JP4420871B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP4420871B2
JP4420871B2 JP2005251755A JP2005251755A JP4420871B2 JP 4420871 B2 JP4420871 B2 JP 4420871B2 JP 2005251755 A JP2005251755 A JP 2005251755A JP 2005251755 A JP2005251755 A JP 2005251755A JP 4420871 B2 JP4420871 B2 JP 4420871B2
Authority
JP
Japan
Prior art keywords
refrigerant
oil
heat exchanger
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005251755A
Other languages
Japanese (ja)
Other versions
JP2007064558A (en
Inventor
修 森本
圭介 外囿
直道 田村
慎一 若本
史武 畝崎
正樹 豊島
寿守務 吉村
博幸 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005251755A priority Critical patent/JP4420871B2/en
Publication of JP2007064558A publication Critical patent/JP2007064558A/en
Application granted granted Critical
Publication of JP4420871B2 publication Critical patent/JP4420871B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters

Landscapes

  • Air Conditioning Control Device (AREA)

Description

この発明は、既設の冷媒配管を用いて熱源側ユニットと負荷側ユニットを接続する冷凍空調装置に係り、暖房運転において既設の冷媒配管を洗浄しながら空調運転できる冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner that connects a heat source side unit and a load side unit using an existing refrigerant pipe, and relates to a refrigeration air conditioner that can perform an air conditioning operation while washing the existing refrigerant pipe in a heating operation.

従来の蓄熱式空気調和装置は、熱源側ユニットと負荷側ユニットのみを新規に交換し、熱源側ユニットと負荷側ユニットとを接続する接続配管を交換しないで、熱源側ユニット
の冷媒配管にバイパス路を設けて、このバイパス路に異物捕捉手段を設け、洗浄運転中に冷却手段にて冷媒を気液二相冷媒として既設の冷媒配管と負荷側熱交換器に流し異物を除去・回収し、バイパス路に戻ってきた冷媒を加熱手段で冷媒を蒸発し、液体のままの異物を異物捕捉手段にて分離・回収するものである(例えば、特許文献1参照)。
The conventional heat storage type air conditioner replaces only the heat source side unit and the load side unit, and bypasses the refrigerant pipe of the heat source side unit without replacing the connection pipe connecting the heat source side unit and the load side unit. In this bypass path, foreign matter catching means is provided, and during the cleaning operation, the refrigerant is passed through the existing refrigerant pipe and load side heat exchanger as a gas-liquid two-phase refrigerant by the cooling means to remove and collect the foreign matter. The refrigerant that has returned to the path is evaporated by the heating means, and the foreign substance that remains as a liquid is separated and collected by the foreign substance capturing means (see, for example, Patent Document 1).

特開2000−009368号公報(段落0089〜0108、図7)JP 2000-009368 A (paragraphs 0089 to 0108, FIG. 7)

暖房運転において、冷却手段と加熱手段の熱交換量をうまくバランスさせないと、冷凍サイクルの運転が過熱気味になったり、高低圧が低くなり冷媒流量が低下しやすいという問題があった。また、バイパス回路が複雑でコストがかかり、熱源側ユニットが大型化するという問題があった。   In the heating operation, if the heat exchange amount between the cooling means and the heating means is not well balanced, there is a problem that the operation of the refrigeration cycle becomes overheated, the high and low pressures are lowered, and the refrigerant flow rate is likely to decrease. In addition, there is a problem that the bypass circuit is complicated and expensive, and the heat source side unit is enlarged.

また、洗浄中に圧縮機から冷媒とともに持ち出された冷凍機油が、油分離器で分離されず冷媒回路中に持ち出され、冷媒回路中の鉱油などのコンタミとともに異物捕捉器に回収されてしまい、圧縮機中の冷凍機油が不足する可能性があった。また、これらを補うために、外部から冷凍機油を補充することも可能ではあるが、手間がかかるという問題があった。   In addition, the refrigeration oil taken out together with the refrigerant from the compressor during cleaning is taken out into the refrigerant circuit without being separated by the oil separator, and is collected in the foreign matter catcher together with contamination such as mineral oil in the refrigerant circuit. There was a possibility of running out of refrigeration oil in the machine. Moreover, in order to supplement these, although it is possible to replenish refrigeration oil from the outside, there was a problem that it took time and effort.

この発明は、かかる問題を解決するためになされたもので、簡易な構成により、洗浄運転においても負荷側熱交換器で暖房運転をすることができる冷凍空調装置を得ることを目的とする。   The present invention has been made to solve such a problem, and an object thereof is to obtain a refrigerating and air-conditioning apparatus capable of performing a heating operation with a load-side heat exchanger even in a cleaning operation with a simple configuration.

この発明に係る冷凍空調装置は、新規の熱源側ユニット及び負荷側ユニットを既設の冷媒配管で接続した冷凍空調装置において、前記新規の熱源側ユニットには、圧縮機、熱源側熱交換器、冷媒熱交換器、アキュムレータが少なくとも搭載され、前記新規の負荷側ユニットには、絞り手段、負荷側熱交換器が少なくとも搭載され、前記冷媒熱交換器は、前記熱源側熱交換器と前記絞り手段との間における冷媒と、前記負荷側熱交換器と前記アキュムレータとの間における冷媒と、で熱交換可能な位置に設けられており、前記既設の冷媒配管に冷媒を流動させて異物を前記アキュムレータに回収する洗浄運転を実行しつつ、前記冷媒熱交換器では空調運転可能な気液二相冷媒を生成しているものである。 The refrigeration air conditioner according to the present invention is a refrigeration air conditioner in which a new heat source side unit and a load side unit are connected by an existing refrigerant pipe. The new heat source side unit includes a compressor, a heat source side heat exchanger, a refrigerant. At least a heat exchanger and an accumulator are mounted, and the new load unit includes at least a throttle means and a load side heat exchanger. The refrigerant heat exchanger includes the heat source side heat exchanger and the throttle means. Between the load side heat exchanger and the refrigerant between the accumulator, and the refrigerant between the load side heat exchanger and the accumulator. The refrigerant heat exchanger generates a gas-liquid two-phase refrigerant capable of air-conditioning operation while executing the cleaning operation to be recovered .

この発明によれば、簡易な構成により、洗浄運転においても負荷側熱交換器では空調運転をすることができる。   According to this invention, with a simple configuration, the load-side heat exchanger can perform an air conditioning operation even in a cleaning operation.

実施の形態1.
図1はこの発明の実施の形態1を示す冷凍空調装置の冷媒回路図である。
図1において、冷媒空調装置は、熱源側ユニットAと負荷側ユニットBが既設の配管である液冷媒配管28(以降、液配管28と称す)と既設のガス冷媒配管29(以降、ガス配管29と称す)で接続され冷媒回路が構成されている。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 1 of the present invention.
In FIG. 1, the refrigerant air conditioner includes a liquid refrigerant pipe 28 (hereinafter referred to as a liquid pipe 28) in which a heat source side unit A and a load side unit B are existing pipes, and an existing gas refrigerant pipe 29 (hereinafter referred to as gas pipe 29). And the refrigerant circuit is configured.

熱源側ユニットAのメイン回路は、アキュムレータ8、圧縮機1、油分離器9、四方弁2、熱源側熱交換器3、冷媒熱交換器18を順次接続して構成される。
熱源側ユニットAにおいて、油分離器9下部と圧縮機1の吸入配管の間に返油用毛細管20aが接続され、また、油分離器9の下部と返油用毛細管20aの間の冷媒回路を分岐した配管とオイルタンク17上部が返油用電磁弁15aを介して接続され、また、オイルタンク17の別の上部と圧縮機吸入配管が接続される。また、オイルタンク17の下部と圧縮機吸入配管が返油用電磁弁15b、を介して接続される。
The main circuit of the heat source side unit A is configured by sequentially connecting the accumulator 8, the compressor 1, the oil separator 9, the four-way valve 2, the heat source side heat exchanger 3, and the refrigerant heat exchanger 18.
In the heat source side unit A, an oil return capillary 20a is connected between the lower part of the oil separator 9 and the suction pipe of the compressor 1, and a refrigerant circuit between the lower part of the oil separator 9 and the oil return capillary 20a is provided. The branched pipe and the upper part of the oil tank 17 are connected via an oil return solenoid valve 15a, and another upper part of the oil tank 17 and a compressor suction pipe are connected. Further, the lower portion of the oil tank 17 and the compressor suction pipe are connected via an oil return solenoid valve 15b.

冷媒熱交換器18は、熱源側熱交換器3と液冷媒配管側のボールバルブ4と圧力調整弁22を介して接続された電磁弁14bの冷媒配管と、四方弁2とガス冷媒配管側のボールバルブ7との間に設けられ両冷媒の熱交換を行う。
また、電磁弁14bと圧力調整弁22の間の冷媒配管と熱源側熱交換器3の間に電磁弁14bと冷媒熱交換器18をバイパスする電磁弁14aが接続される。また、アキュムレータ8の下部から圧縮機の吸入配管に接続される返油回路中に流量調整弁19が設けられている。
The refrigerant heat exchanger 18 includes a heat source side heat exchanger 3, a ball valve 4 on the liquid refrigerant pipe side, a refrigerant pipe of an electromagnetic valve 14b connected via a pressure regulating valve 22, a four-way valve 2 and a gas refrigerant pipe side. Provided between the ball valve 7 and heat exchange of both refrigerants.
An electromagnetic valve 14 a that bypasses the electromagnetic valve 14 b and the refrigerant heat exchanger 18 is connected between the refrigerant pipe between the electromagnetic valve 14 b and the pressure regulating valve 22 and the heat source side heat exchanger 3. A flow rate adjusting valve 19 is provided in the oil return circuit connected from the lower part of the accumulator 8 to the suction pipe of the compressor.

また、油分離器9の下流に動作圧力を高圧の設計圧力に設定した圧力スイッチ23aが設けられ、既設の液配管28、ガス配管29の耐圧に応じた動作圧力に設定した圧力スイッチ23b、23cが設けられている。また、油分離器9の下流の高圧部に圧力センサ24a、液配管で圧力調整弁22の下流に圧力センサ24b、低圧部に圧力センサ24cが設けられている。また、圧縮機1の吐出温度を測定する温度センサ25a、液冷媒配管の温度を測定する温度センサ25b、冷媒熱交換器18と圧力調整弁22の間の配管温度を測定する温度センサ25c、アキュムレータ8の吸入温度を測定する温度センサ25dが設けられている。   Further, a pressure switch 23a whose operating pressure is set to a high design pressure is provided downstream of the oil separator 9, and pressure switches 23b and 23c set to operating pressures corresponding to the pressure resistance of the existing liquid pipe 28 and gas pipe 29. Is provided. Further, a pressure sensor 24a is provided in the high pressure portion downstream of the oil separator 9, a pressure sensor 24b is provided downstream of the pressure regulating valve 22 in the liquid piping, and a pressure sensor 24c is provided in the low pressure portion. Further, a temperature sensor 25a for measuring the discharge temperature of the compressor 1, a temperature sensor 25b for measuring the temperature of the liquid refrigerant pipe, a temperature sensor 25c for measuring the pipe temperature between the refrigerant heat exchanger 18 and the pressure regulating valve 22, and an accumulator. A temperature sensor 25d for measuring the intake temperature 8 is provided.

負荷側ユニットBは、負荷側熱交換器6a、6b、絞り装置5a、5bから構成されている。また、負荷側熱交換器6a、6bと絞り装置5a、5bの間の冷媒配管温度を測定する温度センサ26a、26b、負荷側熱交換器6a、6bのガス配管の温度を測定する温度センサ27a、27bが設けられている。   The load side unit B includes load side heat exchangers 6a and 6b and expansion devices 5a and 5b. Further, temperature sensors 26a and 26b for measuring the refrigerant pipe temperature between the load side heat exchangers 6a and 6b and the expansion devices 5a and 5b, and a temperature sensor 27a for measuring the temperature of the gas pipe of the load side heat exchangers 6a and 6b. 27b are provided.

次に、予め、オイルタンク17に油を溜める方法について図1を用いて説明する。予め、圧縮機1に洗浄中に冷媒回路中に持ち出される油を想定した量の冷凍機油を充填しておく。圧縮機1に冷凍機油が入りきらない場合はアキュムレータ8に入れるなど、冷媒回路中に入れてもよい。次に、熱源側ユニットAの液側のボールバルブ4とガス側のボールバルブ7にダミーの熱交換器を接続するか、液側のボールバルブ4とガス側のボールバルブ7を短絡し三角運転させられるような状態で返油用電磁弁15aを開き、返油用電磁弁15bを閉じて圧縮機1を起動すると、圧縮機1から持ち出された冷凍機油が油分離器9で分離されオイルタンク17に入る。オイルタンク17内で冷媒ガスと冷凍機油が分離され、冷凍機油はオイルタンク17に滞留し冷媒ガスは返油用電磁弁15aを介して圧縮機吸入へ戻る。この運転を一定の時間続けることにより、オイルタンク17に冷凍機油を溜め、返油用電磁弁15a、15bを閉じた状態として出荷する。   Next, a method for storing oil in the oil tank 17 in advance will be described with reference to FIG. The compressor 1 is preliminarily filled with an amount of refrigerating machine oil that is assumed to be oil taken into the refrigerant circuit during cleaning. If the refrigerating machine oil does not enter the compressor 1, it may be put in the refrigerant circuit, for example, in the accumulator 8. Next, a dummy heat exchanger is connected to the liquid-side ball valve 4 and the gas-side ball valve 7 of the heat source side unit A, or the liquid-side ball valve 4 and the gas-side ball valve 7 are short-circuited to perform triangular operation. When the oil return solenoid valve 15a is opened, the oil return solenoid valve 15b is closed, and the compressor 1 is started, the refrigerating machine oil taken out from the compressor 1 is separated by the oil separator 9, and the oil tank Enter 17. The refrigerant gas and the refrigeration oil are separated in the oil tank 17, the refrigeration oil stays in the oil tank 17, and the refrigerant gas returns to the compressor suction via the oil return solenoid valve 15a. By continuing this operation for a certain period of time, refrigeration oil is stored in the oil tank 17 and the oil return solenoid valves 15a and 15b are closed and shipped.

次に、現地でユニットを施工後、空調運転を開始するまでのフローについて図2を用いて説明する。施工後のSTEP1では、ユニットの室外機もしくは室内機に設けた開始スイッチにより、運転を開始する。ここで、一連の洗浄運転が終了するまでは、誤って制御用のリモコンを押されても、圧縮機が回らないようにしておく。また、一連の洗浄運転が終了しない場合にリモコンが押された場合には、洗浄運転を自動で開始してもよい。   Next, the flow from the construction of the unit on site until the start of air conditioning operation will be described with reference to FIG. In STEP 1 after construction, the operation is started by a start switch provided in the outdoor unit or indoor unit of the unit. Here, until the series of cleaning operations is completed, the compressor is prevented from rotating even if the control remote controller is pressed by mistake. Further, when the remote controller is pressed when a series of cleaning operations are not completed, the cleaning operation may be automatically started.

STEP2では、運転モードを決定する。運転モードの決定に当っては、図3に示すように室内空気温度と室外空気温度を領域分けし、運転開始時の室内空気温度と室外空気温度の検知値が図3のどの領域に当るかで、自動で設定する。また、空調する室内環境を考慮し、ユーザが手動でモードを決定するスイッチを設けてもよい。   In STEP2, the operation mode is determined. In determining the operation mode, as shown in FIG. 3, the room air temperature and the outdoor air temperature are divided into regions, and in which region in FIG. 3 the detected values of the indoor air temperature and the outdoor air temperature at the start of operation correspond. And set it automatically. Further, in consideration of the indoor environment to be air-conditioned, a switch for the user to manually determine the mode may be provided.

STEP3では、圧縮機1を起動し、洗浄運転を開始する。まず、冷房サイクルで運転する場合の動作について説明する。圧縮機1を運転すると、高温高圧のガス冷媒が油分離器9で圧縮機1から持ち出された冷凍機油を分離され、冷媒ガスは四方弁2を介して熱源側熱交換器3で凝縮・液化される。油分離器9で分離された冷凍機油は返油用毛細管20aを介して圧縮機1の吸入配管に流れ、冷媒とともに圧縮機1に戻る。熱源側熱交換器3で凝縮した冷媒は冷媒熱交換器18で低圧の気液二相冷媒と熱交換器してさらに凝縮し、液もしくは低乾き度の気液二相冷媒となる。この気液二相冷媒が圧力調整弁22で中間圧力まで絞られる。   In STEP 3, the compressor 1 is started and the cleaning operation is started. First, the operation when operating in the cooling cycle will be described. When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is separated from the refrigeration oil taken out from the compressor 1 by the oil separator 9, and the refrigerant gas is condensed and liquefied by the heat source side heat exchanger 3 via the four-way valve 2. Is done. The refrigerating machine oil separated by the oil separator 9 flows into the suction pipe of the compressor 1 through the oil return capillary 20a and returns to the compressor 1 together with the refrigerant. The refrigerant condensed in the heat source side heat exchanger 3 is further heat-condensed with the low-pressure gas-liquid two-phase refrigerant in the refrigerant heat exchanger 18 to be condensed into a liquid or low-dryness gas-liquid two-phase refrigerant. This gas-liquid two-phase refrigerant is throttled to an intermediate pressure by the pressure regulating valve 22.

ここで、圧力調整弁22は既設の液配管28の耐圧よりも低くなるように制御する。中間圧力の気液二相冷媒もしくは液単相冷媒は、液配管を流れ絞り装置5a、5bにて低圧まで絞られる。中間圧力が万が一、既設の液配管28の耐圧を越えそうになった場合には、圧力スイッチ23bが作動し、運転を停止する。負荷側熱交換器6a、6bでは低圧の気液二相冷媒が周囲から熱を奪い冷房するとともに、自身は蒸発して高乾き度の液二相冷媒となってガス配管29を流れる。ガス配管29を流れた気液二相冷媒が鉱油などのコンタミとともに冷媒熱交換器18に流れ、冷媒液は蒸発気化し液状のコンタミと一緒になって四方弁2を介してアキュムレータ8に入る。アキュムレータ8では、冷媒ガスとコンタミとが分離され冷媒ガスが圧縮機1に戻り、コンタミはアキュムレータ8内に滞留する。
アキュムレータに回収したコンタミは、アキュムレータ8の底に設けた排出用ポート(図示せず)から洗浄後、適宜排出する。
Here, the pressure regulating valve 22 is controlled to be lower than the pressure resistance of the existing liquid pipe 28. The gas-liquid two-phase refrigerant or the liquid single-phase refrigerant having an intermediate pressure flows through the liquid pipe and is throttled to a low pressure by the throttle devices 5a and 5b. If the intermediate pressure should exceed the pressure resistance of the existing liquid pipe 28, the pressure switch 23b is activated and the operation is stopped. In the load-side heat exchangers 6a and 6b, the low-pressure gas-liquid two-phase refrigerant takes heat from the surroundings and cools it, and it evaporates and becomes a liquid two-phase refrigerant having a high dryness and flows through the gas pipe 29. The gas-liquid two-phase refrigerant that has flowed through the gas pipe 29 flows into the refrigerant heat exchanger 18 together with contaminants such as mineral oil, and the refrigerant liquid evaporates and enters the accumulator 8 through the four-way valve 2 together with the liquid contaminants. In the accumulator 8, the refrigerant gas and the contamination are separated, the refrigerant gas returns to the compressor 1, and the contamination stays in the accumulator 8.
Contaminants collected in the accumulator are appropriately discharged after washing from a discharge port (not shown) provided at the bottom of the accumulator 8.

次に、STEP3で暖房サイクルで洗浄運転する場合の動作について説明する。圧縮機1を運転すると、高温高圧のガス冷媒が油分離器9で圧縮機1から持ち出された冷凍機油を分離され、冷媒ガスは四方弁2を介して冷媒熱交換器18で凝縮・液化される。油分離器9で分離された冷凍機油は返油用毛細管20aを介して圧縮機の吸入配管に流れ、冷媒とともに圧縮機1に戻る。冷媒熱交換器18で凝縮した液冷媒は高乾き度の気液二相冷媒となり、ガス配管29を流れ負荷側熱交換器6a、6bに流れる。   Next, the operation when the washing operation is performed in the heating cycle in STEP 3 will be described. When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is separated from the refrigeration oil taken out from the compressor 1 by the oil separator 9, and the refrigerant gas is condensed and liquefied by the refrigerant heat exchanger 18 through the four-way valve 2. The The refrigerating machine oil separated by the oil separator 9 flows into the suction pipe of the compressor through the oil return capillary 20a and returns to the compressor 1 together with the refrigerant. The liquid refrigerant condensed in the refrigerant heat exchanger 18 becomes a highly dry gas-liquid two-phase refrigerant, flows through the gas pipe 29, and flows to the load-side heat exchangers 6a and 6b.

ここで、高圧のガスは既設のガス配管29の耐圧を越えないような圧力に制御する。万が一、既設のガス配管29の耐圧を越えそうな場合には、圧力スイッチ23cが作動し、運転を停止する。負荷側熱交換器6a、6bで高乾き度の冷媒は周囲に放熱して暖房するとともに、自身は凝縮・液化して絞り装置5a、5bにて低圧まで絞られる。低圧の気液二相冷媒は液配管28を流れ、コンタミとともに冷媒熱交換器18に流れ、高乾き度の気液二相冷媒となる。この高乾き度の気液二相冷媒とコンタミは一緒になって熱源側熱交換器3に入り、冷媒ガスが蒸発・気化し、四方弁2を介してアキュムレータ8に入る。アキュムレータ8では、冷媒ガスとコンタミとが分離され冷媒ガスが圧縮機1に戻り、コンタミはアキュムレータ内に滞留する。   Here, the high-pressure gas is controlled to a pressure that does not exceed the pressure resistance of the existing gas pipe 29. In the unlikely event that the pressure resistance of the existing gas pipe 29 is likely to be exceeded, the pressure switch 23c is activated and the operation is stopped. The highly dry refrigerant in the load side heat exchangers 6a and 6b dissipates heat to the surroundings and heats it, and condenses and liquefies itself and is throttled to a low pressure by the expansion devices 5a and 5b. The low-pressure gas-liquid two-phase refrigerant flows through the liquid pipe 28 and flows into the refrigerant heat exchanger 18 along with the contamination, and becomes a gas-liquid two-phase refrigerant with high dryness. This highly dry gas-liquid two-phase refrigerant and contaminants together enter the heat source side heat exchanger 3, the refrigerant gas evaporates and vaporizes, and enters the accumulator 8 through the four-way valve 2. In the accumulator 8, the refrigerant gas and the contamination are separated, the refrigerant gas returns to the compressor 1, and the contamination stays in the accumulator.

こうして、STEP3を運転し、所定の時間を経過後、STEP3を終了しSTEP4に進む。ここでSTEP3で運転する所定の時間とは、冷凍サイクルが定常状態になるまでの時間であり、例えば、圧縮機の周波数が所定の周波数に達し一定となった状態において、高圧もしくは低圧の時間変化が0.1MPaの変化になった場合としてもよい。また、予め、安定になるまでの時間を求めておき、固定の時間としてもよい。さらに、冷媒量が極端に適正量からずれていて、運転を継続することが困難になった場合もSTEP3を終了し、STEP4へ移行する。   Thus, STEP 3 is operated, and after a predetermined time has elapsed, STEP 3 is terminated and the process proceeds to STEP 4. Here, the predetermined time for operation in STEP 3 is the time until the refrigeration cycle reaches a steady state. For example, in a state where the frequency of the compressor reaches a predetermined frequency and becomes constant, the time change of high pressure or low pressure May be changed to 0.1 MPa. Alternatively, a time until stabilization is obtained in advance, and a fixed time may be used. Furthermore, when the refrigerant amount is extremely deviated from the appropriate amount and it becomes difficult to continue the operation, STEP 3 is ended and the process proceeds to STEP 4.

STEP4では、冷媒量を調整する。冷媒量の調整は、冷媒充填ポート30から冷媒を追加し、冷凍サイクルの凝縮機出口SCや蒸発器出口SHが所定の値となったことを検知して、STEP4を終了し、STEP5へ移行する。また、所定時間以上、冷媒の充填が適正にならない場合には、運転を停止し、時間オーバーの警告を外部に発報する。ここで、適正冷媒量とは、通常の空調運転で必要な冷媒量と、洗浄運転を継続するために必要な冷媒量の2つの基準を設け、どちらかを満足すれば、適正と判断する。ただし、洗浄運転を継続するために必要な冷媒量は満足するが、通常の空調運転で必要な冷媒量を満足しない場合には、一連の洗浄運転後、再度、冷媒量調整を実施する必要があることを外部に発報する。   In STEP 4, the amount of refrigerant is adjusted. The refrigerant amount is adjusted by adding refrigerant from the refrigerant charging port 30, detecting that the condenser outlet SC and the evaporator outlet SH of the refrigeration cycle have reached predetermined values, ending STEP4 and proceeding to STEP5. . If the refrigerant is not properly charged for a predetermined time or longer, the operation is stopped and an overtime warning is issued to the outside. Here, the appropriate amount of refrigerant is determined to be appropriate if two criteria are provided, that is, the amount of refrigerant necessary for normal air conditioning operation and the amount of refrigerant necessary for continuing the cleaning operation. However, the amount of refrigerant required to continue the cleaning operation is satisfied, but if the amount of refrigerant required for normal air conditioning operation is not satisfied, it is necessary to adjust the amount of refrigerant again after a series of cleaning operations. Report something externally.

STEP5では、洗浄運転を再開する。運転動作はSTEP3とほぼ同じであるが、圧縮機の運転周波数は、洗浄運転を素早く終了させるために、最大容量で運転してもよい。この運転を所定の時間運転し、STEP5を終了し、STEP6へ移行する。ここで、STEP5で運転する所定の時間は、図4に示すように、例えば、室外空気温度や室内空気温度などの冷凍サイクル運転の高低圧に影響し、洗浄流量が増減するパラメータと、配管長のように配管内の残油量や油を移動させるために必要となる時間に影響するパラメータを選定し、それらの組合せからマップを作成し、洗浄時間を決定する。配管長の判定は室内で検知する蒸発温度(センサは図示せず)と室外機で検知する蒸発温度の差温や、バランスする絞りの開度などから判断するとよい。   In STEP 5, the cleaning operation is resumed. Although the operation is almost the same as STEP 3, the operation frequency of the compressor may be operated at the maximum capacity in order to end the cleaning operation quickly. This operation is performed for a predetermined time, STEP5 is ended, and the process proceeds to STEP6. Here, as shown in FIG. 4, the predetermined time for operation in STEP5 is, for example, a parameter that affects the high or low pressure of the refrigeration cycle operation such as outdoor air temperature or indoor air temperature, and the flow rate of the cleaning flow increases or decreases. In this way, parameters that affect the amount of residual oil in the pipe and the time required to move the oil are selected, a map is created from the combination of these, and the cleaning time is determined. The pipe length may be determined from the difference between the evaporation temperature detected in the room (sensor not shown) and the evaporation temperature detected by the outdoor unit, the opening of the throttle to be balanced, and the like.

STEP6では、アキュムレータ8内に溜まった油を回収し、排出が完了したら、STEP6を終了し、STEP7へ移行し、空調運転を開始する。アキュムレータ8内に溜まった油が回収されたかどうかの確認は、作業者がスイッチで熱源側ユニットAに知らせるなどの手段をとる。また、アキュムレータ8内の液面検知で油が排出されたことを自動で確認してもよい。さらに、所定時間以上、油の排出が確認されない場合には、運転を停止し、時間オーバーの警告を外部に発報する。   In STEP 6, the oil accumulated in the accumulator 8 is collected, and when the discharge is completed, STEP 6 is terminated, the process proceeds to STEP 7, and the air conditioning operation is started. The operator confirms whether or not the oil accumulated in the accumulator 8 has been recovered by notifying the heat source unit A with a switch. Further, it may be automatically confirmed that the oil is discharged by detecting the liquid level in the accumulator 8. Further, when oil discharge is not confirmed for a predetermined time or longer, the operation is stopped and an overtime warning is issued to the outside.

STEP7では、冷房サイクルもしくは暖房サイクルで洗浄運転を実施後、通常運転を開始する。このときに、返油用電磁弁15bを開放するとオイルタンク17内の冷凍機油が圧縮機1の吸入配管に流れ、冷媒ガスとともに圧縮機1に戻る。   In STEP 7, the normal operation is started after the cleaning operation is performed in the cooling cycle or the heating cycle. At this time, when the oil return solenoid valve 15b is opened, the refrigeration oil in the oil tank 17 flows into the suction pipe of the compressor 1 and returns to the compressor 1 together with the refrigerant gas.

次に、通常の空調運転で冷房運転する場合の動作について説明する。圧縮機1を運転すると、高温高圧のガス冷媒が油分離器9で圧縮機1から持ち出された冷凍機油が分離され、冷媒ガスは四方弁2を介して熱源側熱交換器3で凝縮・液化される。油分離器9で分離された冷凍機油は返油用毛細管20aを介して圧縮機1の吸入配管に流れ、冷媒とともに圧縮機1に戻る。熱源側熱交換器3で凝縮した液冷媒は冷媒熱交換器18で低圧の気液二相冷媒と熱交換してさらに凝縮し、過冷却した液冷媒となる。この液冷媒が圧力調整弁22で中間圧力まで絞られる。   Next, the operation when the cooling operation is performed in the normal air conditioning operation will be described. When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is separated from the refrigerating machine oil taken out from the compressor 1 by the oil separator 9, and the refrigerant gas is condensed and liquefied by the heat source side heat exchanger 3 via the four-way valve 2. Is done. The refrigerating machine oil separated by the oil separator 9 flows into the suction pipe of the compressor 1 through the oil return capillary 20a and returns to the compressor 1 together with the refrigerant. The liquid refrigerant condensed in the heat source side heat exchanger 3 is further condensed by exchanging heat with the low-pressure gas-liquid two-phase refrigerant in the refrigerant heat exchanger 18 to become supercooled liquid refrigerant. This liquid refrigerant is throttled to an intermediate pressure by the pressure regulating valve 22.

ここで、流量調整弁19は既設の液配管28、ガス配管29の耐圧よりも低くなるように制御すると共に、中間圧まで絞っても気液二相状態とならないような十分な過冷却度をつけるようにする。中間圧力の液単相冷媒は、液配管を流れ絞り装置5a、5bにて低圧まで絞られる。中間圧力が万が一、既設の液配管28、ガス配管29の耐圧を越えそうになった場合には、圧力スイッチ23bが作動し、運転を停止する。負荷側熱交換器6a、6bでは低圧の気液二相冷媒が周囲から熱を奪い冷房するとともに、自身は蒸発してガス化しガス配管29を流れる。ガス配管29を流れたガス冷媒は、絞り31を介してバイパスした気液二相状態の冷媒と合流し、冷媒熱交換器18で高圧の液冷媒と熱交換し、ガス化した状態で、四方弁2とアキュムレータ8を介して圧縮機1に戻る。   Here, the flow rate adjusting valve 19 is controlled so as to be lower than the pressure resistance of the existing liquid pipe 28 and gas pipe 29, and has a sufficient degree of supercooling so that a gas-liquid two-phase state does not occur even if the pressure is reduced to the intermediate pressure. Try to put it on. The liquid single-phase refrigerant having an intermediate pressure flows through the liquid pipe and is throttled to a low pressure by the throttle devices 5a and 5b. In the unlikely event that the intermediate pressure exceeds the pressure resistance of the existing liquid pipe 28 and gas pipe 29, the pressure switch 23b is activated to stop the operation. In the load-side heat exchangers 6 a and 6 b, the low-pressure gas-liquid two-phase refrigerant takes heat from the surroundings and cools it, and evaporates and gasifies and flows through the gas pipe 29. The gas refrigerant that has flowed through the gas pipe 29 merges with the refrigerant in the gas-liquid two-phase state that is bypassed through the throttle 31, exchanges heat with the high-pressure liquid refrigerant in the refrigerant heat exchanger 18, and is gasified in a four-way state. It returns to the compressor 1 through the valve 2 and the accumulator 8.

次に、通常の空調運転で暖房運転する場合の動作について説明する。圧縮機1を運転すると、高温高圧のガス冷媒が油分離器9で圧縮機1から持ち出された冷凍機油を分離され、冷媒ガスは四方弁2を介して冷媒熱交換器18で凝縮・液化される。油分離器9で分離された冷凍機油は返油用毛細管20aを介して圧縮機の吸入配管に流れ、冷媒とともに圧縮機1に戻る。油を分離された高温、高圧のガス冷媒は、ガス配管29を流れ負荷側熱交換器6a、6bに流れる。ここで、高圧のガスは既設のガス配管29の耐圧を越えないような圧力に制御する。万が一、既設のガス配管29の耐圧を越えそうな場合には、圧力スイッチ23cが作動し、運転を停止する。負荷側熱交換器6a、6bで高乾き度の冷媒は周囲に放熱して暖房するとともに、自身は凝縮・液化して絞り装置5a、5bにて低圧まで絞られる。低圧の気液二相冷媒は液配管28を流れ、熱源側熱交換器3に入り、冷媒ガスが蒸発・気化し、四方弁2とアキュムレータ8を介して圧縮機1に戻る。   Next, an operation in the case of performing a heating operation in a normal air conditioning operation will be described. When the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is separated from the refrigeration oil taken out from the compressor 1 by the oil separator 9, and the refrigerant gas is condensed and liquefied by the refrigerant heat exchanger 18 through the four-way valve 2. The The refrigerating machine oil separated by the oil separator 9 flows into the suction pipe of the compressor through the oil return capillary 20a and returns to the compressor 1 together with the refrigerant. The high-temperature and high-pressure gas refrigerant from which the oil has been separated flows through the gas pipe 29 and flows to the load-side heat exchangers 6a and 6b. Here, the high-pressure gas is controlled to a pressure that does not exceed the pressure resistance of the existing gas pipe 29. In the unlikely event that the pressure resistance of the existing gas pipe 29 is likely to be exceeded, the pressure switch 23c is activated and the operation is stopped. The highly dry refrigerant in the load side heat exchangers 6a and 6b dissipates heat to the surroundings and heats it, and condenses and liquefies itself and is throttled to a low pressure by the expansion devices 5a and 5b. The low-pressure gas-liquid two-phase refrigerant flows through the liquid pipe 28, enters the heat source side heat exchanger 3, the refrigerant gas evaporates and vaporizes, and returns to the compressor 1 through the four-way valve 2 and the accumulator 8.

以上のように、空調運転開始時に既設の液配管28、ガス配管29に流動して洗浄運転を可能とするとともに、負荷側熱交換器6a、6bで凝縮して暖房運転を可能とする気液二相状態の冷媒を生成する冷媒熱交換器18を備えたので、洗浄運転においても負荷側熱交換器6a、6bでは暖房運転をすることができる。
従って、施工後すぐに空調運転を開始し、快適な室内環境を提供できると共に、コンタミを回収することで、異物残留によるダメージを軽減し、信頼性を高める効果がある。
As described above, at the start of the air-conditioning operation, the gas-liquid that flows into the existing liquid pipe 28 and gas pipe 29 to enable the cleaning operation and condenses in the load-side heat exchangers 6a and 6b to enable the heating operation. Since the refrigerant heat exchanger 18 for generating the two-phase refrigerant is provided, the load-side heat exchangers 6a and 6b can perform the heating operation even in the cleaning operation.
Therefore, air-conditioning operation can be started immediately after the construction, and a comfortable indoor environment can be provided, and by collecting the contaminants, there is an effect of reducing damage due to residual foreign matter and improving reliability.

また、R22とR410AまたはR407CからR410Aのように動作圧力が異なる冷媒でリプレースする場合にも、既設の液配管28、ガス配管29の耐圧を越えないように運転を制御することができ安全である。ここで、R407CからR410Aへ更新する場合には、洗浄を省略するスイッチを設けてもよい。   In addition, even when replacing with refrigerants having different operating pressures such as R22 and R410A or R407C to R410A, the operation can be controlled so as not to exceed the pressure resistance of the existing liquid pipe 28 and gas pipe 29, which is safe. . Here, in the case of updating from R407C to R410A, a switch that omits cleaning may be provided.

また、所定の洗浄運転を実施したのちに、冷媒回路内に油を充填するオイルタンク17を備えたので、洗浄後においても圧縮機1内の冷凍機油の量を十分に確保することができ、油枯渇などが発生することがなく信頼性が高くすることができる。
また、洗浄後に外部から充填するなどの手間を省くことができる。
In addition, since the oil tank 17 that fills the refrigerant circuit with oil after the predetermined washing operation is performed, a sufficient amount of refrigerating machine oil in the compressor 1 can be ensured even after washing, There is no occurrence of oil depletion and the reliability can be increased.
Moreover, the trouble of filling from the outside after washing can be saved.

なお、図5に示すように冷媒熱交換器18のバイパスを行う電磁弁14aをガス管に設けてもよい。また、アキュムレータ8の下部から流量調整弁19までの間にストレーナを設け、異物が流量調整弁に詰るのを防止してもよい。さらに、四方弁2からアキュムレータ8の間に異物捕捉器309を設置し、洗浄中に固形異物や鉱油などの液体異物を捕捉し、通常の運転では異物捕捉器をバイパスすることで、より信頼性を高くすることができると共に、洗浄後に油を抜くなどの作業を不要とすることができ、洗浄時間や熱源側ユニットA、負荷側ユニットBの更新のための時間を短縮できる。   In addition, as shown in FIG. 5, you may provide the solenoid valve 14a which bypasses the refrigerant | coolant heat exchanger 18 in a gas pipe. Further, a strainer may be provided between the lower part of the accumulator 8 and the flow rate adjustment valve 19 to prevent foreign matter from clogging the flow rate adjustment valve. Furthermore, a foreign matter catcher 309 is installed between the four-way valve 2 and the accumulator 8 to catch solid foreign matters and liquid foreign matters such as mineral oil during cleaning, and by bypassing the foreign matter catcher in normal operation, it is more reliable. In addition, the operation of draining oil after cleaning can be made unnecessary, and the cleaning time and the time for updating the heat source side unit A and the load side unit B can be shortened.

実施の形態2.
図6はこの発明の実施の形態2を示す冷凍空調装置の冷媒回路図である。図6において図1と同一の部分については、同一の記号を付し説明を省略する。実施の形態1の冷媒回路である図1において、冷媒熱交換器18は液配管とガス配管を熱交換する位置に設置したが、実施の形態2の冷媒回路図である図6では、液配管と液配管をバイパスし、絞り31を介した低圧配管と熱交換する構成とした。また、オイルタンク17a、17bの2個を設置し、各々の上部を冷媒配管で接続すると共に、下部は各々、返油用電磁弁15b、と返油用電磁弁15cを介して圧縮機1の吸入配管と接続する。
Embodiment 2. FIG.
FIG. 6 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus showing Embodiment 2 of the present invention. In FIG. 6, the same parts as those of FIG. In FIG. 1 which is the refrigerant circuit of the first embodiment, the refrigerant heat exchanger 18 is installed at a position where heat exchange is performed between the liquid pipe and the gas pipe. In FIG. 6 which is a refrigerant circuit diagram of the second embodiment, the liquid pipe The liquid piping is bypassed and heat exchange with the low-pressure piping through the throttle 31 is performed. Further, two oil tanks 17a and 17b are installed, and the upper portions of the oil tanks 17a and 17b are connected to each other by a refrigerant pipe, and the lower portions of the compressor 1 are respectively connected via an oil return solenoid valve 15b and an oil return solenoid valve 15c. Connect to the suction pipe.

この構成において、現地でユニットを施工後、空調運転を開始するまでのフローについては図2と同様なので全体の説明を省略し、図2のフロー中のSTEP3およびSTEP5で洗浄運転を実施するときの動作について説明する。まず、冷房サイクルにて洗浄を実施する場合には、圧縮機1を運転すると、高温高圧のガス冷媒が油分離器9で圧縮機1から持ち出された冷凍機油を分離される。ここで、油分離器9で分離されずに持ち出される油の量が多くなるように、予め圧縮機1に油を多めに入れておく。こうすることで、圧縮機1内の油量と油の持出し量には図7のような相関が一般的にあるので、圧縮機1から持出される油量が増加し、油分離器9で分離されないエステル油の量も増加する。また、継続して圧縮機1内の油量が多くなるように、オイルタンク17a下部の返油用電磁弁15bを所定の時間で開放し、オイルタンク17a内の油を圧縮機1に充填する。   In this configuration, since the flow from the construction of the unit at the site to the start of the air conditioning operation is the same as in FIG. 2, the entire description is omitted, and the cleaning operation is performed in STEP 3 and STEP 5 in the flow of FIG. The operation will be described. First, when cleaning is performed in the cooling cycle, when the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is separated from the refrigerating machine oil taken out from the compressor 1 by the oil separator 9. Here, a large amount of oil is put in the compressor 1 in advance so that the amount of oil taken out without being separated by the oil separator 9 is increased. In this way, the amount of oil in the compressor 1 and the amount of oil taken out generally have a correlation as shown in FIG. 7, so that the amount of oil taken out from the compressor 1 increases and the oil separator 9 The amount of ester oil that is not separated also increases. In addition, the oil return solenoid valve 15b below the oil tank 17a is opened for a predetermined time so that the amount of oil in the compressor 1 continues to increase, and the oil in the oil tank 17a is filled into the compressor 1. .

このエステル油を含む冷媒ガスは四方弁2を介して冷媒熱交換器18で凝縮・液化される。油分離器9で分離された冷凍機油は返油用毛細管20aを介して圧縮機1の吸入配管に流れ、冷媒とともに圧縮機1に戻る。熱源側熱交換器3で凝縮した冷媒は冷媒熱交換器18で自身からバイパスし、絞り31で低圧となった気液二相冷媒と熱交換器して過冷却した液冷媒となる。この液冷媒が流量調整弁19で中間圧力まで絞られる。ここで、流量調整弁19は既設の液配管28、ガス配管29の耐圧よりも低くなるように制御する。中間圧力の気液二相冷媒もしくは液単相冷媒は、液配管を流れ絞り装置5a、5bにて低圧まで絞られる。   The refrigerant gas containing the ester oil is condensed and liquefied by the refrigerant heat exchanger 18 via the four-way valve 2. The refrigerating machine oil separated by the oil separator 9 flows into the suction pipe of the compressor 1 through the oil return capillary 20a and returns to the compressor 1 together with the refrigerant. The refrigerant condensed in the heat source side heat exchanger 3 is bypassed from itself in the refrigerant heat exchanger 18 and becomes a liquid refrigerant which is supercooled by heat exchange with the gas-liquid two-phase refrigerant whose pressure is reduced by the throttle 31. This liquid refrigerant is throttled to an intermediate pressure by the flow rate adjusting valve 19. Here, the flow rate adjusting valve 19 is controlled to be lower than the pressure resistance of the existing liquid pipe 28 and gas pipe 29. The gas-liquid two-phase refrigerant or the liquid single-phase refrigerant having an intermediate pressure flows through the liquid pipe and is throttled to a low pressure by the throttle devices 5a and 5b.

中間圧力が万が一、既設の液配管28の耐圧を越えそうになった場合には、圧力スイッチ23bが作動し、運転を停止する。負荷側熱交換器6a、6bでは低圧の気液二相冷媒が周囲から熱を奪い冷房するとともに、自身は蒸発してエステル油を含むガス冷媒となってガス配管29を流れる。ガス配管29を流れたガス冷媒は、エステル油と鉱油が混合するコンタミとともに四方弁2を介してアキュムレータ8に入る。アキュムレータ8では、冷媒ガスとコンタミとが分離され冷媒ガスが圧縮機1に戻り、コンタミはアキュムレータ内に滞留する。ここで、ガス配管29では、エステル油と鉱油が混合することにより、鉱油とエステル油の混合液に冷媒が溶解するようになり、既設のガス配管29内の鉱油の移動が促進され、既設のガス配管29内の鉱油回収が素早く完了する。   If the intermediate pressure should exceed the pressure resistance of the existing liquid pipe 28, the pressure switch 23b is activated and the operation is stopped. In the load-side heat exchangers 6a and 6b, the low-pressure gas-liquid two-phase refrigerant takes heat from the surroundings and cools it, and evaporates to become a gas refrigerant containing ester oil and flows through the gas pipe 29. The gas refrigerant that has flowed through the gas pipe 29 enters the accumulator 8 through the four-way valve 2 together with contamination in which ester oil and mineral oil are mixed. In the accumulator 8, the refrigerant gas and the contamination are separated, the refrigerant gas returns to the compressor 1, and the contamination stays in the accumulator. Here, in the gas pipe 29, the ester oil and the mineral oil are mixed, so that the refrigerant is dissolved in the mixed liquid of the mineral oil and the ester oil, and the movement of the mineral oil in the existing gas pipe 29 is promoted. The recovery of mineral oil in the gas pipe 29 is completed quickly.

暖房サイクルにて洗浄を実施する場合には、圧縮機1を運転すると、高温高圧のガス冷媒が油分離器9で圧縮機1から持ち出された冷凍機油を分離される。ここで、油分離器9で分離されずに持ち出される油の量が多くなるように、予め圧縮機1に油を多めに入れておく。こうすることで、圧縮機1内の油量と油の持出し量には図7のような相関が一般的にあるので、圧縮機1から持出される油量が増加し、油分離器9で分離されないエステル油の量も増加する。また、継続して圧縮機1内の油量が多くなるように、オイルタンク17a下部の返油用電磁弁15bを所定の時間で開放し、オイルタンク17a内の油を圧縮機1に充填する。   When washing is performed in the heating cycle, when the compressor 1 is operated, the high-temperature and high-pressure gas refrigerant is separated from the refrigerating machine oil taken out of the compressor 1 by the oil separator 9. Here, a large amount of oil is put in the compressor 1 in advance so that the amount of oil taken out without being separated by the oil separator 9 is increased. In this way, the amount of oil in the compressor 1 and the amount of oil taken out generally have a correlation as shown in FIG. 7, so that the amount of oil taken out from the compressor 1 increases and the oil separator 9 The amount of ester oil that is not separated also increases. In addition, the oil return solenoid valve 15b below the oil tank 17a is opened for a predetermined time so that the amount of oil in the compressor 1 continues to increase, and the oil in the oil tank 17a is filled into the compressor 1. .

このエステル油を含む冷媒ガスは四方弁2を介して冷媒熱交換器18で凝縮・液化される。油分離器9で分離された冷凍機油は返油用毛細管20aを介して圧縮機の吸入配管に流れ、冷媒とともに圧縮機1に戻る。エステル油を含む高温、高圧のガス冷媒が、ガス配管29を流れ負荷側熱交換器6a、6bに流れ、既設のガス配管29内に残留する鉱油と混合し、エステル油と鉱油の混合液に冷媒が溶解し、低粘度の液状となって既設のガス配管29を流れる。ここで、高圧のガスは既設のガス配管29の耐圧を越えないような圧力に制御する。   The refrigerant gas containing the ester oil is condensed and liquefied by the refrigerant heat exchanger 18 via the four-way valve 2. The refrigerating machine oil separated by the oil separator 9 flows into the suction pipe of the compressor through the oil return capillary 20a and returns to the compressor 1 together with the refrigerant. A high-temperature, high-pressure gas refrigerant containing ester oil flows through the gas pipe 29 to the load side heat exchangers 6a and 6b, mixes with the mineral oil remaining in the existing gas pipe 29, and forms a mixed liquid of ester oil and mineral oil. The refrigerant dissolves and becomes a low-viscosity liquid and flows through the existing gas pipe 29. Here, the high-pressure gas is controlled to a pressure that does not exceed the pressure resistance of the existing gas pipe 29.

万が一、既設のガス配管29の耐圧を越えそうな場合には、圧力スイッチ23cが作動し、運転を停止する。負荷側熱交換器6a、6bで高乾き度の冷媒は周囲に放熱して暖房するとともに、自身は凝縮・液化して絞り装置5a、5bにて低圧まで絞られる。低圧の気液二相冷媒は液配管28を流れ、コンタミとともに冷媒熱交換器18に流れ、高乾き度の気液二相冷媒となる。この高乾き度の気液二相冷媒とコンタミは一緒になって熱源側熱交換器3に入り、冷媒ガスが蒸発・気化し、四方弁2を介してアキュムレータ8に入る。アキュムレータ8では、冷媒ガスとコンタミとが分離され冷媒ガスが圧縮機1に戻り、コンタミはアキュムレータ内に滞留する。   In the unlikely event that the pressure resistance of the existing gas pipe 29 is likely to be exceeded, the pressure switch 23c is activated and the operation is stopped. The highly dry refrigerant in the load side heat exchangers 6a and 6b dissipates heat to the surroundings and heats it, and condenses and liquefies itself and is throttled to a low pressure by the expansion devices 5a and 5b. The low-pressure gas-liquid two-phase refrigerant flows through the liquid pipe 28 and flows into the refrigerant heat exchanger 18 along with the contamination, and becomes a gas-liquid two-phase refrigerant with high dryness. This highly dry gas-liquid two-phase refrigerant and contaminants together enter the heat source side heat exchanger 3, the refrigerant gas evaporates and vaporizes, and enters the accumulator 8 through the four-way valve 2. In the accumulator 8, the refrigerant gas and the contamination are separated, the refrigerant gas returns to the compressor 1, and the contamination stays in the accumulator.

以上の洗浄運転STEP5で実施した後、STEP6で油を排出した後、空調運転STEP7を開始する。ここで、STEP7開始時には、オイルタンク17b下部の返油用電磁弁15cを開放し、オイルタンク17b内の油を圧縮機1に充填し、洗浄中に減少した圧縮機1内の油量を正規の量まで戻す。空調運転開始時には、洗浄中と同様の動作で冷媒を流し、冷暖房運転を実施する。   After carrying out in the above washing operation STEP5, after discharging the oil in STEP6, air conditioning operation STEP7 is started. Here, at the start of STEP 7, the oil return solenoid valve 15c at the lower part of the oil tank 17b is opened, the oil in the oil tank 17b is filled into the compressor 1, and the oil amount in the compressor 1 that has decreased during the cleaning is normalized. Return to the amount. At the start of the air-conditioning operation, the refrigerant is flowed by the same operation as during cleaning, and the air-conditioning operation is performed.

以上のように、空調運転開始時に既設の液配管28、ガス配管29に流動して洗浄運転を可能とするとともに、負荷側熱交換器6a、6bで凝縮して暖房運転を可能とする気液二相状態の冷媒を生成する冷媒熱交換器18を備えたので、洗浄運転中と通常の空調運転中の冷媒の動作が同じになり、簡易な構成で、洗浄中も通常の空調運転と同等の能力を発揮することができる。
また、所定の洗浄運転を実施したのちに、冷媒回路内に油を充填するオイルタンク17a、17bを備えたので、洗浄後においても圧縮機1内の冷凍機油の量を十分に確保することができる。
また、油分離器9から持ち出される油の量が多くなるように、予め、オイルタンク17aから圧縮機1に油を多めに入れておくことにより、負荷側熱交換器6a、6bでエステル油を含むガス冷媒となってガス配管29を流れるので、エステル油と鉱油が混合し、鉱油とエステル油の混合液に冷媒が溶解するようになり、既設のガス配管29内の鉱油の移動が促進され、既設のガス配管29内の鉱油回収を素早く完了させることができる。
As described above, at the start of the air-conditioning operation, the gas-liquid that flows into the existing liquid pipe 28 and gas pipe 29 to enable the cleaning operation and condenses in the load-side heat exchangers 6a and 6b to enable the heating operation. Since the refrigerant heat exchanger 18 that generates the two-phase refrigerant is provided, the refrigerant operation during the cleaning operation and the normal air-conditioning operation is the same, and with a simple configuration, it is equivalent to the normal air-conditioning operation during the cleaning. Can demonstrate their abilities.
In addition, since the oil tanks 17a and 17b for filling the refrigerant circuit with oil after the predetermined washing operation is carried out, it is possible to ensure a sufficient amount of the refrigerating machine oil in the compressor 1 even after washing. it can.
In addition, by adding a large amount of oil from the oil tank 17a to the compressor 1 in advance so that the amount of oil taken out from the oil separator 9 is increased, the ester oil is supplied to the load side heat exchangers 6a and 6b. Since it becomes a gas refrigerant containing and flows through the gas pipe 29, the ester oil and the mineral oil are mixed, and the refrigerant is dissolved in the mixed liquid of the mineral oil and the ester oil, and the movement of the mineral oil in the existing gas pipe 29 is promoted. The mineral oil recovery in the existing gas pipe 29 can be completed quickly.

この発明の実施の形態1の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 1 of this invention. この発明の実施の形態1の作業フローを示す図である。It is a figure which shows the work flow of Embodiment 1 of this invention. この発明の実施の形態1の運転モードを決定するマップを示す図である。It is a figure which shows the map which determines the operation mode of Embodiment 1 of this invention. この発明の実施の形態1の洗浄運転時間を決定するマップを示す図である。It is a figure which shows the map which determines the washing | cleaning driving | running time of Embodiment 1 of this invention. この発明の実施の形態1の冷凍空調装置の別の冷媒回路図である。It is another refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 1 of this invention. この発明の実施の形態2の冷凍空調装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating air-conditioning apparatus of Embodiment 2 of this invention. この発明の実施の形態2の圧縮機内の油量と油の持ち出し量の関係を示す図である。It is a figure which shows the relationship between the oil quantity in the compressor of Embodiment 2 of this invention, and the amount of taking-out of oil.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 熱源側熱交換器、6a、6b 負荷側熱交換器、8 アキュムレータ、17、17a、17b オイルタンク、18 冷媒熱交換器、28 液配管、29 ガス配管。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 way valve, 3 Heat source side heat exchanger, 6a, 6b Load side heat exchanger, 8 Accumulator, 17, 17a, 17b Oil tank, 18 Refrigerant heat exchanger, 28 liquid piping, 29 Gas piping.

Claims (5)

新規の熱源側ユニット及び負荷側ユニットを既設の冷媒配管で接続した冷凍空調装置において、
前記新規の熱源側ユニットには、圧縮機、熱源側熱交換器、冷媒熱交換器、アキュムレータが少なくとも搭載され、
前記新規の負荷側ユニットには、絞り手段、負荷側熱交換器が少なくとも搭載され、
前記冷媒熱交換器は、前記熱源側熱交換器と前記絞り手段との間における冷媒と、前記負荷側熱交換器と前記アキュムレータとの間における冷媒と、で熱交換可能な位置に設けられており、
前記既設の冷媒配管に冷媒を流動させて異物を前記アキュムレータに回収する洗浄運転を実行しつつ、前記冷媒熱交換器では空調運転可能な気液二相冷媒を生成している
ことを特徴とする冷凍空調装置。
In a refrigeration air conditioner in which a new heat source side unit and a load side unit are connected by an existing refrigerant pipe,
The new heat source side unit is equipped with at least a compressor, a heat source side heat exchanger, a refrigerant heat exchanger, and an accumulator,
The new load side unit is equipped with at least throttling means and a load side heat exchanger,
The refrigerant heat exchanger is provided at a position where heat can be exchanged between the refrigerant between the heat source side heat exchanger and the throttling means and the refrigerant between the load side heat exchanger and the accumulator. And
The refrigerant heat exchanger generates a gas-liquid two-phase refrigerant capable of air-conditioning operation while performing a cleaning operation in which the refrigerant flows through the existing refrigerant pipe and collects foreign matter in the accumulator. Refrigeration air conditioner.
暖房運転時においては、
前記冷媒熱交換器では、
前記圧縮機から吐出された冷媒を低圧の気液二相冷媒と熱交換させて凝縮して高乾き度の気液二相冷媒としている
ことを特徴とする請求項1に記載の冷凍空調装置。
During heating operation,
In the refrigerant heat exchanger,
The refrigerating and air-conditioning apparatus according to claim 1, wherein the refrigerant discharged from the compressor is heat-exchanged with a low-pressure gas-liquid two-phase refrigerant to condense to obtain a gas-liquid two-phase refrigerant having a high dryness .
冷房運転時においては、
前記冷媒熱交換器では、
前記熱源側熱交換器で凝縮した冷媒を低圧の気液二相冷媒と熱交換させてさらに凝縮して低乾き度の気液二相冷媒としている
ことを特徴とする請求項1に記載の冷凍空調装置。
During cooling operation,
In the refrigerant heat exchanger,
2. The refrigeration according to claim 1, wherein the refrigerant condensed in the heat source side heat exchanger is subjected to heat exchange with a low-pressure gas-liquid two-phase refrigerant and further condensed to form a gas-liquid two-phase refrigerant having a low dryness. Air conditioner.
油と冷媒とを分離する油分離器と、前記油分離器で分離された油を貯留するオイルタンクと、を備え、
前記洗浄運転を実施した後に、前記オイルタンクに貯留されている油を前記冷媒回路内に充填する
ことを特徴とする請求項1〜3のいずれか一項に記載の冷凍空調装置。
An oil separator that separates oil and refrigerant; and an oil tank that stores oil separated by the oil separator;
The refrigerating and air-conditioning apparatus according to any one of claims 1 to 3 , wherein oil stored in the oil tank is filled in the refrigerant circuit after the cleaning operation is performed .
前記オイルタンクを複数備えた
ことを特徴とする請求項4に記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to claim 4, comprising a plurality of the oil tanks .
JP2005251755A 2005-08-31 2005-08-31 Refrigeration air conditioner Expired - Fee Related JP4420871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005251755A JP4420871B2 (en) 2005-08-31 2005-08-31 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005251755A JP4420871B2 (en) 2005-08-31 2005-08-31 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2007064558A JP2007064558A (en) 2007-03-15
JP4420871B2 true JP4420871B2 (en) 2010-02-24

Family

ID=37926955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005251755A Expired - Fee Related JP4420871B2 (en) 2005-08-31 2005-08-31 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4420871B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574638B2 (en) * 2009-08-20 2014-08-20 三菱電機株式会社 Refrigeration air conditioner
JP5063670B2 (en) * 2009-12-03 2012-10-31 三菱電機株式会社 AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER
JP2013024505A (en) * 2011-07-25 2013-02-04 Hitachi Appliances Inc Refrigerating cycle device

Also Published As

Publication number Publication date
JP2007064558A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
JP6868670B2 (en) Refrigerant amount detector
KR101297972B1 (en) Air conditioner
JP5500240B2 (en) Refrigeration equipment
JP5516712B2 (en) Refrigeration equipment
JP6230931B2 (en) Multi-type air conditioner
JP3671850B2 (en) Refrigeration cycle
JP5434460B2 (en) Heat pump equipment
EP3252402B1 (en) Heat pump
JP2008215697A (en) Air conditioning device
WO2002006738A1 (en) Refrigerant circuit of air conditioner
JP4420871B2 (en) Refrigeration air conditioner
CN108954501B (en) Air conditioner
JP6022107B2 (en) Refrigeration cycle equipment
JP5796619B2 (en) Air conditioner
JP5138292B2 (en) Air conditioner
JP3491629B2 (en) Piping cleaning device and piping cleaning method
JP2018204805A (en) Refrigeration unit, refrigeration system and control method for refrigerant circuit
JP6350338B2 (en) Air conditioner
JP4052478B2 (en) Refrigerator oil separation and recovery system and cleaning method for air conditioning system
JP4279080B2 (en) Refrigeration air conditioner and update method thereof
JP5574638B2 (en) Refrigeration air conditioner
JP2004251570A (en) Oil recovery method for air conditioning system and air conditioning system
JP2020085269A (en) Refrigeration cycle device
JP2009210143A (en) Air conditioner and refrigerant amount determining method
JP5583134B2 (en) Heat source unit and refrigeration air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4420871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121211

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131211

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees