor and becomes a gas whose temperature has dropped (B). Thereafter, this high-pressure gas refrigerant is further partially cooled by the high-and-low-pressure heat exchanger 25 (C), and then passes through the existing pipe 4, the bypass pipe 5, and the existing pipe 6, and then the low-pressure gas-liquid liquid is applied by the electronic expansion valve 7. The pressure is reduced to two-phase refrigerant (D). After this, it is heated in the high and low pressure heat exchanger 25 to become a low pressure gas (E). At this time, since the heat exchange amount on the high pressure side and the heat exchange amount on the low pressure side are the same, the enthalpy difference between BC and the enthalpy difference between DE are the same value. Next, it passes through the separation and recovery device 9, and at this time, the mineral oil washed in the existing pipes 4 and 6 is separated, and the mineral oil is held in the separation and recovery device 9.
The low-pressure refrigerant gas is then sucked into the compressor 1 via the accumulator 10. When the high-and-low pressure heat exchanger 25 is provided instead of the evaporator 8 as described above, the evaporator 8 needs to exchange heat with the outside air as shown in the first embodiment, and therefore, the heat transfer efficiency on the air side. The heat exchanger size of the evaporator 8 has increased, but in the case of the high and low pressure heat exchanger 25, since heat exchange is performed between the refrigerants, the heat transfer efficiency is good,
The size of the high / low pressure heat exchanger 25 is reduced, and the pipe cleaning device 11 can be made compact.

【0072】次に配管洗浄装置11の運転制御について
説明する。圧縮機1、凝縮器3のファン風量、電子膨張
弁7の開度の制御、および冷媒充填量の調整により配管
洗浄装置11の高圧圧力、低圧圧力、吐出温度、圧縮機
吸入側の過熱度、被洗浄配管4に流入する冷媒の乾き度
を制御させる方法について実施の形態1と同じになるの
で説明を省略する。次に高低圧熱交換器25の熱交換量
の制御方法であるが、高低圧熱交換器25の熱交換量を
大きくすると、高圧冷媒を凝縮させる熱交換能力と低圧
冷媒を蒸発させる熱交換能力がともに増大する。ここで
図16は配管洗浄装置の高低圧熱交換器の熱交換量変化
時の運転状況を示すPH図であり、横軸にエンタルピー
H、縦軸に圧力Pを示し、実線が熱交換量大、点線が熱
交換量小である。従って図16の実線で示すように、配
管洗浄装置11の運転状態としては、高圧側が低下、低
圧側が上昇し、凝縮器となる高低圧熱交換器25の高圧
側出口の冷媒乾き度、すなわち被洗浄配管4に流入する
冷媒乾き度が低くなり、低圧側出口の冷媒過熱度が高く
なる。高低圧熱交換器25の低圧側出口の冷媒過熱度が
高くなることに伴い、圧縮機1の吸入過熱度も高くな
り、それにより圧縮機1の吐出温度が高くなる。
Next, the operation control of the pipe cleaning device 11 will be described. By controlling the fan air flow rates of the compressor 1 and the condenser 3, the opening degree of the electronic expansion valve 7, and adjusting the refrigerant charging amount, the high pressure, the low pressure, the discharge temperature of the pipe cleaning device 11, the superheat degree of the compressor suction side, Since the method of controlling the dryness of the refrigerant flowing into the pipe to be cleaned 4 is the same as that in the first embodiment, the description thereof will be omitted. Next, regarding the method of controlling the heat exchange amount of the high / low pressure heat exchanger 25, when the heat exchange amount of the high / low pressure heat exchanger 25 is increased, the heat exchange capacity for condensing the high pressure refrigerant and the heat exchange capacity for evaporating the low pressure refrigerant. Will increase together. 16. Here, FIG. 16 is a PH diagram showing the operating state when the heat exchange amount of the high and low pressure heat exchanger of the pipe cleaning device changes, the enthalpy H is plotted on the horizontal axis and the pressure P is plotted on the vertical axis, and the solid line shows the large heat exchange amount. , The dotted line shows a small amount of heat exchange. Therefore, as shown by the solid line in FIG. 16, in the operating state of the pipe cleaning device 11, the high-pressure side decreases, the low-pressure side increases, and the dryness of the refrigerant at the high-pressure side outlet of the high-low pressure heat exchanger 25 serving as a condenser, that is, The dryness of the refrigerant flowing into the cleaning pipe 4 becomes low, and the superheat degree of the refrigerant at the low-pressure side outlet becomes high. As the refrigerant superheat degree at the low-pressure side outlet of the high-low pressure heat exchanger 25 increases, the suction superheat degree of the compressor 1 also increases, which increases the discharge temperature of the compressor 1.

【0073】圧縮機の吐出温度、圧縮機1吸入の過熱
度、被洗浄配管4に流入する冷媒の乾き度を目標値に制
御させる場合には、この高低圧熱交換器25の制御特性
に従って、熱交換量の制御を実施する。一方、高圧、低
圧の制御を実施する場合であるが、低圧が低く、洗浄に
必要な冷媒流量が確保できていないため、低圧を引き上
げ、冷媒流量を増加させたい場合には高低圧熱交換器2
5の熱交換量を小さく制御する。このように制御を行う
と、高圧が高く、低圧が低く制御される。このとき被洗
浄配管4〜電子膨張弁7の間の差圧が大きくなるので、
被洗浄配管4〜電子膨張弁7の流動抵抗が変わらない場
合にはより多くの冷媒流量を流すことが可能となる。そ
こで圧力差の増加に見合った冷媒流量になるように低圧
が上昇して圧縮機1で搬送される冷媒流量が増加され
る。従って高低圧熱交換器25の熱交換量を小さく制御
すると、結果的には高圧が高くなることに付随して低圧
も高くなり、冷媒流量を増加させる運転が可能となる。
また過負荷運転状態となって高低圧とも低くし冷媒流量
を減少させたい運転したいような場合には、逆に高低圧
熱交換器25の熱交換量を大きく制御する。
When the discharge temperature of the compressor, the superheat degree of the suction of the compressor 1 and the dryness of the refrigerant flowing into the pipe to be cleaned 4 are controlled to the target values, the control characteristics of the high and low pressure heat exchanger 25 are set as follows. Control the amount of heat exchange. On the other hand, it is a case where high pressure and low pressure are controlled, but the low pressure is low and the flow rate of the refrigerant required for cleaning cannot be secured. Two
The heat exchange amount of 5 is controlled to be small. When the control is performed in this manner, the high pressure is high and the low pressure is low. At this time, since the differential pressure between the pipe to be cleaned 4 and the electronic expansion valve 7 becomes large,
When the flow resistance of the pipe to be cleaned 4 to the electronic expansion valve 7 does not change, it becomes possible to flow a larger amount of refrigerant. Therefore, the low pressure rises so that the flow rate of the refrigerant corresponds to the increase in the pressure difference, and the flow rate of the refrigerant carried by the compressor 1 is increased. Therefore, if the heat exchange amount of the high / low pressure heat exchanger 25 is controlled to be small, as a result, the high pressure is increased and the low pressure is also increased, and the operation for increasing the refrigerant flow rate can be performed.
On the contrary, when it is desired to reduce the flow rate of the refrigerant by reducing both the high pressure and the low pressure in the overload operation state, conversely, the heat exchange amount of the high and low pressure heat exchanger 25 is largely controlled.

【0074】なお、高低圧熱交換器25の熱交換量には
最適範囲が存在する。冷媒流量を増加させるためには、
前述したように熱交換量が小さいほど増加するが、あま
りに小さくすると、圧縮機1吸入での冷媒過熱度が0と
なり、圧縮機1への液バックが発生して、圧縮機1の信
頼性上好ましくない。またこのように圧縮機1に液冷媒
が戻るような運転となった場合には、圧縮機1の吸入側
にあるアキュムレータ10内に液冷媒がたまり込む運転
となる。このときには被洗浄配管4、6など他の冷凍サ
イクルに存在する冷媒量が減少するため、被洗浄配管
4、6においては、気液二相流中のガス量が増加し、す
なわち乾き度が増加し、結果被洗浄配管4、6での流動
抵抗が増大する。被洗浄配管4、6の配管長が長く、も
ともと流動抵抗が大きい場合などにさらに流動抵抗増大
するような運転を実施すると、低圧圧力が低下してしま
い、その結果洗浄に必要な冷媒流量を確保できない運転
となる。また高低圧熱交換器25の熱交換量を大きくす
ると、冷媒流量が減少し、洗浄能力が低下するので好ま
しくないが、同時に熱交換量を大きくして吸入過熱度を
増加させると、圧縮機1の吐出温度が高くなり、余りに
高い温度になると、圧縮機の信頼性上好ましくない。
There is an optimum range for the heat exchange amount of the high and low pressure heat exchanger 25. To increase the refrigerant flow rate,
As described above, the heat exchange amount increases as the heat exchange amount decreases, but if the heat exchange amount is too small, the refrigerant superheat degree at the intake of the compressor 1 becomes 0, liquid back to the compressor 1 occurs, and the reliability of the compressor 1 increases. Not preferable. Further, when the operation is such that the liquid refrigerant returns to the compressor 1 in this way, the operation is such that the liquid refrigerant accumulates in the accumulator 10 on the suction side of the compressor 1. At this time, the amount of refrigerant existing in other refrigeration cycles such as the pipes 4 and 6 to be cleaned decreases, so that in the pipes 4 and 6 to be cleaned, the amount of gas in the gas-liquid two-phase flow increases, that is, the dryness increases. As a result, the flow resistance in the cleaned pipes 4 and 6 increases. If the pipes 4 and 6 to be cleaned have long pipe lengths and the flow resistance is originally large, and the flow resistance is further increased, the low pressure will drop, and as a result the refrigerant flow rate required for cleaning will be secured. It will be impossible to drive. Further, if the heat exchange amount of the high / low pressure heat exchanger 25 is increased, the flow rate of the refrigerant is reduced and the cleaning performance is lowered, which is not preferable, but at the same time, if the heat exchange amount is increased to increase the intake superheat degree, the compressor 1 If the discharge temperature is too high and becomes too high, it is not preferable in terms of reliability of the compressor.

【0075】以上から、高低圧熱交換器25の熱交換量
の設計容量としては、結果として生じる圧縮機1の吸入
過熱度が所定の適切な範囲、例えば圧縮機1吸入の過熱
度が0℃より大きく20℃以下となる範囲に設定される
ことが望ましく、また高低圧熱交換器25の熱交換量の
制御を行う場合にも、同様に圧縮機1の吸入過熱度が所
定の適切な範囲に制御されることが望ましい。
From the above, as the design capacity of the heat exchange amount of the high and low pressure heat exchanger 25, the resulting superheat of suction of the compressor 1 is in a predetermined appropriate range, for example, the superheat of suction of the compressor 1 is 0 ° C. It is desirable to set it in a range that is larger than 20 ° C., and also when controlling the heat exchange amount of the high and low pressure heat exchanger 25, similarly, the suction superheat degree of the compressor 1 is in a predetermined appropriate range. It is desirable to be controlled to.

【0076】なお、高低圧熱交換器25の熱交換量につ
いては、外気温度に応じて変化させてもよい。配管洗浄
装置11の運転において外気温度が低い場合には、運転
状況は図17に示すようになる。図17は外気温度40
℃、20℃、−5℃における配管洗浄装置の運転状況を
示した図であり、横軸にエンタルピーH、縦軸に圧力を
示す。外気温度−5℃の場合(図中の実線)には被洗浄
配管4、6および、配管洗浄装置11からの放熱が大き
くなるため被洗浄配管6の出口エンタルピ(D)および
圧縮機1吸入のエンタルピ(E)が小さくなりやすい。
その結果、圧縮機1吸入の過熱度が小さくなる運転とな
る。外気温度がさらに低い場合や、被洗浄配管4、6の
配管長が長く、放熱量が大きくなりやすい場合には、圧
縮機1吸入の過熱度がさらに小さくなり、圧縮機1への
液バックが発生したり、アキュムレータ10に冷媒が貯
まり込み冷媒流量が低下するような運転となる。そこで
このような状況を回避するために、外気温度が低い場合
には、予め高低圧熱交換器25の熱交換量が大きくなる
ように制御する。このように制御を行うと圧縮機吸入の
過熱度を適切に確保した運転が実現でき、圧縮機1の信
頼性が確保できるとともに、洗浄に必要な冷媒流量を確
保することが可能となる。
The heat exchange amount of the high / low pressure heat exchanger 25 may be changed according to the outside air temperature. When the outside air temperature is low in the operation of the pipe cleaning device 11, the operation status is as shown in FIG. Figure 17 shows outside temperature 40
It is the figure which showed the operating condition of the pipe washing | cleaning apparatus in 20 degreeC, -20 degreeC, and the horizontal axis shows enthalpy H and a vertical axis shows pressure. When the outside air temperature is −5 ° C. (solid line in the figure), heat radiation from the pipes 4, 6 to be cleaned and the pipe cleaning device 11 becomes large, so that the outlet enthalpy (D) of the pipe to be cleaned 6 and the suction of the compressor 1 are not absorbed. Enthalpy (E) tends to be small.
As a result, the operation is such that the superheat degree of the suction of the compressor 1 is reduced. When the outside air temperature is lower, or when the pipe lengths of the pipes 4 and 6 to be cleaned are long and the amount of heat radiation tends to be large, the superheat degree of the suction of the compressor 1 is further reduced, and the liquid back to the compressor 1 is reduced. The operation is such that the refrigerant is generated or the refrigerant is accumulated in the accumulator 10 and the refrigerant flow rate is reduced. Therefore, in order to avoid such a situation, when the outside air temperature is low, control is performed in advance so that the heat exchange amount of the high / low pressure heat exchanger 25 becomes large. By performing the control in this manner, it is possible to realize an operation in which the superheat degree of the suction of the compressor is appropriately ensured, the reliability of the compressor 1 can be ensured, and the refrigerant flow rate required for cleaning can be ensured.

【0077】一方、配管洗浄装置11の運転において外
気温度が高い場合の運転状況は、図17の外気温度40
℃の場合(図中の一点鎖線)に示されるように、被洗浄
配管4、6および、配管洗浄装置11において外気から
の吸熱量が大きくなるため、被洗浄配管6の出口エンタ
ルピ(D)および圧縮機1吸入のエンタルピ(E)が大
きくなりやすい。その結果、圧縮機1吸入の過熱度が大
きくなる運転となる。この場合には、吐出温度が上昇
し、外気温度が高く吐出温度が余りに高い温度になる
と、圧縮機1の信頼性上好ましくない。そこでこのよう
な状況を回避するために、外気温度が高い場合には、予
め高低圧熱交換器25の熱交換量が小さくなるように制
御する。このように制御を行うと圧縮機吸入の過熱度が
低くなる運転が実現でき、圧縮機の信頼性を確保でき
る。
On the other hand, in the operation of the pipe cleaning device 11 when the outside air temperature is high, the operating conditions are as shown in FIG.
As shown in the case of ℃ (dashed line in the figure), since the heat absorption amount from the outside air in the pipes 4, 6 and the pipe cleaning device 11 becomes large, the outlet enthalpy (D) of the pipe 6 and The enthalpy (E) of the compressor 1 suction tends to be large. As a result, the operation is such that the superheat degree of the suction of the compressor 1 becomes large. In this case, if the discharge temperature rises and the outside air temperature is high and the discharge temperature is too high, the reliability of the compressor 1 is not preferable. Therefore, in order to avoid such a situation, when the outside air temperature is high, control is performed in advance so that the heat exchange amount of the high / low pressure heat exchanger 25 becomes small. When the control is performed in this manner, an operation in which the superheat degree of the suction of the compressor is lowered can be realized, and the reliability of the compressor can be secured.

【0078】以上のように、高低圧熱交換器25の熱交
換量を適切に制御することで、圧縮機1運転の信頼性を
確保するとともに、洗浄に必要な冷媒流量を確保した運
転を実現することができる。
As described above, by appropriately controlling the heat exchange amount of the high and low pressure heat exchanger 25, the reliability of the operation of the compressor 1 is ensured, and the operation in which the refrigerant flow rate required for cleaning is ensured is realized. can do.

【0079】なお、この実施の形態1においては、高低
圧熱交換器25を二重管で構成されるとして説明した
が、プレート熱交換器など他の熱交換器形態をとっても
同様の制御を実施することで、同じ効果を得ることがで
きる。また熱交換量の制御方法としては、図18に示す
高低圧熱交換器の他の回路構成図のように、熱交換器を
複数用意し、その一部に流れる冷媒流量を弁16によっ
て、減少あるいは流路を閉止することで熱交換量を制御
してもよい。
In the first embodiment, the high and low pressure heat exchanger 25 is described as a double pipe, but the same control is performed even if another heat exchanger such as a plate heat exchanger is used. By doing so, the same effect can be obtained. In addition, as a method of controlling the heat exchange amount, as shown in another circuit configuration diagram of the high and low pressure heat exchanger shown in FIG. 18, a plurality of heat exchangers are prepared, and the flow rate of the refrigerant flowing through a part thereof is reduced by the valve 16. Alternatively, the heat exchange amount may be controlled by closing the flow path.

【0080】実施の形態3.以下本発明の実施の形態3
を図に基づいて説明する。図19は実施の形態3による
配管洗浄装置の冷媒回路図である。図19において、2
7はガス冷却器であり、その他の実施の形態1、実施の
形態2と同一部分には同符号を付し、その説明を省略す
る。ガス冷却器27はファンによって送風される配管洗
浄装置11の周囲の外気と熱交換を行う。
Third Embodiment Hereinafter, a third embodiment of the present invention
Will be described with reference to the drawings. FIG. 19 is a refrigerant circuit diagram of the pipe cleaning apparatus according to the third embodiment. In FIG. 19, 2
Reference numeral 7 denotes a gas cooler, and the same parts as those of the other first and second embodiments are designated by the same reference numerals and the description thereof will be omitted. The gas cooler 27 exchanges heat with the outside air around the pipe cleaning device 11 blown by a fan.

【0081】この配管洗浄装置11の運転状況を図20
のPH線図に基づいて説明する。図において、横軸はエ
ンタルピーH、縦軸は圧力を示す。図19に示す圧縮機
1から吐出された高温高圧のガス冷媒(A)はまず油分
離器2を通過する。この段階でガス冷媒と一緒に圧縮機
1から吐出された冷凍機油は油分離器2で分離され圧縮
機1の吸入側に戻される。吐出された高温高圧のガス冷
媒はその後高低圧熱交換器25によって冷却され、気液
二相冷媒となり(B)、既設配管4、バイパス管5、既
設配管6を通過した後、減圧装置7によって低圧の気液
二相冷媒に減圧される(C)。この後高低圧熱交換器2
5で加熱され低圧のガスになる(D)。このとき、高低
圧熱交換器25に流入する高圧側の冷媒は圧縮機1の吐
出状態であるためほとんどの運転条件で外気より高温と
なり、高低圧熱交換器25の他方の冷媒と熱交換するの
で、低圧のガスの温度も外気より高い温度となる。この
とき、高圧側の熱交換量と低圧側の熱交換量は同じにな
るので、AB間のエンタルピ差とCD間のエンタルピ差
は同じ値になる。そして、この後ガス冷媒はガス冷却器
27により、外気によって冷却される(E)。次に分離
回収装置9を通過し、この際、既設配管4、6内で洗浄
された鉱油が分離され、鉱油は分離回収装置9に保持さ
れる。低圧の冷媒ガスはこの後アキュムレータ10を経
て圧縮機1に吸入される。このように凝縮器3に代えて
高低圧熱交換器25を設けた場合、凝縮器3では外気と
の熱交換が必要であったため、空気側の伝熱効率が悪
く、凝縮器3の熱交換器サイズが大きくなったが、高低
圧熱交換器25の場合、熱交換が冷媒と冷媒の間で行わ
れるので、伝熱効率がよく、高低圧熱交換器25のサイ
ズが小さくなり、配管洗浄装置をコンパクトに作成する
ことが可能となる。
FIG. 20 shows the operating condition of the pipe cleaning device 11.
This will be described based on the PH diagram of No. In the figure, the horizontal axis shows the enthalpy H and the vertical axis shows the pressure. The high temperature and high pressure gas refrigerant (A) discharged from the compressor 1 shown in FIG. 19 first passes through the oil separator 2. At this stage, the refrigerating machine oil discharged from the compressor 1 together with the gas refrigerant is separated by the oil separator 2 and returned to the suction side of the compressor 1. The discharged high-temperature and high-pressure gas refrigerant is then cooled by the high-low pressure heat exchanger 25 to become a gas-liquid two-phase refrigerant (B), which passes through the existing pipe 4, the bypass pipe 5, and the existing pipe 6 and then by the decompression device 7. The pressure is reduced to a low pressure gas-liquid two-phase refrigerant (C). After this, high and low pressure heat exchanger 2
It is heated at 5 and becomes a low-pressure gas (D). At this time, since the high pressure side refrigerant flowing into the high and low pressure heat exchanger 25 is in the discharge state of the compressor 1, it becomes higher in temperature than the outside air under most operating conditions and exchanges heat with the other refrigerant in the high and low pressure heat exchanger 25. Therefore, the temperature of the low-pressure gas also becomes higher than that of the outside air. At this time, since the heat exchange amount on the high pressure side and the heat exchange amount on the low pressure side are the same, the enthalpy difference between AB and the CD is the same value. Then, after this, the gas refrigerant is cooled by the outside air by the gas cooler 27 (E). Next, it passes through the separation and recovery device 9, and at this time, the mineral oil washed in the existing pipes 4 and 6 is separated, and the mineral oil is held in the separation and recovery device 9. The low-pressure refrigerant gas is then sucked into the compressor 1 via the accumulator 10. When the high / low pressure heat exchanger 25 is provided in place of the condenser 3 as described above, the condenser 3 needs to exchange heat with the outside air, so that the heat transfer efficiency on the air side is poor and the heat exchanger of the condenser 3 is used. Although the size has increased, in the case of the high / low pressure heat exchanger 25, heat exchange is performed between the refrigerants, so that the heat transfer efficiency is good, the size of the high / low pressure heat exchanger 25 is reduced, and the pipe cleaning device is It can be made compact.

【0082】次に配管洗浄装置11の運転制御について
説明する。圧縮機1、高低圧熱交換器25の熱交換量、
電子膨張弁7の開度の制御、および冷媒充填量の調整に
より配管洗浄装置11の高圧圧力、低圧圧力、吐出温
度、圧縮機吸入の過熱度、被洗浄配管4に流入する冷媒
の乾き度を制御させる方法について実施の形態1および
実施の形態2と同じになるので説明を省略する。
Next, the operation control of the pipe cleaning device 11 will be described. The heat exchange amount of the compressor 1 and the high / low pressure heat exchanger 25,
By controlling the opening degree of the electronic expansion valve 7 and adjusting the refrigerant filling amount, the high pressure, the low pressure, the discharge temperature of the pipe cleaning device 11, the superheat of the compressor suction, and the dryness of the refrigerant flowing into the pipe 4 to be cleaned can be controlled. The method of controlling is the same as in the first and second embodiments, and thus the description thereof is omitted.

【0083】次に、ガス冷却器27の制御方法である
が、ガス冷却器27の制御を行うと以下のような運転状
況となる。ガス冷却器27のファン風量を増大させる
と、冷却量が増加するので、圧縮機の吸入過熱度が小さ
くなり、それに伴って吐出温度が低くなる。吐出温度が
低下すると、高低圧熱交換器25の入口ガス温度も低下
する。ここで高低圧熱交換器25内の高圧側の冷媒状態
をみると、ガス冷媒から冷却され飽和ガス冷媒となりこ
の間ガスとして存在し、その後さらに冷却されガスが一
部凝縮され気液二相冷媒となる。伝熱効率は、ガス単相
であるよりも凝縮の生じる気液二相冷媒が3倍〜5倍程
度よくなるので、二相冷媒の存在する部分が多くなるほ
ど、高低圧熱交換器25の伝熱効率はよくなり熱交換量
も増大する。高低圧熱交換器25の入口ガス温度が低下
すると、飽和ガス冷媒となりやすくなるので、高低圧熱
交換器25内に占めるガス部の割合が減少し、逆に気液
二相部の割合が増加するので、熱交換量が増大する。従
って、配管洗浄装置11の運転状態は、実施の形態2で
述べたように、高低圧とも低下し、冷媒流量の低下する
運転となる。
Next, regarding the method of controlling the gas cooler 27, when the gas cooler 27 is controlled, the following operating conditions are obtained. When the fan air volume of the gas cooler 27 is increased, the cooling amount is increased, so that the suction superheat degree of the compressor is reduced and the discharge temperature is accordingly reduced. When the discharge temperature decreases, the inlet gas temperature of the high / low pressure heat exchanger 25 also decreases. Here, looking at the high pressure side refrigerant state in the high and low pressure heat exchanger 25, it is cooled from the gas refrigerant to become a saturated gas refrigerant and remains as a gas during this time, and then is further cooled to partially condense the gas and liquid two-phase refrigerant. Become. Since the heat transfer efficiency of the gas-liquid two-phase refrigerant that causes condensation is about 3 to 5 times better than that of the gas single phase, the heat transfer efficiency of the high-low pressure heat exchanger 25 increases as the portion where the two-phase refrigerant exists increases. It improves and the amount of heat exchange increases. When the inlet gas temperature of the high / low pressure heat exchanger 25 decreases, the saturated gas refrigerant is likely to become, so that the proportion of the gas portion in the high / low pressure heat exchanger 25 decreases, and conversely the proportion of the gas-liquid two-phase portion increases. Therefore, the amount of heat exchange increases. Therefore, as described in the second embodiment, the operating state of the pipe cleaning device 11 is reduced to both high and low pressures, and the refrigerant flow rate is reduced.

【0084】図21は上述のガス冷却器27のファン風
量制御による運転状況の変化を表したPH線図であり、
図において、横軸はエンタルピーH、縦軸は圧力を示
し、実線がガス冷却器ファン風量大の場合、点線がガス
冷却器ファン風量小の場合を示す。図21の実線で示す
ように、ガス冷却器27のファン風量を増加させると、
高低圧とも低下し、吐出温度、吸入温度が低下し、被洗
浄配管4に流入する冷媒の乾き度が低くなる。このよう
な制御特性に応じて、高圧圧力、低圧圧力、吐出温度、
圧縮機1吸入の過熱度、被洗浄配管4に流入する冷媒の
乾き度の目標値と、現在の値の偏差に基づいてガス冷却
器のファン制御を実施し、高圧圧力、低圧圧力、吐出温
度、圧縮機1吸入の過熱度、被洗浄配管4に流入する冷
媒の乾き度の値が適切な値になるように制御する。
FIG. 21 is a PH diagram showing a change in the operating condition of the gas cooler 27 due to the fan air volume control.
In the figure, the horizontal axis shows the enthalpy H and the vertical axis shows the pressure. The solid line shows the case where the gas cooler fan air flow is large, and the dotted line shows the case where the gas cooler fan air flow is small. As shown by the solid line in FIG. 21, when the fan air volume of the gas cooler 27 is increased,
Both the high pressure and the low pressure decrease, the discharge temperature and the suction temperature decrease, and the dryness of the refrigerant flowing into the pipe to be cleaned 4 decreases. Depending on such control characteristics, high pressure, low pressure, discharge temperature,
Fan control of the gas cooler is performed based on the deviation between the current value and the target value of the degree of superheat of the suction of the compressor 1 and the dryness of the refrigerant flowing into the pipe to be cleaned 4, and the high pressure, low pressure, and discharge temperature are controlled. The superheat degree of the suction of the compressor 1 and the dryness value of the refrigerant flowing into the pipe 4 to be cleaned are controlled to be appropriate values.

【0085】このように配管洗浄装置11の運転制御を
行うことで、洗浄に必要な冷媒流量を確保し、洗浄能力
を向上させるとともに、信頼性の高い配管洗浄装置の運
転を実現できる。
By thus controlling the operation of the pipe cleaning device 11, the flow rate of the refrigerant required for cleaning can be secured, the cleaning performance can be improved, and the pipe cleaning device can be operated with high reliability.

【0086】実施の形態4. 図22は本発明の実施の形態4を示す図で、配管洗浄装
置の冷媒回路図である。図において、28は熱源機であ
り、冷媒回路は圧縮機1、油分離器2、四方弁29、熱
源側熱交換器30、アキュムレータ10で構成される。
31は鉱油回収装置であり、冷媒回路は高低圧熱交換器
25、電子膨張弁7、分離回収装置9、および逆止弁3
2a、32b、32c、32dで構成される。また12
a、12bは鉱油回収装置31と既設配管4、6を接続
する接続弁、12c、12d、12e、12fは熱源機
28と鉱油回収装置31を接続する接続弁である。
Fourth Embodiment 22 is a view showing a fourth embodiment of the present invention and is a refrigerant circuit diagram of a pipe cleaning device. In the figure, 28 is a heat source device, and the refrigerant circuit is composed of a compressor 1, an oil separator 2, a four-way valve 29, a heat source side heat exchanger 30, and an accumulator 10.
31 is a mineral oil recovery device, and the refrigerant circuit has a high / low pressure heat exchanger 25, an electronic expansion valve 7, a separation / recovery device 9, and a check valve 3.
2a, 32b, 32c, 32d. Again 12
Reference characters a and 12b are connection valves that connect the mineral oil recovery device 31 and the existing pipes 4 and 6, and reference characters 12c, 12d, 12e, and 12f are connection valves that connect the heat source device 28 and the mineral oil recovery device 31.

【0087】本実施の形態は図13あるいは図19に示
す配管洗浄装置11の代わりに、交換後設置される熱源
機28と鉱油回収装置31を組み合わせて洗浄を行うも
のである。図22で構成される冷凍サイクルは四方弁2
9を実線方向に流すように設定した場合、図中の実線矢
印方向に冷媒が流れ、回路構成は図13と同じ構成とな
り、上述の実施の形態2と同様の効果を奏するものであ
り、洗浄も同様に行うことが可能となる。また四方弁2
9を点線矢印方向に流すように設定した場合、ガス冷却
器27に相当する熱源側熱交換器30と鉱油回収装置9
の順序が入れ替わるものの図19と同じ回路構成とな
り、上述の実施の形態3と同様の効果を奏するものであ
り、配管洗浄も同様に行うことが可能となる。洗浄完了
後は鉱油回収装置31、およびバイパス管5を取り外
し、既設配管4、6に熱源機28と室内機を接続するこ
とで、配管の洗浄および冷凍空調装置の交換を完了す
る。
In the present embodiment, instead of the pipe cleaning device 11 shown in FIG. 13 or FIG. 19, the heat source device 28 and the mineral oil recovery device 31 installed after replacement are combined for cleaning. The refrigeration cycle configured in FIG. 22 has a four-way valve 2
When 9 is set to flow in the solid line direction, the refrigerant flows in the direction of the solid line arrow in the drawing, the circuit configuration is the same as that in FIG. 13, and the same effect as that of the above-described second embodiment is obtained. Can be similarly performed. Also four-way valve 2
9 is set to flow in the direction of the dotted line arrow, the heat source side heat exchanger 30 corresponding to the gas cooler 27 and the mineral oil recovery device 9
However, the circuit configuration is the same as that in FIG. 19, but the same effects as those of the above-described third embodiment are obtained, and the pipe cleaning can be performed in the same manner. After the cleaning is completed, the mineral oil recovery device 31 and the bypass pipe 5 are removed, and the heat source device 28 and the indoor unit are connected to the existing pipes 4 and 6, thereby completing the cleaning of the pipe and the replacement of the refrigeration / air-conditioning device.

【0088】また図22において、15は熱源機28の
計測制御装置であり、33は鉱油回収装置31の計測制
御装置である。配管洗浄運転の運転制御においてそれぞ
れの計測制御装置の働きは以下のように行う。まず、熱
源機28の計測制御装置15では、圧縮機1の吐出温
度、吸入温度、高圧圧力、低圧圧力を温度センサ13
a、13c、圧力センサ14a、14bによる測定値を
得て、この情報を鉱油回収装置31の計測制御装置33
に伝送する。鉱油回収装置31の計測制御装置33で
は、高低圧熱交換器の凝縮側出口側であり被洗浄配管入
口に設けられた温度センサ13bで測定される高低圧熱
交換器25出口の温度情報と熱源機28から伝送される
上記情報とを合わせて、圧縮機1の制御方法、熱源側熱
交換器30のファン風量、高低圧熱交換器25の熱交換
量、電子膨張弁7の開度を決定し、圧縮機1の運転回転
数制御、熱源側熱交換器30のファン(図示せず)の制
御方法を、熱源機28の計測制御装置15に指示すると
ともに、高低圧熱交換器25の熱交換量、電子膨張弁7
の開度の制御を実施する。熱源機28の計測制御装置1
5ではこの鉱油回収装置31からの情報を受け、圧縮機
1の回転数、熱源側熱交換器30のファンの回転数を制
御実施する。一方、鉱油回収装置31を取り外した後の
通常の冷凍空調装置としての熱源機28の運転制御は、
計測制御装置15で実施する。
Further, in FIG. 22, 15 is a measurement control device of the heat source unit 28, and 33 is a measurement control device of the mineral oil recovery device 31. The operation of each measurement control device in the operation control of the pipe cleaning operation is performed as follows. First, in the measurement control device 15 of the heat source device 28, the discharge temperature, the suction temperature, the high pressure, and the low pressure of the compressor 1 are detected by the temperature sensor 13.
a, 13c, the pressure sensors 14a, 14b are used to obtain measured values, and this information is used as the measurement control device 33 of the mineral oil recovery device 31.
To transmit. In the measurement control device 33 of the mineral oil recovery device 31, temperature information and heat source at the outlet of the high and low pressure heat exchanger 25 measured by the temperature sensor 13b provided at the condensation side outlet of the high and low pressure heat exchanger and provided at the inlet of the pipe to be cleaned. The control method of the compressor 1, the fan air volume of the heat source side heat exchanger 30, the heat exchange amount of the high / low pressure heat exchanger 25, and the opening degree of the electronic expansion valve 7 are determined in combination with the above information transmitted from the machine 28. Then, the operation control of the compressor 1 and the control method of the fan (not shown) of the heat source side heat exchanger 30 are instructed to the measurement control device 15 of the heat source device 28, and the heat of the high / low pressure heat exchanger 25 is controlled. Exchange amount, electronic expansion valve 7
Control the opening degree of. Measurement control device 1 of heat source unit 28
In step 5, the information from the mineral oil recovery device 31 is received, and the rotation speed of the compressor 1 and the rotation speed of the fan of the heat source side heat exchanger 30 are controlled. On the other hand, the operation control of the heat source device 28 as a normal refrigerating air-conditioning device after the mineral oil recovery device 31 is removed is
It is implemented by the measurement control device 15.

【0089】このように、配管洗浄運転中の運転制御
は、鉱油回収装置31の計測制御装置33にまかせ、通
常の冷凍空調装置としての熱源機28の運転制御に熱源
機28の計測制御装置15を特化させることで、図22
に構成されるような配管洗浄方法に元来対応していなか
った熱源機であっても、大きな制御変更を伴うことなく
配管洗浄運転を実施でき、配管洗浄運転を実施する場合
の熱源機適用の幅を広げ、汎用性を高めることができ
る。
As described above, the operation control during the pipe cleaning operation is left to the measurement control device 33 of the mineral oil recovery device 31, and the measurement control device 15 of the heat source device 28 is used for the operation control of the heat source device 28 as a normal refrigerating and air-conditioning device. 22 by specializing
Even if it is a heat source machine that was not originally compatible with the pipe cleaning method configured as described in 1., the pipe cleaning operation can be performed without major control changes. The width can be widened and versatility can be improved.

【0090】また実施の形態4の別の形態として図23
に示す形態をとってもよい。図23は配管洗浄装置の冷
媒回路図を示す図であり、図において、36は運転制御
装置であり、図22と同一または相当部分は同一符号を
付ける。図22とは、冷媒回路が同一であり、熱源機2
8の計測制御装置15と鉱油回収装置31の計測制御装
置33の両方と情報伝送可能な外部に設けられ通信接続
された運転制御装置36を設けた点が異なるものであ
る。運転制御装置36はパソコンなど携帯できる移動端
末であり、熱源機28、鉱油回収装置31の運転制御を
実施できる機能と熱源機28の計測制御装置15および
鉱油回収装置31の計測制御装置33と情報を伝送する
機能を持つ。 配管洗浄運転中の運転制御は以下のよう
に実施される。まず、熱源機28に設けた熱源側計測制
御装置15では、前述したように各圧力センサ、温度セ
ンサから熱源機15側の運転状態の測定値を得て、この
情報を運転制御装置36に伝送する。また鉱油回収装置
31に設けた洗浄側計測制御装置33でも前述したよう
に、温度センサ13bで測定される高低圧熱交換器25
出口の温度測定値を得て、この情報を運転制御装置36
に伝送する。運転制御装置36では、これらの運転情報
を得て、圧縮機1などの熱源機28内の各アクチュエー
タに対する制御内容、高低圧熱交換器25などの鉱油回
収装置31内の各アクチュエータに対する制御内容を決
定し、これらの決定された制御を実施するように計測制
御装置15、33に指示する。
As another form of the fourth embodiment, FIG.
You may take the form shown in. FIG. 23 is a diagram showing a refrigerant circuit diagram of the pipe cleaning device, in which 36 is an operation control device, and the same or corresponding parts as in FIG. 22 are designated by the same reference numerals. The refrigerant circuit is the same as that of FIG.
8 is different from the measurement control device 15 of 8 and the measurement control device 33 of the mineral oil recovery device 31 in that an operation control device 36, which is provided outside and is communicatively connected, is provided. The operation control device 36 is a portable mobile terminal such as a personal computer, and has a function capable of controlling the operation of the heat source device 28 and the mineral oil recovery device 31, and the measurement control device 15 of the heat source device 28 and the measurement control device 33 of the mineral oil recovery device 31 and information. With the function of transmitting. The operation control during the pipe cleaning operation is performed as follows. First, in the heat source side measurement control device 15 provided in the heat source device 28, as described above, the measured value of the operating state of the heat source device 15 side is obtained from each pressure sensor and temperature sensor, and this information is transmitted to the operation control device 36. To do. Further, in the cleaning side measurement control device 33 provided in the mineral oil recovery device 31, as described above, the high / low pressure heat exchanger 25 measured by the temperature sensor 13b.
The temperature measurement value at the outlet is obtained, and this information is supplied to the operation controller 36.
To transmit. The operation control device 36 obtains these operation information and outputs the control content for each actuator in the heat source device 28 such as the compressor 1 and the control content for each actuator in the mineral oil recovery device 31 such as the high and low pressure heat exchanger 25. Then, the measurement control devices 15 and 33 are instructed to perform the determined control.

【0091】なお、図23では、運転制御装置36と熱
源機28の熱源側計測制御装置15、さらに運転制御装
置36と鉱油回収装置31の洗浄側計測制御装置33が
直接接続されて運転制御装置36を中心に情報伝送する
形となっているが、各制御装置にネットワーク機能を持
たせて、運転制御装置36と熱源機28の計測制御装置
15、運転制御装置36と鉱油回収装置31の洗浄側計
測制御装置33が間接的に接続されても、運転制御装置
36と熱源機28の熱源側計測制御装置15、運転制御
装置36と鉱油回収装置31の洗浄側計測制御装置33
との間で情報伝送できる形態をとってもよい。たとえ
ば、運転制御装置36と熱源機28の熱源側計測制御装
置15が接続され、この熱源側計測制御装置15と鉱油
回収装置31の洗浄側計測制御装置33が接続されてい
て、各制御装置がネットワーク機能を保持し、運転制御
装置36と鉱油回収装置31の洗浄側計測制御装置33
が情報伝送可能となっていれば、運転制御装置36にて
前述したような運転情報の取得および運転制御の指示を
行うことができる。
In FIG. 23, the operation control device 36 and the heat source side measurement control device 15 of the heat source device 28, and the operation control device 36 and the washing side measurement control device 33 of the mineral oil recovery device 31 are directly connected to each other. Although information is transmitted mainly through 36, each control device is provided with a network function so that the operation control device 36 and the measurement control device 15 of the heat source device 28, the operation control device 36 and the mineral oil recovery device 31 are washed. Even if the side measurement control device 33 is indirectly connected, the operation control device 36 and the heat source side measurement control device 15 of the heat source device 28, and the operation control device 36 and the cleaning side measurement control device 33 of the mineral oil recovery device 31.
It may be in a form capable of transmitting information to and from. For example, the operation control device 36 and the heat source side measurement control device 15 of the heat source device 28 are connected, the heat source side measurement control device 15 and the cleaning side measurement control device 33 of the mineral oil recovery device 31 are connected, and each control device is The network control function is maintained, and the operation control device 36 and the cleaning-side measurement control device 33 of the mineral oil recovery device 31.
If the information can be transmitted, the operation control device 36 can acquire the operation information and instruct the operation control as described above.

【0092】このような形態であっても、配管洗浄運転
中の運転制御は、運転制御装置36にまかせ、通常の冷
凍空調装置としての熱源機28が有する運転制御部分に
上述の熱源機28の熱源側計測制御装置15を特化させ
ることで、図23に構成されるような配管洗浄方法に対
して元来対応していないなかった熱源機であっても、そ
れが有する制御装置に大きな制御変更を伴うことなく配
管洗浄運転が実施でき、配管洗浄運転を実施する場合の
熱源機適用の幅を広げ、汎用性を高めることができる。
また、鉱油回収装置31が様々な種類の熱源機に接続使
用され、様々な熱源機28に応じて配管洗浄運転の制御
方法を変更しなければならない場合、このような形態を
とると、運転制御装置36が保持する熱源機28、鉱油
回収装置31に対する制御内容を熱源機28に応じて変
更することで対応可能となる。例えば、運転制御装置3
6がパソコンであった場合には、配管洗浄運転に際して
実行される制御プログラムを適宜変更することで容易に
運転制御を変更できる。従って、鉱油回収装置31の洗
浄側計測制御装置33に配管洗浄中の運転制御方法を保
持する必要がなくなり、各アクチュエータの駆動に特化
することで、鉱油回収装置31の洗浄側計測制御装置3
3の運転制御方法を熱源機28に応じて変更する必要が
なくなり、鉱油回収装置31を用いた場合の配管洗浄運
転をより汎用性を持たせて実施することができる。
Even in such a form, the operation control during the pipe cleaning operation is left to the operation control device 36, and the operation control part of the heat source device 28 as a normal refrigerating and air-conditioning device has the above-mentioned heat source device 28. By specializing the heat source side measurement control device 15, even if the heat source device originally does not support the pipe cleaning method as shown in FIG. The pipe cleaning operation can be performed without any change, the range of application of the heat source device when the pipe cleaning operation is performed can be widened, and the versatility can be enhanced.
Further, when the mineral oil recovery device 31 is connected to various types of heat source units and is used and the control method of the pipe cleaning operation needs to be changed according to the various heat source units 28, the operation control is performed when such a mode is adopted. This can be dealt with by changing the control contents for the heat source device 28 and the mineral oil recovery device 31 held by the device 36 according to the heat source device 28. For example, the operation control device 3
When 6 is a personal computer, the operation control can be easily changed by appropriately changing the control program executed during the pipe cleaning operation. Therefore, the cleaning side measurement control device 33 of the mineral oil recovery device 31 does not need to hold the operation control method during pipe cleaning, and the cleaning side measurement control device 3 of the mineral oil recovery device 31 is specialized by driving each actuator.
It is not necessary to change the operation control method of No. 3 according to the heat source device 28, and the pipe cleaning operation when the mineral oil recovery device 31 is used can be performed with greater versatility.

【0093】なお、図22、図23に示すような形態で
配管洗浄運転を実施した場合、熱源機28の熱源側計測
制御装置15と鉱油回収装置31の洗浄側計測制御装置
33、あるいはこれらと運転制御装置36の間で情報の
伝達が行われる。この情報の伝達がノイズなどの影響で
うまくいかない場合、熱源機28の運転情報の伝達を行
えない、あるいは熱源機28の圧縮機1などのアクチュ
エータの制御の指令がなされないことになる。これによ
り、熱源機28の圧縮機1が異常運転を行い、圧力の過
上昇などにより熱源機28の破損を引き起こす可能性が
ある。そこで、情報の伝達など各計測制御装置および運
転制御装置間の通信に異常が認められる場合には、熱源
機28の圧縮機1を速やかに停止し、熱源機28を保護
する。保護の方法としては、例えば熱源機28の熱源側
計測制御装置31が他の制御装置からの情報を得られな
い、あるいは送信した情報の受信通知を得られないなど
通信異常を検知した場合には、圧縮機1の運転を停止さ
せるなどして熱源機28の保護を行う。また、熱源機2
8の熱源側計測制御装置15、鉱油回収装置31の洗浄
側計測制御装置33、運転制御装置36の少なくともい
ずれか1つに通信異常が認められる場合は、各制御装置
の少なくとも1つに通信異常状態であることを表示さ
せ、配管洗浄運転を監視する監視者に知らしめ、監視者
が熱源機28の計測制御装置15に予め設けられた圧縮
機1の手動停止機能を作動させて圧縮機1を停止しても
良い。このように、熱源機28の熱源側計測制御装置1
5と鉱油回収装置31の洗浄側計測制御装置33、運転
制御装置36の間で情報の伝達がうまく行われない場合
は、熱源機28の圧縮機1を速やかに停止し、熱源機2
8の異常運転による熱源機28の破損を防止すること
で、より信頼性の高い配管洗浄運転を実施することが可
能となる。
22 and 23, when the pipe cleaning operation is carried out, the heat source side measurement control device 15 of the heat source device 28 and the cleaning side measurement control device 33 of the mineral oil recovery device 31, or these. Information is transmitted between the operation control devices 36. If the transmission of this information fails due to the influence of noise or the like, the operation information of the heat source device 28 cannot be transmitted, or a command for controlling the actuator of the compressor 1 or the like of the heat source device 28 is not issued. As a result, the compressor 1 of the heat source device 28 may perform an abnormal operation, and the heat source device 28 may be damaged due to an excessive increase in pressure. Therefore, when an abnormality is found in the communication between each measurement control device and the operation control device such as the transmission of information, the compressor 1 of the heat source device 28 is quickly stopped to protect the heat source device 28. As a protection method, for example, when the heat source side measurement control device 31 of the heat source device 28 detects a communication abnormality such as not being able to obtain information from another control device or receiving a reception notification of the transmitted information. The heat source unit 28 is protected by stopping the operation of the compressor 1. Also, the heat source unit 2
8. If communication abnormality is found in at least one of the heat source side measurement control device 15 of No. 8, the washing side measurement control device 33 of the mineral oil recovery device 31, and the operation control device 36, communication abnormality is present in at least one of the control devices. The state is displayed to inform the supervisor who monitors the pipe cleaning operation, and the supervisor activates the manual stop function of the compressor 1 provided in the measurement control device 15 of the heat source device 28 in advance to operate the compressor 1 You may stop. Thus, the heat source side measurement control device 1 of the heat source device 28
5 and the cleaning side measurement control device 33 of the mineral oil recovery device 31 and the operation control device 36 are not successfully transmitted, the compressor 1 of the heat source device 28 is quickly stopped and the heat source device 2
By preventing the heat source unit 28 from being damaged due to the abnormal operation of No. 8, it becomes possible to carry out a more reliable pipe cleaning operation.

【0094】また、図22、図23に示すような形態で
配管洗浄運転を実施した場合、熱源機28の熱源側計測
制御装置15、鉱油回収装置31の洗浄側計測制御装置
33、運転制御装置36の少なくとも1つに、配管洗浄
運転中の運転状況、例えば運転中に計測される圧力や温
度などの冷媒の情報、圧縮機1の運転など各アクチュエ
ータの運転情報、今までの洗浄時間や今後必要な洗浄時
間、配管洗浄運転の完了または未完了など配管洗浄運転
の進行状況を表示部に表示すると共に、記憶手段を用い
て記録させてもよい。このような表示を行うことで配管
洗浄運転中の運転状況を確認でき、配管洗浄運転の利便
性が高まるとともに、配管洗浄運転の監視者がこの運転
状況を監視し、配管洗浄運転が正常に行われていないと
判断できるときには、配管洗浄運転を再度やり直す、あ
るいは配管洗浄運転の運転制御を適宜修正することで、
配管洗浄運転を確実に行うことができる。また、配管洗
浄運転の進行状況が記録されていることで、配管洗浄運
転中に何らかの異常が発生し、運転が停止した場合な
ど、運転状況の記録から運転停止の要因が明確になり、
その要因の対策を行うことで、配管洗浄運転を確実に行
うことが可能となる。また、配管洗浄運転がある程度進
行したところで停止した場合には、運転状況の記録から
残りの配管洗浄運転時間を導き出し、再開後の配管洗浄
運転は残りの運転時間分を行うようにしてもよい。この
ような運転を行うことで、配管洗浄運転を再び初期から
行うことに比べて必要十分な時間だけ配管洗浄を行うこ
ととなり、必要以上の無駄な配管洗浄運転を行うことな
く配管洗浄作業の時間を短縮できる。
When the pipe cleaning operation is carried out in the form shown in FIGS. 22 and 23, the heat source side measurement control device 15 of the heat source device 28, the cleaning side measurement control device 33 of the mineral oil recovery device 31, and the operation control device. In at least one of 36, operating conditions during the pipe cleaning operation, for example, information on the refrigerant such as pressure and temperature measured during the operation, operating information of each actuator such as the operation of the compressor 1, the cleaning time until now and the future. The progress of the pipe cleaning operation such as the required cleaning time and the completion or non-completion of the pipe cleaning operation may be displayed on the display unit and recorded using the storage means. By displaying such a display, the operation status during the pipe cleaning operation can be confirmed, and the convenience of the pipe cleaning operation is enhanced.A person who monitors the pipe cleaning operation monitors this operation status and the pipe cleaning operation is performed normally. If it can be determined that the pipe cleaning operation has not been performed, try the pipe cleaning operation again, or correct the operation control of the pipe cleaning operation as appropriate.
The pipe cleaning operation can be reliably performed. In addition, since the progress status of the pipe cleaning operation is recorded, the cause of the operation stop becomes clear from the operation status record, such as when the operation stops due to some abnormality during the pipe cleaning operation.
By taking measures against that factor, it becomes possible to reliably perform the pipe cleaning operation. Further, when the pipe cleaning operation has stopped after progressing to some extent, the remaining pipe cleaning operation time may be derived from the record of the operation status, and the pipe cleaning operation after the restart may be performed for the remaining operation time. By performing such an operation, the pipe cleaning operation is performed for a necessary and sufficient time compared to when the pipe cleaning operation is performed from the beginning again, and the time of the pipe cleaning operation can be performed without performing unnecessary unnecessary pipe cleaning operation. Can be shortened.

【0095】また、図22、図23に示すような形態を
とる場合に、熱源機28の熱源側計測制御装置15に配
管洗浄運転の完了または未完了を記録し、配管洗浄運転
が完了となっていない場合は、熱源機28において、通
常時の運転など配管洗浄運転以外の運転を禁止するよう
にしてもよい。配管洗浄運転を実施するように熱源機2
8、鉱油回収装置31を構成しても、人為的ミスなど何
らかの原因で配管洗浄運転が実施されない、または完了
していない状態で配管洗浄運転を終了し、熱源機28を
用いて通常の冷凍空調装置としての運転を行う場合があ
り、この場合には、配管洗浄が完了していないので、既
設配管中に残留する鉱油の流入により冷凍空調装置の運
転に不具合を来す場合がある。そこで熱源機28を用い
て通常の冷凍空調装置としての運転を行うなどの配管洗
浄運転以外の運転を行う場合には熱源機28の熱源側計
測制御装置15に配管洗浄運転の完了が必ず記録されて
いるようにする。このようにすることで、通常の冷凍空
調装置としての運転など、配管洗浄運転以外の運転を行
う場合には確実に配管洗浄運転が完了しているようにす
ることができ、より信頼性の高い冷凍空調装置を供給す
ることができる。
22 and 23, the completion or incompletion of the pipe cleaning operation is recorded in the heat source side measurement control device 15 of the heat source unit 28, and the pipe cleaning operation is completed. If not, in the heat source device 28, operations other than the pipe cleaning operation such as normal operation may be prohibited. Heat source unit 2 to carry out pipe cleaning operation
8. Even if the mineral oil recovery device 31 is configured, the pipe cleaning operation is not performed or is not completed due to some reason such as human error, and the pipe cleaning operation is terminated, and the heat source unit 28 is used for normal refrigeration and air conditioning. There is a case where the device is operated, and in this case, since the pipe cleaning has not been completed, the operation of the refrigerating and air-conditioning device may be caused due to the inflow of the residual mineral oil in the existing pipe. Therefore, when the heat source unit 28 is used to perform an operation other than the pipe cleaning operation such as an operation as a normal refrigerating and air-conditioning apparatus, the completion of the pipe cleaning operation is always recorded in the heat source side measurement control device 15 of the heat source unit 28. Like By doing this, it is possible to ensure that the pipe cleaning operation has been completed when performing operations other than the pipe cleaning operation, such as the operation as a normal refrigeration / air-conditioning system, which is more reliable. A refrigeration air conditioner can be supplied.

【0096】実施の形態5. 図24、図25は本発明の実施の形態5を示す図で、配
管洗浄運転中、および洗浄運転終了後の熱源機運転中の
情報の流れを示した図である。図24、25において、
34は冷凍空調装置とは遠隔された場所(例えば、冷凍
空調装置管理業者のサービスセンター等)に設置されて
いる集中管理装置であり、配管洗浄装置運転中、および
洗浄運転終了後の熱源機運転中の運転情報を鉱油回収装
置31および熱源機28の計測制御装置33および15
から受け取る。図25において、13d、13eは利用
側熱交換器23での冷媒温度を検知する温度センサ、1
3fは利用側熱交換器23での室内空気温度を検知する
温度センサ、35は室内機22の計測制御装置である。
なお、図24、25のその他の符号は実施の形態1〜4
と同一であるので説明を省略する。
Embodiment 5. 24 and 25 are diagrams showing the fifth embodiment of the present invention, and are diagrams showing a flow of information during a pipe cleaning operation and during a heat source device operation after the cleaning operation is completed. 24 and 25,
Reference numeral 34 denotes a centralized control device installed at a location remote from the refrigeration / air-conditioning system (for example, a service center of a refrigeration / air-conditioning system management company). The operation information in the measurement data is used as the measurement control devices 33 and 15 for the mineral oil recovery device 31 and the heat source device 28.
Receive from In FIG. 25, 13d and 13e are temperature sensors for detecting the refrigerant temperature in the use side heat exchanger 23, and 1
3 f is a temperature sensor for detecting the indoor air temperature in the use side heat exchanger 23, and 35 is a measurement control device for the indoor unit 22.
Note that the other reference numerals in FIGS. 24 and 25 denote the first to fourth embodiments.
The description is omitted because it is the same as.

【0097】図25における室内機22の計測制御装置
は、冷凍空調装置使用者によって設定される設定温度や
利用側熱交換器23での冷媒温度、および室内空気温度
の情報を熱源機28の計測制御装置15に伝送するとと
もに、熱源機28の計測制御装置15から伝送される情
報をもとに利用側熱交換器23の過熱度または過冷却度
を演算し、その演算結果をもとに電子膨張弁24の開度
を決定したり、利用側熱交換器23での熱交換量をファ
ン風量などによって決定し、制御する。
The measurement controller of the indoor unit 22 in FIG. 25 measures the information of the set temperature set by the user of the refrigerating and air-conditioning system, the refrigerant temperature in the use side heat exchanger 23, and the indoor air temperature of the heat source unit 28. The superheat degree or subcooling degree of the utilization side heat exchanger 23 is calculated based on the information transmitted from the measurement control device 15 of the heat source device 28 while being transmitted to the control device 15, and the electronic result is calculated based on the calculation result. The opening degree of the expansion valve 24 is determined, and the heat exchange amount in the utilization side heat exchanger 23 is determined and controlled by the fan air flow rate or the like.

【0098】また図26は配管洗浄を伴う冷凍空調装置
交換の際のサービス・メンテナンスの業務や情報の流れ
を表した図である。以下、サービス、情報の流れを図2
6に基づいて説明する。まず最初に冷凍空調装置ユーザ
ー40が冷凍空調装置管理業者41に冷凍空調装置42
の更新を依頼する(S1)。次に冷凍空調装置管理業者
41は、既存の冷凍空調装置及び既設配管の状況を調査
し(S2)、既設配管が洗浄して使用可能と判断すれ
ば、冷凍空調装置メーカー43に冷凍空調装置を発注し
(S3)、冷凍空調装置が納入される(S4)と工事業
者44に配管洗浄工事、冷凍空調装置の更新工事を依頼
する(S5)。このとき図23に示す鉱油回収装置31
については、冷凍空調装置メーカー43から冷凍空調装
置管理業者41に販売され(S6)、冷凍空調装置管理
業者41がこの鉱油回収装置31を用いた配管洗浄工事
を工事業者44に指示する。工事業者44が冷凍装置設
置工事を行い、配管洗浄を実施している間(S7)、配
管洗浄運転中の熱源機28、鉱油回収装置31の運転情
報は冷凍空調装置管理業者41のもとにある図23に示
す集中管理装置34に電話回線やインターネットによる
有線通信や無線通信により伝送され(S8)、この集中
管理装置34を用いて、後述する配管洗浄運転中の熱源
機28、鉱油回収装置31の管理がなされる(S9)。
FIG. 26 is a diagram showing a service / maintenance work and a flow of information when the refrigerating and air-conditioning apparatus is replaced with a pipe cleaning. The flow of services and information is shown below in Figure 2.
6 will be described. First, the refrigeration / air-conditioning system user 40 sends the refrigeration / air-conditioning system management company 41 to the refrigeration / air-conditioning system 42.
To update (S1). Next, the refrigeration / air-conditioning system management company 41 investigates the conditions of the existing refrigeration / air-conditioning system and the existing piping (S2), and if it judges that the existing piping is clean and usable, the refrigeration / air-conditioning system manufacturer 43 installs the refrigeration / air-conditioning system. When an order is placed (S3) and the refrigerating and air-conditioning system is delivered (S4), the contractor 44 is requested to perform pipe cleaning work and refrigerating and air-conditioning system renewal work (S5). At this time, the mineral oil recovery device 31 shown in FIG.
With regard to the above, the refrigeration / air-conditioning equipment manufacturer 43 sells the refrigeration / air-conditioning equipment management company 41 to the refrigeration / air-conditioning equipment management company 41 (S6), and the refrigeration / air-conditioning equipment management company 41 instructs the construction company 44 to perform a pipe cleaning work using the mineral oil recovery device 31. The operation information of the heat source device 28 and the mineral oil recovery device 31 during the pipe cleaning operation is sent to the refrigeration / air-conditioning device manager 41 while the contractor 44 performs the refrigerating device installation work and the pipe cleaning (S7). 23 is transmitted to the central control device 34 shown in FIG. 23 by wire communication or wireless communication by telephone line or internet (S8), and by using the central control device 34, the heat source unit 28 during the pipe cleaning operation and the mineral oil recovery device which will be described later. 31 is managed (S9).

【0099】そして配管洗浄後は、図25に示すように
熱源機28を用いて通常の冷凍空調運転が実施される
が、このときの熱源機28および室内機22の運転情報
も冷凍空調装置管理業者41のもとにあるの集中管理装
置34に集められ(S8)、集中管理装置34を用い
て、通常運転中の熱源機28の管理が行われる(S
9)。配管洗浄運転及び通常運転中になんらかの不具合
があり工事が必要な場合は、冷凍空調装置管理業者41
は、冷凍空調装置メーカー43に保守部品を発注(S1
0)するとともに、工事業者44に保守工事を依頼し
(S11)、冷凍空調装置メーカー43より保守部品が
納入されると(S12)、工事業者44は保守工事を実
施する(S13)。
After cleaning the pipes, as shown in FIG. 25, the normal refrigerating and air-conditioning operation is performed using the heat source unit 28, and the operation information of the heat source unit 28 and the indoor unit 22 at this time is also managed by the refrigerating and air conditioning unit. They are collected in the centralized management device 34 under the contractor 41 (S8), and the centralized management device 34 is used to manage the heat source units 28 during normal operation (S8).
9). If there is any problem during the pipe cleaning operation or normal operation and construction is required, the refrigeration and air conditioning equipment management company 41
Orders maintenance parts from the refrigeration and air conditioning manufacturer 43 (S1
At the same time, the contractor 44 is requested to perform maintenance work (S11), and when the refrigeration and air conditioning system manufacturer 43 delivers maintenance parts (S12), the contractor 44 carries out maintenance work (S13).

【0100】この実施の形態では図24、図25をもと
に配管洗浄運転中、および配管洗浄運転後の熱源機28
の運転管理方法について説明する。まず図24をもとに
配管洗浄運転中の管理方法について説明する。この場合
は、工事現場から遠隔設置された集中管理装置34は、
鉱油回収装置31の計測制御装置33から鉱油回収装置
31の運転情報を受け取ると共に、鉱油回収装置31の
計測制御装置33を介して、熱源機28の運転情報を受
け取る。このとき受け取る情報としては、鉱油回収装置
31からは、被洗浄配管4の入口温度、高低圧熱交換器
25の熱交換量、電子膨張弁7の開度などの制御情報。
そして熱源機28からは、圧縮機1の吐出温度、吸入温
度、および運転中の高圧圧力、低圧圧力、および圧縮機
1の回転数、熱源側熱交換器30のファン風量など機器
の制御情報、および装置運転時の電気入力などの情報を
受け取る。
In this embodiment, the heat source unit 28 during the pipe cleaning operation and after the pipe cleaning operation will be described with reference to FIGS. 24 and 25.
The operation management method will be described. First, the management method during the pipe cleaning operation will be described with reference to FIG. In this case, the central control device 34 installed remotely from the construction site
The operation information of the mineral oil recovery device 31 is received from the measurement control device 33 of the mineral oil recovery device 31, and the operation information of the heat source device 28 is received via the measurement control device 33 of the mineral oil recovery device 31. As the information received at this time, control information such as the inlet temperature of the pipe 4 to be cleaned, the heat exchange amount of the high and low pressure heat exchanger 25, the opening degree of the electronic expansion valve 7 and the like from the mineral oil recovery device 31.
From the heat source device 28, the discharge temperature of the compressor 1, the suction temperature, the high pressure and the low pressure during operation, the rotation speed of the compressor 1, the control information of the device such as the fan air volume of the heat source side heat exchanger 30, And receive information such as electrical input when operating the equipment.

【0101】次に集中管理装置34では受け取った情報
をもとに、配管洗浄運転が適切に行われているかを判断
する。そして配管洗浄運転が適切に行われていないと判
断されるときは、適切に運転を行うよう鉱油回収装置3
1の計測制御装置33に運転制御指示を与える。例え
ば、配管洗浄運転中の高圧圧力、低圧圧力、吐出温度、
圧縮機吸入の過熱度、被洗浄配管4に流入する冷媒の乾
き度について適切な目標値が設定されていない場合など
には、上述の実施の形態1〜4に示された配管洗浄の制
御内容を指示する。また充填されている冷媒量に過不足
があると判断されるときは、どの程度の冷媒量を追加チ
ャージするか、または回収するかを判断し、冷凍空調装
置の設置及び洗浄運転を実施している工事業者44に連
絡して冷媒の充填あるいは回収を指示する。また運転情
報より、洗浄に必要な冷媒流量が不足しており、洗浄時
間を予定よりも多く要すると判断される場合は、必要な
洗浄時間を決定し、その時間洗浄運転するように工事業
者に指示する。このように、配管洗浄運転における運転
情報を遠隔に設置された集中管理装置34を使用し、管
理業者41が一元管理することで、一定の基準を持って
情報に対応でき、確実に洗浄運転が実施できるようにな
り、工事業者の熟練度に依存しない配管洗浄が行なえる
とともに配管洗浄の運転信頼性を向上させることができ
る。また、冷凍空調装置管理業者は遠隔の例えばサービ
スセンターから作業の指示ができるのでそれぞれの据え
付け現場へ赴く手間が省け、配管洗浄の作業時間も削減
できる効果がある。
Next, the central control unit 34 judges whether or not the pipe cleaning operation is properly performed based on the received information. When it is determined that the pipe cleaning operation is not properly performed, the mineral oil recovery device 3 should be operated appropriately.
The operation control instruction is given to the first measurement control device 33. For example, high pressure, low pressure, discharge temperature during pipe cleaning operation,
When an appropriate target value is not set for the degree of superheat of the compressor suction and the dryness of the refrigerant flowing into the pipe to be cleaned 4, the pipe cleaning control contents shown in the above-described first to fourth embodiments Instruct. When it is determined that the amount of refrigerant that is filled is excessive or insufficient, determine how much refrigerant to add or charge, and then install the refrigerating and air-conditioning system and perform the cleaning operation. Contact the construction company 44 instructed to instruct to fill or recover the refrigerant. If it is judged from the operation information that the flow rate of the refrigerant required for cleaning is insufficient, and it is determined that the cleaning time will be longer than planned, determine the required cleaning time and ask the contractor to perform the cleaning operation for that time. Give instructions. In this way, by using the centralized management device 34 that is installed remotely to centrally manage the operation information in the pipe cleaning operation, the management company 41 can centrally manage the information and can respond to the information with a certain standard, and the cleaning operation can be reliably performed. As a result, the pipe cleaning can be performed without depending on the skill of the contractor, and the operation reliability of the pipe cleaning can be improved. Further, since the refrigeration / air-conditioning system management company can issue a work instruction from a remote service center, for example, it is possible to save the trouble of going to each installation site and reduce the work time of the pipe cleaning.

【0102】次に図25にもとづいて、配管洗浄後、熱
源機28で通常の冷凍空調運転を実施中の冷凍空調装置
の管理方法について説明する。この場合集中管理装置3
4は、熱源機28の計測制御装置15より熱源機28の
運転情報を受け取る。このとき受け取る情報としては、
圧縮機1の吐出温度、吸入温度、および運転中の高圧圧
力、低圧圧力、および圧縮機1の回転数、熱源側熱交換
器30のファン風量、および室内機の運転情報、すなわ
ち、空調装置使用者によって設定される空調設定温度や
利用側熱交換器23での冷媒温度、室内空気温度、利用
側熱交換器23の熱交換量、および電子膨張弁24の開
度などの情報を受け取る。次に集中管理装置34では受
け取った情報をもとに、配管洗浄運転後に熱源機28の
運転が適切に行われているかを判断する。そして配管洗
浄がうまくいっていないなどの理由で、熱源機28の運
転が適切に行われていないと判断されるときは、適切に
運転を行うよう熱源機28の計測制御装置15に指示を
与えたり、熱源機28、室内機22の修理を実施したり
する。
Next, with reference to FIG. 25, a method of managing the refrigerating and air-conditioning apparatus during the normal refrigerating and air-conditioning operation of the heat source unit 28 after cleaning the pipe will be described. In this case, the central control device 3
4 receives the operation information of the heat source device 28 from the measurement control device 15 of the heat source device 28. The information received at this time is
Discharge temperature of compressor 1, suction temperature, high pressure, low pressure during operation, rotation speed of compressor 1, fan air volume of heat source side heat exchanger 30, and operating information of indoor unit, that is, use of air conditioner Information such as the air-conditioning set temperature set by the operator, the refrigerant temperature in the use side heat exchanger 23, the room air temperature, the heat exchange amount of the use side heat exchanger 23, and the opening degree of the electronic expansion valve 24 is received. Next, the centralized management device 34 determines whether the heat source device 28 is properly operated after the pipe cleaning operation based on the received information. When it is determined that the heat source device 28 is not operating properly due to, for example, poor cleaning of the pipes, the measurement control device 15 of the heat source device 28 is instructed to operate properly. The heat source unit 28 and the indoor unit 22 are repaired.

【0103】例えば、室内機22内の電子膨張弁24の
開度が全開になっているなど、大きく開いている状況に
おいて、低圧圧力が低下している、あるいは冷房運転時
の利用側熱交換器23の冷媒温度が想定される温度より
低い、あるいは暖房運転時の利用側熱交換器23の冷媒
温度が想定される温度より高い、あるいは冷房運転時の
利用側熱交換器23の過熱度が想定される値より高い、
あるいは暖房運転時の利用側熱交換器23の過冷却度が
想定される値より高いといった場合には電子膨張弁24
の一部が、配管洗浄時に洗浄できなかった残留物、ある
いは設置工事の際に混入した異物などによって詰まって
いると判断できる。
For example, when the electronic expansion valve 24 in the indoor unit 22 is fully opened, such as when the opening is wide open, the low-pressure pressure decreases, or the heat exchanger on the use side during cooling operation. The refrigerant temperature of 23 is lower than the expected temperature, the refrigerant temperature of the use side heat exchanger 23 during the heating operation is higher than the expected temperature, or the superheat degree of the use side heat exchanger 23 during the cooling operation is assumed. Higher than the value
Alternatively, when the degree of subcooling of the use side heat exchanger 23 during the heating operation is higher than the expected value, the electronic expansion valve 24
It can be judged that a part of the above is clogged with a residue that could not be cleaned when cleaning the pipe, or a foreign substance mixed in during the installation work.

【0104】このような場合は集中管理装置34は、ま
ず電子膨張弁24の開度がまだ開ける状況にある場合は
さらに電子膨張弁24の開度を開くように熱源機28の
計測制御装置15に指示を出す一方で、電子膨張弁24
が不良である情報を冷凍空調装置管理業者41に発す
る。冷凍空調装置管理業者41はその情報をみて、電子
膨張弁24の交換を行うため、冷凍空調装置メーカー4
3に交換部品を発注し、冷凍空調装置管理業者41ある
いは工事業者44が電子膨張弁24の交換を実施する。
またこのときの不良の原因を調べるため、冷凍空調装置
管理業者41は、熱源機28内の冷凍機油の性状を調査
し、問題がある場合は冷凍機油交換などの対処作業を実
施する。
In such a case, the central control unit 34 firstly opens the opening of the electronic expansion valve 24 when the opening of the electronic expansion valve 24 is still open. To the electronic expansion valve 24
Is sent to the refrigeration / air-conditioning apparatus management company 41. The refrigeration / air-conditioning system management company 41 sees the information and replaces the electronic expansion valve 24.
3, the replacement parts are ordered, and the refrigeration / air-conditioning apparatus management company 41 or the construction company 44 replaces the electronic expansion valve 24.
Further, in order to investigate the cause of the defect at this time, the refrigerating air-conditioning apparatus manager 41 investigates the property of the refrigerating machine oil in the heat source unit 28, and if there is a problem, carries out a coping operation such as refrigerating machine oil exchange.

【0105】また、熱源機28の圧縮機1の電気入力が
圧縮機の運転状況、すなわち高圧圧力、低圧圧力、回転
数、吸入温度から予測される圧縮機1の入力値よりも大
きくなっている場合には、圧縮機1の運転が不良になっ
ていると判断できる。このような場合も冷凍空調装置管
理業者41は、熱源機28内の冷凍機油の性状を調査
し、問題がある場合は冷凍機油交換などの作業を実施す
る。また冷凍機油交換では対応できない場合などは、圧
縮機1の交換などで対応する。
Further, the electric input of the compressor 1 of the heat source device 28 is larger than the input value of the compressor 1 predicted from the operating conditions of the compressor, that is, the high pressure, the low pressure, the rotation speed, and the suction temperature. In this case, it can be determined that the operation of the compressor 1 is defective. Even in such a case, the refrigeration air-conditioning apparatus management company 41 investigates the properties of the refrigerating machine oil in the heat source unit 28, and if there is a problem, carries out operations such as refrigerating machine oil exchange. If the refrigerating machine oil cannot be replaced, the compressor 1 can be replaced.

【0106】このように、配管洗浄後の冷凍空調装置運
転においても、その運転情報を据え付け現場から遠隔設
置された集中管理装置を用いて管理業者が一元に管理す
ることで、一定の基準を持って情報に対応でき、確実に
配管洗浄後の冷凍空調装置の運転が実施できるようにな
り、冷凍空調装置運転における信頼性を向上させること
ができる。
As described above, even in the operation of the refrigerating and air-conditioning apparatus after cleaning the pipes, the operating information is managed by the management company using the centralized management apparatus that is installed remotely from the installation site. Information can be dealt with, and the operation of the refrigerating and air-conditioning apparatus can be reliably performed after cleaning the pipes, and the reliability in the operation of the refrigerating and air-conditioning apparatus can be improved.

【0107】なお、上記の集中管理装置34の機能を予
め、鉱油回収装置31の計測制御装置33や熱源機28
の計測制御装置15に組み込んで置いてもよい。この場
合、洗浄運転中や通常運転中に対策が必要な事項がある
場合には、計測制御装置15、33において異常信号が
発せられ、この信号に応じて、冷凍空調装置管理業者4
1や工事業者44が保守の対策を実施し、発生した異常
に対して迅速な対応ができ作業時間の短縮化が図られ
る。
The function of the centralized control device 34 is set in advance by the measurement control device 33 of the mineral oil recovery device 31 and the heat source device 28.
It may be installed in the measurement control device 15 of FIG. In this case, when there is a matter that requires countermeasures during the washing operation or the normal operation, the measurement control devices 15 and 33 issue an abnormal signal, and the refrigeration / air-conditioning device management company 4 responds to this signal.
1 or the construction company 44 implements maintenance measures, promptly responds to any abnormality that occurs, and shortens work time.

【0108】[0108]

【発明の効果】この発明における配管洗浄装置は、圧縮
機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で搬送
される冷媒によって既設配管を洗浄して被洗浄物を回収
する回収装置と、既設配管に流入する冷媒が、乾き度
0.2〜0.9の気液二相流となるように、凝縮器の熱
交換能力、膨張装置の流動抵抗及び蒸発器の熱交換能力
の少なくともいずれか1つを制御する制御装置とを備え
たので、洗浄能力が向上するとともに運転信頼性の高い
配管洗浄装置を提供できる。
The pipe cleaning device according to the present invention is provided with a compression device.
Machine, condenser, expansion device, evaporator are connected and transported by compressor
The existing pipe is washed with the refrigerant that is collected to collect the object to be washed.
Recovery device and the refrigerant flowing into the existing pipe
The heat of the condenser is adjusted so as to obtain a gas-liquid two-phase flow of 0.2 to 0.9.
Exchange capacity, expansion device flow resistance and evaporator heat exchange capacity
And a control device for controlling at least one of
Therefore, the cleaning ability is improved and the operation reliability is high.
A pipe cleaning device can be provided.

【0109】さらに、圧縮機の吐出側配管に吐出温度セ
ンサを備え、吐出温度センサにより検知される吐出温度
が予め定められた所定目標値以下となるように制御装置
を制御するので、洗浄能力が向上するとともに運転信頼
性の高い配管洗浄装置を提供できる。
In addition, the discharge temperature pipe is connected to the discharge side pipe of the compressor.
Sensor equipped with a sensor, the discharge temperature detected by the discharge temperature sensor
Is controlled so that is less than or equal to a predetermined target value.
Control, so cleaning performance is improved and operational reliability is improved.
A highly efficient pipe cleaning device can be provided.

【0110】さらに、凝縮器で得られる冷媒の凝縮熱の
一部または全部を蒸発器における蒸発熱として熱交換す
る高低圧熱交換器を設けたので、配管洗浄装置をコンパ
クトにできる。
Furthermore, the heat of condensation of the refrigerant obtained in the condenser
Part or all of it is exchanged as heat of vaporization in the evaporator
Since a high and low pressure heat exchanger for
You can

【0111】さらに、冷媒の物理状態が予め定められた
目標値となるように、高低圧熱交換器の熱交換量を変化
させるので、洗浄能力が向上するとともに運転信頼性の
高い配管洗浄装置を提供できる。
Furthermore, the physical state of the refrigerant is predetermined.
Change the heat exchange rate of the high and low pressure heat exchanger to reach the target value.
Therefore, the cleaning ability is improved and the operation reliability is improved.
An expensive pipe cleaning device can be provided.

【0112】さらに、高低圧熱交換器から流出する蒸発
した冷媒を冷却するガス冷却手段を備え、ガス冷却手段
の冷却能力を冷媒の物理状態に応じて変化させるので、
洗浄能力が向上するとともに運転信頼性の高い配管洗浄
装置を提供できる。
Furthermore, the evaporation flowing out of the high and low pressure heat exchanger
A gas cooling means for cooling the formed refrigerant,
Since the cooling capacity of is changed according to the physical state of the refrigerant,
Cleaning of pipes with improved cleaning ability and high operational reliability
A device can be provided.

【0113】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で
搬送される冷媒によって既設配管を洗浄して被洗浄物を
回収する回収装置と、既設配管に流入する冷媒が気液二
相流となるように、凝縮器の熱交換能力、膨張装置の流
動抵抗及び蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、圧縮機の吐出側配管に高圧圧
力センサ、凝縮器の出口側配管に凝縮出口温度センサと
を備え、高圧圧力センサから検知される高圧圧力と凝縮
出口温度センサから検知される凝縮器出口温 度とから算
出される気液二相冷媒の乾き度が予め定められた所定目
標範囲となるように制御装置を制御するので、洗浄能力
が向上するとともに運転信頼性の高い配管洗浄装置を提
供できる。
The pipe cleaning apparatus according to the present invention is
Connect the compressor, condenser, expansion device, evaporator,
Clean the existing pipes with the transported refrigerant to clean the objects to be cleaned.
The recovery device for recovery and the refrigerant that flows into the existing pipe are the gas-liquid two
The heat exchange capacity of the condenser and the flow of the expansion device
At least one of dynamic resistance and heat exchange capacity of evaporator 1
High pressure to the control device that controls the
A force sensor and a condensation outlet temperature sensor on the outlet side piping of the condenser
High pressure and condensation detected by high pressure sensor
Calculated from the condenser Atsushi Ideguchi sensed from the outlet temperature sensor
The dryness of the gas-liquid two-phase refrigerant to be discharged
Since the control device is controlled so that it is within the standard range, the cleaning ability
And a pipe cleaning device with high operational reliability.
Can be served.

【0114】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で
搬送される冷媒によって既設配管を洗浄して被洗浄物を
回収する回収装置と、既設配管に流入する冷媒が気液二
相流となるように、凝縮器の熱交換能力、膨張装置の流
動抵抗及び蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、圧縮機の吸入側配管に低圧圧
力センサとを備え、低圧圧力センサにより検知される低
圧圧力が予め定められた所定目標値以上となるように制
御装置を制御するので、洗浄能力が向上するとともに運
転信頼性の高い配管洗浄装置を提供できる。
In addition, the pipe cleaning apparatus according to the present invention is
Connect the compressor, condenser, expansion device, evaporator,
Clean the existing pipes with the transported refrigerant to clean the objects to be cleaned.
The recovery device for recovery and the refrigerant that flows into the existing pipe are the gas-liquid two
The heat exchange capacity of the condenser and the flow of the expansion device
At least one of dynamic resistance and heat exchange capacity of evaporator 1
Control device to control the low pressure and the suction side pipe of the compressor.
With a force sensor, the low pressure detected by the low pressure sensor
Control the pressure so that it exceeds a predetermined target value
Controls the control device, improving cleaning ability and operating
It is possible to provide a highly reliable pipe cleaning device.

【0115】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器を接続し、圧縮機で
搬送される冷媒によって既設配管を洗浄して被洗浄物を
回収する回収装置と、既設配管に流入する冷媒が気液二
相流となるように、凝縮器の熱交換能力、膨張装置の流
動抵抗及び蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、圧縮機の吐出側配管に高圧圧
力センサとを備え、高圧圧力センサにより検知される高
圧圧力が予め定められた所定目標値以上となるように制
御装置を制御するので、洗浄能力が向上するとともに運
転信頼性の高い配管洗浄装置を提供できる。
The pipe cleaning apparatus according to the present invention is
Connect the compressor, condenser, expansion device, evaporator,
Clean the existing pipes with the transported refrigerant to clean the objects to be cleaned.
The recovery device for recovery and the refrigerant that flows into the existing pipe are the gas-liquid two
The heat exchange capacity of the condenser and the flow of the expansion device
At least one of dynamic resistance and heat exchange capacity of evaporator 1
High pressure to the control device that controls the
Equipped with a force sensor,
Control the pressure so that it exceeds a predetermined target value
Controls the control device, improving cleaning ability and operating
It is possible to provide a highly reliable pipe cleaning device.

【0116】また、この発明における配管洗浄装置は、
圧縮機、凝縮器、膨張装置、蒸発器、アキュムレータを
接続し、圧縮機で搬送される冷媒によって既設配管を洗
浄して被洗浄物を回収する回収装置と、既設配管に流入
する冷媒が気液二相流となるように、凝縮器の熱交換能
力、膨張装置の流動抵抗及び蒸発器の熱交換能力の少な
くともいずれか1つを制御する制御装置と、圧縮機の吸
入側配管に低圧圧力センサおよび吸入温度センサとを備
え、低圧圧力センサから検知される低圧圧力と吸入温度
センサから検知される吸入温度により算出される吸入過
熱度がアキュムレータに冷媒が溜まり込まないように予
め定められた所定目標値となるように制御装置を制御す
るので、洗浄能力が向上するとともに運転信頼性の高い
配管洗浄装置を提供できる。
In addition, the pipe cleaning apparatus according to the present invention is
Compressors, condensers, expanders, evaporators, accumulators
Connect and wash the existing pipe with the refrigerant carried by the compressor.
Flows into the existing equipment and the collection device that cleans and collects the objects to be cleaned.
The heat exchange capacity of the condenser so that the refrigerant
Force, the flow resistance of the expander and the heat exchange capacity of the evaporator
At least one of the control device and the compressor suction
Equipped with a low pressure sensor and suction temperature sensor in the inlet piping
The low pressure and suction temperature detected by the low pressure sensor
Inhalation excess calculated from the inhalation temperature detected by the sensor
The degree of heat is designed to prevent refrigerant from accumulating in the accumulator.
Control device so that the specified target value
Therefore, the cleaning ability is improved and the operation reliability is high.
A pipe cleaning device can be provided.

【0117】さらに、圧縮機の運転能力は可変であるの
で、洗浄能力が向上するとともに運転信頼性の高い配管
洗浄装置を提供できる。
Furthermore, the operating capacity of the compressor is variable.
With improved cleaning capability, piping with high operational reliability
A cleaning device can be provided.

【0118】さらに、圧縮機の運転能力に応じて冷媒の
物理状態の制御目標値を決めるので、洗浄能力が向上す
るとともに運転信頼性の高い配管洗浄装置を提供でき
る。
Further, depending on the operating capacity of the compressor, the refrigerant
Since the control target value of the physical state is determined, the cleaning ability is improved.
And a pipe cleaning device with high operational reliability can be provided.
It

【0119】さらに、既設配管の流動抵抗に応じて冷媒
の物理状態の制御目標値を決めるので、洗浄能力が向上
するとともに運転信頼性の高い配管洗浄装置を提供でき
る。
In addition, the refrigerant depending on the flow resistance of the existing pipe is used.
Since the control target value of the physical state of is determined, the cleaning ability is improved.
And a pipe cleaning device with high operational reliability can be provided.
It

【0120】さらに、周囲温度に応じて冷媒の物理状態
の制御目標値を決めるので、洗浄能力が向上するととも
に運転信頼性の高い配管洗浄装置を提供できる。
Furthermore, the physical state of the refrigerant depends on the ambient temperature.
Since the control target value of
It is possible to provide a pipe cleaning device with high operational reliability.

【0121】また、この発明における配管洗浄装置は、
圧縮機を有する熱源機と、熱源機と被洗浄配管の間に接
続される鉱油回収装置とを有し、熱源機または鉱油回収
装置の少なくともどちらか一方に圧縮機から吐出された
冷媒を凝縮させる熱交換器を備えると共に、鉱油回収装
置に、熱交換器により凝縮された冷媒を減圧させる膨張
装置と、被洗浄配管を流通した冷媒から被洗浄物を分離
回収する被洗浄物回収手段と、熱源機が有する熱源側制
御装置から運転情報を受け、圧縮機の運転容量を制御す
る洗浄側制御装置とを備えたので、もともと配管洗浄を
考慮されていない熱源機でも大きな制御変更を伴うこと
なく配管洗浄運転ができ、この熱源機適用の幅を広げ、
汎用性を高めることができる。
The pipe cleaning apparatus according to the present invention is
Connect the heat source unit with a compressor and the heat source unit to the pipe to be cleaned.
With a mineral oil recovery device that is connected to the heat source machine or mineral oil recovery
Discharged from compressor to at least one of the devices
Equipped with a heat exchanger that condenses the refrigerant, and a mineral oil recovery device.
Expansion to depressurize the refrigerant condensed by the heat exchanger
Separation of the object to be cleaned from the refrigerant flowing through the device and the piping to be cleaned
The cleaning object recovery means for recovery and the heat source side control of the heat source machine
Controls the operating capacity of the compressor by receiving operating information from the controller.
Since it is equipped with a cleaning side control device,
Even a heat source machine that has not been considered involves major control changes
The pipe cleaning operation can be performed without any need, and the range of application of this heat source machine can be expanded.
Versatility can be improved.

【0122】また、この発明における配管洗浄装置は、
圧縮機と外部に配設した運転制御装置に運転情報を伝送
可能とする熱源側制御装置を有する熱源機と、熱源機と
被洗浄配管との間に接続される鉱油回収装置とを有し、
熱源機または鉱油回収装置の少なくともどちらか一方に
圧縮機から吐出された冷媒を凝縮させる熱交換器を備え
ると共に、鉱油回収装置に、熱交換器により凝縮された
冷媒を減圧させる膨張装置と、被洗浄配管を流通した冷
媒から被洗浄物を分離回収する被洗浄物回収手段と、熱
源側制御装置または/および運転制御装置の間で運転情
報を伝送可能にする洗浄側制御装置とを備え、運転制御
装置は、熱源側制御装置からの運転情報及び洗浄側制御
装置からの運転情報を受け、熱交換器の熱交換量または
膨張装置の絞り量または圧縮機の運転容量のうち少なく
ともいずれか1つを制御するものであるので、もともと
配管洗浄を考慮されていない熱源機でも大きな制御変更
を伴うことなく配管洗浄運転ができ、この熱源機適用の
幅を広げ、汎用性を高めることができると共に、配管洗
浄装置においても熱源機に対応した大きな制御変更を伴
うことなく配管洗浄運転ができ、この熱源機適用の幅を
広げ、汎用性を高めることができる。
The pipe cleaning apparatus according to the present invention is
Transmission of operation information to the compressor and operation control device installed outside
A heat source device having a heat source side control device that enables the heat source device;
Having a mineral oil recovery device connected between the pipe to be cleaned,
At least one of the heat source machine and the mineral oil recovery system
Equipped with a heat exchanger that condenses the refrigerant discharged from the compressor
And was condensed by the heat exchanger in the mineral oil recovery unit.
The expansion device that decompresses the refrigerant and the cold that flows through the pipe to be washed.
Cleaning means for separating and recovering the cleaning object from the medium, and heat
Driving information between the source control device and / or the driving control device
Equipped with a cleaning-side control device that can transmit information
The equipment is operating information from the heat source side controller and cleaning side control.
The heat exchange amount of the heat exchanger or
Smaller amount of expansion device throttling or compressor operating capacity
Since both control one,
Major control changes even for heat source machines that do not consider pipe cleaning
The pipe cleaning operation can be performed without
The width can be widened and versatility can be improved, and the pipes can be washed.
Even in the purifier, there is a large control change corresponding to the heat source unit.
The pipe cleaning operation can be performed without
It can be expanded and versatility can be improved.

【0123】さらに、熱源機が有する熱源側制御装置と
鉱油回収装置が有する洗浄側制御装置の間、あるいは外
部に配設した運転制御装置と熱源側制御装置と洗浄側制
御装置との間における運転情報の伝送に不具合が発生し
たときに、熱源機に配設された圧縮機の運転を停止する
機能を熱源側制御装置に備えたので、配管洗浄運転中の
異常運転による熱源機破損を防止でき、信頼性の高い冷
凍空調装置を得ることができる。
Further, a heat source side controller provided in the heat source device
Between or outside the washing-side control device of the mineral oil recovery device
Operation control device, heat source side control device and cleaning side control
There is a problem in the transmission of driving information between the
Stop the compressor installed in the heat source
Since the heat source side control device was equipped with the function,
Highly reliable cooling that can prevent damage to the heat source due to abnormal operation
You can get a freezing air conditioner.

【0124】さらに、熱源側制御装置、洗浄側制御装置
または運転制御装置の少なくともいずれか1つに配管洗
浄運転の進行状況を記録する記憶手段もしくは表示する
表示手段を備えたので、配管洗浄運転中に運転状況を確
認でき配管洗浄運転の利便性が高まるとともに、配管洗
浄運転が十分に実施できていない場合の対応が容易にな
りより確実に配管洗浄運転を行なうことができる。
Further, the heat source side controller and the cleaning side controller
Alternatively, at least one of the operation control devices should be washed with a pipe.
Storage means or display to record the progress of clean operation
Since the display means is provided, the operating status can be confirmed during the pipe cleaning operation.
As a result, the convenience of pipe cleaning operation will increase and
It is easy to deal with the case where the cleaning operation is not carried out sufficiently.
The pipe cleaning operation can be performed more reliably.

【0125】さらに、熱源側制御装置、洗浄側制御装置
または運転制御装置の少なくともいずれか1つに有した
記憶手段に配管洗浄運転の完了もしくは未完了を記録す
るので、配管洗浄運転の運転状況を確認でき配管洗浄運
転の利便性が高めることができる。
Further, the heat source side control device and the cleaning side control device
Or at least one of the operation control devices
Record the completion or incompletion of the pipe cleaning operation in the storage means.
Therefore, you can check the operation status of the pipe cleaning operation
The convenience of turning can be improved.

【0126】さらに、配管洗浄運転が未完了で中断した
場合に、配管洗浄運転の進行状況の記録をもとに配管洗
浄運転を再開する機能を洗浄側制御装置または運転制御
装置の少なくともどちらか一方に備えたので、配管洗浄
運転の運転時間を必要十分な長さ実施することが可能と
なり、配管洗浄運転を適切に実施できる。
Furthermore, the pipe cleaning operation was not completed and was interrupted.
In this case, the pipe cleaning operation should be based on the progress record of the pipe cleaning operation.
Cleaning side control device or operation control function to restart clean operation
Since it is equipped with at least one of the equipment, the pipe cleaning
It is possible to carry out the necessary and sufficient driving time for driving.
Therefore, the pipe cleaning operation can be properly performed.

【0127】さらに、熱源側制御装置に配管洗浄運転の
完了記録がなされていない場合、熱源機において配管洗
浄運転以外の運転を禁止するので、配管洗浄運転未完了
時に、通常運転などの既設配管を用いた運転を行なうこ
とが無くなり、信頼性の高い冷凍空調装置を得ることが
できる。
Further, the heat source side control device is equipped with a pipe cleaning operation.
If the completion record is not recorded, wash the pipes in the heat source unit.
Piping cleaning operation is not completed because operations other than cleaning operation are prohibited
Occasionally, perform operations using existing piping such as normal operation.
It is possible to obtain a highly reliable refrigeration air conditioner
it can.

【0128】また、この発明における配管洗浄方法は、
既設使用の冷凍空調装置を既設配管から取り除くステッ
プと、既設配管に圧縮機を有する配管洗浄装置を取り付
けるステップと、配管洗浄装置により配管洗浄運転を行
なうステップと、配管洗浄装置に設けた制御装置から遠
隔設置された集中管理装置へ伝送される配管洗浄運転中
の情報をもとに、配管洗浄運転中の高圧圧力、低圧圧
力、吐出温度、圧縮機吸入の過熱度、既設配管に流入す
る冷媒の乾き度が適切な目標値に設定されていたかの配
管洗浄運転の適性を判断するステップとを備えたので、
配管洗浄運転における運転情報を一元に管理して一定の
基準で対応することができ、配管洗浄作業の熟練度に依
存しない信頼性の高い冷凍空調装置を得ることができ
る。
In addition, the pipe cleaning method according to the present invention is
Remove the existing refrigeration and air-conditioning system from the existing piping.
And a pipe cleaning device with a compressor on the existing pipe
And the pipe cleaning device to perform the pipe cleaning operation.
Away from the control step installed in the pipe cleaning device
During pipe cleaning operation that is transmitted to a centralized control device installed at a remote location
High pressure and low pressure during pipe cleaning operation based on
Power, discharge temperature, superheat of compressor suction, flow into existing pipe
Whether the dryness of the refrigerant is set to an appropriate target value.
With the step of judging the suitability of the pipe cleaning operation,
The operation information in the pipe cleaning operation is managed centrally
It can be handled according to the standard and depends on the skill level of the pipe cleaning work.
It is possible to obtain a highly reliable refrigeration air conditioner that does not exist
It

【0129】さらに、前記配管洗浄運転の適性判定によ
り、運転制御条件または冷媒量調整の変更を行なうステ
ップを備えたので、冷凍空調装置管理業者の手間や配管
洗浄作業時間の削減の効果が得られる。
Further, according to the suitability judgment of the pipe cleaning operation,
Change the operation control conditions or the refrigerant amount adjustment.
Since it is equipped with a plug,
The effect of reducing the cleaning work time can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1に係る配管洗浄装置の
冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a pipe cleaning device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1に係る鉱油の配管残存
量と洗浄時間の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the residual amount of mineral oil pipe and the cleaning time according to the first embodiment of the present invention.

【図3】 本発明の実施の形態1に係る圧縮機の冷媒流
量と圧縮機回転数の関係を示す図である。
FIG. 3 is a diagram showing a relationship between a refrigerant flow rate and a compressor rotation speed of the compressor according to the first embodiment of the present invention.

【図4】 本発明の実施の形態1に係る冷媒の乾き度と
温度の関係を示す図である。
FIG. 4 is a diagram showing a relationship between dryness and temperature of a refrigerant according to the first embodiment of the present invention.

【図5】 本発明の実施の形態1に係る凝縮器、蒸発器
の他の形態を示す図である。
FIG. 5 is a diagram showing another form of the condenser and the evaporator according to the first embodiment of the present invention.

【図6】 本発明の実施の形態1に係る凝縮器、蒸発器
の他の形態を示す図である。
FIG. 6 is a diagram showing another form of the condenser and the evaporator according to the first embodiment of the present invention.

【図7】 本発明の実施の形態1に係る配管洗浄装置と
凝縮器の構成を示す断面図である。
FIG. 7 is a cross-sectional view showing the configurations of a pipe cleaning device and a condenser according to the first embodiment of the present invention.

【図8】 本発明の実施の形態1に係る配管洗浄装置に
おける覆いの設置方法を示す図である。
FIG. 8 is a diagram showing a method of installing a cover in the pipe cleaning device according to the first embodiment of the present invention.

【図9】 本発明の実施の形態1に係る配管洗浄装置に
おける覆いの設置方法の他の例を示す図である。
FIG. 9 is a diagram showing another example of the method of installing the cover in the pipe cleaning device according to the first embodiment of the present invention.

【図10】 本発明の実施の形態1に係る配管洗浄装置
における覆いの設置方法の他の例を示す図である。
FIG. 10 is a diagram showing another example of the method of installing the cover in the pipe cleaning device according to the first embodiment of the present invention.

【図11】 本発明の実施の形態1に係る電子膨張弁を
利用した他の形態を示す図である。
FIG. 11 is a diagram showing another form using the electronic expansion valve according to the first embodiment of the present invention.

【図12】 本発明の実施の形態1に係る配管洗浄装置
の他の形態を示す冷媒回路図である。
FIG. 12 is a refrigerant circuit diagram showing another mode of the pipe cleaning device according to the first embodiment of the present invention.

【図13】 本発明の実施の形態2を示す配管洗浄装置
の冷媒回路図である。
FIG. 13 is a refrigerant circuit diagram of the pipe cleaning device according to the second embodiment of the present invention.

【図14】 本発明の実施の形態2における高低圧熱交
換器の形態を示す図である。
FIG. 14 is a diagram showing a form of a high / low pressure heat exchanger according to a second embodiment of the present invention.

【図15】 本発明の実施の形態2における配管洗浄装
置の運転状況を示す図である。
FIG. 15 is a diagram showing an operating condition of a pipe cleaning device according to a second embodiment of the present invention.

【図16】 本発明の実施の形態2における配管洗浄装
置の高低圧熱交換器の熱交換量変化時の運転状況を示す
図である。
FIG. 16 is a diagram showing an operating condition when the heat exchange amount of the high / low pressure heat exchanger of the pipe cleaning device in the second embodiment of the present invention is changed.

【図17】 本発明の実施の形態2における配管洗浄装
置の外気温変化時の運転状況を示す図である。
FIG. 17 is a diagram showing an operating condition of the pipe cleaning device according to the second embodiment of the present invention when the outside air temperature changes.

【図18】 本発明の実施の形態2における高低圧熱交
換器の他の形態を示す図である。
FIG. 18 is a diagram showing another form of the high and low pressure heat exchanger according to the second embodiment of the present invention.

【図19】 本発明の実施の形態3を示す配管洗浄装置
の冷媒回路図である。
FIG. 19 is a refrigerant circuit diagram of a pipe cleaning device showing a third embodiment of the present invention.

【図20】 本発明の実施の形態3における配管洗浄装
置の運転状況を示す図である。
FIG. 20 is a diagram showing an operating condition of a pipe cleaning device according to a third embodiment of the present invention.

【図21】 本発明の実施の形態3における配管洗浄装
置のガス冷却器ファン風量変化時の運転状況を示す図で
ある。
FIG. 21 is a diagram showing an operating condition when the gas cooler fan air volume changes in the pipe cleaning device in the third embodiment of the present invention.

【図22】 本発明の実施の形態4を示す配管洗浄装置
の冷媒回路図である。
FIG. 22 is a refrigerant circuit diagram of the pipe cleaning device according to the fourth embodiment of the present invention.

【図23】 本発明の実施の形態4における別の配管洗
浄装置の冷媒回路図である。
FIG. 23 is a refrigerant circuit diagram of another pipe cleaning device according to the fourth embodiment of the present invention.

【図24】 本発明の実施の形態5を示す配管洗浄装置
の冷媒回路図である。
FIG. 24 is a refrigerant circuit diagram of a pipe cleaning device showing a fifth embodiment of the present invention.

【図25】 本発明の実施の形態5に係わる冷凍空調装
置の冷媒回路図である。
FIG. 25 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus according to Embodiment 5 of the present invention.

【図26】 本発明の実施の形態5に冷凍空調装置更新
時のサービス内容を示す図である。
FIG. 26 is a diagram showing service contents at the time of updating a refrigerating and air-conditioning apparatus according to Embodiment 5 of the present invention.

【図27】 従来の冷凍空調装置の冷媒回路図である。FIG. 27 is a refrigerant circuit diagram of a conventional refrigeration / air-conditioning system.

【図28】 従来の冷凍機油(鉱油)混入時のHFC用
冷凍機油とHFC冷媒との溶解性を示す臨界溶解度曲線の
関係線図である。
FIG. 28 is a relationship diagram of a critical solubility curve showing the solubility of the HFC refrigerating machine oil and the HFC refrigerant when the conventional refrigerating machine oil (mineral oil) is mixed.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 油分離器、3 凝縮器、4、6 配管
(既設配管、接続配管、被洗浄配管)、5 バイパス
管、7 電子膨張弁、8 蒸発器、9 分離回収装置、
10 アキュムレータ、10a 返油穴、11 配管洗
浄装置、12a,12b,12c,12d,12e,1
2f 接続弁、13a,13b,13c,13d,13
e 温度センサ、14a,14b 圧力センサ、15
計測制御装置、16 弁、17 バイパス配管、18
外気吸込口、19 外気吹出口、20 覆い、21 風
路、22 室内機、23 利用側熱交換器、24 電子
膨張弁、25 高低圧熱交換器、26 二重管、27
ガス冷却器、28 熱源機、29 四方弁、30 熱源
側熱交換器、31 鉱油回収装置、32a,32b,3
2c,32d 逆止弁、33 (洗浄側)計測制御装
置、34 集中管理装置、35 (熱源側)計測制御装
置、36 運転制御装置。
1 compressor, 2 oil separator, 3 condenser, 4 and 6 pipes (existing pipes, connecting pipes, pipes to be cleaned), 5 bypass pipes, 7 electronic expansion valves, 8 evaporators, 9 separation and recovery devices,
10 Accumulator, 10a Oil return hole, 11 Pipe cleaning device, 12a, 12b, 12c, 12d, 12e, 1
2f connection valve, 13a, 13b, 13c, 13d, 13
e Temperature sensor, 14a, 14b Pressure sensor, 15
Measurement control device, 16 valves, 17 bypass piping, 18
Outside air inlet, 19 Outside air outlet, 20 Cover, 21 Air passage, 22 Indoor unit, 23 Use side heat exchanger, 24 Electronic expansion valve, 25 High and low pressure heat exchanger, 26 Double pipe, 27
Gas cooler, 28 heat source machine, 29 four-way valve, 30 heat source side heat exchanger, 31 mineral oil recovery device, 32a, 32b, 3
2c, 32d check valve, 33 (cleaning side) measurement control device, 34 central control device, 35 (heat source side) measurement control device, 36 operation control device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森本 修 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開2000−9368(JP,A) 特開 平6−221727(JP,A) 特開 昭63−297784(JP,A) 特開 昭61−1963(JP,A) 特開2000−111182(JP,A) 特開 平9−105560(JP,A) 特開2000−320908(JP,A) 特開2000−329432(JP,A) 特開 平7−83545(JP,A) 特開 平7−275561(JP,A) 実開 昭62−31987(JP,U) 国際公開96/012921(WO,A1) (58)調査した分野(Int.Cl.7,DB名) F25B 45/00 B08B 9/06 F04B 49/00 321 F16L 55/24 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Morimoto 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (56) References JP 2000-9368 (JP, A) JP 6- 221727 (JP, A) JP 63-297784 (JP, A) JP 61-1963 (JP, A) JP 2000-111182 (JP, A) JP 9-105560 (JP, A) Open 2000-320908 (JP, A) JP 2000-329432 (JP, A) JP 7-83545 (JP, A) JP 7-275561 (JP, A) Actually open 62-31987 (JP, U) International publication 96/012921 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 45/00 B08B 9/06 F04B 49/00 321 F16L 55/24

Claims (22)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、膨張装置、蒸発器を接
続し、前記圧縮機で搬送される冷媒によって既設配管
洗浄して被洗浄物を回収する回収装置と、前記既設配管
に流入する冷媒が、乾き度0.2〜0.9の気液二相流
となるように、前記凝縮器の熱交換能力、前記膨張装置
の流動抵抗及び前記蒸発器の熱交換能力の少なくともい
ずれか1つを制御する制御装置とを備えたことを特徴と
する配管洗浄装置。
1. A recovery device, which connects a compressor, a condenser, an expansion device, and an evaporator, and which cleans an existing pipe by a refrigerant carried by the compressor to recover an object to be cleaned, and the existing pipe.
Is a gas-liquid two-phase flow with a dryness of 0.2 to 0.9
As will be, the condenser of the heat exchange capacity, pipe cleaning apparatus characterized by comprising a control device for controlling at least one of the heat exchange capacity of the flow resistance and the evaporator of the expansion device .
【請求項2】 圧縮機の吐出側配管に吐出温度センサを
備え、前記吐出温度センサにより検知される吐出温度が
予め定められた所定目標値以下となるように制御装置を
制御することを特徴とする請求項1に記載の配管洗浄装
置。
2. A discharge temperature sensor is provided in the discharge side pipe of the compressor.
The discharge temperature detected by the discharge temperature sensor is
Set the control device so that it becomes less than or equal to the predetermined target value set in advance.
The pipe cleaning apparatus according to claim 1, wherein the pipe cleaning apparatus is controlled.
Place
【請求項3】 凝縮器で得られる冷媒の凝縮熱の一部ま
たは全部を蒸発器における蒸発熱として熱交換する高低
圧熱交換器を設けたことを特徴とする請求項1に記載の
配管洗浄装置。
3. A part of the heat of condensation of the refrigerant obtained in the condenser.
High or low that heat is exchanged as heat of evaporation in the evaporator
The pressure heat exchanger is provided, The claim 1 characterized by the above-mentioned.
Pipe cleaning device.
【請求項4】 冷媒の物理状態が予め定められた目標値
となるように、高低圧熱交換器の熱交換量を変化させる
ことを特徴とする請求項3に記載の配管洗浄装置。
4. A target value in which the physical state of the refrigerant is predetermined.
Change the heat exchange amount of the high and low pressure heat exchanger so that
The pipe cleaning device according to claim 3, wherein the pipe cleaning device is a pipe cleaning device.
【請求項5】 高低圧熱交換器から流出する蒸発した冷
媒を冷却するガス冷却手段を備え、前記ガス冷却手段の
冷却能力を前記冷媒の物理状態に応じて変化させること
を特徴とする請求項3に記載の配管洗浄装置。
5. Evaporated cold flowing out of the high and low pressure heat exchanger.
A gas cooling means for cooling the medium,
Changing the cooling capacity according to the physical state of the refrigerant
The pipe cleaning device according to claim 3.
【請求項6】 圧縮機、凝縮器、膨張装置、蒸発器を接
続し、前記圧縮機で搬送される冷媒によって既設配管を
洗浄して被洗浄物を回収する回収装置と、前記既設配管
に流入する冷媒が気液二相流となるように、前記凝縮器
の熱交換能力、前記膨張装置の流動抵抗及び前記蒸発器
の熱交換能力の少なくともいずれか1つを制御する制御
装置と、前記圧縮機の吐出側配管に高圧圧力センサ、前
記凝縮器の出口側配管に凝縮出口温度センサとを備え、
前記高圧圧力センサから検知される高圧圧力と前記凝縮
出口温度センサから検知される凝縮器出口温度とから算
出される気液二相冷媒の乾き度が予め定められた所定目
標範囲となるように制御装置を制御することを特徴とす
る配管洗浄装置。
6. A compressor, a condenser, an expansion device and an evaporator are connected.
Continuing, the existing pipe is replaced by the refrigerant conveyed by the compressor.
A recovery device for cleaning and recovering the object to be cleaned, and the existing pipe
So that the refrigerant flowing into the gas becomes a gas-liquid two-phase flow.
Heat exchange capacity, flow resistance of the expansion device and the evaporator
For controlling at least one of the heat exchange capacities of
Device and high pressure sensor on the discharge side piping of the compressor,
The condenser outlet temperature pipe is equipped with a condenser outlet temperature sensor,
High pressure detected by the high pressure sensor and the condensation
Calculated from the condenser outlet temperature detected by the outlet temperature sensor
The dryness of the gas-liquid two-phase refrigerant to be discharged
The control device is controlled so that the standard range is achieved.
Pipe cleaning equipment.
【請求項7】 圧縮機、凝縮器、膨張装置、蒸発器を接
続し、前記圧縮機で搬送される冷媒によって既設配管を
洗浄して被洗浄物を回収する回収装置と、前記既設配管
に流入する冷媒が気液二相流となるように、前記凝縮器
の熱交換能力、前記膨張装置の流動抵抗及び前記蒸発器
の熱交換能力の少なくともいずれか1つを制御する制御
装置と、前記圧縮機の吸入側配管に低圧圧力センサとを
備え、前記低圧圧力センサにより検知される低圧圧力が
予め定められた所定目標値以上となるように前記制御装
置を制御することを特徴とする配管洗浄装置。
7. A compressor, a condenser, an expansion device and an evaporator are connected.
Continuing, the existing pipe is replaced by the refrigerant conveyed by the compressor.
A recovery device for cleaning and recovering the object to be cleaned, and the existing pipe
So that the refrigerant flowing into the gas becomes a gas-liquid two-phase flow.
Heat exchange capacity, flow resistance of the expansion device and the evaporator
For controlling at least one of the heat exchange capacities of
A low pressure sensor on the suction side of the compressor.
The low pressure detected by the low pressure sensor is
The control device is adjusted so that it becomes equal to or higher than a predetermined target value set in advance.
A pipe cleaning device characterized by controlling the installation.
【請求項8】 圧縮機、凝縮器、膨張装置、蒸発器を接
続し、前記圧縮機で搬送される冷媒によって既設配管を
洗浄して被洗浄物を回収する回収装置と、前記既設配管
に流入する冷媒が気液二相流となるように、前記凝縮器
の熱交換能力、前記膨張装置の流動抵抗及び前記蒸発器
の熱交換能力の少なくともいずれか1つを制御する制御
装置と、前記圧縮機の吐出側配管に高圧圧力センサとを
備え、前記高圧圧力センサにより検知される高圧圧力が
予め定められた所定目標値以上となるように前記制御装
置を制御することを特徴とする配管洗浄装置。
8. A compressor, a condenser, an expansion device and an evaporator are connected.
Continuing, the existing pipe is replaced by the refrigerant conveyed by the compressor.
A recovery device for cleaning and recovering the object to be cleaned, and the existing pipe
So that the refrigerant flowing into the gas becomes a gas-liquid two-phase flow.
Heat exchange capacity, flow resistance of the expansion device and the evaporator
For controlling at least one of the heat exchange capacities of
Device and a high pressure sensor on the discharge side of the compressor
The high pressure detected by the high pressure sensor is
The control device is adjusted so that it becomes equal to or higher than a predetermined target value set in advance.
A pipe cleaning device characterized by controlling the installation.
【請求項9】 圧縮機、凝縮器、膨張装置、蒸発器、ア
キュムレータを接続し、前記圧縮機で搬送される冷媒に
よって既設配管を洗浄して被洗浄物を回収する回収装置
と、前記既設配管に流入する冷媒が気液二相流となるよ
うに、前記凝縮器の熱交換能力、前記膨張装置の流動抵
抗及び前記蒸発器の熱交換能力の少なくともいずれか1
つを制御する制御装置と、前記圧縮機の吸入側配管に低
圧圧力センサおよび吸入温度センサとを備え、前記低圧
圧力センサから検知される低圧圧力と前記吸入温度セン
サから検知される吸入温度により算出される吸入過熱度
が前記アキュムレータに冷媒が溜まり込まないように予
め定められた所定目標値となるように制御装置を制御す
ることを特徴とする配管洗浄装置。
9. A compressor, a condenser, an expansion device, an evaporator, and
Connect the accumulator to the refrigerant carried by the compressor.
Therefore, a recovery device that cleans the existing pipes and recovers the objects to be cleaned.
And the refrigerant flowing into the existing pipe becomes a gas-liquid two-phase flow.
The heat exchange capacity of the condenser and the flow resistance of the expander.
And / or at least one of the heat exchange capabilities of the evaporator
Control unit to control the
A low pressure pressure sensor and a suction temperature sensor,
Low pressure detected by a pressure sensor and the suction temperature sensor
Inhalation superheat calculated from the inhalation temperature detected from the
To prevent refrigerant from accumulating in the accumulator.
Control device so that the specified target value
A pipe cleaning device characterized in that
【請求項10】 前記圧縮機の運転能力が可変であるこ
とを特徴とする請求項1乃至 請求項9のいずれかに記載
の配管洗浄装置。
10. The operation capacity of the compressor is variable.
10. The method according to any one of claims 1 to 9, wherein
Pipe cleaning equipment.
【請求項11】 前記圧縮機の運転能力に応じて冷媒の
物理状態の制御目標値を決めることを特徴とする請求項
10に記載の配管洗浄装置。
11. The refrigerant according to the operating capacity of the compressor
The control target value of a physical state is determined, The claim characterized by the above-mentioned.
10. The pipe cleaning device according to 10.
【請求項12】 前記既設配管の流動抵抗に応じて冷媒
の物理状態の制御目標値を決めることを特徴とする請求
項1乃至請求項11のいずれかに記載の配管洗浄装置。
12. A refrigerant depending on the flow resistance of the existing pipe.
Claim to determine the control target value of the physical state of
The pipe cleaning device according to any one of claims 1 to 11.
【請求項13】 周囲温度に応じて冷媒の物理状態の制
御目標値を決めることを特徴とする請求項1乃至請求項
12のいずれかに記載の配管洗浄装置。
13. The physical state of the refrigerant is controlled according to the ambient temperature.
Claim 1 thru | or Claim which determines a target value.
13. The pipe cleaning device according to any one of 12.
【請求項14】 圧縮機を有する熱源機と、前記熱源機
と被洗浄配管の間に接続される鉱油回収装置とを有する
配管洗浄装置において、前記熱源機または前記鉱油回収
装置の少なくともどちらか一方に前記圧縮機から吐出さ
れた冷媒を凝縮させる熱交換器を備えると共に、前記鉱
油回収装置に、前記熱交換器により凝縮された冷媒を減
圧させる膨張装置と、前記被洗浄配管を流通した冷媒か
ら被洗浄物を分離回収する被洗浄物回収手段と、前記熱
源機が有する熱源側制御装置から運転情報を受け、前記
圧縮機の運転容量を制御する洗浄側制御装置とを備えた
ことを特徴とする配管洗浄装置。
14. A heat source device having a compressor, and the heat source device.
And a mineral oil recovery device connected between the pipe to be cleaned and
In the pipe cleaning device, the heat source device or the mineral oil recovery
Discharge from the compressor to at least one of the devices
And a heat exchanger for condensing the generated refrigerant.
The oil recovery device reduces the refrigerant condensed by the heat exchanger.
The expansion device that pressurizes and the refrigerant that has flowed through the pipe to be cleaned.
And a heat recovery device for separating and recovering the cleaning target from the
The operation information is received from the heat source side control device of the source machine,
And a washing-side controller for controlling the operating capacity of the compressor
A pipe cleaning device characterized by the above.
【請求項15】 圧縮機と外部に配設した運転制御装置
に運転情報を伝送可能とする熱源側制御装置を有する熱
源機と、前記熱源機と被洗浄配管との間に接続される鉱
油回収装置とを有する配管洗浄装置において、前記熱源
機または前記鉱油回収装置の少なくともどちらか一方に
前記圧縮機から吐出された冷媒を凝縮させる熱交換器を
備えると共に、前記鉱油回収装置に、前記熱交換器によ
り凝縮された冷媒を減圧させる膨張装置と、前記被洗浄
配管を流通した冷媒から被洗浄物を分離回収する被洗浄
物回収手段と、前記熱源側制御装置または/および前記
運転制御装置の間で運転情報を伝送可能にする洗浄側制
御装置とを備え、前記運転制御装置は、前記熱源側制御
装置からの運転情報及び前記洗浄側制御装置からの運転
情報を受け、熱交換器の熱交換量または膨張装置の絞り
量または圧縮機の運転容量のうち少なくともいずれか1
つを制御することを特徴とする配管洗浄装置。
15. An operation control device provided outside the compressor.
With a heat source side control device that can transmit operating information to the
Source machine, ore connected between the heat source machine and the pipe to be cleaned
In a pipe cleaning device having an oil recovery device, the heat source
Machine and / or mineral oil recovery equipment
A heat exchanger for condensing the refrigerant discharged from the compressor
In addition, the heat exchanger is provided in the mineral oil recovery device.
Expansion device to reduce the pressure of the condensed refrigerant and the cleaning target
Cleaning target that separates and recovers the cleaning target from the refrigerant flowing through the pipe
Object recovery means and the heat source side controller or / and the above
Cleaning side control that enables transmission of operation information between operation control devices
Control device, the operation control device, the heat source side control
Operation information from the device and operation from the cleaning side control device
Informed, the heat exchange amount of the heat exchanger or the expansion device throttle
Quantity and / or compressor operating capacity 1
A pipe cleaning device characterized by controlling one of them.
【請求項16】 熱源機が有する熱源側制御装置と鉱油
回収装置が有する洗浄側制御装置の間、あるいは外部に
配設した運転制御装置と前記熱源側制御装置と前記洗浄
側制御装置との間における運転情報の伝送に不具合が発
生したときに、前記熱源機に配設された圧縮機の運転を
停止する機能を熱源側制御装置に備えたことを特徴とす
る請求項15に記載の配管洗浄装置。
16. A heat source side control device and a mineral oil included in a heat source machine
Between the cleaning side control device of the recovery device or outside
Arranged operation control device, heat source side control device, and cleaning
There is a problem in the transmission of operating information between the
When operating, the operation of the compressor installed in the heat source unit
The heat source side control device is provided with a function to stop.
The pipe cleaning apparatus according to claim 15, wherein
【請求項17】 熱源側制御装置、洗浄側制御装置また
は運転制御装置の少なくともいずれか1つに配管洗浄運
転の進行状況を記録する記憶手段もしくは表示する表示
手段を備えたことを特徴とする請求項15又は16に記
載の配管洗浄装置。
17. A heat source side control device, a cleaning side control device, and
At least one of the operation control devices
A storage means for recording the progress of the transfer or a display for displaying
The means according to claim 15 or 16, characterized in that it is provided with means.
On-board pipe cleaning device.
【請求項18】 熱源側制御装置、洗浄側制御装置また
は運転制御装置の少なくともいずれか1つに有した記憶
手段に配管洗浄運転の完了もしくは未完了を記録するこ
とを特徴とする請求項15乃至請求項17のいずれかに
記載の配管洗浄装置。
18. A heat source side control device, a cleaning side control device, and
Is a memory in at least one of the operation control devices
The method should record the completion or incompletion of the pipe cleaning operation.
The method according to any one of claims 15 to 17, characterized in that
The described pipe cleaning device.
【請求項19】 配管洗浄運転が未完了で中断した場合
に、配管洗浄運転の進行状況の記録をもとに配管洗浄運
転を再開する機能を洗浄側制御装置または運転制御装置
の少なくともどちらか一方に備えたことを特徴とする請
求項18に記載の配管洗浄装置。
19. When the pipe cleaning operation is not completed and is interrupted
The pipe cleaning operation based on the progress record of the pipe cleaning operation.
The controller for cleaning side or the operation controller for restarting the rotation
A contract characterized by having prepared for at least one of
The pipe cleaning device according to claim 18.
【請求項20】 熱源側制御装置に配管洗浄運転の完了
記録がなされていない場合、熱源機において配管洗浄運
転以外の運転を禁止することを特徴とする請求項19に
記載の配管洗浄装置。
20. Completion of pipe cleaning operation in the heat source side control device
If no record is made, pipe cleaning operation at the heat source unit
20. Driving other than turning is prohibited.
The described pipe cleaning device.
【請求項21】 既設使用の冷凍空調装置を既設配管か
ら取り除くステップと、前記既設配管に圧縮機を有する
配管洗浄装置を取り付けるステップと、前記配管洗浄装
置により配管洗浄運転を行なうステップと、前記配管洗
浄装置に設けた制御装置から遠隔設置された集中管理装
置へ伝送される配管洗浄運転中の情報をもとに、配管洗
浄運転中の高圧圧力、低圧圧力、吐出温度、圧縮機吸入
の過熱度、既設配管に流入する冷媒の乾き度が適切な目
標値に設定されていたかの前記配管洗浄運転の適性を判
断するステップとを備えたことを特徴とする配管洗浄方
法。
21. Is the existing refrigeration / air-conditioning system used for existing piping?
And a compressor in the existing pipe
Installing the pipe cleaning device,
The pipe cleaning operation with the
Centralized management device installed remotely from the control device installed in the purification device
Pipe cleaning based on the information during pipe cleaning operation transmitted to the
High pressure, low pressure, discharge temperature, compressor suction during cleaning operation
The degree of superheat of the refrigerant and the dryness of the refrigerant flowing into the existing pipe are appropriate.
Whether the pipe cleaning operation was appropriate or not was judged to be the standard value.
A method for cleaning pipes, characterized in that
Law.
【請求項22】 前記配管洗浄運転の適性判定により、
運転制御条件または冷媒量調整の変更を行なうステップ
を備えたことを特徴とする請求項21に記載の配管洗浄
方法。
22. According to the suitability judgment of the pipe cleaning operation,
Steps for changing operation control conditions or refrigerant amount adjustment
The pipe cleaning apparatus according to claim 21, further comprising:
Method.
JP2001343973A 2001-03-28 2001-11-09 Piping cleaning device and piping cleaning method Expired - Lifetime JP3491629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001343973A JP3491629B2 (en) 2001-03-28 2001-11-09 Piping cleaning device and piping cleaning method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001092028 2001-03-28
JP2001-92028 2001-03-28
JP2001343973A JP3491629B2 (en) 2001-03-28 2001-11-09 Piping cleaning device and piping cleaning method

Publications (2)

Publication Number Publication Date
JP2002357377A JP2002357377A (en) 2002-12-13
JP3491629B2 true JP3491629B2 (en) 2004-01-26

Family

ID=26612307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001343973A Expired - Lifetime JP3491629B2 (en) 2001-03-28 2001-11-09 Piping cleaning device and piping cleaning method

Country Status (1)

Country Link
JP (1) JP3491629B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225614A (en) * 2011-04-21 2012-11-15 Mitsubishi Heavy Ind Ltd Refrigerant piping cleaning method of multi type air conditioner
CN104785466A (en) * 2015-05-05 2015-07-22 武汉鑫丞科技有限公司 Automatic online cleaning system and method of intelligent circulating cooling water heat exchanger

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263885A (en) 2003-02-07 2004-09-24 Daikin Ind Ltd Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
JP4187020B2 (en) 2006-08-08 2008-11-26 ダイキン工業株式会社 Air conditioner and cleaning method thereof
JP4803234B2 (en) * 2008-09-29 2011-10-26 三菱電機株式会社 Pipe cleaning device
JP5573058B2 (en) * 2009-09-14 2014-08-20 凸版印刷株式会社 Cleaning instruction system for substrate transfer roller
JP5063670B2 (en) * 2009-12-03 2012-10-31 三菱電機株式会社 AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER
JP7232651B2 (en) * 2019-01-25 2023-03-03 東京エレクトロン株式会社 HEAT MEDIUM CONTROL METHOD AND HEAT MEDIUM CONTROL DEVICE
CN111482401A (en) * 2020-04-26 2020-08-04 盐城博尔福机电科技发展有限公司 Cold-hot adjustable high-pressure cleaning machine
CN113560279B (en) * 2021-04-29 2023-08-15 江苏核电有限公司 Nuclear power station diesel system pipeline low-temperature environment oil cleaning system and process thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665940B2 (en) * 1984-06-13 1994-08-24 松下精工株式会社 Refrigerant control method for heat pump type air conditioner
JPH0317994Y2 (en) * 1985-08-09 1991-04-16
JPH0814435B2 (en) * 1987-05-29 1996-02-14 ダイキン工業株式会社 Refrigerator protection device
JPH06221727A (en) * 1993-01-27 1994-08-12 Mitsubishi Heavy Ind Ltd Cleaning device for refrigerant system
JP3149640B2 (en) * 1993-09-17 2001-03-26 株式会社日立製作所 How to change the refrigerant of the air conditioner
JPH07275561A (en) * 1994-04-08 1995-10-24 Toshiba Corp Washing machine
EP0787958A4 (en) * 1994-10-25 1998-09-09 Daikin Ind Ltd Air conditioner and method of controlling washing operation thereof
JP3484866B2 (en) * 1995-08-04 2004-01-06 三菱電機株式会社 Refrigeration equipment
JP3361765B2 (en) * 1998-04-24 2003-01-07 三菱電機株式会社 Refrigeration cycle apparatus, method of forming the same, and outdoor unit of refrigeration cycle apparatus
JP2000111182A (en) * 1998-10-09 2000-04-18 Sanden Corp Air conditioner
JP2000320908A (en) * 1999-05-07 2000-11-24 Hitachi Ltd Refrigerating cycle circuit
JP3361771B2 (en) * 1999-05-20 2003-01-07 三菱電機株式会社 Operation method of refrigeration cycle device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225614A (en) * 2011-04-21 2012-11-15 Mitsubishi Heavy Ind Ltd Refrigerant piping cleaning method of multi type air conditioner
CN104785466A (en) * 2015-05-05 2015-07-22 武汉鑫丞科技有限公司 Automatic online cleaning system and method of intelligent circulating cooling water heat exchanger

Also Published As

Publication number Publication date
JP2002357377A (en) 2002-12-13

Similar Documents

Publication Publication Date Title
JP6403887B2 (en) Refrigeration cycle apparatus, remote monitoring system, remote monitoring apparatus, and abnormality determination method
JP2008215697A (en) Air conditioning device
JP5049889B2 (en) Refrigeration equipment
JP3491629B2 (en) Piping cleaning device and piping cleaning method
JP2001082815A (en) Refrigeration airconditioning cycle device
JP5888114B2 (en) Refrigeration equipment
JP4488712B2 (en) Air conditioner
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
US7178347B2 (en) Method for refrigerant and oil collecting operation and refrigerant and oil collection controller
JP4391559B2 (en) Refrigerant changing method of refrigerant circuit for refrigeration apparatus and refrigeration apparatus
JP4061494B2 (en) Connection pipe cleaning method, refrigerating device renewal method, and freezing device
JP4420871B2 (en) Refrigeration air conditioner
JP4289901B2 (en) Oil recovery method for air conditioner and air conditioner
JP2004270974A (en) Method for changing refrigerant in refrigerant circuit for freezing and refrigerating device
JP3473358B2 (en) Refrigeration / air conditioning device and refrigerant circuit assembly method
JP3440912B2 (en) Refrigeration equipment
JP3680740B2 (en) How to use existing refrigerant piping, how to install air conditioner, air conditioner
JP5583134B2 (en) Heat source unit and refrigeration air conditioner
JP2020034249A (en) Refrigeration cycle device
JP4517834B2 (en) How to use existing refrigerant piping
JP2003240368A (en) Method of recovering refrigerant and oil, controller for recovering refrigerant and oil, and air conditioner
JP5063670B2 (en) AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER
JP3835365B2 (en) Refrigeration apparatus and piping cleaning method for refrigeration apparatus
JP2005043025A (en) Refrigerating air-conditioner, and renewal method therefor
JP4295135B2 (en) Piping cleaning device and piping cleaning method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3491629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091114

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101114

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term