JP4488712B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4488712B2
JP4488712B2 JP2003349616A JP2003349616A JP4488712B2 JP 4488712 B2 JP4488712 B2 JP 4488712B2 JP 2003349616 A JP2003349616 A JP 2003349616A JP 2003349616 A JP2003349616 A JP 2003349616A JP 4488712 B2 JP4488712 B2 JP 4488712B2
Authority
JP
Japan
Prior art keywords
refrigeration cycle
heat exchanger
refrigerant
heat
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003349616A
Other languages
Japanese (ja)
Other versions
JP2005114253A (en
Inventor
航祐 田中
智彦 河西
等 飯嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003349616A priority Critical patent/JP4488712B2/en
Publication of JP2005114253A publication Critical patent/JP2005114253A/en
Application granted granted Critical
Publication of JP4488712B2 publication Critical patent/JP4488712B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷房や暖房を行う空気調和装置に係り、冷媒圧力が高くても既存の敷設配管がそのまま流用できる冷媒回路装置の構成及び運転制御に関するものである。   The present invention relates to an air conditioner that performs cooling and heating, and relates to a configuration and operation control of a refrigerant circuit device in which existing laid piping can be used as it is even when the refrigerant pressure is high.

従来の空気調和装置は、一般に熱源機としての室外機、利用側機器としての室内機、及びこれらを接続する冷媒配管から成る。室外機は圧縮機や熱源側熱交換器、室内機は利用側熱交換器や絞り装置を有し、上記の圧縮機、熱源側熱交換器、絞り装置、利用側熱交換器等が配管接続されて冷凍サイクルが構成される。(例えば特許文献1参照)。   A conventional air conditioner generally includes an outdoor unit as a heat source unit, an indoor unit as a usage-side device, and a refrigerant pipe connecting them. The outdoor unit has a compressor and a heat source side heat exchanger, the indoor unit has a use side heat exchanger and a throttling device, and the above compressor, heat source side heat exchanger, throttling device, use side heat exchanger, etc. are connected by piping. Thus, a refrigeration cycle is configured. (For example, refer to Patent Document 1).

冷凍サイクルに充填される冷媒としてR22等のHCFC系冷媒(塩素及び水素を含むフルオロカーボン)があるが、近年、環境保護の観点から、オゾン破壊係数が零のHFC系冷媒(塩素を含まないフルオロカーボン)、例えばR407C冷媒(R32、R125、R134aの混合冷媒)やR410A冷媒(R32が50wt%、R125が50wt%の混合冷媒)を使用した空気調和装置が登場してきている。
ユーザがHCFC系冷媒を使用した空気調和装置からHFC系冷媒を使用した空気調和装置に買い替える場合、工事簡便性、部品コスト低減の観点から、それまで使用していた空気調和装置の接続配管を、新しい空気調和装置の渡り配管としてそのまま再利用することが考えられる。
There are HCFC refrigerants such as R22 (fluorocarbons containing chlorine and hydrogen) as refrigerants filled in the refrigeration cycle. Recently, from the viewpoint of environmental protection, HFC refrigerants with zero ozone destruction coefficient (fluorocarbons containing no chlorine). For example, air conditioners using R407C refrigerant (mixed refrigerant of R32, R125, and R134a) and R410A refrigerant (mixed refrigerant of R32 at 50 wt% and R125 at 50 wt%) have appeared.
When a user replaces an air conditioner that uses an HCFC refrigerant with an air conditioner that uses an HFC refrigerant, the connection pipe of the air conditioner that has been used so far is used from the viewpoint of ease of construction and cost reduction of parts. It can be reused as it is as a transition pipe for a new air conditioner.

特開2001−091023号公報(第2−4頁、第1図)JP 2001-091023 A (page 2-4, FIG. 1)

従来の空気調和装置では、HFC系冷媒のうちR410A冷媒の動作圧力がR22冷媒、R407C冷媒に比べて約1.5倍高いという特徴があるため、新しい空気調和装置にR410A冷媒が使用されている機器に置き換えた場合に、特に配管径が比較的大きい機種では、設計圧力が再利用される接続配管の耐圧基準値を超えてしまうため、接続配管の肉厚の大きいものに変更を余儀なくされ、工事コストや配管コストが多大になるという問題点があった。   The conventional air conditioner is characterized in that the operating pressure of the R410A refrigerant among the HFC-based refrigerants is about 1.5 times higher than that of the R22 refrigerant and the R407C refrigerant. Therefore, the R410A refrigerant is used in the new air conditioner. When replacing with equipment, especially in models with a relatively large pipe diameter, the design pressure will exceed the pressure resistance standard value of the connection pipe to be reused, so the connection pipe must be changed to a thick wall, There was a problem that construction cost and piping cost became large.

本発明は上述の課題を解決するために為されたものであり、使用する冷媒の圧力が高くても耐圧面の問題を生じることがなく、元の空気調和装置の既設配管を再利用することができる空気調和装置を提供することを目的としている。   The present invention has been made to solve the above-described problems, and does not cause a problem of pressure resistance even if the pressure of the refrigerant to be used is high, and reuses the existing piping of the original air conditioner. It aims at providing the air conditioning apparatus which can do.

本発明に係る空気調和装置においては、第一の圧縮機と、第一の熱交換器を有する室外機と、第一の絞り装置と、第二の熱交換器を有する少なくとも1台の室内機と、上記室内機と上記室外機とを接続する第一の接続配管及び第二の接続配管と、を有する第一の冷凍サイクルと、第二の圧縮機と、第三の熱交換器と、第二の絞り装置と、第四の熱交換器と、第六の熱交換器とが冷媒配管で接続されている第二の冷凍サイクルと、を有し、上記第一の冷凍サイクルにおける上記第一の接続配管と、上記第二の冷凍サイクルにおける上記第二の絞り装置と上記第六の熱交換器の間の上記冷媒配管とが、上記第四の熱交換器で相互に熱交換可能なように、上記第一の冷凍サイクルにおける上記第二の接続配管と、上記第二の冷凍サイクルにおける上記第二の圧縮機と上記第四の熱交換器の間の上記冷媒配管とが、上記第六の熱交換器で相互に熱交換可能なように、それぞれ構成されており、上記第一の冷凍サイクルの除霜運転中に、上記第六の熱交換器では、上記第一の冷凍サイクルの低温二相冷媒を上記第二の冷凍サイクルの高温吐出冷媒で加熱するものである。 In the air conditioner according to the present invention, at least one indoor unit having a first compressor, an outdoor unit having a first heat exchanger, a first expansion device, and a second heat exchanger. A first refrigeration cycle having a first connection pipe and a second connection pipe connecting the indoor unit and the outdoor unit, a second compressor, and a third heat exchanger, A second refrigeration cycle in which a second expansion device, a fourth heat exchanger, and a sixth heat exchanger are connected by a refrigerant pipe, and the second refrigeration cycle in the first refrigeration cycle One connection pipe and the refrigerant pipe between the second expansion device and the sixth heat exchanger in the second refrigeration cycle can exchange heat with each other by the fourth heat exchanger. As described above, the second connection pipe in the first refrigeration cycle and the upper in the second refrigeration cycle The refrigerant pipes between the second compressor and the fourth heat exchanger are respectively configured to be able to exchange heat with each other in the sixth heat exchanger, and the first refrigeration During the defrosting operation of the cycle, the sixth heat exchanger heats the low-temperature two-phase refrigerant of the first refrigeration cycle with the high-temperature discharged refrigerant of the second refrigeration cycle .

本発明では、既設の冷媒配管に第二の冷凍サイクルを付加接続することによって、空気調和装置の効率が向上し、かつ冷媒の動作圧力を低減することができるため、使用する冷媒の圧力が高くても、冷媒配管耐圧の問題を生じることが無く、元の空気調和装置の既設配管を再利用が可能な空気調和装置を得ることができる。
従って、空気調和装置の入れ替えに際して、工事コストが低く、買い替え費用トータルが安価な空気調和装置を得ることができる。
In the present invention, since the efficiency of the air conditioner can be improved and the operating pressure of the refrigerant can be reduced by additionally connecting the second refrigeration cycle to the existing refrigerant pipe, the pressure of the refrigerant used is high. However, it is possible to obtain an air conditioner that does not cause a problem of pressure resistance of the refrigerant pipe and that can reuse the existing pipe of the original air conditioner.
Therefore, when replacing the air conditioner, it is possible to obtain an air conditioner with a low construction cost and a low total replacement cost.

実施の形態1.
図1は本発明の実施の形態1を示す空気調和装置の冷媒回路図である。
図において、圧縮機1と、四方切換弁2と、第一の熱交換器3と、第一のボールバルブ4aと、第二のボールバルブ4bと、第一の絞り装置5と、第二の熱交換器6と、第三のボールバルブ4cと、第四のボールバルブ4dとが、冷媒配管で接続されており、室外機A及び室内機Bはそれぞれ図中の破線で囲む上記の冷媒回路部品及び配管から構成される。
特に、第一のボールバルブ4aと第二のボールバルブ4bとの間の第一の接続配管7、及び第三のボールバルブ4cと第四のボールバルブ4dとの間の第二の接続配管8は、室外機Aと室内機Bが設置される以前に設置された、古い空気調和機装置の既設配管がそのまま使用される場合、或いは室外機Aと室内機Bの設置時に新しい配管が代替使用される場合もある。
また、室内機Bでは第一の絞り装置5と第二の熱交換機6が複数台並列に設置される場合もある。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of an air-conditioning apparatus showing Embodiment 1 of the present invention.
In the figure, the compressor 1, the four-way switching valve 2, the first heat exchanger 3, the first ball valve 4a, the second ball valve 4b, the first expansion device 5, and the second The heat exchanger 6, the third ball valve 4c, and the fourth ball valve 4d are connected by a refrigerant pipe, and the outdoor unit A and the indoor unit B are surrounded by broken lines in the figure, respectively. Consists of parts and piping.
In particular, the first connection pipe 7 between the first ball valve 4a and the second ball valve 4b, and the second connection pipe 8 between the third ball valve 4c and the fourth ball valve 4d. If the existing pipes of the old air conditioner installed before the outdoor unit A and the indoor unit B are used as they are, or if new pipes are used when the outdoor unit A and the indoor unit B are installed Sometimes it is done.
In the indoor unit B, a plurality of first expansion devices 5 and second heat exchangers 6 may be installed in parallel.

第一の送風機9は第一の熱交換器3に空気を送り込み、第二の送風機10は第二の熱交換器6に空気を送り込む。 The first blower 9 sends air to the first heat exchanger 3, and the second blower 10 sends air to the second heat exchanger 6.

これら室外機A、室内機Bにおける配管接続により、第一のヒートポンプ式冷凍サイクル11が構成されている。
上記のヒートポンプ式冷凍サイクル11には、二酸化炭素等の自然冷媒、或いは上述のHFC系の高圧冷媒、例えばR410A冷媒が充填されている。
The first heat pump refrigeration cycle 11 is configured by the pipe connection in the outdoor unit A and the indoor unit B.
The heat pump refrigeration cycle 11 is filled with a natural refrigerant such as carbon dioxide or the above-described HFC-based high-pressure refrigerant, for example, R410A refrigerant.

次に、圧縮機21と、四方切替弁22と、第三の熱交換器23と、第二の絞り装置24と、第四の熱交換器25とが、冷媒配管で接続され、第二のヒートポンプ式冷凍サイクル26を構成している。第二の絞り装置24は、毛細管等の安価な冷媒流量調節手段、或いは電子膨張弁による緻密な流量制御手段の使用も可能である。
第四の熱交換器25では、第一の冷凍サイクル11の第一の接続配管7と冷媒同士の熱交換を行う。
また、第三の送風機27は第三の熱交換器23に空気を送り込む。
Next, the compressor 21, the four-way switching valve 22, the third heat exchanger 23, the second expansion device 24, and the fourth heat exchanger 25 are connected by a refrigerant pipe, and the second A heat pump refrigeration cycle 26 is configured. The second throttling device 24 can also use an inexpensive refrigerant flow rate control means such as a capillary tube or a precise flow rate control means using an electronic expansion valve.
In the fourth heat exchanger 25, heat exchange between the first connection pipe 7 of the first refrigeration cycle 11 and the refrigerant is performed.
The third blower 27 sends air into the third heat exchanger 23.

第一の制御装置28aは第一の冷凍サイクル11の、第一の圧縮機1の運転動作、第一の四方切換弁2の切換、第一の送風機9の運転動作、等を制御し、第二の制御装置28bは第二の冷凍サイクル26の、第二の圧縮機21の運転動作、第二の四方切換弁22の切換、第二の送風機27の運転動作、等を制御し、第一の制御装置28aと第二の制御装置28bとは、通信線29を介して接続されている。 The first control device 28a controls the operation of the first compressor 1, the switching of the first four-way switching valve 2, the operation of the first blower 9 and the like of the first refrigeration cycle 11, and the like. The second control device 28b controls the operation of the second compressor 21 in the second refrigeration cycle 26, the switching of the second four-way switching valve 22, the operation of the second blower 27, etc. The control device 28 a and the second control device 28 b are connected via a communication line 29.

上記のヒートポンプ式冷凍サイクル26には、二酸化炭素等の自然冷媒、或いは上述のHFC系の高圧冷媒、例えばR410A冷媒が充填されている。 The heat pump refrigeration cycle 26 is filled with a natural refrigerant such as carbon dioxide or the above-described HFC-based high-pressure refrigerant, for example, R410A refrigerant.

次に、この空気調和装置の冷凍サイクルの動作について説明する。
第一の冷凍サイクル11では、冷房運転時及び除湿運転時には、図中の実線方向に冷媒が流れ、第一の熱交換器3が凝縮器、第二の熱交換器6が蒸発器として機能し、また、暖房運転時は、四方切換弁2が切り換わることにより図中の破線矢印の方向に冷媒が流れ、第二の熱交換器6が凝縮器、第一の熱交換器3が蒸発器として機能する。
Next, operation | movement of the refrigerating cycle of this air conditioning apparatus is demonstrated.
In the first refrigeration cycle 11, during the cooling operation and the dehumidifying operation, the refrigerant flows in the direction of the solid line in the figure, the first heat exchanger 3 functions as a condenser, and the second heat exchanger 6 functions as an evaporator. Further, during the heating operation, the four-way switching valve 2 is switched to cause the refrigerant to flow in the direction of the broken-line arrow in the figure, the second heat exchanger 6 is the condenser, and the first heat exchanger 3 is the evaporator. Function as.

第二の冷凍サイクル26では、冷房運転時および除湿運転時には、図中の実線矢印の方向に冷媒が流れ、第三の熱交換器23が凝縮器、第四の熱交換器25が蒸発器として機能し、また、暖房運転時は、四方切換弁22が切り換わることにより図中の破線矢印の方向に冷媒が流れ、第四の熱交換器25が凝縮器、第三の熱交換器23が蒸発器として機能する。 In the second refrigeration cycle 26, during the cooling operation and the dehumidifying operation, the refrigerant flows in the direction of the solid line arrow in the figure, the third heat exchanger 23 is a condenser, and the fourth heat exchanger 25 is an evaporator. In the heating operation, the four-way switching valve 22 is switched, so that the refrigerant flows in the direction of the broken line arrow in the figure, the fourth heat exchanger 25 is the condenser, and the third heat exchanger 23 is Functions as an evaporator.

第一の四方切換弁2の切換制御と、第二の四方切換弁22の切換制御は、互いに連動するようになっており、第一の冷凍サイクル11が冷房運転の時は、第二の冷凍サイクル26も冷房運転となるように制御される。除湿運転や暖房運転も同様に同じ運転モードとなるよう連動制御されるが、除霜運転は各々の冷凍サイクルで蒸発器側の着霜量が異なるため、互いに独立して運転するように又は相互に同時に除霜運転に入らないように運転切換し、除霜が終了すれば通常の暖房運転に戻る。
また、第一の冷凍サイクル11の第一の送風機3と第二の冷凍サイクル26第二の送風機27は、冷房運転時及び暖房運転時ともに同様の運転制御が為される。
The switching control of the first four-way switching valve 2 and the switching control of the second four-way switching valve 22 are interlocked with each other. When the first refrigeration cycle 11 is in the cooling operation, the second refrigeration is performed. The cycle 26 is also controlled to be in the cooling operation. Similarly, the dehumidifying operation and the heating operation are linked and controlled so as to be in the same operation mode, but the defrosting operation has different frosting amounts on the evaporator side in each refrigeration cycle. At the same time, the operation is switched so as not to enter the defrosting operation, and when the defrosting is completed, the normal heating operation is resumed.
The first fan 3 of the first refrigeration cycle 11 and the second refrigeration cycle 26 and the second fan 27 are controlled in the same manner during both the cooling operation and the heating operation.

ここで、冷房運転時及び除湿運転時は、第一の冷凍サイクル11における第一の熱交換器3において凝縮熱を奪われた出口側冷媒が、第二の冷凍サイクル26において蒸発器として作用している第四の熱交換器25で熱交換することによって更に冷却されて冷媒の過冷却度が増し、第一の冷凍サイクル11の凝縮温度及び圧力が下がって低圧縮比運転となる。また、第二の熱交換器6の入口乾き度が小さくなることにより蒸発器の熱交換量が増大する。その結果、冷房能力が大きく、かつ圧縮機入力の低い高効率な運転が可能となる。 Here, during the cooling operation and the dehumidifying operation, the outlet side refrigerant from which the heat of condensation has been removed in the first heat exchanger 3 in the first refrigeration cycle 11 acts as an evaporator in the second refrigeration cycle 26. The heat is further exchanged by the fourth heat exchanger 25, and the degree of supercooling of the refrigerant is increased, and the condensation temperature and pressure of the first refrigeration cycle 11 are lowered, so that the low compression ratio operation is performed. Moreover, the heat exchange amount of an evaporator increases because the entrance dryness of the 2nd heat exchanger 6 becomes small. As a result, high-efficiency operation with high cooling capacity and low compressor input is possible.

上述の凝縮圧力の低い高効率な運転を実現する為には、第二の冷凍サイクル26の第四の熱交換器25における蒸発温度が、第一の冷凍サイクル11の凝縮温度以下であれば良く、第二の冷凍サイクル26の第二の圧縮機21の容量は、第一の冷凍サイクル11で使用する圧縮機1よりも小さいもので十分である。
即ち、第二の冷凍サイクル26の第三の熱交換器27及び第四の熱交換器25の熱交換能力は、第一の冷凍サイクル11の運転時における配管内圧力が変更前のものと同程度又は最大運転圧力が配管の許容圧力を超えないように設計し、第二の冷凍サイクル26の圧縮機容量は、上記の熱交換能力を得ることが出来る容量であれば良く、第一の圧縮機1の容量に対して、例えば20〜30%程度又はそれ以下の容量で実現できる。
In order to realize the above-described highly efficient operation with a low condensation pressure, the evaporation temperature in the fourth heat exchanger 25 of the second refrigeration cycle 26 may be equal to or lower than the condensation temperature of the first refrigeration cycle 11. The capacity of the second compressor 21 of the second refrigeration cycle 26 is sufficient to be smaller than that of the compressor 1 used in the first refrigeration cycle 11.
That is, the heat exchange capacities of the third heat exchanger 27 and the fourth heat exchanger 25 of the second refrigeration cycle 26 are the same as those before the pressure in the pipe during the operation of the first refrigeration cycle 11 is changed. The degree or maximum operating pressure is designed so as not to exceed the allowable pressure of the pipe, and the compressor capacity of the second refrigeration cycle 26 may be any capacity that can obtain the above heat exchange capacity. For example, it can be realized with a capacity of about 20 to 30% or less with respect to the capacity of the machine 1.

次に、暖房運転時は、第一の冷凍サイクル11において、第二の熱交換器6で凝縮した冷媒が第一の絞り装置5で減圧後、第二の冷凍サイクル26において凝縮器となっている第四の熱交換器25で熱交換し、昇温される。このため、第一の冷凍サイクル11の蒸発温度及び圧力が上昇するため、第一の冷凍サイクル11の第一の圧縮機1は低圧縮比運転となって、結果として高効率な運転が可能となる。 Next, during the heating operation, the refrigerant condensed in the second heat exchanger 6 in the first refrigeration cycle 11 is decompressed by the first expansion device 5 and then becomes a condenser in the second refrigeration cycle 26. Heat is exchanged by the fourth heat exchanger 25, and the temperature is raised. For this reason, since the evaporation temperature and pressure of the first refrigeration cycle 11 increase, the first compressor 1 of the first refrigeration cycle 11 becomes a low compression ratio operation, and as a result, a highly efficient operation is possible. Become.

上述の蒸発圧力の高い高効率な運転を実現する為には、第二の冷凍サイクル26の第四の熱交換器25における凝縮温度が、第一の冷凍サイクル11の蒸発温度以上であれば良く、第二の冷凍サイクル26の第二の圧縮機21の容量は、第一の冷凍サイクル11で使用する圧縮機1よりも小さいもので十分である。 In order to realize the above-described high-efficiency operation with a high evaporation pressure, the condensation temperature in the fourth heat exchanger 25 of the second refrigeration cycle 26 may be equal to or higher than the evaporation temperature of the first refrigeration cycle 11. The capacity of the second compressor 21 of the second refrigeration cycle 26 is sufficient to be smaller than that of the compressor 1 used in the first refrigeration cycle 11.

第二の冷凍サイクル26を構成する機器を、第一の冷凍サイクル11を構成する空気調和装置に付加するように設置し、第一の冷凍サイクル11及び第二の冷凍サイクル26を連動させるような運転制御を実施することによって、第一の冷凍サイクル11をR410A等の高圧冷媒の機器に置き換えた場合でも、既設の冷媒配管7、8は凝縮圧力が置き換え前の空気調和装置に較べて上昇しないために、冷媒配管耐圧の問題を生じることが無く、元の空気調和装置の既設配管を再利用が可能な空気調和装置を得ることができる。 The equipment constituting the second refrigeration cycle 26 is installed so as to be added to the air conditioner constituting the first refrigeration cycle 11, and the first refrigeration cycle 11 and the second refrigeration cycle 26 are interlocked. Even when the first refrigeration cycle 11 is replaced with a high-pressure refrigerant device such as R410A by performing the operation control, the existing refrigerant pipes 7 and 8 do not increase the condensation pressure as compared with the air conditioner before the replacement. Therefore, it is possible to obtain an air conditioner that can reuse the existing pipe of the original air conditioner without causing the problem of refrigerant pipe pressure resistance.

また、同時に冷房運転や暖房運転において、高効率な運転が実現できるため、省エネ性の高い機器として供給することが可能である。   At the same time, since highly efficient operation can be realized in the cooling operation and the heating operation, it can be supplied as a device with high energy saving performance.

また、第二の冷凍サイクル26を構成する機器を、既設配管を高耐圧配管に置き換える工事の費用や、高効率化によるエネルギ消費量の低減に伴うランニングコスト費用よりも安価に供給できれば、買い替え費用トータルが安価な空気調和装置を得ることができる。   In addition, if the equipment constituting the second refrigeration cycle 26 can be supplied at a lower cost than the construction cost for replacing the existing pipe with the high pressure-resistant pipe, or the running cost associated with the reduction in energy consumption due to high efficiency, the replacement cost will be increased. A total inexpensive air conditioner can be obtained.

また、第一の冷凍サイクル11を構成する空気調和装置を高圧冷媒機器に置き換えないような場合でも、第二の冷凍サイクル26を構成する機器を、付加するように設置することで、既設の空気調和装置の効率向上、即ち省エネを実現することが可能である。 Further, even when the air conditioner constituting the first refrigeration cycle 11 is not replaced with a high-pressure refrigerant device, by installing the equipment constituting the second refrigeration cycle 26 so as to be added, the existing air It is possible to improve the efficiency of the harmony device, that is, to save energy.

実施の形態2.
図2は本発明の実施の形態2を示す空気調和装置の冷媒回路図である。
図において、第四の熱交換器25は室外機Aの冷媒回路内の第一の熱交換器3と第一のボールバルブ4aとの間の配管に設けられ、第四の熱交換器25では、第1の冷凍サイクル11の第一の接続配管7と冷媒同士の熱交換を行う。
即ち、第二の冷凍サイクル26を構成する機器が、実施の形態1では室外機Aと室内機Bとの間の冷媒配管上に付加されるのに対し、本形態では室外機Aに内蔵した構成を取る。
または、第二の冷凍サイクル26を構成する機器は、第四の熱交換器25と一部の冷媒回路を共有していれば、室外機Aを構成する構造体の外側、或いは機器同士が当接設置されても良い。
Embodiment 2. FIG.
FIG. 2 is a refrigerant circuit diagram of an air-conditioning apparatus showing Embodiment 2 of the present invention.
In the figure, the fourth heat exchanger 25 is provided in a pipe between the first heat exchanger 3 and the first ball valve 4a in the refrigerant circuit of the outdoor unit A. In the fourth heat exchanger 25, Then, heat exchange is performed between the first connection pipe 7 of the first refrigeration cycle 11 and the refrigerant.
That is, the equipment constituting the second refrigeration cycle 26 is added to the refrigerant pipe between the outdoor unit A and the indoor unit B in the first embodiment, whereas in this embodiment, the equipment is built in the outdoor unit A. Take composition.
Alternatively, if the equipment constituting the second refrigeration cycle 26 shares a part of the refrigerant circuit with the fourth heat exchanger 25, the outside of the structure constituting the outdoor unit A or the equipment may be applied. It may be installed in close proximity.

空気調和装置の買い替え等で、HCFC系冷媒を使用した空気調和装置から、前者の冷媒よりも動作圧力の高い、例えばHFC系のR410Aや、二酸化炭素冷媒が封入された空気調和装置に買い替える場合、図中の室外機Aを、上記の第二の冷凍サイクル26を構成する機器を内蔵したものに置き換えることにより、元の空気調和装置の既設配管、即ち室外機Aと室内機Bとの間の冷媒配管である第一の接続配管8や第二の接続配管7を再利用することが可能である。
また、室内機Bを交換しなくても同様の効果が得られる。
従って、実施の形態1で述べた効果に加えて、更に設置工事の簡便化が図られる。
When replacing an air conditioner using an HCFC refrigerant with an air conditioner having a higher operating pressure than the former refrigerant, for example, an HFC R410A or an air conditioner in which carbon dioxide refrigerant is sealed, Replacing the outdoor unit A in the figure with a device incorporating the equipment constituting the second refrigeration cycle 26, the existing piping of the original air conditioner, that is, between the outdoor unit A and the indoor unit B It is possible to reuse the first connection pipe 8 and the second connection pipe 7 which are refrigerant pipes.
Further, the same effect can be obtained without replacing the indoor unit B.
Therefore, in addition to the effects described in the first embodiment, the installation work can be further simplified.

実施の形態3.
図3は本発明の実施の形態2を示す空気調和装置の冷媒回路図である。
図において、第五の熱交換器23aは第一の熱交換器3と近接して設置され、第一の送風機9は第一の熱交換器3と第五の熱交換器23aに同時に空気を送り込む。
第一の熱交換器3と第五の熱交換器23aは、互いに伝熱管は共有しないが、熱交換器の形態がプレートフィンチューブの場合は、フィンが互いに共有されていても良く、これにより近接設置に比べて更に冷媒配管同士の熱交換性能が向上する。
Embodiment 3 FIG.
FIG. 3 is a refrigerant circuit diagram of the air-conditioning apparatus showing Embodiment 2 of the present invention.
In the figure, the fifth heat exchanger 23a is installed close to the first heat exchanger 3, and the first blower 9 supplies air to the first heat exchanger 3 and the fifth heat exchanger 23a simultaneously. Send it in.
The first heat exchanger 3 and the fifth heat exchanger 23a do not share a heat transfer tube with each other, but if the heat exchanger is a plate fin tube, the fins may be shared with each other. Compared with the proximity installation, the heat exchange performance between the refrigerant pipes is further improved.

上記のような構成とすることで、第一の熱交換器3と第五の熱交換器23aの送風動力が第一の送風機9の1台で済むため、動力回収を図ることができ、システムの効率向上、即ち省エネが実現できる。   By adopting the above-described configuration, the first heat exchanger 3 and the fifth heat exchanger 23a need only one blast power of the first blower 9, so that power recovery can be achieved. Efficiency improvement, that is, energy saving can be realized.

実施の形態4.
図4は本発明の実施の形態4を示す空気調和装置の冷媒回路図である。
図において、第二の冷凍サイクル26の第二の四方切換弁22と第四の熱交換器25の間に第六の熱交換器30が接続され、第六の熱交換器30では、第一の冷凍サイクル11の第二の接続配管8と冷媒同士の熱交換を行う。
Embodiment 4 FIG.
FIG. 4 is a refrigerant circuit diagram of an air-conditioning apparatus showing Embodiment 4 of the present invention.
In the figure, a sixth heat exchanger 30 is connected between the second four-way switching valve 22 and the fourth heat exchanger 25 of the second refrigeration cycle 26. Heat exchange between the second connection pipe 8 of the refrigeration cycle 11 and the refrigerant.

暖房運転時には、第六の熱交換器30においては、第一の冷凍サイクル11における第一の圧縮機1からの高温吐出冷媒と第二の冷凍サイクル26における第二の圧縮機21からの高温吐出冷媒同士の熱交換が為されるが、運転にはあまり影響しない。
一方、暖房運転時に第一の熱交換器3に生じた着霜を取り除く為の除霜運転時には、第一の冷凍サイクル11は冷房運転と同じ冷媒循環経路を取り、第二の接続配管8及び第六の熱交換器30には低温の気液二相冷媒が流れる。第二の冷凍サイクル26の第二の圧縮機22からの高温吐出冷媒は、第一の冷凍サイクル11の第六の熱交換器30を流れる低温二相冷媒と熱交換し、上記低温二相冷媒を加熱して蒸発させる。
During the heating operation, in the sixth heat exchanger 30, the high temperature discharge refrigerant from the first compressor 1 in the first refrigeration cycle 11 and the high temperature discharge from the second compressor 21 in the second refrigeration cycle 26. Heat exchange is performed between the refrigerants, but it does not affect operation.
On the other hand, during the defrosting operation for removing frost generated in the first heat exchanger 3 during the heating operation, the first refrigeration cycle 11 takes the same refrigerant circulation path as the cooling operation, and the second connection pipe 8 and A low temperature gas-liquid two-phase refrigerant flows through the sixth heat exchanger 30. The high-temperature discharge refrigerant from the second compressor 22 of the second refrigeration cycle 26 exchanges heat with the low-temperature two-phase refrigerant flowing through the sixth heat exchanger 30 of the first refrigeration cycle 11, and the low-temperature two-phase refrigerant Is evaporated by heating.

これにより、第一の冷凍サイクル11の凝縮圧力(高圧)と蒸発圧力(低圧)間の圧力差が小さくなってサイクル内の冷媒流量が増加し、着霜している第三の熱交換器3での熱交換量が増大することによって除霜能力が向上し、同回路の除霜運転時間を短縮させることから、除霜運転時における室内機B側の室温低下を小さくすることができて、快適性が増す。
なお、第一の冷凍サイクル11が除霜運転を行い、冷媒の流れが切り換っても、第二の冷媒サイクル26では冷媒の流れは切り換らず、暖房運転モードのままで運転を続行するため、上記のように第一の冷凍サイクル11の第六の熱交換器30を流れる低温二相冷媒との熱交換が可能であり、第一の冷凍サイクル11の除霜運転が終了すれば、第一の冷凍サイクル11は暖房運転に戻る。
As a result, the pressure difference between the condensation pressure (high pressure) and the evaporation pressure (low pressure) of the first refrigeration cycle 11 is reduced, the refrigerant flow rate in the cycle is increased, and the third heat exchanger 3 is frosted. Since the defrosting capability is improved by increasing the heat exchange amount at the time and the defrosting operation time of the circuit is shortened, the room temperature decrease on the indoor unit B side during the defrosting operation can be reduced, Increases comfort.
Even if the first refrigeration cycle 11 performs a defrosting operation and the refrigerant flow is switched, the refrigerant flow is not switched in the second refrigerant cycle 26 and the operation is continued in the heating operation mode. Therefore, heat exchange with the low-temperature two-phase refrigerant flowing through the sixth heat exchanger 30 of the first refrigeration cycle 11 is possible as described above, and the defrosting operation of the first refrigeration cycle 11 is completed. The first refrigeration cycle 11 returns to the heating operation.

次に、図5は本発明の実施の形態4を示す空気調和装置の冷媒回路図である。
図において、第二の冷凍サイクル26の第二の四方切換弁22と第六の熱交換器30との間からバイパス管31が分岐して第一の逆止弁32を介して第四の熱交換器で出口配管に接続されている。また、上記出口配管との接続部分と第六の熱交換器30との間の配管には第二の逆止弁33が接続されている。
第二の冷凍サイクル26の暖房運転時には、冷媒は第六の熱交換器30内を流れ、冷房運転時には流れない。
Next, FIG. 5 is a refrigerant circuit diagram of an air-conditioning apparatus showing Embodiment 4 of the present invention.
In the figure, a bypass pipe 31 branches from between the second four-way switching valve 22 and the sixth heat exchanger 30 of the second refrigeration cycle 26, and the fourth heat is passed through the first check valve 32. It is connected to the outlet pipe by an exchanger. A second check valve 33 is connected to the pipe between the connecting portion with the outlet pipe and the sixth heat exchanger 30.
During the heating operation of the second refrigeration cycle 26, the refrigerant flows through the sixth heat exchanger 30, and does not flow during the cooling operation.

ここで、第一の冷凍サイクル11が除霜運転時には、上述のように、第二の冷凍サイクル26の高温冷媒が第六の熱交換器を流れるため、第一の冷凍サイクル11の冷媒循環量は増加し、同回路の除霜運転時間を短縮させることから、除霜運転時における室内機B側の室温低下を小さくすることができて、快適性が増す。
これに対し、第一の冷凍サイクル11が冷房運転時には、第二の冷凍サイクル26の第四の熱交換器25で蒸発した冷媒は、第六の熱交換器30を経ずに第二の圧縮機21に戻るため、第六の熱交換器30を通過時の冷媒圧力損失は軽減される。
その結果、除霜運転時における室内機B側の室温低下を小さくすることができて、快適性が増し、冷房運転時には第二の冷凍サイクル26の効率が向上し、延いてはシステム全体の運転効率が向上する。
Here, when the first refrigeration cycle 11 is in the defrosting operation, as described above, the high-temperature refrigerant in the second refrigeration cycle 26 flows through the sixth heat exchanger. Since the defrosting operation time of the circuit is shortened, the room temperature drop on the indoor unit B side during the defrosting operation can be reduced, and the comfort is increased.
On the other hand, when the first refrigeration cycle 11 is in the cooling operation, the refrigerant evaporated in the fourth heat exchanger 25 of the second refrigeration cycle 26 is not compressed through the sixth heat exchanger 30 and is compressed by the second compression. Since it returns to the machine 21, the refrigerant | coolant pressure loss at the time of passing through the 6th heat exchanger 30 is reduced.
As a result, the decrease in room temperature on the indoor unit B side during the defrosting operation can be reduced, the comfort is increased, the efficiency of the second refrigeration cycle 26 is improved during the cooling operation, and the operation of the entire system is extended. Efficiency is improved.

実施の形態5.
図6は本発明の実施の形態5を示す空気調和装置の冷媒回路図である。
図において、第二の冷凍サイクル26の第二の四方切換弁22と第四の熱交換器25の間に第七の熱交換器40が接続され、第七の熱交換器40では、第一の冷凍サイクル11のアキュムレータ41の出口側配管と冷媒同士の熱交換を行う。
また、第二の冷凍サイクル26の第二の四方切換弁22と第七の熱交換器40との間からバイパス管31が分岐して第一の逆止弁32を介して第四の熱交換器で出口配管に接続されている。上記出口配管との接続部分と第七の熱交換器40との間の配管には第二の逆止弁33が接続されている。
第二の冷凍サイクル26の暖房運転時には、冷媒は第七の熱交換器40内を流れ、冷房運転時には流れない。
Embodiment 5 FIG.
FIG. 6 is a refrigerant circuit diagram of an air-conditioning apparatus showing Embodiment 5 of the present invention.
In the figure, a seventh heat exchanger 40 is connected between the second four-way switching valve 22 and the fourth heat exchanger 25 of the second refrigeration cycle 26. The refrigerant is exchanged with the outlet side piping of the accumulator 41 of the refrigeration cycle 11.
Further, the bypass pipe 31 branches from between the second four-way switching valve 22 and the seventh heat exchanger 40 of the second refrigeration cycle 26, and the fourth heat exchange is performed via the first check valve 32. Connected to the outlet piping. A second check valve 33 is connected to the pipe between the connection portion with the outlet pipe and the seventh heat exchanger 40.
During the heating operation of the second refrigeration cycle 26, the refrigerant flows through the seventh heat exchanger 40 and does not flow during the cooling operation.

次に、冷凍サイクルの動作について説明する。
暖房運転時には、第二の冷凍サイクル26の高温吐出冷媒は、第一の冷凍サイクル11のアキュムレータ41の出口側配管内の吸入冷媒を、第七の熱交換器40を介して加熱する。特に暖房立ち上がり時には、第一の冷凍サイクルの吸入冷媒は液状態で圧縮機に吸入されることが多く、冷媒循環量も小さいため、暖房能力が低下して温まりにくい。
暖房立ち上がり時に、第二の冷凍サイクル26は、第一の冷凍サイクル11と同時に起動、又は所定時間早めに起動するようにして、第二の冷凍サイクル26が立ち上がった時点で第一の冷凍サイクル11を起動させても良い。
このように、吸入冷媒を加熱することにより、第一の冷凍サイクル11の冷媒循環量は増大して、暖房立ち上がり時の能力不足を補うことができる。
また、液戻り気味の冷媒を蒸発させることで、液冷媒による圧縮機の損傷も防止することができて、装置の信頼性が向上する。
Next, the operation of the refrigeration cycle will be described.
During the heating operation, the high-temperature discharge refrigerant of the second refrigeration cycle 26 heats the suction refrigerant in the outlet side piping of the accumulator 41 of the first refrigeration cycle 11 via the seventh heat exchanger 40. In particular, at the time of heating start-up, the refrigerant sucked in the first refrigeration cycle is often sucked into the compressor in a liquid state, and the refrigerant circulation amount is also small.
At the start of heating, the second refrigeration cycle 26 is activated simultaneously with the first refrigeration cycle 11 or activated at a predetermined time earlier, and when the second refrigeration cycle 26 is activated, the first refrigeration cycle 11 is activated. May be activated.
In this way, by heating the suction refrigerant, the refrigerant circulation amount of the first refrigeration cycle 11 is increased, and it is possible to compensate for the lack of capacity at the time of heating startup.
Moreover, by evaporating the liquid return-like refrigerant, damage to the compressor due to the liquid refrigerant can be prevented, and the reliability of the apparatus is improved.

また、除霜運転時には、実施の形態4と同様、第一の冷凍サイクル11の冷媒循環量は増加し、同回路の除霜運転時間を短縮させることから、除霜運転時における室内機B側の室温低下を小さくすることができて、快適性が増す。   Further, during the defrosting operation, the refrigerant circulation amount of the first refrigeration cycle 11 is increased and the defrosting operation time of the circuit is shortened as in the fourth embodiment. The room temperature drop can be reduced, and comfort is increased.

本発明の実施の形態1を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air harmony device showing Embodiment 1 of the present invention. 本発明の実施の形態2を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 2 of this invention. 本発明の実施の形態3を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 3 of this invention. 本発明の実施の形態4を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 4 of this invention. 本発明の実施の形態4を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 4 of this invention. 本発明の実施の形態5を示す空気調和装置の冷媒回路図である。It is a refrigerant circuit figure of the air conditioning apparatus which shows Embodiment 5 of this invention.

符号の説明Explanation of symbols

1 第一の圧縮機、2 第一の四方切換弁、3 第一の熱交換器、4a 第一のボールバルブ、4b 第二のボールバルブ、4c 第三のボールバルブ、4d 第四のボールバルブ、5 第一の絞り装置、6 第二の熱交換器、7 第一の接続配管、8 第二の接続配管、9 第一の送風機、10 第二の送風機、11 第一の冷凍サイクル、21 第二の圧縮機、22 第二の四方切換弁、23 第三の熱交換器、23a 第五の熱交換器、24第二の絞り装置、25 第四の熱交換器、26 第二の冷凍サイクル、27 第三の送風機、28a 第一の制御装置、28b 第二の制御装置、29 通信線、30 第六の熱交換器、31 バイパス管、32 第一の逆止弁、33 第二の逆止弁、40 第七の熱交換器、41 アキュムレータ。 DESCRIPTION OF SYMBOLS 1 1st compressor, 2 1st four-way switching valve, 3 1st heat exchanger, 4a 1st ball valve, 4b 2nd ball valve, 4c 3rd ball valve, 4d 4th ball valve DESCRIPTION OF SYMBOLS 5 1st expansion device, 6 2nd heat exchanger, 7 1st connection piping, 8 2nd connection piping, 9 1st air blower, 10 2nd air blower, 11 1st freezing cycle, 21 2nd compressor, 22 2nd four-way selector valve, 23 3rd heat exchanger, 23a 5th heat exchanger, 24 2nd expansion device, 25 4th heat exchanger, 26 2nd freezing Cycle, 27 third blower, 28a first control device, 28b second control device, 29 communication line, 30 sixth heat exchanger, 31 bypass pipe, 32 first check valve, 33 second Check valve, 40 seventh heat exchanger, 41 accumulator.

Claims (4)

第一の圧縮機と、第一の熱交換器を有する室外機と、第一の絞り装置と、第二の熱交換器を有する少なくとも1台の室内機と、上記室内機と上記室外機とを接続する第一の接続配管及び第二の接続配管と、を有する第一の冷凍サイクルと、
第二の圧縮機と、第三の熱交換器と、第二の絞り装置と、第四の熱交換器と、第六の熱交換器とが冷媒配管で接続されている第二の冷凍サイクルと、を有し、
上記第一の冷凍サイクルにおける上記第一の接続配管と、上記第二の冷凍サイクルにおける上記第二の絞り装置と上記第六の熱交換器の間の上記冷媒配管とが、上記第四の熱交換器で相互に熱交換可能なように、上記第一の冷凍サイクルにおける上記第二の接続配管と、上記第二の冷凍サイクルにおける上記第二の圧縮機と上記第四の熱交換器の間の上記冷媒配管とが、上記第六の熱交換器で相互に熱交換可能なように、それぞれ構成されており、
上記第一の冷凍サイクルの除霜運転中に、上記第六の熱交換器では、上記第一の冷凍サイクルの低温二相冷媒を上記第二の冷凍サイクルの高温吐出冷媒で加熱することを特徴とする空気調和装置。
An outdoor unit having a first compressor, a first heat exchanger, a first expansion device, at least one indoor unit having a second heat exchanger, the indoor unit and the outdoor unit, A first connection pipe and a second connection pipe for connecting the first refrigeration cycle,
A second refrigeration cycle in which the second compressor, the third heat exchanger, the second expansion device, the fourth heat exchanger, and the sixth heat exchanger are connected by refrigerant piping. And having
The first connection pipe in the first refrigeration cycle, and the refrigerant pipe between the second expansion device and the sixth heat exchanger in the second refrigeration cycle are the fourth heat. Between the second connection pipe in the first refrigeration cycle and the second compressor and the fourth heat exchanger in the second refrigeration cycle so that heat can be mutually exchanged in the exchanger. Each of the refrigerant pipes is configured to be capable of exchanging heat with each other in the sixth heat exchanger,
During the defrosting operation of the first refrigeration cycle, the sixth heat exchanger heats the low temperature two-phase refrigerant of the first refrigeration cycle with the high temperature discharge refrigerant of the second refrigeration cycle. Air conditioner.
上記第二の冷凍サイクルにおける第四の熱交換器を、上記室外機の内部又は外部に備えていることを特徴とする請求項1に記載の空気調和装置。 The air conditioner according to claim 1, wherein a fourth heat exchanger in the second refrigeration cycle is provided inside or outside the outdoor unit. 上記第一の冷凍サイクルにおける上記第一の熱交換器と、上記第二の冷凍サイクルにおける上記第三の熱交換器とが相互に熱交換可能なように近接して設置されていることを特徴とする請求項1または2に記載の空気調和装置。 The first heat exchanger in the first refrigeration cycle and the third heat exchanger in the second refrigeration cycle are installed close to each other so that they can exchange heat with each other. The air conditioner according to claim 1 or 2. 上記第一の冷凍サイクルを構成している既設の上記第一の接続配管及び上記第二の接続配管を再利用可能にしていることを特徴とする請求項1から3のいずれかに記載の空気調和装置。 The air according to any one of claims 1 to 3, wherein the existing first connection pipe and the second connection pipe constituting the first refrigeration cycle are reusable. Harmony device.
JP2003349616A 2003-10-08 2003-10-08 Air conditioner Expired - Fee Related JP4488712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003349616A JP4488712B2 (en) 2003-10-08 2003-10-08 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003349616A JP4488712B2 (en) 2003-10-08 2003-10-08 Air conditioner

Publications (2)

Publication Number Publication Date
JP2005114253A JP2005114253A (en) 2005-04-28
JP4488712B2 true JP4488712B2 (en) 2010-06-23

Family

ID=34541433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003349616A Expired - Fee Related JP4488712B2 (en) 2003-10-08 2003-10-08 Air conditioner

Country Status (1)

Country Link
JP (1) JP4488712B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007155259A (en) * 2005-12-07 2007-06-21 Daikin Ind Ltd Refrigerant heating apparatus
JP4809076B2 (en) * 2006-02-28 2011-11-02 三菱電機株式会社 Refrigeration system and method of operating refrigeration system
JP2008082680A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
JP2008082678A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
JP2008082676A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
JP5193450B2 (en) * 2006-09-29 2013-05-08 三洋電機株式会社 Supercooling device
JP2008082675A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
JP2008082674A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
JP2008082677A (en) * 2006-09-29 2008-04-10 Sanyo Electric Co Ltd Supercooling device
JP2008309485A (en) * 2008-09-29 2008-12-25 Sanyo Electric Co Ltd Supercooling device
JP2011038748A (en) * 2009-08-18 2011-02-24 Iwaya Reitoki Seisakusho:Kk Refrigerator and heater
US9593872B2 (en) 2009-10-27 2017-03-14 Mitsubishi Electric Corporation Heat pump
CN103229004B (en) * 2011-01-26 2016-05-04 三菱电机株式会社 Aircondition
JP2012202627A (en) * 2011-03-25 2012-10-22 Sanki Eng Co Ltd Waste heat recovery air conditioning system
JP5729082B2 (en) * 2011-03-29 2015-06-03 株式会社富士通ゼネラル Refrigeration cycle equipment
EP3546852A4 (en) 2016-11-22 2020-04-15 Mitsubishi Electric Corporation Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339512A (en) * 1997-06-05 1998-12-22 Hitachi Ltd Attachment unit for air conditioner
JP2000074514A (en) * 1998-09-03 2000-03-14 Hitachi Ltd Battery type air conditioner and cold heat source device used therefor
JP2000130868A (en) * 1998-10-28 2000-05-12 Tokyo Gas Co Ltd Lorentz-cyclic heat pump system utilizing non-azeotropic mixed refrigerant as working fluid
JP2002106984A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Control method and exchanging method for refrigerant circuit as well as refrigerant circuit device
JP2002277087A (en) * 2001-03-16 2002-09-25 Hitachi Ltd Air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10339512A (en) * 1997-06-05 1998-12-22 Hitachi Ltd Attachment unit for air conditioner
JP2000074514A (en) * 1998-09-03 2000-03-14 Hitachi Ltd Battery type air conditioner and cold heat source device used therefor
JP2000130868A (en) * 1998-10-28 2000-05-12 Tokyo Gas Co Ltd Lorentz-cyclic heat pump system utilizing non-azeotropic mixed refrigerant as working fluid
JP2002106984A (en) * 2000-09-28 2002-04-10 Mitsubishi Electric Corp Control method and exchanging method for refrigerant circuit as well as refrigerant circuit device
JP2002277087A (en) * 2001-03-16 2002-09-25 Hitachi Ltd Air conditioner

Also Published As

Publication number Publication date
JP2005114253A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4488712B2 (en) Air conditioner
US7464563B2 (en) Air-conditioner having a dual-refrigerant cycle
JP4952210B2 (en) Air conditioner
US9080778B2 (en) Air-conditioning hot-water supply combined system
JP2004361036A (en) Air conditioning system
JP5908183B1 (en) Air conditioner
US7908878B2 (en) Refrigerating apparatus
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
EP2808622A1 (en) Air-conditioning device
JP6080939B2 (en) Air conditioner
US9599380B2 (en) Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
JP6576603B1 (en) Air conditioner
JP2006023073A (en) Air conditioner
WO2017010007A1 (en) Air conditioner
JP4608303B2 (en) Vapor compression heat pump
EP3779326B1 (en) Refrigeration cycle device
US20220228782A1 (en) Refrigerant cycle system
JP2004170048A (en) Air conditioning system
JP6715961B2 (en) Refrigeration cycle equipment
KR20050043089A (en) Heat pump
JP7542579B2 (en) Refrigeration Cycle Equipment
WO2023243517A1 (en) Air conditioning device
JP3736809B2 (en) Air conditioner
JP2005188812A (en) Heat pump type refrigerating apparatus
JP2010185585A (en) Air conditioner and method of updating unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090407

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees