JP4279080B2 - Refrigeration air conditioner and update method thereof - Google Patents

Refrigeration air conditioner and update method thereof Download PDF

Info

Publication number
JP4279080B2
JP4279080B2 JP2003280349A JP2003280349A JP4279080B2 JP 4279080 B2 JP4279080 B2 JP 4279080B2 JP 2003280349 A JP2003280349 A JP 2003280349A JP 2003280349 A JP2003280349 A JP 2003280349A JP 4279080 B2 JP4279080 B2 JP 4279080B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
compressor
heat source
source side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003280349A
Other languages
Japanese (ja)
Other versions
JP2005043025A5 (en
JP2005043025A (en
Inventor
修 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003280349A priority Critical patent/JP4279080B2/en
Publication of JP2005043025A publication Critical patent/JP2005043025A/en
Publication of JP2005043025A5 publication Critical patent/JP2005043025A5/ja
Application granted granted Critical
Publication of JP4279080B2 publication Critical patent/JP4279080B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

この発明は、冷凍空調装置及びその更新方法に関し、特に、既設の冷媒配管を用いて熱源側ユニット及び負荷側ユニットの少なくとも一方を更新する冷凍空調装置及びその更新方法に関するものである。   The present invention relates to a refrigeration air conditioner and an updating method thereof, and more particularly to a refrigeration air conditioning apparatus that updates at least one of a heat source unit and a load side unit using an existing refrigerant pipe and an updating method thereof.

従来から冷凍空調装置の更新時には、熱源側ユニットと負荷側ユニットを接続する延長配管はその配管内部を洗浄することにより既設の配管をそのまま流用し、上記のユニットのみを交換する手法が行われてきた。洗浄運転が実施された場合、油分離器で分離されなかった冷凍機油は、冷媒回路を流れて既設配管中に残留する異物と混合し、アキュムレータ内に溜まる。従来の冷凍空調装置では、洗浄運転中にもアキュムレータ内の冷凍機油を圧縮機へ返油してしまうため、圧縮機内の冷凍機油に既設配管中の異物が混合し、圧縮機の潤滑性に問題が生じる可能性があった。そこで、冷媒回路中に異物捕捉手段を備えて、既設配管中の異物除去を行う冷凍空調装置が提案されている。(例えば、特許文献1参照)。   Conventionally, when renewing a refrigeration air conditioner, there has been a method of replacing only the above unit by using the existing pipe as it is by washing the inside of the extension pipe connecting the heat source side unit and the load side unit. It was. When the washing operation is performed, the refrigerating machine oil that has not been separated by the oil separator flows through the refrigerant circuit, mixes with foreign matter remaining in the existing piping, and accumulates in the accumulator. In conventional refrigeration and air-conditioning equipment, the refrigeration oil in the accumulator is returned to the compressor even during the cleaning operation, so foreign matter in the existing piping is mixed with the refrigeration oil in the compressor, which causes problems with the lubricity of the compressor. Could occur. In view of this, a refrigeration and air-conditioning apparatus has been proposed that includes a foreign matter capturing means in the refrigerant circuit and removes foreign matter from existing piping. (For example, refer to Patent Document 1).

特開2000−9368号公報JP 2000-9368 A

しかしながら、上記の従来の冷凍空調装置のように、アキュムレータとは別に異物を分離するための分離器として異物捕捉手段を備えた構造では、熱源側ユニットが大きくなるか、あるいは熱源側ユニットを別のユニットに交換する必要があり、広い設置スペースが必要となる。このため、施工上、熱源側ユニットの設置が困難となる場合があった。また、熱源側ユニットが大きくなることにより、コストが増加するという問題もあった。   However, in the structure provided with the foreign matter catching means as a separator for separating the foreign matter separately from the accumulator as in the conventional refrigeration air conditioner described above, the heat source side unit becomes large or the heat source side unit is separated from the accumulator. It is necessary to replace the unit, and a large installation space is required. For this reason, it may be difficult to install the heat source unit on construction. In addition, there is a problem that the cost increases due to an increase in the size of the heat source side unit.

また、既設配管に気液二相冷媒を流して洗浄運転を行う場合には、配管部分や絞り装置での圧力損失があるため、洗浄流量を大きくとることが出来ず、既設配管内を洗浄するための時間が長くなるという問題もあった。   In addition, when performing a cleaning operation by flowing a gas-liquid two-phase refrigerant through an existing pipe, there is a pressure loss in the pipe part and the throttle device, so the cleaning flow cannot be increased, and the existing pipe is cleaned. There was also a problem that the time required for the operation became longer.

さらに、洗浄時に動作圧力が高い冷媒を用いた場合には、冷凍空調装置の動作圧力が既設の延長配管の許容圧力よりも高くなる可能性があり、圧力スイッチなどにより装置の運転範囲に制約を設けた場合には、過負荷のときに能力不足に陥る可能性があった。   Furthermore, if a refrigerant with a high operating pressure is used during cleaning, the operating pressure of the refrigeration air conditioner may be higher than the allowable pressure of the existing extension pipe, and the operating range of the device is restricted by a pressure switch or the like. When it was provided, there was a possibility that it would fall short of capacity when overloaded.

この発明は、以上のような問題点を解決するためになされたもので、既設配管を流用しつつ、広い設置スペースを要求することなく、容易に熱源側ユニットと負荷側ユニットを更新することのできる冷凍空調装置及びその更新方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and can easily update the heat-source side unit and the load-side unit without requiring a large installation space while diverting the existing piping. An object of the present invention is to provide a refrigerating and air-conditioning apparatus that can be used and a method for updating the same.

この発明に係る冷凍空調装置は、少なくともアキュムレータ、圧縮機、熱源側熱交換器を順次接続してなる回路と、前記アキュムレータから前記圧縮機に冷凍機油を返す返油回路とを含む熱源側ユニットと、第1の絞り装置と負荷側熱交換器を含む負荷側ユニットと、前記熱源側熱交換器と前記第1の絞り装置とを接続する第1の延長配管と、前記負荷側熱交換器と前記圧縮機とを接続する第2の延長配管とを備えた冷凍空調装置において、前記アキュムレータに設けられ、洗浄運転後に前記アキュムレータ内の異物を排出する排出手段と、前記返油回路中に設けられ、通常運転時には前記返油回路を開放して前記冷凍機油を所定量ずつ前記圧縮機に返し、前記洗浄運転時には前記返油回路を閉止する返油回路開閉手段と前記熱源側ユニットに、前記洗浄運転時には前記熱源側熱交換器を通過した冷媒を液もしくは気液二相状態となるように冷却し、通常の冷房運転時には前記熱源側熱交換器を通過した冷媒の過冷却度を増大させる冷媒熱交換器前記第2の延長配管から分岐し、前記冷媒熱交換器に接続された後に、再び前記第2の延長配管に合流するバイパス回路と、前記洗浄運転時に、前記負荷側熱交換器を通過した後に前記圧縮機に戻る途中の冷媒を、前記バイパス回路に流入させる開閉装置と、冷房運転時に、前記熱源側熱交換器側から前記冷媒熱交換器を通過した冷媒の一部を減圧させる補助絞り装置を備え、前記冷房運転時に、前記補助絞り装置を通過した冷媒が前記バイパス回路を介して前記冷媒熱交換器に流入するように構成されてるものである。 A refrigerating and air-conditioning apparatus according to the present invention includes a heat source side unit including at least an accumulator, a compressor, a circuit formed by sequentially connecting a heat source side heat exchanger, and an oil return circuit that returns refrigeration oil from the accumulator to the compressor. A load side unit including a first expansion device and a load side heat exchanger, a first extension pipe connecting the heat source side heat exchanger and the first expansion device, and the load side heat exchanger, In the refrigerating and air-conditioning apparatus provided with the second extension pipe for connecting to the compressor, provided in the accumulator, and provided in the oil return circuit, a discharge means for discharging foreign matter in the accumulator after the cleaning operation. during normal operation returns to the compressor by a predetermined amount the refrigerating machine oil by opening the oil return circuit, and an oil return circuit closing means the cleaning during the operation to close the oil return circuit, the heat source-side unit To the cleaning during operation is cooled so that refrigerant liquid or gas-liquid two-phase state that has passed through the heat-source-side heat exchanger during normal cooling operation supercooling degree of the refrigerant that has passed through the heat-source-side heat exchanger a refrigerant heat exchanger to increase, branched from the second extension piping, after being connected to the refrigerant heat exchanger, a bypass circuit for re-joins the second extension piping, during the washing operation, the An opening / closing device that allows the refrigerant on the way to the compressor after passing through the load side heat exchanger to flow into the bypass circuit, and the refrigerant that has passed through the refrigerant heat exchanger from the heat source side heat exchanger side during cooling operation and an auxiliary throttle device to decompress a portion of the time of the cooling operation, in shall refrigerant passed through the auxiliary throttle device is configured to flow into the refrigerant heat exchanger via the bypass circuit is there.

この発明に係る冷凍空調装置の更新方法は、既設の延長配管を流用し、少なくともアキュムレータ、圧縮機、熱源側熱交換器を順次接続してなる回路と前記アキュムレータから前記圧縮機に冷凍機油を返す返油回路とこの返油回路中に設けられた返油回路開閉手段と前記アキュムレータに設けられた排出手段とを含む熱源側ユニットと、絞り装置と負荷側熱交換器を含む負荷側ユニットを備え、前記熱源側ユニットに、前記洗浄運転時には前記熱源側熱交換器を通過した冷媒を液もしくは気液二相状態となるように冷却し、通常の冷房運転時には前記熱源側熱交換器を通過した冷媒の過冷却度を増大させる冷媒熱交換器前記第2の延長配管から分岐し、前記冷媒熱交換器に接続された後に、再び前記第2の延長配管に合流するバイパス回路と、前記洗浄運転時に、前記負荷側熱交換器を通過した後に前記圧縮機に戻る途中の冷媒を、前記バイパス回路に流入させる開閉装置と、冷房運転時に、前記熱源側熱交換器側から前記冷媒熱交換器を通過した冷媒の一部を減圧させる補助絞り装置を備え、前記冷房運転時に、前記補助絞り装置を通過した冷媒が前記バイパス回路を介して前記冷媒熱交換器に流入するように構成されてる冷凍空調装置とするために、前記熱源側ユニットと前記負荷側ユニットの少なくとも一方を更新するユニット更新手順と、更新後の冷凍空調装置中の少なくとも前記既設の延長配管内を真空引きする真空引き手順と、前記更新後の冷凍空調装置中の少なくとも前記既設の延長配管内に、回収された冷媒より動作圧力が高い冷媒を充填する冷媒充填手順と、この充填された冷媒を用いて、前記既設の延長配管内を洗浄する洗浄運転を実施する洗浄運転手順と、前記洗浄運転後に前記アキュムレータ内の異物を前記排出ポートから排出する異物排出手順と、前記異物が除去された後に、通常運転を実施する通常運転手順からなるものである。 In the refrigerating and air-conditioning apparatus updating method according to the present invention, the existing extension pipe is diverted, and at least the accumulator, the compressor, and the heat source side heat exchanger are sequentially connected, and the refrigerating machine oil is returned from the accumulator to the compressor. A heat source side unit including an oil return circuit, an oil return circuit opening / closing means provided in the oil return circuit, and a discharge means provided in the accumulator; and a load side unit including an expansion device and a load side heat exchanger. The refrigerant that has passed through the heat source side heat exchanger during the cleaning operation is cooled to be in a liquid or gas-liquid two-phase state and passed through the heat source side heat exchanger during normal cooling operation. a refrigerant heat exchanger to increase the supercooling degree of the refrigerant, the second branch from the extension pipe, after being connected to the refrigerant heat exchanger, a bypass times to re merge into the second extension piping If, during the washing operation, in the middle of a refrigerant returning to the compressor after passing through the load-side heat exchanger, an opening and closing device for flow into the bypass circuit, during the cooling operation, from the heat source-side heat exchanger side wherein and an auxiliary throttle device to decompress a portion of the refrigerant passing through the refrigerant heat exchanger, during the cooling operation, so that the refrigerant passed through the auxiliary throttle device flows into the refrigerant heat exchanger via the bypass circuit in order to refrigerating and air-conditioning apparatus that is configured, a unit updating procedure for updating at least one of the load-side unit and the heat source unit, in the refrigerating air conditioning system after the update at least the existing extension in the pipe A evacuation procedure for evacuation, and a refrigerant filling hand that fills at least the existing extension pipe in the updated refrigeration air conditioner with a refrigerant having a higher operating pressure than the collected refrigerant A cleaning operation procedure for performing a cleaning operation for cleaning the inside of the existing extension pipe using the filled refrigerant, and a foreign matter discharging procedure for discharging the foreign matter in the accumulator after the cleaning operation from the discharge port; The normal operation procedure for performing the normal operation after the foreign matter is removed.

この発明の冷凍空調装置では、少なくともアキュムレータ、圧縮機、熱源側熱交換器を順次接続してなる回路と、前記アキュムレータから前記圧縮機に冷凍機油を返す返油回路とを含む熱源側ユニットと、第1の絞り装置と負荷側熱交換器を含む負荷側ユニットと、前記熱源側熱交換器と前記第1の絞り装置とを接続する第1の延長配管と、前記負荷側熱交換器と前記圧縮機とを接続する第2の延長配管とを備えた冷凍空調装置において、前記アキュムレータに設けられ、洗浄運転後に前記アキュムレータ内の異物を排出する排出手段と、前記返油回路中に設けられ、通常運転時には前記返油回路を開放して前記冷凍機油を所定量ずつ前記圧縮機に返し、前記洗浄運転時には前記返油回路を閉止する返油回路開閉手段と前記熱源側ユニットに、前記洗浄運転時には前記熱源側熱交換器を通過した冷媒を液もしくは気液二相状態となるように冷却し、通常の冷房運転時には前記熱源側熱交換器を通過した冷媒の過冷却度を増大させる冷媒熱交換器前記第2の延長配管から分岐し、前記冷媒熱交換器に接続された後に、再び前記第2の延長配管に合流するバイパス回路と、前記洗浄運転時に、前記負荷側熱交換器を通過した後に前記圧縮機に戻る途中の冷媒を、前記バイパス回路に流入させる開閉装置と、冷房運転時に、前記熱源側熱交換器側から前記冷媒熱交換器を通過した冷媒の一部を減圧させる補助絞り装置を備え、前記冷房運転時に、前記補助絞り装置を通過した冷媒が前記バイパス回路を介して前記冷媒熱交換器に流入するように構成されてるので、洗浄運転が実施された場合に、アキュムレータを冷媒から異物を分離するための分離器として使用して、既設配管内の異物をアキュムレータ内に回収し、排出ポートから排出することができる。このため、熱源側ユニットを大きくしたり、別のユニットに交換したりする必要なく、冷凍空調装置の更新が可能となる。また、洗浄運転時には既設配管中の異物除去を効率よく行えるように気液二相冷媒を作り出せるとともに、冷房運転時には冷媒の過冷却度を増大させることで冷凍サイクルの効率を改善することが可能となる。 In the refrigeration air conditioner of the present invention, a heat source side unit including at least an accumulator, a compressor, a circuit formed by sequentially connecting a heat source side heat exchanger, and an oil return circuit that returns refrigeration oil from the accumulator to the compressor; A load-side unit including a first expansion device and a load-side heat exchanger, a first extension pipe connecting the heat source-side heat exchanger and the first expansion device, the load-side heat exchanger, and the In the refrigerating and air-conditioning apparatus provided with the second extension pipe connecting the compressor, provided in the accumulator, provided in the oil return circuit, a discharge means for discharging foreign matter in the accumulator after the cleaning operation, during normal operation returns to a predetermined amount by the compressor the refrigerating machine oil by opening the oil return circuit, the at the time of cleaning operation, the oil return circuit closing means for closing the oil return circuit, the heat source side unit The cleaning during operation is cooled so that refrigerant liquid or gas-liquid two-phase state that has passed through the heat-source-side heat exchanger, during normal cooling operation the degree of subcooling of the refrigerant passed through the heat-source-side heat exchanger a refrigerant heat exchanger increase, branched from the second extension piping, after being connected to the refrigerant heat exchanger, a bypass circuit for re-joins the second extension piping, during the washing operation, the load An opening / closing device that flows refrigerant into the bypass circuit after passing through the side heat exchanger into the bypass circuit, and refrigerant that has passed through the refrigerant heat exchanger from the heat source side heat exchanger side during cooling operation. and an auxiliary throttle device to decompress a portion, the time in cooling operation, the refrigerant having passed through the auxiliary throttle device is configured to flow into the refrigerant heat exchanger via the bypass circuit Runode, washed Driving is real If it is, by using the accumulator as a separator for separating foreign matter from the refrigerant, to recover the foreign matter in existing pipes into the accumulator, it can be discharged from the discharge port. For this reason, it is possible to update the refrigeration air conditioner without having to enlarge the heat source side unit or replace it with another unit. In addition, gas-liquid two-phase refrigerant can be created so that foreign matters in existing piping can be efficiently removed during cleaning operation, and the efficiency of the refrigeration cycle can be improved by increasing the degree of refrigerant subcooling during cooling operation. Become.

また、この発明の冷凍空調装置の更新方法では、既設の延長配管を流用し、少なくともアキュムレータ、圧縮機、熱源側熱交換器を順次接続してなる回路と前記アキュムレータから前記圧縮機に冷凍機油を返す返油回路とこの返油回路中に設けられた返油回路開閉手段と前記アキュムレータに設けられた排出手段とを含む熱源側ユニットと、絞り装置と負荷側熱交換器を含む負荷側ユニットを備え、前記熱源側ユニットに、前記洗浄運転時には前記熱源側熱交換器を通過した冷媒を液もしくは気液二相状態となるように冷却し、通常の冷房運転時には前記熱源側熱交換器を通過した冷媒の過冷却度を増大させる冷媒熱交換器前記第2の延長配管から分岐し、前記冷媒熱交換器に接続された後に、再び前記第2の延長配管に合流するバイパス回路と、前記洗浄運転時に、前記負荷側熱交換器を通過した後に前記圧縮機に戻る途中の冷媒を、前記バイパス回路に流入させる開閉装置と、冷房運転時に、前記熱源側熱交換器側から前記冷媒熱交換器を通過した冷媒の一部を減圧させる補助絞り装置を備え、前記冷房運転時に、前記補助絞り装置を通過した冷媒が前記バイパス回路を介して前記冷媒熱交換器に流入するように構成されてる冷凍空調装置とするために、前記熱源側ユニットと前記負荷側ユニットの少なくとも一方を更新するユニット更新手順と、更新後の冷凍空調装置中の少なくとも前記既設の延長配管内を真空引きする真空引き手順と、前記更新後の冷凍空調装置中の少なくとも前記既設の延長配管内に、回収された冷媒より動作圧力が高い冷媒を充填する冷媒充填手順と、この充填された冷媒を用いて、前記既設の延長配管内を洗浄する洗浄運転を実施する洗浄運転手順と、前記洗浄運転後に前記アキュムレータ内の異物を前記排出ポートから排出する異物排出手順と、前記異物が除去された後に、通常運転を実施する通常運転手順からなる一連の手順を実施することとしたので、洗浄運転を効率よく短時間で終了することができ、短工期でのユニットの更新が可能となる。
Further, in the refrigerating and air-conditioning apparatus updating method of the present invention, the existing extension pipe is diverted, and at least an accumulator, a compressor, and a heat source side heat exchanger are connected in sequence, and the compressor oil is supplied from the accumulator to the compressor. A return oil return circuit, a return oil circuit opening / closing means provided in the return oil circuit, a heat source side unit including a discharge means provided in the accumulator, and a load side unit including a throttling device and a load side heat exchanger. The refrigerant that has passed through the heat source side heat exchanger during the cleaning operation is cooled in a liquid or gas-liquid two-phase state, and passes through the heat source side heat exchanger during normal cooling operation. a refrigerant heat exchanger to increase the supercooling degree of the refrigerant, and branched from the second extension piping, after being connected to the refrigerant heat exchanger, again merge into the second extension piping bypass And a circuit, during the washing operation, in the middle of a refrigerant returning to the compressor after passing through the load-side heat exchanger, an opening and closing device for flow into the bypass circuit, during the cooling operation, from the heat source-side heat exchanger side and an auxiliary throttle device to decompress a portion of the refrigerant passing through the refrigerant heat exchanger, during the cooling operation, the refrigerant having passed through the auxiliary throttle device flows into the refrigerant heat exchanger via the bypass circuit to the refrigerating and air-conditioning apparatus that is configured to, the heat source-side unit and the unit updating procedure for updating at least one of the load-side unit, in the refrigerating air conditioning system after the update at least the existing extension in the pipe Evacuation procedure for evacuating the refrigerant, and at least the existing extension pipe in the updated refrigeration air conditioner is charged with a refrigerant having a higher operating pressure than the recovered refrigerant. A cleaning operation procedure for performing a cleaning operation for cleaning the inside of the existing extension pipe using the filled refrigerant, and a foreign matter discharging procedure for discharging the foreign matter in the accumulator after the cleaning operation from the discharge port And after the foreign matter has been removed, a series of procedures consisting of a normal operation procedure for performing a normal operation is performed, so that the cleaning operation can be completed efficiently and in a short time. Can be updated.

以下、図面を参照してこの発明の実施の形態について説明する。尚、各図中、同一または相当する部分については、同一符号を付してその説明を適宜省略または簡略化する。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals, and the description thereof is omitted or simplified as appropriate.

実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。図1に示す冷媒回路は、熱源側ユニット1と負荷側ユニット2とを備えている。熱源側ユニット1と負荷側ユニット2との間は、第1の延長配管3(液側冷媒配管)と第2の延長配管4(ガス側冷媒配管)により接続され、冷媒回路を構成している。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. The refrigerant circuit shown in FIG. 1 includes a heat source side unit 1 and a load side unit 2. The heat source side unit 1 and the load side unit 2 are connected by a first extension pipe 3 (liquid side refrigerant pipe) and a second extension pipe 4 (gas side refrigerant pipe) to constitute a refrigerant circuit. .

熱源側ユニット1は、アキュムレータ5、圧縮機6、油分離器7、四方弁8、熱源側熱交換器9、及び冷媒熱交換器10を内蔵しており、これらを順次接続して、熱源側ユニット1のメイン回路を構成している。また、油分離器7の下部には、返油用毛細管11を介してアキュムレータ5と圧縮機6の間に接続される返油回路12が設けられている。熱源側ユニット1には、油分離器7と四方弁8の間を分岐し、開閉装置13を介してアキュムレータ5の下部に接続されるホットガスバイパス回路14が設けられている。また、アキュムレータ5の下部には、アキュムレータ5と圧縮機6の間に接続される返油回路15が設けられている。アキュムレータ5の側面部には、アキュムレータ5内に溜まった冷凍機油を排出する排出ポート16が設けられている。さらに、熱源側ユニット1には、返油回路15中に返油回路15を開閉する返油回路開閉手段17が設けられている。   The heat source side unit 1 includes an accumulator 5, a compressor 6, an oil separator 7, a four-way valve 8, a heat source side heat exchanger 9, and a refrigerant heat exchanger 10, which are sequentially connected to each other on the heat source side. The main circuit of the unit 1 is configured. In addition, an oil return circuit 12 connected between the accumulator 5 and the compressor 6 via an oil return capillary 11 is provided at the lower part of the oil separator 7. The heat source side unit 1 is provided with a hot gas bypass circuit 14 that branches between the oil separator 7 and the four-way valve 8 and is connected to the lower part of the accumulator 5 via an opening / closing device 13. Further, an oil return circuit 15 connected between the accumulator 5 and the compressor 6 is provided below the accumulator 5. A discharge port 16 for discharging the refrigerating machine oil accumulated in the accumulator 5 is provided on the side surface of the accumulator 5. Further, the heat source side unit 1 is provided with an oil return circuit opening / closing means 17 for opening and closing the oil return circuit 15 in the oil return circuit 15.

本実施形態の冷凍空調装置は、返油回路開閉手段17を設け、洗浄運転時に返油回路開閉手段17を閉止するようにしたため、アキュムレータ5から圧縮機6への冷凍機油の流入を防ぐことができる。このため、圧縮機6内の冷凍機油に既設配管中の異物が混合して圧縮機6の潤滑性に問題が生じてしまう事態を回避することができる。また、通常の冷房運転時もしくは暖房運転時には、上記返油回路開閉手段17はアキュムレータ5内の冷凍機油を圧縮機6に返油すべく所定の開度に開放される。
また、熱源側ユニット1には、第2の延長配管4と四方弁8との間を分岐して、逆止弁18を介して冷媒熱交換器10に接続されるバイパス回路19が設けられており、洗浄運転時に、そのバイパス回路19に冷媒を流入させるための開閉装置20が設けられている。また、熱源側ユニット1には、冷房運転時に、熱源側熱交換器9、冷媒熱交換器10を流出した液冷媒の一部を減圧させる補助絞り装置21が設けられている。
The refrigerating and air-conditioning apparatus according to the present embodiment is provided with the oil return circuit opening / closing means 17 and closes the oil return circuit opening / closing means 17 during the cleaning operation, so that the inflow of the refrigerating machine oil from the accumulator 5 to the compressor 6 can be prevented. it can. For this reason, the situation where the foreign material in existing piping mixes with the refrigeration oil in the compressor 6, and the problem which arises in the lubricity of the compressor 6 can be avoided. Further, during normal cooling operation or heating operation, the oil return circuit opening / closing means 17 is opened to a predetermined opening in order to return the refrigerating machine oil in the accumulator 5 to the compressor 6.
Further, the heat source unit 1 is provided with a bypass circuit 19 that branches between the second extension pipe 4 and the four-way valve 8 and is connected to the refrigerant heat exchanger 10 via a check valve 18. An opening / closing device 20 is provided for allowing the refrigerant to flow into the bypass circuit 19 during the cleaning operation. Further, the heat source side unit 1 is provided with an auxiliary throttle device 21 that decompresses part of the liquid refrigerant that has flowed out of the heat source side heat exchanger 9 and the refrigerant heat exchanger 10 during the cooling operation.

また、図1に示す本実施形態の冷凍空調装置の一例では、負荷側ユニット2は2組設けられており、それぞれの負荷側ユニット2は第1の絞り装置22と負荷側熱交換器23とを直列に接続して構成されている。   Further, in the example of the refrigerating and air-conditioning apparatus of the present embodiment shown in FIG. Are connected in series.

次に、図2を用いて、既設の冷媒配管である第1の延長配管3と第2の延長配管4とを流用し、既設の熱源側ユニットおよび負荷側ユニットを上記の冷媒回路構成を有する熱源側ユニット1と負荷側ユニット2に更新する場合の更新手順の概要を説明する。
図2において、まず、STEP1として、既設の熱源側ユニット及び負荷側ユニットから冷媒を回収する。STEP2(ユニット更新手順)では、熱源側ユニットと負荷側ユニットを新しいユニットに更新する。STEP3(真空引き手順)では、既設配管側を真空引きする。STEP4(冷媒充填手順)では、真空引きした既設配管側に冷媒をチャージする。ここで、チャージする冷媒は、既設のユニットに充填されていた冷媒よりも冷凍サイクルの動作圧力が高くなる冷媒とする。STEP5(洗浄運転手順)では、返油回路開閉手段17を全閉として、圧縮機6を運転し、所定時間の間、既設配管内を洗浄すべく、冷房運転もしくは暖房運転を実施する。このSTEP5における洗浄運転が行われることで、既設配管内の異物が冷媒中に取り込まれて除去される。異物を含む冷媒は、その後アキュムレータ5内で異物と分離され、アキュムレータ5内に回収される。STEP6(異物排出手順)では、アキュムレータ5内に回収された異物を排出ポート16から排出する。以上の手順が実行されることにより、更新時の洗浄運転を兼ねた試運転が終了し、既設配管内の異物を除去することができる。その後、STEP7(通常運転手順)では、返油回路開閉手段17を所定の開度に開放し、通常の冷房もしくは暖房運転を開始する。
Next, referring to FIG. 2, the first extension pipe 3 and the second extension pipe 4 which are existing refrigerant pipes are diverted, and the existing heat source side unit and load side unit have the above refrigerant circuit configuration. An outline of the update procedure when updating to the heat source side unit 1 and the load side unit 2 will be described.
In FIG. 2, first, as STEP 1, the refrigerant is recovered from the existing heat source side unit and load side unit. In STEP 2 (unit update procedure), the heat source side unit and the load side unit are updated to new units. In STEP 3 (evacuation procedure), the existing piping side is evacuated. In STEP 4 (refrigerant filling procedure), the refrigerant is charged on the existing piping side that has been evacuated. Here, the refrigerant to be charged is a refrigerant whose operating pressure of the refrigeration cycle is higher than the refrigerant charged in the existing unit. In STEP 5 (cleaning operation procedure), the oil return circuit opening / closing means 17 is fully closed, the compressor 6 is operated, and a cooling operation or a heating operation is performed to clean the existing piping for a predetermined time. By performing the washing operation in STEP 5, the foreign matter in the existing pipe is taken into the refrigerant and removed. The refrigerant containing the foreign matter is then separated from the foreign matter in the accumulator 5 and collected in the accumulator 5. In STEP 6 (foreign matter discharge procedure), the foreign matter collected in the accumulator 5 is discharged from the discharge port 16. By executing the above procedure, the trial operation that also serves as the cleaning operation at the time of updating is completed, and foreign matters in the existing piping can be removed. Thereafter, in STEP 7 (normal operation procedure), the oil return circuit opening / closing means 17 is opened to a predetermined opening, and normal cooling or heating operation is started.

次に、上記STEP5における洗浄運転について詳述する。尚、ここでは、図1を用いて冷房運転を利用した洗浄運転の動作について説明する。洗浄運転時には、返油回路開閉手段17を全閉とした状態で圧縮機6を運転する。圧縮機6を吐出した高温・高圧のガス冷媒は、四方弁8を介して熱源側熱交換器9に流れる。熱源側熱交換器9において、ガス冷媒は顕熱に近い熱量を放熱して飽和ガスとなり、冷媒熱交換器10に至る。冷媒熱交換器10では、低圧側を流れる冷媒と熱交換し、凝縮・液化し、液もしくは気液二相冷媒となる。この気液二相状態の冷媒が、第の延長配管、第1の絞り装置22、負荷側熱交換器23および第の延長配管を順に流れるにしたがって、既設の配管である第1の延長配管3および第2の延長配管4中に残留する異物を冷媒中に取り込んで除去する。既設配管中の異物を含む冷媒は、熱源側ユニット1に戻り、開閉装置20が閉止されているため、逆止弁18を介して冷媒熱交換器10に流れる。その後、冷媒熱交換器10で液冷媒を蒸発し、四方弁8を介してアキュムレータ5に取り込まれて、ガス冷媒中の異物をアキュムレータ5で分離する。異物が分離されたガス冷媒は、圧縮機6に戻り、再び圧縮され、圧縮機6から吐出されるが、本実施形態の冷凍空調装置では、返油回路15中の返油回路開閉手段17が閉止されているため、アキュムレータ5内の異物は、圧縮機6に吸入されずにアキュムレータ5内に回収される。 Next, the cleaning operation in STEP 5 will be described in detail. Here, the operation of the cleaning operation using the cooling operation will be described with reference to FIG. During the cleaning operation, the compressor 6 is operated with the oil return circuit opening / closing means 17 fully closed. The high-temperature and high-pressure gas refrigerant discharged from the compressor 6 flows to the heat source side heat exchanger 9 via the four-way valve 8. In the heat source side heat exchanger 9, the gas refrigerant dissipates a heat amount close to sensible heat to become a saturated gas and reaches the refrigerant heat exchanger 10. The refrigerant heat exchanger 10 exchanges heat with the refrigerant flowing on the low pressure side, condenses and liquefies, and becomes a liquid or gas-liquid two-phase refrigerant. As the refrigerant in the gas-liquid two-phase state flows through the first extension pipe 3 , the first expansion device 22, the load-side heat exchanger 23 and the second extension pipe 4 in this order, the first pipe which is an existing pipe is used. The foreign matter remaining in the extension pipe 3 and the second extension pipe 4 is taken into the refrigerant and removed. The refrigerant containing foreign matter in the existing pipe returns to the heat source side unit 1 and flows into the refrigerant heat exchanger 10 via the check valve 18 because the opening / closing device 20 is closed. Thereafter, the liquid refrigerant is evaporated by the refrigerant heat exchanger 10 and taken into the accumulator 5 through the four-way valve 8, and foreign substances in the gas refrigerant are separated by the accumulator 5. The gas refrigerant from which the foreign matter has been separated returns to the compressor 6, is compressed again, and is discharged from the compressor 6. In the refrigeration air conditioner of the present embodiment, the oil return circuit opening / closing means 17 in the oil return circuit 15 is provided. Since it is closed, the foreign matter in the accumulator 5 is collected in the accumulator 5 without being sucked into the compressor 6.

以上の洗浄運転が実施されることで、既設配管中の異物をアキュムレータ5内に回収することができる。その後、アキュムレータ5内に回収された既設配管中の異物は、排出ポート16から排出される。これらの動作により、既設配管中の異物を除去することが可能であるので、既設配管中の異物が混合することによる潤滑不良や異物が噛みこむことによる弁類の動作不良をなくすことができる。また、洗浄運転時にアキュムレータ5から返油回路15を介して異物が圧縮機6に戻ってしまうことがなく、既設配管内から異物を確実に除去することができ、既設配管を流用するシステムの信頼性を向上させることができる。   By performing the above cleaning operation, foreign matter in the existing piping can be collected in the accumulator 5. Thereafter, the foreign matter in the existing piping collected in the accumulator 5 is discharged from the discharge port 16. By these operations, foreign matters in the existing piping can be removed, so that it is possible to eliminate poor lubrication due to mixing of foreign matters in the existing piping and malfunctions of valves due to foreign matter being caught. In addition, the foreign matter does not return from the accumulator 5 to the compressor 6 through the oil return circuit 15 during the cleaning operation, so that the foreign matter can be reliably removed from the existing piping, and the reliability of the system that uses the existing piping is reliable. Can be improved.

次に、上記STEP7における通常の冷房運転を実施する場合の動作について詳述する。
図1において、圧縮機6が駆動されると、高温・高圧のガス冷媒が圧縮機6から吐出し、油分離器7、四方弁8を介して熱源側熱交換器9で凝縮・液化する。液化した冷媒は、冷媒熱交換器10でさらに冷却されることで過冷却度を増大させる。冷媒熱交換器10を流出した液冷媒の一部は、補助絞り装置21により低圧まで絞られた後に、冷媒熱交換器10を通過する際に熱源側熱交換器9で凝縮した液冷媒と熱交換され、自身は蒸発・気化する。冷媒熱交換器10で過冷却度を増した液冷媒の残りは、第の延長配管を流れ、第1の絞り装置22で低圧まで絞られ、負荷側熱交換器23に流れる。負荷側熱交換器23に流れた低圧の気液二相冷媒は、蒸発・気化し、第の延長配管を流れて熱源側ユニット1に戻る。熱源側ユニット1に戻ったガス冷媒は、開閉装置20を介して冷媒熱交換器10で蒸発・気化したガス冷媒と合流した後、四方弁8、アキュムレータ5を介して圧縮機6に戻る。尚、圧縮機6から冷媒が流出する際に冷媒と一緒に持ち出される冷凍機油の多くは、油分離器7で分離され返油用毛細管11を介して圧縮機6の吸入側に戻されるが、油分離器7で分離されずに熱源側ユニット1から流出した冷凍機油は、冷媒とともに冷媒回路を循環して、再び熱源側ユニット1に戻り、アキュムレータ5に一旦溜まる。ここで、アキュムレータ5内の冷凍機油は、返油回路開閉手段17が所定の開度に調整されているため、所定の量ずつ圧縮機6に戻される。
Next, the operation when carrying out the normal cooling operation in STEP 7 will be described in detail.
In FIG. 1, when the compressor 6 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 6 and condensed and liquefied by the heat source side heat exchanger 9 via the oil separator 7 and the four-way valve 8. The liquefied refrigerant is further cooled by the refrigerant heat exchanger 10 to increase the degree of supercooling. Part of the liquid refrigerant that has flowed out of the refrigerant heat exchanger 10 is throttled to a low pressure by the auxiliary throttle device 21 and then condenses in the liquid refrigerant and heat condensed in the heat source side heat exchanger 9 when passing through the refrigerant heat exchanger 10. It is exchanged and evaporates and vaporizes itself. The remaining liquid refrigerant increased degree of subcooling in the refrigerant heat exchanger 10, the first extension piping 3 flow is throttled by the first throttle device 22 to a low pressure, through the load-side heat exchanger 23. The low-pressure gas-liquid two-phase refrigerant that has flowed to the load side heat exchanger 23 evaporates and vaporizes, flows through the second extension pipe 4 , and returns to the heat source side unit 1. The gas refrigerant returned to the heat source side unit 1 merges with the gas refrigerant evaporated and vaporized in the refrigerant heat exchanger 10 via the opening / closing device 20, and then returns to the compressor 6 via the four-way valve 8 and the accumulator 5. Note that most of the refrigerating machine oil taken out together with the refrigerant when the refrigerant flows out of the compressor 6 is separated by the oil separator 7 and returned to the suction side of the compressor 6 through the oil return capillary 11. The refrigerating machine oil that has flowed out of the heat source side unit 1 without being separated by the oil separator 7 circulates in the refrigerant circuit together with the refrigerant, returns to the heat source side unit 1 again, and temporarily accumulates in the accumulator 5. Here, the refrigerating machine oil in the accumulator 5 is returned to the compressor 6 by a predetermined amount because the oil return circuit opening / closing means 17 is adjusted to a predetermined opening degree.

次に、上記STEP7における通常の暖房運転を実施する場合の動作について詳述する。
図1において、圧縮機6が駆動されると、高温・高圧のガス冷媒が圧縮機6から吐出し、油分離器7、四方弁8、開閉装置20を介して第2の延長配管4に流れる。ここで、第2の延長配管4を流れた高温・高圧のガス冷媒は、負荷側熱交換器23で凝縮・液化する。負荷側熱交換器23で液化した冷媒は、第1の絞り装置22で低圧まで絞られた後、第1の延長配管3に流れて熱源側ユニット1に戻る。熱源側ユニット1に戻った気液二相状態の冷媒は、熱源側熱交換器9で蒸発・気化した後、四方弁8、アキュムレータ5を介して圧縮機6に戻る。尚、圧縮機6から冷媒が流出する際に冷媒と一緒に持ち出される冷凍機油の多くは、油分離器7で分離され返油用毛細管11を介して圧縮機6の吸入側に戻されるが、油分離器7で分離されずに熱源側ユニット1から流出した冷凍機油は、冷媒とともに冷媒回路を循環して、再び熱源側ユニット1に戻り、アキュムレータ5に一旦溜まり、アキュムレータ5内の冷凍機油は、返油回路開閉手段17が所定の開度に調整されているため、所定の量ずつ圧縮機6に戻される。
Next, the operation when carrying out the normal heating operation in STEP 7 will be described in detail.
In FIG. 1, when the compressor 6 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 6 and flows to the second extension pipe 4 through the oil separator 7, the four-way valve 8, and the opening / closing device 20. . Here, the high-temperature and high-pressure gas refrigerant that has flowed through the second extension pipe 4 is condensed and liquefied by the load-side heat exchanger 23. The refrigerant liquefied by the load side heat exchanger 23 is throttled to a low pressure by the first throttling device 22, then flows to the first extension pipe 3 and returns to the heat source side unit 1. The gas-liquid two-phase refrigerant returned to the heat source side unit 1 evaporates and vaporizes in the heat source side heat exchanger 9 and then returns to the compressor 6 via the four-way valve 8 and the accumulator 5. Note that most of the refrigerating machine oil taken out together with the refrigerant when the refrigerant flows out of the compressor 6 is separated by the oil separator 7 and returned to the suction side of the compressor 6 through the oil return capillary 11. The refrigeration oil that has flowed out of the heat source side unit 1 without being separated by the oil separator 7 circulates in the refrigerant circuit together with the refrigerant, returns to the heat source side unit 1 again, temporarily accumulates in the accumulator 5, and the refrigeration oil in the accumulator 5 is Since the oil return circuit opening / closing means 17 is adjusted to a predetermined opening, it is returned to the compressor 6 by a predetermined amount.

以上説明した通り、本実施形態の冷凍空調装置によれば、返油回路開閉手段17を返油回路15中に設けたことで、洗浄運転時にはアキュムレータ5を冷媒から異物を分離する分離器として使用することができる。このため、熱源側ユニット1に新たに分離器を追加する必要がなく、既設配管を流用して熱源側ユニットと負荷側ユニットの更新を行うことができる。また、更新後の熱源側ユニットが大型化してしまう事態を防ぐことができ、更新後のユニットを設置する際に新たに広い設置スペースを必要とすることもない。また、既設ユニットに充填されていた冷媒よりも動作圧力が高い冷媒を充填して既設配管を洗浄することにより、配管での圧力損失が低下し、より多くの冷媒流量を流せるので、既設配管中の異物を効率よく回収することが可能となり、短い工期で更新工事が可能となる。   As described above, according to the refrigerating and air-conditioning apparatus of the present embodiment, the oil return circuit opening / closing means 17 is provided in the oil return circuit 15, so that the accumulator 5 is used as a separator for separating foreign substances from the refrigerant during the cleaning operation. can do. For this reason, it is not necessary to newly add a separator to the heat source side unit 1, and the heat source side unit and the load side unit can be updated by diverting existing piping. Further, it is possible to prevent the updated heat source side unit from becoming large, and a new installation space is not required when installing the updated unit. Also, by washing the existing piping with a refrigerant that has a higher operating pressure than the refrigerant charged in the existing unit, the pressure loss in the piping can be reduced and more refrigerant flow can be made. It is possible to efficiently collect the foreign matter, and renewal work is possible in a short construction period.

また、従来の冷凍空調装置においては、既設配管を用いてユニットの容量を増大させたり、ユニットの位置を既設のユニットの位置よりも遠い位置に設置したりした場合に、冷媒循環量の増大や配管長が長くなることにより、配管の圧力損失が増大してしまうため、冷凍サイクルの効率が低下するという問題があった。さらに、一般に同じ冷媒を使用する場合には、容量の増加とともに冷媒流量が増加するため、延長配管での圧力損失を一定にするために、容量の増加とともに延長配管の配管径を大きくする必要があった。これに対し、本実施形態の冷凍空調装置では、更新後の冷媒の動作圧力を更新前の冷媒の動作圧力よりも大きくとることで、配管の圧力損失は低減されるので、同じ配管サイズで接続するユニットの容量を増加させても、配管の圧力損失は既設のユニットで運転した場合と同等とすることが可能である。したがって、熱負荷が増大した場合でも、既設配管を流用して、容易にユニットの容量を増大させることが可能であり、しかも、効率も悪化することがなく、従来と同様の省エネ性を確保できる。また、設置の都合から、熱源側ユニットもしくは負荷側ユニットの位置を変更し、配管長が既設のユニットよりも長くなった場合でも、既設ユニットに充填されていた冷媒よりも動作圧力が高い冷媒を充填して既設配管を洗浄することにより、配管の圧力損失を従来と同等以下にできるので、更新時のユニット設置の自由度も広げることができる。   Further, in the conventional refrigeration air conditioner, when the capacity of the unit is increased using existing piping, or when the position of the unit is installed at a position far from the position of the existing unit, the refrigerant circulation amount increases. Since the pipe length is increased, the pressure loss of the pipe is increased, so that the efficiency of the refrigeration cycle is lowered. Furthermore, in general, when the same refrigerant is used, the flow rate of the refrigerant increases as the capacity increases. Therefore, in order to make the pressure loss in the extension pipe constant, it is necessary to increase the pipe diameter of the extension pipe as the capacity increases. there were. In contrast, in the refrigerating and air-conditioning apparatus of this embodiment, the pressure loss of the piping is reduced by taking the operating pressure of the refrigerant after the update higher than the operating pressure of the refrigerant before the update. Even if the capacity of the unit to be increased is increased, the pressure loss of the piping can be made equal to the case of operating with the existing unit. Therefore, even when the heat load increases, it is possible to easily increase the capacity of the unit by diverting the existing piping, and also to ensure the same energy saving as before without deteriorating the efficiency. . Also, for the convenience of installation, even if the position of the heat source side unit or load side unit is changed and the pipe length is longer than the existing unit, a refrigerant with a higher operating pressure than the refrigerant charged in the existing unit is used. By filling and cleaning the existing piping, the pressure loss of the piping can be made equal to or lower than before, so that the degree of freedom of unit installation at the time of renewal can be expanded.

また、本実施形態の冷凍空調装置は、冷媒熱交換器10を備えているため、STEP5では洗浄運転時に既設配管中の異物除去を効率よく行えるように気液二相冷媒を作り出せるとともに、STEP7の冷房運転では冷媒の過冷却度を増大させることにより、負荷側ユニット2を流れる冷媒流量を減少させることで、ガス配管(第2の延長配管4)での圧力損失を低減し、冷凍サイクルの効率を改善することが可能となる。つまり、冷媒熱交換器10は、既設配管の異物回収時には効率よく異物を回収できるように気液二相冷媒を作り出す機能を有し、通常の冷房運転時には、冷媒の過冷却度を増大させることで、冷凍サイクルの効率を改善する機能を持たせたことにより、冷凍サイクルの実装性やコストの低減に寄与することができる。   In addition, since the refrigerating and air-conditioning apparatus of the present embodiment includes the refrigerant heat exchanger 10, in STEP5, it is possible to create a gas-liquid two-phase refrigerant so that foreign matters in the existing piping can be efficiently removed during the cleaning operation. In the cooling operation, by increasing the supercooling degree of the refrigerant, the refrigerant flow rate flowing through the load side unit 2 is decreased, thereby reducing the pressure loss in the gas pipe (second extension pipe 4) and improving the efficiency of the refrigeration cycle. Can be improved. That is, the refrigerant heat exchanger 10 has a function of creating a gas-liquid two-phase refrigerant so that foreign matters can be collected efficiently when collecting foreign matters in the existing piping, and increases the degree of supercooling of the refrigerant during normal cooling operation. Thus, by providing the function of improving the efficiency of the refrigeration cycle, it is possible to contribute to the reduction of mountability and cost of the refrigeration cycle.

さらに、既設の熱源側ユニットから本実施形態の熱源側ユニット1に更新する際には、配管の許容圧力に応じて熱源側ユニット1に補助熱交換器を接続し、高圧の上昇を抑えることで、既設配管を利用して動作圧力が高い冷媒を利用する場合の安全性を確保することも可能である。   Furthermore, when updating from the existing heat source side unit to the heat source side unit 1 of the present embodiment, an auxiliary heat exchanger is connected to the heat source side unit 1 according to the allowable pressure of the piping to suppress an increase in high pressure. It is also possible to ensure safety when using a refrigerant having a high operating pressure using existing piping.

尚、図1における冷媒熱交換器10を備えない回路構成とした場合には、通常の冷房運転もしくは暖房運転により、上記STEP5の洗浄運転を行ってもよい。また、本実施形態の冷凍空調装置では、上記STEP5における洗浄運転時に、アキュムレータ5を冷媒から異物を分離する分離器として使用したが、アキュムレータ5以外に別の異物を分離する容器を設けて、上記STEP5における洗浄運転中に、その容器の出入口に設けた開閉手段を閉止することにより異物が圧縮機6に再流出することを防止しつつ、冷媒から異物を分離してその容器内に回収することも可能である。   In the case of a circuit configuration that does not include the refrigerant heat exchanger 10 in FIG. 1, the washing operation of STEP 5 may be performed by a normal cooling operation or heating operation. In the refrigerating and air-conditioning apparatus of the present embodiment, the accumulator 5 is used as a separator that separates foreign matters from the refrigerant during the washing operation in STEP 5, but a container for separating other foreign matters is provided in addition to the accumulator 5, During the washing operation in STEP5, the foreign matter is separated from the refrigerant and collected in the container while preventing the foreign matter from flowing out again to the compressor 6 by closing the opening / closing means provided at the inlet / outlet of the container. Is also possible.

また、既設のユニットに用いられていた冷媒がR22等の塩素を含む冷媒であり、更新後の冷媒がR410A等の塩素を含まない冷媒とした場合には、オゾン破壊係数を0とすることができるため、オゾン層保護にも役立つ。さらに、既設のユニットに用いられていた冷媒がR407Cであり、更新後の冷媒がR32とした場合には、その更新により地球温暖化係数が小さくなるため、地球温暖化防止にも役立つ。   In addition, when the refrigerant used in the existing unit is a refrigerant containing chlorine such as R22 and the updated refrigerant is a refrigerant not containing chlorine such as R410A, the ozone depletion coefficient may be zero. It can also help protect the ozone layer. Furthermore, when the refrigerant used in the existing unit is R407C and the refrigerant after renewal is R32, the renewal reduces the global warming potential, which helps to prevent global warming.

実施の形態2.
図3は、本発明の実施の形態2に係る冷凍空調装置の冷媒回路図である。図3中の実施の形態1の冷媒回路を示す図1と同一の機能・構成を有する箇所については、同一の記号を付し、その詳細な説明を省略または簡略化する。
Embodiment 2. FIG.
FIG. 3 is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention. The portions having the same functions and configurations as those in FIG. 1 showing the refrigerant circuit of the first embodiment in FIG. 3 are denoted by the same symbols, and detailed description thereof is omitted or simplified.

図3に示すように、本実施の形態2の冷凍空調装置では、熱源側ユニット24に、第2の絞り装置25、第1の圧力センサ26、及び第2の圧力センサ27を備えている。第2の絞り装置25は、冷房運転時に冷媒が冷媒熱交換器10から負荷側ユニット2に向かう配管中であって、かつ、補助絞り装置21への分岐点より下流側に配置されている。また、第1の延長配管3内の冷媒圧力を測定する第1の圧力スイッチ26は、冷房運転時において第2の絞り装置25の下流側となる位置に設けられている。圧縮機6の吐出圧力を測定する第2の圧力スイッチ27は、圧縮機6と油分離器7との間に設けられている。   As shown in FIG. 3, in the refrigerating and air-conditioning apparatus according to the second embodiment, the heat source side unit 24 includes a second expansion device 25, a first pressure sensor 26, and a second pressure sensor 27. The second expansion device 25 is arranged in the pipe where the refrigerant is directed from the refrigerant heat exchanger 10 toward the load side unit 2 during the cooling operation, and further downstream from the branch point to the auxiliary expansion device 21. The first pressure switch 26 for measuring the refrigerant pressure in the first extension pipe 3 is provided at a position downstream of the second expansion device 25 during the cooling operation. A second pressure switch 27 that measures the discharge pressure of the compressor 6 is provided between the compressor 6 and the oil separator 7.

尚、本実施の形態2では、圧縮機6は、インバータ(図示せず)で運転周波数を可変にできるものとする。さらに、熱源側ユニット24は、既設のユニットに対して、概ね1.2倍の容量を有するユニットとし、既設のユニットで使用されていた冷媒をR22とし、新規のユニットで使用される冷媒をR410Aとする。   In the second embodiment, it is assumed that the compressor 6 can vary the operating frequency with an inverter (not shown). Further, the heat source side unit 24 is a unit having a capacity approximately 1.2 times that of the existing unit, the refrigerant used in the existing unit is R22, and the refrigerant used in the new unit is R410A. And

本実施の形態2の冷凍空調装置では、既設配管の許容圧力を考慮して、上記の第1の圧力スイッチ26及び第2の圧力スイッチ27により配管圧力を測定することで、冷房運転時や暖房運転時に、配管圧力が許容圧力以上とならないように制御を行っている。以上のような構成を有する本実施形態の冷凍空調装置によれば、実施の形態1での洗浄運転と同様の運転を実施することにより、既設配管中の異物を除去することができる。以下、本実施形態における冷房運転と暖房運転を実施する場合の動作について説明する。   In the refrigerating and air-conditioning apparatus according to the second embodiment, the piping pressure is measured by the first pressure switch 26 and the second pressure switch 27 in consideration of the allowable pressure of the existing piping, so that the cooling operation or heating can be performed. Control is performed so that the piping pressure does not exceed the allowable pressure during operation. According to the refrigerating and air-conditioning apparatus of the present embodiment having the above configuration, foreign matters in the existing piping can be removed by performing the same operation as the cleaning operation in the first embodiment. Hereinafter, an operation when the cooling operation and the heating operation in the present embodiment are performed will be described.

まず、冷房運転を実施する場合は、圧縮機6を駆動し、高温・高圧のガス冷媒が圧縮機6から吐出し、四方弁8を介して熱源側熱交換器9で凝縮・液化する。液化した冷媒は、冷媒熱交換器10で過冷却度を増大させ、冷媒熱交換器10を流出する。冷媒熱交換器10を流出した液冷媒の一部は補助絞り装置21を介して低圧まで絞られ、冷媒熱交換器10で熱源側熱交換器9で凝縮した液冷媒と熱交換し、自身は蒸発・気化する。冷媒熱交換器10で過冷却度を増した液冷媒の残りは、第2の絞り装置25で第1の延長配管3の許容圧力まで減圧される。ここで、第1の延長配管3の許容圧力は予め調査し、熱源側ユニット24の記憶手段(図示せず)で記憶しておき、適宜、冷房運転中の第1の圧力センサ26の測定結果と比較しながら、第2の絞り装置25の開度を決定する。また、冷媒熱交換器10で液冷媒につける過冷却度は、第1の延長配管3の圧力損失により冷媒が減圧沸騰し、第1の絞り装置22の入口で冷媒の状態が気液二相状態とならないように10K以上とする。第2の絞り装置25で減圧された液冷媒は、第1の延長配管3を流れ、第1の絞り装置22で低圧まで絞られ、負荷側熱交換器23に流れる。負荷側熱交換器23に流れた低圧の気液二相冷媒は、蒸発・気化し、第2の延長配管4を流れて熱源側ユニット24に戻る。熱源側ユニット24に戻ったガス冷媒は、開閉装置20を介して冷媒熱交換器10で蒸発・気化したガス冷媒と合流した後、四方弁8、アキュムレータ5を介して圧縮機6に戻る。尚、圧縮機6から冷媒が流出する際に冷媒と一緒に持ち出される冷凍機油の多くは、油分離器7で分離され返油用毛細管11を介して圧縮機6の吸入側に戻される。また、油分離器7で分離されずに熱源側ユニット24から流出した冷凍機油は、冷媒とともに冷媒回路を循環して、再び熱源側ユニット24に戻り、アキュムレータ5に一旦溜まる。ここで、アキュムレータ5内の冷凍機油は、返油回路開閉手段17により、所定の量ずつ圧縮機6に戻される。   First, when performing the cooling operation, the compressor 6 is driven, high-temperature and high-pressure gas refrigerant is discharged from the compressor 6, and is condensed and liquefied by the heat source side heat exchanger 9 through the four-way valve 8. The liquefied refrigerant increases the degree of supercooling in the refrigerant heat exchanger 10 and flows out of the refrigerant heat exchanger 10. A part of the liquid refrigerant that has flowed out of the refrigerant heat exchanger 10 is throttled to a low pressure via the auxiliary throttle device 21, and exchanges heat with the liquid refrigerant condensed in the heat source side heat exchanger 9 in the refrigerant heat exchanger 10. Evaporate and vaporize. The remaining liquid refrigerant whose degree of supercooling has been increased by the refrigerant heat exchanger 10 is reduced to the allowable pressure of the first extension pipe 3 by the second expansion device 25. Here, the allowable pressure of the first extension pipe 3 is investigated in advance and stored in the storage means (not shown) of the heat source side unit 24, and the measurement result of the first pressure sensor 26 during the cooling operation is appropriately selected. And the opening degree of the second expansion device 25 is determined. The degree of supercooling applied to the liquid refrigerant by the refrigerant heat exchanger 10 is such that the refrigerant boiles under reduced pressure due to the pressure loss of the first extension pipe 3, and the state of the refrigerant at the inlet of the first expansion device 22 is gas-liquid two-phase. It shall be 10K or more so as not to be in a state. The liquid refrigerant decompressed by the second expansion device 25 flows through the first extension pipe 3, is throttled to a low pressure by the first expansion device 22, and flows to the load side heat exchanger 23. The low-pressure gas-liquid two-phase refrigerant that has flowed to the load-side heat exchanger 23 evaporates and vaporizes, flows through the second extension pipe 4, and returns to the heat source-side unit 24. The gas refrigerant returned to the heat source side unit 24 merges with the gas refrigerant evaporated and vaporized by the refrigerant heat exchanger 10 via the opening / closing device 20, and then returns to the compressor 6 via the four-way valve 8 and the accumulator 5. Most of the refrigerating machine oil taken out together with the refrigerant when the refrigerant flows out of the compressor 6 is separated by the oil separator 7 and returned to the suction side of the compressor 6 through the oil return capillary 11. The refrigerating machine oil that has flowed out of the heat source unit 24 without being separated by the oil separator 7 circulates in the refrigerant circuit together with the refrigerant, returns to the heat source unit 24 again, and temporarily accumulates in the accumulator 5. Here, the refrigerating machine oil in the accumulator 5 is returned to the compressor 6 by a predetermined amount by the oil return circuit opening / closing means 17.

また、暖房運転を実施する場合は、圧縮機6を駆動し、高温・高圧のガス冷媒が圧縮機6から吐出し、四方弁8、開閉装置20を介して第2の延長配管4に流れる。ここで、第2の延長配管4の許容圧力は予め調査し、熱源側ユニット24の記憶手段(図示せず)で記憶しておき、適宜、暖房運転中の第2の圧力センサ27の測定結果と比較しながら、インバータで運転周波数を増減させることで、圧縮機6の回転数を制御する。第2の延長配管4を流れた高温・高圧のガス冷媒は、負荷側熱交換器器23で凝縮・液化する。負荷側熱交換器23で液化した冷媒は、第1の絞り装置22で低圧まで絞られ、第1の延長配管3に流れ、熱源側ユニット24に戻る。熱源側ユニット24に戻った気液二相状態の冷媒は、熱源側熱交換器9で蒸発・気化した後、四方弁8、アキュムレータ5を介して圧縮機6に戻る。尚、圧縮機6から冷媒が流出する際に冷媒と一緒に持ち出される冷凍機油の多くは、油分離器7で分離され返油用毛細管11を介して圧縮機6の吸入側に戻される。また、油分離器7で分離されずに熱源側ユニット24から流出した冷凍機油は、冷媒とともに冷媒回路を循環して、再び熱源側ユニット24に戻り、アキュムレータ5に一旦溜まる。ここで、アキュムレータ5内の冷凍機油は、返油回路開閉手段17により、所定の量ずつ圧縮機6に戻される。 When the heating operation is performed, the compressor 6 is driven, and high-temperature and high-pressure gas refrigerant is discharged from the compressor 6 and flows to the second extension pipe 4 through the four-way valve 8 and the opening / closing device 20. Here, the allowable pressure of the second extension pipe 4 is investigated in advance and stored in the storage means (not shown) of the heat source side unit 24, and the measurement result of the second pressure sensor 27 during the heating operation as appropriate. The number of rotations of the compressor 6 is controlled by increasing or decreasing the operating frequency with an inverter. The high-temperature and high-pressure gas refrigerant that has flowed through the second extension pipe 4 is condensed and liquefied by the load-side heat exchanger 23. The refrigerant liquefied by the load side heat exchanger 23 is throttled to a low pressure by the first throttle device 22, flows to the first extension pipe 3, and returns to the heat source side unit 24. The refrigerant in the gas-liquid two-phase state that has returned to the heat source side unit 24 evaporates and vaporizes in the heat source side heat exchanger 9 and then returns to the compressor 6 via the four-way valve 8 and the accumulator 5. Most of the refrigerating machine oil taken out together with the refrigerant when the refrigerant flows out of the compressor 6 is separated by the oil separator 7 and returned to the suction side of the compressor 6 through the oil return capillary 11. The refrigerating machine oil that has flowed out of the heat source unit 24 without being separated by the oil separator 7 circulates in the refrigerant circuit together with the refrigerant, returns to the heat source unit 24 again, and temporarily accumulates in the accumulator 5. Here, the refrigerating machine oil in the accumulator 5 is returned to the compressor 6 by a predetermined amount by the oil return circuit opening / closing means 17.

以上説明した通り、本実施形態の冷凍空調装置によれば、既設配管の許容圧力を考慮して配管圧力を制御することにより、既設配管の許容圧力よりも動作圧力の高い冷媒を使用する場合でも、配管許容圧力を順守した冷凍サイクルの動作が確保でき、冷凍サイクルを安全に動作させることができる。   As described above, according to the refrigerating and air-conditioning apparatus of the present embodiment, even when a refrigerant having a higher operating pressure than the allowable pressure of the existing piping is used by controlling the piping pressure in consideration of the allowable pressure of the existing piping. The operation of the refrigeration cycle in compliance with the allowable piping pressure can be ensured, and the refrigeration cycle can be operated safely.

また、R22とR410Aのガス密度を比較すると、0℃で、R22が21.23kg/m程度であるのに対し、R410Aでは、0℃で30.48程度と約1.44倍の密度がある。ここで、単位時間で流れる質量が同じであれば、ガス配管(第2の延長配管4)を流れる冷媒の速度は減少する。このため、配管中に流出した冷凍機油が冷媒の流れ(せん断力)によって移動しにくくなり、R22で使用していた配管をR410Aで使用する際に、同じ容量の熱源側ユニットに入れ換える場合には、配管中に冷凍機油が残留し易くなる。一方、R410Aを使ったシステムの熱源側ユニットの容量を約1.2倍以上とすることで、ガス配管中に残留する冷凍機油とガス冷媒の間に働くせん断力が冷媒の密度の1乗と冷媒の速度の2乗に比例する関係にあることから、ガス配管で冷媒と冷凍機油に働くせん断力をR22とR410Aとで概ね同等とすることができ、冷凍機油のガス配管での返油の信頼性はR22でもR410Aでも同等とすることができる。 Moreover, when comparing the gas densities of R22 and R410A, R22 is about 21.23 kg / m 3 at 0 ° C., whereas R410A has a density of about 1.44 times, about 30.48 at 0 ° C. is there. Here, if the mass flowing in the unit time is the same, the speed of the refrigerant flowing through the gas pipe (second extension pipe 4) decreases. For this reason, the refrigerating machine oil that has flowed into the pipe is less likely to move due to the refrigerant flow (shearing force), and when the pipe used in R22 is replaced with a heat source side unit of the same capacity when used in R410A. Refrigerator oil tends to remain in the pipe. On the other hand, by setting the capacity of the heat source side unit of the system using R410A to about 1.2 times or more, the shear force acting between the refrigerating machine oil remaining in the gas pipe and the gas refrigerant becomes the first power of the density of the refrigerant. Since the relationship is proportional to the square of the speed of the refrigerant, the shearing force acting on the refrigerant and the refrigerating machine oil in the gas pipe can be made substantially equal between R22 and R410A, and the oil return of the refrigerating machine oil in the gas pipe Reliability can be the same for both R22 and R410A.

本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る冷凍空調装置のユニット更新手順を説明するための図である。It is a figure for demonstrating the unit update procedure of the refrigeration air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍空調装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.

符号の説明Explanation of symbols

1、24 熱源側ユニット、 2 負荷側ユニット、 3 第1の延長配管、 4 第2の延長配管、 5 アキュムレータ、 6 圧縮機、 7 油分離器、 8 四方弁、 9 熱源側熱交換器、 10 冷媒熱交換器、 11 返油用毛細管、 12 返油回路、 13 開閉装置、 14 ホットガスバイパス回路、 15 返油回路、 16 排出ポート、 17 返油回路開閉手段、 18 逆止弁、 19 バイパス回路、 20 開閉装置、 21 補助絞り装置、 22 第1の絞り装置、 23 負荷側熱交換器、 25 第2の絞り装置、 26 第1の圧力スイッチ、 27 第2の圧力スイッチ。   1, 24 Heat source side unit, 2 Load side unit, 3 First extension pipe, 4 Second extension pipe, 5 Accumulator, 6 Compressor, 7 Oil separator, 8 Four-way valve, 9 Heat source side heat exchanger, 10 Refrigerant heat exchanger, 11 oil return capillary, 12 oil return circuit, 13 switchgear, 14 hot gas bypass circuit, 15 oil return circuit, 16 discharge port, 17 oil return circuit open / close means, 18 check valve, 19 bypass circuit 20 Opening and closing device, 21 Auxiliary throttle device, 22 First throttle device, 23 Load side heat exchanger, 25 Second throttle device, 26 First pressure switch, 27 Second pressure switch

Claims (7)

少なくともアキュムレータ、圧縮機、熱源側熱交換器を順次接続してなる回路と、前記アキュムレータから前記圧縮機に冷凍機油を返す返油回路とを含む熱源側ユニットと、
第1の絞り装置と負荷側熱交換器を含む負荷側ユニットと、
前記熱源側熱交換器と前記第1の絞り装置とを接続する第1の延長配管と、
前記負荷側熱交換器と前記圧縮機とを接続する第2の延長配管とを備えた冷凍空調装置において、
前記アキュムレータに設けられ、洗浄運転後に前記アキュムレータ内の異物を排出する排出手段と、
前記返油回路中に設けられ、通常運転時には前記返油回路を開放して前記冷凍機油を所定量ずつ前記圧縮機に返し、前記洗浄運転時には前記返油回路を閉止する返油回路開閉手段と
前記熱源側ユニットに、前記洗浄運転時には前記熱源側熱交換器を通過した冷媒を液もしくは気液二相状態となるように冷却し、通常の冷房運転時には前記熱源側熱交換器を通過した冷媒の過冷却度を増大させる冷媒熱交換器
前記第2の延長配管から分岐し、前記冷媒熱交換器に接続された後に、再び前記第2の延長配管に合流するバイパス回路と、
前記洗浄運転時に、前記負荷側熱交換器を通過した後に前記圧縮機に戻る途中の冷媒を、前記バイパス回路に流入させる開閉装置と、
冷房運転時に、前記熱源側熱交換器側から前記冷媒熱交換器を通過した冷媒の一部を減圧させる補助絞り装置を備え、
前記冷房運転時に、前記補助絞り装置を通過した冷媒が前記バイパス回路を介して前記冷媒熱交換器に流入するように構成されてることを特徴とする冷凍空調装置。
A heat source side unit including at least an accumulator, a compressor, a circuit formed by sequentially connecting a heat source side heat exchanger, and an oil return circuit for returning refrigeration oil from the accumulator to the compressor;
A load side unit including a first expansion device and a load side heat exchanger;
A first extension pipe connecting the heat source side heat exchanger and the first expansion device;
In the refrigeration air conditioner comprising the second extension pipe connecting the load side heat exchanger and the compressor,
Discharging means provided in the accumulator for discharging foreign matter in the accumulator after a cleaning operation;
An oil return circuit opening / closing means provided in the oil return circuit, which opens the oil return circuit during normal operation and returns the refrigerating machine oil to the compressor by a predetermined amount, and closes the oil return circuit during the cleaning operation; ,
In the heat source side unit, the refrigerant that has passed through the heat source side heat exchanger during the cleaning operation is cooled so as to be in a liquid or gas-liquid two-phase state, and during the normal cooling operation, the refrigerant that has passed through the heat source side heat exchanger. a refrigerant heat exchanger to increase the supercooling degree of
A bypass circuit branched from the second extension pipe and connected to the refrigerant heat exchanger, and then joined again to the second extension pipe;
An opening / closing device for causing the refrigerant on the way to return to the compressor after passing through the load-side heat exchanger to flow into the bypass circuit during the cleaning operation;
During the cooling operation, an auxiliary throttle device to decompress a portion of the refrigerant passing through the refrigerant heat exchanger from the heat source-side heat exchanger side,
Wherein during cooling operation, the refrigerating air conditioning system refrigerant passed through the auxiliary throttle device is characterized that you have configured to flow into the refrigerant heat exchanger through the bypass circuit.
前記圧縮機と四方弁との間に前記圧縮機から冷媒とともに流出した前記冷凍機油を前記冷媒と分離する油分離器と、この油分離器により分離された前記冷凍機油を返油用毛細管を介して前記圧縮機に戻す返油回路とを備えたことを特徴とする請求項1に記載の冷凍空調装置。   An oil separator that separates the refrigerating machine oil that flows out of the compressor together with the refrigerant from the refrigerant between the compressor and the four-way valve, and the refrigerating machine oil separated by the oil separator through an oil return capillary. The refrigerating and air-conditioning apparatus according to claim 1, further comprising an oil return circuit that returns to the compressor. 前記熱源側熱交換器と前記第1の絞り装置との間の配管中に設けられた第2の絞り装置と、前記第1の延長配管内の圧力を測定する第1の圧力センサと、前記第1の延長配管の許容圧力を記憶している記憶手段とを備え、
前記第1の延長配管内の圧力が許容圧力以下となるように前記第2の絞り装置の開度を設定することを特徴とする請求項1または2に記載の冷凍空調装置。
A second expansion device provided in a pipe between the heat source side heat exchanger and the first expansion device, a first pressure sensor for measuring a pressure in the first extension pipe, and Storage means for storing the allowable pressure of the first extension pipe,
The refrigerating and air-conditioning apparatus according to claim 1 or 2, wherein the opening degree of the second expansion device is set so that the pressure in the first extension pipe is equal to or lower than an allowable pressure.
前記圧縮機の吐出圧力を測定する第2の圧力センサと、前記第2の延長配管の許容圧力を記憶している記憶手段とを備え、
前記圧縮機の吐出圧力と前記第2の延長配管の許容圧力との関係に基づき、前記第2の延長配管内の圧力が許容圧力以下となるように前記圧縮機の回転数を制御することを特徴とする請求項1〜3のいずれかに記載の冷凍空調装置。
A second pressure sensor for measuring the discharge pressure of the compressor, and storage means for storing an allowable pressure of the second extension pipe,
Based on the relationship between the discharge pressure of the compressor and the allowable pressure of the second extension pipe, controlling the rotation speed of the compressor so that the pressure in the second extension pipe is equal to or lower than the allowable pressure. The refrigeration air conditioner according to any one of claims 1 to 3.
既設の延長配管を流用し、少なくともアキュムレータ、圧縮機、熱源側熱交換器を順次接続してなる回路と前記アキュムレータから前記圧縮機に冷凍機油を返す返油回路とこの返油回路中に設けられた返油回路開閉手段と前記アキュムレータに設けられた排出手段とを含む熱源側ユニットと、絞り装置と負荷側熱交換器を含む負荷側ユニットを備え、前記熱源側ユニットに、前記洗浄運転時には前記熱源側熱交換器を通過した冷媒を液もしくは気液二相状態となるように冷却し、通常の冷房運転時には前記熱源側熱交換器を通過した冷媒の過冷却度を増大させる冷媒熱交換器前記第2の延長配管から分岐し、前記冷媒熱交換器に接続された後に、再び前記第2の延長配管に合流するバイパス回路と、前記洗浄運転時に、前記負荷側熱交換器を通過した後に前記圧縮機に戻る途中の冷媒を、前記バイパス回路に流入させる開閉装置と、冷房運転時に、前記熱源側熱交換器側から前記冷媒熱交換器を通過した冷媒の一部を減圧させる補助絞り装置を備え、前記冷房運転時に、前記補助絞り装置を通過した冷媒が前記バイパス回路を介して前記冷媒熱交換器に流入するように構成されてる冷凍空調装置とするために、前記熱源側ユニットと前記負荷側ユニットの少なくとも一方を更新するユニット更新手順と、
更新後の冷凍空調装置中の少なくとも前記既設の延長配管内を真空引きする真空引き手順と、
前記更新後の冷凍空調装置中の少なくとも前記既設の延長配管内に、回収された冷媒より動作圧力が高い冷媒を充填する冷媒充填手順と、
この充填された冷媒を用いて、前記既設の延長配管内を洗浄する洗浄運転を実施する洗浄運転手順と、
前記洗浄運転後に前記アキュムレータ内の異物を前記排出ポートから排出する異物排出手順と、
前記異物が除去された後に、通常運転を実施する通常運転手順からなることを特徴とする冷凍空調装置の更新方法。
An existing extension pipe is used, and at least an accumulator, a compressor, and a heat source side heat exchanger are connected in sequence, an oil return circuit that returns refrigeration oil from the accumulator to the compressor, and an oil return circuit. A heat source side unit including an oil return circuit opening / closing means and a discharge means provided in the accumulator, and a load side unit including a throttling device and a load side heat exchanger, and the heat source side unit includes the heat source side unit during the cleaning operation. A refrigerant heat exchanger that cools the refrigerant that has passed through the heat source side heat exchanger so as to be in a liquid or gas-liquid two-phase state and increases the degree of supercooling of the refrigerant that has passed through the heat source side heat exchanger during normal cooling operation If, branched from the second extension piping, after being connected to the refrigerant heat exchanger, a bypass circuit for re-joins the second extension piping, during the washing operation, the load-side heat exchanger The middle of the refrigerant returning to the compressor after passing through the opening and closing device for flow into the bypass circuit, during cooling operation, reduced pressure a portion of the refrigerant passing through the refrigerant heat exchanger from the heat source-side heat exchanger side is to an auxiliary expansion device, when the cooling operation, in the refrigerant having passed through the auxiliary throttle device to the refrigeration air conditioning system that is configured to flow into the refrigerant heat exchanger via the bypass circuit A unit update procedure for updating at least one of the heat source unit and the load unit;
A evacuation procedure for evacuating at least the existing extension pipe in the refrigerating and air-conditioning apparatus after the update;
A refrigerant charging procedure for charging a refrigerant having a higher operating pressure than the recovered refrigerant into at least the existing extension pipe in the refrigerating and air-conditioning apparatus after the update,
Using this filled refrigerant, a cleaning operation procedure for performing a cleaning operation for cleaning the inside of the existing extension pipe,
Foreign matter discharge procedure for discharging foreign matter in the accumulator after the cleaning operation from the discharge port;
A method for updating a refrigerating and air-conditioning apparatus, comprising: a normal operation procedure for performing normal operation after the foreign matter is removed.
前記洗浄運転手順において、前記返油回路開閉手段を閉止して前記洗浄運転を実施することを特徴とする請求項5に記載の冷凍空調装置の更新方法。   6. The method for updating a refrigerating and air-conditioning apparatus according to claim 5, wherein in the cleaning operation procedure, the cleaning operation is performed by closing the oil return circuit opening / closing means. 前記ユニット更新手順において、補助熱交換器を備える熱源側ユニットに更新することを特徴とする請求項5または6に記載の冷凍空調装置の更新方法。   In the said unit update procedure, it updates to the heat-source side unit provided with an auxiliary heat exchanger, The update method of the refrigeration air conditioner of Claim 5 or 6 characterized by the above-mentioned.
JP2003280349A 2003-07-25 2003-07-25 Refrigeration air conditioner and update method thereof Expired - Lifetime JP4279080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003280349A JP4279080B2 (en) 2003-07-25 2003-07-25 Refrigeration air conditioner and update method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003280349A JP4279080B2 (en) 2003-07-25 2003-07-25 Refrigeration air conditioner and update method thereof

Publications (3)

Publication Number Publication Date
JP2005043025A JP2005043025A (en) 2005-02-17
JP2005043025A5 JP2005043025A5 (en) 2006-08-17
JP4279080B2 true JP4279080B2 (en) 2009-06-17

Family

ID=34266203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003280349A Expired - Lifetime JP4279080B2 (en) 2003-07-25 2003-07-25 Refrigeration air conditioner and update method thereof

Country Status (1)

Country Link
JP (1) JP4279080B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032964A (en) * 2005-07-28 2007-02-08 Mitsubishi Electric Corp Multi-type air conditioner
JP4726600B2 (en) * 2005-10-06 2011-07-20 三菱電機株式会社 Refrigeration air conditioner
JP4693596B2 (en) * 2005-11-02 2011-06-01 株式会社竹中工務店 Refrigerant natural circulation cooling system
JP4980459B2 (en) * 2010-11-02 2012-07-18 三菱電機株式会社 Refrigeration air conditioner

Also Published As

Publication number Publication date
JP2005043025A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP5484930B2 (en) Air conditioner
JP5992089B2 (en) Air conditioner
JP2008215697A (en) Air conditioning device
JP5506185B2 (en) Air conditioner
JP2008096093A (en) Refrigerating device
JP2008096093A5 (en)
JP2009103452A (en) Refrigeration equipment
JP3882841B2 (en) Air conditioner, heat source unit, and method of updating air conditioner
JP6022107B2 (en) Refrigeration cycle equipment
JP4279080B2 (en) Refrigeration air conditioner and update method thereof
JP5334554B2 (en) Air conditioner
JP4420871B2 (en) Refrigeration air conditioner
JP4061494B2 (en) Connection pipe cleaning method, refrigerating device renewal method, and freezing device
JP4289901B2 (en) Oil recovery method for air conditioner and air conditioner
JP3903763B2 (en) Replacement method for refrigeration and air conditioning systems
JP6391825B2 (en) Refrigeration cycle equipment
JP2008190790A (en) Refrigerating device
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP6771311B2 (en) Refrigeration cycle equipment
JP4393786B2 (en) Refrigeration or air conditioner and method for updating the same
JP2003021436A (en) Pipeline cleaning method, air conditioner and renewal method thereof
JP6715961B2 (en) Refrigeration cycle equipment
JP4186764B2 (en) Refrigeration equipment
US7334426B2 (en) Refrigerating apparatus
JP2010139138A (en) Air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080722

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4279080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term