JP3903763B2 - Replacement method for refrigeration and air conditioning systems - Google Patents

Replacement method for refrigeration and air conditioning systems Download PDF

Info

Publication number
JP3903763B2
JP3903763B2 JP2001323024A JP2001323024A JP3903763B2 JP 3903763 B2 JP3903763 B2 JP 3903763B2 JP 2001323024 A JP2001323024 A JP 2001323024A JP 2001323024 A JP2001323024 A JP 2001323024A JP 3903763 B2 JP3903763 B2 JP 3903763B2
Authority
JP
Japan
Prior art keywords
pipe
refrigerant
pressure gas
pressure
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001323024A
Other languages
Japanese (ja)
Other versions
JP2003130503A (en
Inventor
修 森本
博文 高下
智彦 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001323024A priority Critical patent/JP3903763B2/en
Publication of JP2003130503A publication Critical patent/JP2003130503A/en
Application granted granted Critical
Publication of JP3903763B2 publication Critical patent/JP3903763B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Description

【0001】
【発明の属する技術分野】
この発明は、特に冷凍・空調システムにおいて、R22冷媒と鉱油を使用していた冷凍・空調システムを、R407C冷媒とエステル油等の冷凍機油を使用する冷凍・空調システムにリプレースする方法に関するものである。
【0002】
【従来の技術】
図12は、室内機で冷房と暖房との同時運転が可能な従来の3管接続の空調・冷凍システムを示す冷媒回路図である。
図12中、空調・冷凍システムは、室外機100と2台の室内機200a、200bと、室外機100と室内機200a、200bを接続する高圧ガス管300、低圧ガス管301、液管302で主に構成されている。また、この3管の管径には、以下のような関係がある。
低圧ガス管の管径 > 高圧ガス管の管径 > 液管の管径
なお、このような関係にするのは以下の様な理由による。
▲1▼高圧よりも低圧のガス管の管径を太くするのは、低圧の方が密度が小さいので、配管内の冷媒の流速が速くなる。従って、太く設計することで、低圧ガス管内でのガス冷媒の流速を遅くすることで性能低下を防止し、高圧ガス管内でのガス冷媒の流速との調整を図る。
▲2▼液はガスに比較して著しく密度が大きく、太い管は必要でない。また、流れる液冷媒量を絞りでコントロールできる範囲に抑える必要がある。
【0003】
室外機100では、圧縮機101の吸入側配管にアキュムレータ106が接続し、この圧縮機101の吐出側配管を分岐させて、一方の配管を第1の電磁弁102を介して熱源側熱交換器103に接続し、他方の配管を高圧ガス管300に接続させている。また、アキュムレータ106の吸入側配管も分岐させて一方の配管を第2の電磁弁107を介して第1の電磁弁102の下流側に接続し、他方の配管は低圧ガス管301に接続されている。さらに、熱源側熱交換器103には、第1の絞り装置104と逆止弁105とが並列に接続された配管が接続され、この配管は液管302に接続されている。
【0004】
また、室内機200aは、一部が筐体(図示せず)から外部に延び、液管302に接続される液枝管201aと、液枝管201aに接続された第2の絞り装置202aと、この第2の絞り装置202aに配管接続された負荷側熱交換器203aと、負荷側熱交換器203aに接続されたガス枝管204aとを有している。なお、このガス枝管204aは、一方の低圧ガス枝管205aが第3の電磁弁206aを介して低圧ガス管301に接続し、他方の高圧ガス枝管207aが第4の電磁弁208aを介して高圧ガス管300に接続する分岐管を有する冷媒コントローラ209aに接続されている。
また、室内機200b及び冷媒コントローラ209bも、室内機200a及び冷媒コントローラ209aと同様の構成をしている。
【0005】
次に、運転中での冷媒の流れについて説明する。
室内機200a、200bが共に冷房運転を行う場合には、第1の電磁弁102を開き、第2の電磁弁107を閉じ、第3の電磁弁206a、206bを開き、第4の電磁弁208a、208bを閉じ、圧縮機101を起動する。
この場合、圧縮機101を吐出した高温・高圧のガス冷媒は第1の電磁弁102を介して熱源側熱交換器103に流れ、ここで凝縮・液化された後に、中間圧の液管302を流れ、第2の絞り装置202a、202bで低圧まで絞られて気液二相状態となり、負荷側熱交換器203a、203bで蒸発・気化し、低圧ガス枝管205a,205b、及び低圧ガス管301を流れ、アキュムレータ106を介して圧縮機101に戻る。
【0006】
また、室内機200a、200bが共に暖房運転を行う場合には、第1の電磁弁102を閉じ、第2の電磁弁107を開き、第3の電磁弁206a、206bを閉じ、第4の電磁弁208a、208bを開き、圧縮機101を起動する。
この場合、圧縮機101を吐出した高温・高圧のガス冷媒は、高圧ガス管300を流れ、高圧ガス枝管207a,207bを介して負荷側熱交換器203a、203bに流れ込んで凝縮・液化し、第2の絞り装置202a、202bで中間圧まで減圧された後、液枝管201a、201bを介して液管302を流れ、第1の絞り装置104で低圧まで絞られ、気液二相状態となり、熱源側熱交換器103で蒸発・気化し、第2の電磁弁107、アキュムレータ106を介して圧縮機101に戻る。
【0007】
また、室内機200aが冷房運転、室内機200bが暖房運転し、さらに、室内機200aの冷房負荷よりも室内機200bの暖房負荷が小さい場合には、第1の電磁弁102を開き、第2の電磁弁107を閉じ、第3の電磁弁206aを開き、第4の電磁弁208aを閉じ、第3の電磁弁206bを閉じ、第4の電磁弁208bを開き圧縮機101を起動する。
【0008】
圧縮機101を吐出した高温・高圧のガス冷媒は、第1の電磁弁102を介して熱源側熱交換器103で凝縮・液化した後に、中間圧の液管302を流れる。また一方で、圧縮機101を吐出した高温・高圧のガス冷媒の一部は、高圧ガス管300を流れて、第4の電磁弁208bを介して負荷側熱交換器203bに流れ凝縮・液化する。熱源側熱交換器203bで凝縮・液化した液冷媒は、液枝管201bを介して中間圧の液管を流れる。ここで、中間圧の液管302では、室外機100から流れる液冷媒と、第2の室内機200bから流れる液冷媒とが合流し、液枝管201aを介して室内機200aに流れ込み、第2の絞り装置202aで低圧まで絞られた後に、負荷側熱交換器203aで蒸発・気化し、低圧ガス枝管205aおよび低圧ガス管301を流れて、アキュムレータ106を介して圧縮機101に戻る。
【0009】
また、室内機200aが冷房運転、室内機200bが暖房運転をし、さらに、室内機200aの冷房負荷よりも室内機200bの暖房負荷が大きい場合には、第1の電磁弁102を閉じ、第2の電磁弁107を開き、第3の電磁弁206aを開き、第4の電磁弁208aを閉じ、第3の電磁弁206bを閉じ、第4の電磁弁208bを開き圧縮機101を起動する。
【0010】
圧縮機101を吐出した高温・高圧のガス冷媒は、高圧ガス管300を流れ、第4の電磁弁208bを介して、負荷側熱交換器203bに流れ込み、凝縮・液化する。この液冷媒は、第2の絞り装置202b、液枝管201bを介して中間圧の液管302を流れる。なお。この液管302を流れる液冷媒の一部は、液枝管201a、第2の絞り装置202aを介して負荷側熱交換器203aに流れて蒸発・気化し、低圧ガス枝管205aおよび低圧ガス管301を流れ、アキュムレータ106を介して圧縮機101に戻る。また、中間圧の液管302を流れる残りの液冷媒は、第1の絞り装置104で低圧まで絞られ、熱源側熱交換器103で蒸発・気化した後、第2の電磁弁107、アキュムレータ106を介して圧縮機101に戻る。
【0011】
【発明が解決しようとする課題】
上述のような、従来の3管方式の空調・冷凍システムでは、冷媒にR22、冷凍機油として鉱油を用いて室外機・室内機を、冷媒にR407C、冷凍機油としてエステル油等の合成油を使用する室外機・室内機に交換する場合には、既設の3管に付着した鉱油を洗浄するために、1本づつ窒素ガスでブローして鉱油を排除するか、3管のうち2管ずつを選択して洗浄する作業が必要である。
【0012】
しかし、1本毎に窒素ガスでブローする方法では、ブロー時間をどんなに長くしても、配管に鉱油が少なからず残ってしまうので、交換後の使用でエステル油と混合し、動作の信頼性が損なわれる恐れがあるという問題があった。
【0013】
また、2本ずつを選択して洗浄する方法では、多大な手間と時間を要するという問題があった。
【0014】
この発明は上述の課題を解決するためになされたものであり、既設の3管を用いて、新しい冷媒、及び冷凍機油を使用する冷凍・空調システムに簡単にリプレースできる方法を提供することを目的としている。
【0015】
【課題を解決するための手段】
この発明における冷凍・空調システムのリプレース方法は、第1の室外機、及び第1の室内機を高圧ガス管、低圧ガス管、液管から取り外す第1の工程と、熱源側熱交換器を配管を介して高圧ガス管または高圧ガス管と液管との一組のいずれかである新たな高圧管に接続し、四方弁を配管を介して低圧ガス管である新たな低圧管に接続することで第2の室外機を設置し、気液分離器を配管を介して新たな高圧管に接続し、複数の弁を配管を介して新たな低圧管に接続することで分流コントローラを設置し、絞り装置を配管を介して気液分離器に接続し、負荷側熱交換器を配管を介して複数の弁に接続することで複数の室内機を設置する第2の工程と、真空引き、及び第2の冷媒を第2の室外機、第2の室内機、分流コントローラ、新たな高圧管新たな低圧管の少なくとも1つに注入する第3の工程と、流入する第2の冷媒から第1の冷凍機油を分離して回収した後にガス状の第2の冷媒のみを流出する異物捕獲装置を新たな低圧管に設置し、第2の冷媒が分流コントローラの弁から異物捕獲装置に流入した後に四方弁に流れるように第2の室内機の運転を一定時間行うことで、新たな高圧管と新たな低圧管とに残留する第の冷凍機油を回収する第4の工程とを有するものとした。
【0017】
この発明における冷凍・空調システムのリプレース方法は、第1の室外機、及び第1の室内機を高圧ガス管、低圧ガス管、液管から取り外す第1の工程と、熱源側熱交換器を配管を介して高圧ガス管または高圧ガス管と液管との一組のいずれかである新たな高圧管に接続し、四方弁を配管を介して低圧ガス管である新たな低圧管に接続することで第2の室外機を設置し、気液分離器を配管を介して新たな高圧管に接続し、複数の弁を配管を介して新たな低圧管に接続することで分流コントローラを設置し、絞り装置を配管を介して気液分離器に接続し、負荷側熱交換器を配管を介して複数の弁に接続することで複数の室内機を設置する第2の工程と、真空引き、及び第2の冷媒を第2の室外機、第2の室内機、分流コントローラ、新たな高圧管、新たな低圧管の少なくとも1つに注入する第3の工程と、
油回収器、油分離器、および油回収器の冷媒吸込側の配管と油分離器の冷媒吐出側の配管との間で熱交換を行う冷媒熱交換器を備えたオイルトラッパを、油回収器の冷媒吸込側の配管が新たな低圧管に接続され、油分離器の冷媒吐出側の配管が新たな高圧管に接続されるように、第2の室外機と分流コントローラとの間に設置し、第2の室外機から吐き出される冷媒が油分離器を流れ、分流コントローラから吐き出される冷媒が油回収器を流れるように、第2の室内機の運転を一定時間行うことで、新たな高圧管と新たな低圧管とに残留する第1の冷凍機油を回収する第4の工程とを有するものとした。
【0018】
この発明における冷凍・空調システムのリプレース方法は、第1の冷媒と第1の冷凍機油を使用した室内機及び室外機を高圧ガス管、低圧ガス管、液管から切り離し、第2の冷媒と第2の冷凍機油を使用する室内機及び室外機を高圧ガス管、低圧ガス管、液管に接続させる第1の工程と、真空引き、及び第2の冷媒を第2の室外機、第2の室内機、冷媒コントローラ、高圧ガス管、低圧ガス管の少なくとも1つに注入する第2の工程と、低圧ガス管に2つの分岐管を設置し、この2つの分岐管に異物捕獲装置を設置することで、冷媒がこの異物捕獲装置を流れるようにした後に、一定時間、全体の冷房負荷の方が暖房負荷よりも大きくなるように、複数の室内機を冷房と暖房とが混合した運転をさせる第3の工程とを有するものとした。
【0019】
この発明における冷凍・空調システムのリプレース方法は、第1の冷媒と第1の冷凍機油を使用した室内機及び室外機を高圧ガス管、低圧ガス管、液管から切り離し、第2の冷媒と第2の冷凍機油を使用する室内機及び室外機を高圧ガス管、低圧ガス管、液管に接続させる第1の工程と、真空引き、及び第2の冷媒を第2の室外機、第2の室内機、冷媒コントローラ、高圧ガス管、低圧ガス管又は液管の少なくとも1つに注入する第2の工程と、低圧ガス管と高圧ガス管と液管とに、油回収器と、油分離器と、油回収器の冷媒吸込側の配管と油分離器の冷媒吐出側の配管との間で熱交換を行う冷媒熱交換器とを有するオイルトラッパを、油回収器の冷媒吸込側の配管が低圧ガス管に接続され、油分離器の冷媒吐出側の配管が高圧ガス管及び液管に接続されるように、室外機と複数の室内機との間に設置することで、室外機から吐き出される冷媒がこの油分離器を流れ、室内機から吐き出される冷媒がこの油回収器を流れるようにした後に、一定時間室内機の運転を行う第3の工程とを有するものとした。
【0020】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1における、冷凍・空調システムのリプレース方法を示すフローチャートである。また、図2、及び図3は、作成工程の段階での冷凍・空調システムの構成図である。
【0021】
まず、図12に示した冷凍・空調システムから従来使用していたR22冷媒を回収する(ステップ(以下、「S」とする)1)。
次に、既設の3管式の室外機・室内機を取り外し、R407C冷媒用の2管式の室外機を3管の既設配管のうち低圧ガス管、及び高圧ガス管に接続させるように設置する(S2)。次に、分流コントローラを低圧ガス管、及び高圧ガス管に接続し、さらに、室内機をこの分流コントローラに接続させる(S3)。なお、ここまでの作業で、完成状態となる。
【0022】
図2は、この段階までの作業終了時での冷凍・空調システムを示す冷媒回路図である。
図2中、室外機1は、圧縮機2と、四方弁3と、熱源側熱交換器4とアキュムレータ5とが配管接続されている。また、四方弁3からは第1の逆止弁6を有する配管7が延び、低圧ガス管20に接続しており、熱源側熱交換器4からも第2の逆止弁8を有する配管9が延び、高圧ガス管21に接続している。また、配管7の低圧ガス管20側と配管9の熱源側熱交換器4側との間には、第3の逆止弁10を有する配管11が接続され、配管7の四方弁3側と配管9の高圧ガス管21側との間には、第4の逆止弁12を有する配管13が接続されている。
【0023】
低圧ガス管20、及び高圧ガス管21には分流コントローラ30が接続されている。この分流コントローラ30は、高圧ガス管21に接続される気液分離器31と、この気液分離器31で分離された液冷媒が流れる配管32に設けられた第1の絞り装置33と、低圧ガス管20から分岐した一方の配管34に設けられた第2の絞り装置35と、低圧ガス管20から分岐した他方の配管36が分岐し、この一方に接続された第1の電磁弁37a、及び他方に接続された第1の電磁弁37bと、気液分離器31で分離されたガス冷媒が流れる配管38が分岐し、この一方に接続された第2の電磁弁39a、及び他方に接続された第2の電磁弁39bとを有している。
【0024】
また、第1の電磁弁37a、及び第2の電磁弁39aから出る配管は合流してガス枝管50aとなり、室内機60aに接続し、第1の電磁弁37b、及び第2の電磁弁39bから出る配管は合流してガス枝管50bとなり、室内機60bに接続している。さらに、配管32と配管35とは一度合流した後に、分離し、一方の液枝管51aは室内機60aに接続し、他方の液枝管51bは室内機60bに接続している。
【0025】
室内機60aでは、ガス枝管50aが負荷側熱交換器61aに接続し、液枝管51aが第3の絞り装置62aに接続し、さらに、負荷側熱交換器61aと第3の絞り装置62aが配管接続している。室内機60bも同様に、ガス枝管50bが負荷側熱交換器61bに接続し、液枝管51bが第3の絞り装置62bに接続し、さらに、負荷側熱交換器61bと第3の絞り装置62bが配管接続している。
【0026】
S3で、図2に示す構成にした後に、冷媒配管の気密試験(S4)と、冷媒配管の真空引き(S5)とを順次行い、その後に、必要な量のR407Cを冷媒配管にチャージする(S6)。その後に、異物捕獲器を低圧ガス管に設置して(S7)、フラッシング運転を実施し、既設配管中に残留する鉱油を異物捕獲器に回収する(S8)。
【0027】
図3は、S7を実行した後の冷媒回路図であり、図2の冷媒回路図に異物捕獲器を設置したものである。
図3中、70は低圧ガス管20に設けられた第1の開閉弁であり、この第1の開閉弁70の前後のそれぞれ分岐させ、第2の開閉弁71を有する分岐管72と、第3の開閉弁73を有する分岐管74とを接続し、さらに、分岐管72と分岐管74との先に異物捕獲器75を接続させている。
【0028】
次に、フラッシング運転の具体的な冷媒の流れについて図3を用いて説明する。このフラッシング運転では、第1の電磁弁37a、37bを開に、第2の電磁弁39a,39bを閉に、第1の開閉弁70は閉に、第2の開閉弁71、第3の開閉弁73は開にしている。
【0029】
圧縮機2を吐出した高温・高圧のガス冷媒は、熱源側熱交換器4で凝縮・液化し、第2の逆止弁8を介し、配管中の残留する鉱油を押し流しながら高圧ガス管21を流れ、分流コントローラ30内の気液分離器31および第1の絞り装置33、液枝管51a、51bを流れ、室内機60a、60bに至る。室内機60a、60bでは、第3の絞り装置62a、62bを介して負荷側熱交換器61a、61bに流れ、ここで蒸発・気化されてガス冷媒となる。このガス冷媒は、ガス枝管50a、50bを流れ、第1の電磁弁37a、37bを介して低圧ガス管20に流れ、第3の開閉弁73を介して異物捕獲器75に流れ込む。
【0030】
この異物捕獲器75では、既設配管中から冷媒と共に回収された鉱油を分離し、ガス冷媒のみが第2の開閉弁71を介して流出し、逆止弁6、四方弁3、アキュムレータ5を介して圧縮機2に戻る。このよう動作を所定時間行うことにより、既設配管中の鉱油を異物捕獲器75に回収することができる。
【0031】
なお、S8でフラッシング運転を実行した後に、異物捕獲器70、分岐管72、分岐管74、第1の開閉弁70を切り離して図2に示した冷媒回路図の構成することで回収した異物を空調・冷凍システムから排出し(S9)、通常運転を開始する(S10)。
【0032】
なお、図2に示す冷媒回路図で、冷房運転を行う場合には、まず、第1の電磁弁37a、37bを開き、第2の電磁弁39a、39bを閉じると共に、圧縮機2を駆動する。これにより、圧縮機2を出たガス冷媒は、熱源側熱交換器4で凝縮・液化して液冷媒になり、高圧ガス管21を流れて分流コントローラ30の気液分離器31、第1の絞り装置33、液枝管51a、51bを介して、室内機60a、60bに流れ、第3の絞り装置62a、62bにより低圧まで絞られた後に、負荷側熱交換器61a、61bで蒸発・気化する。負荷側熱交換器61a、61bで蒸発・気化したガス冷媒は、ガス枝管50a、50bを流れ、第1の電磁弁37a、37bを介して低圧ガス管20に流れ、第1の逆止弁6、四方弁3、アキュムレータ5を介して圧縮機2に戻ることになる。
【0033】
また、暖房運転を行う場合には、まず、第2の電磁弁39a、39bを開き、第1の電磁弁37a、37bを閉じると共に、圧縮機2を駆動する。これにより、圧縮機2を出たガス冷媒は、四方弁3、第4の逆止弁12、高圧ガス管21を介して分流コントローラ30の気液分離器31に流れ込む。ガス冷媒は気液分離器31から配管38に流れ、第2の電磁弁39a、39b、ガス枝管50a、50bを介して室内機60a、60bに流れる。室内機60a、60bでは、負荷側熱交換器61a、61bで凝縮・液化し、第3の絞り装置62a、62bで中間圧まで絞られた後に液枝管51a、51bを流れ、第2の絞り装置35で低圧まで絞られて気液二相状態の冷媒となり、低圧ガス管20を流れ、第3の逆止弁10を介して熱源側熱交換器4で蒸発・気化し四方弁3、アキュムレータ5を介して圧縮機2に戻る。
【0034】
また、室内機60aが冷房運転、室内機60bが暖房運転し、さらに、室内機60aの冷房負荷が室内機60bの暖房負荷よりも大きい場合には、第1の電磁弁37aと第2の電磁弁39bを開き、第1の電磁弁37bと第2の電磁弁39aを閉じると共に、圧縮機2を駆動する。これにより、圧縮機2を出たガス冷媒は四方弁3を介して熱源側熱交換器4に流れ、適度な乾き度となるまで凝縮されて高温・高圧の気液二相状態となる。その後、気液二相状態となった冷媒は、第2の逆止弁8を介して高圧ガス管21を流れ、分流コントローラ30の気液分離器31に流れ込む。なお、高圧ガス管21を液管として使用しているので、通常の2管式空調機の液管と比較して配管径が太くなり、その結果、室外機1から分流コントローラ30まで気液二相状態の冷媒が流れても分流コントローラ30に流入する気液二相冷媒の高圧は維持できる。
【0035】
分流コントローラ30の気液分離器31では、ガス冷媒と液冷媒に分離され、ガス冷媒は、配管38、第2の電磁弁39b、ガス枝管50bを介して室内機60bに流れる。室内機60bでは、負荷側熱交換器61bで凝縮・液化し、第3の絞り装置62bで中間圧の液冷媒となった後、液枝管51bを流れ、気液分離器31で分離され、第1の絞り装置33で中間圧まで絞られた液冷媒と合流し、液枝管51aを流れて室内機60aに流れ込む。室内機60aでは、第3の絞り装置62aで低圧まで絞られた後、負荷側熱交換器61aで蒸発・気化し、ガス枝管50a、第1の電磁弁37aを流れて低圧ガス管20を流れ、第1の逆止弁6、四方弁3、アキュムレータ5を介して圧縮機2に戻る。
【0036】
なお、図4は既存の3管のうち、高圧ガス管を液管として使用した場合と、一般的な2管で使用する液管を使用した場合での室外機1から分流コントローラ30までの配管長の変化に対する負荷側熱交換器61での暖房能力の変化を示す図である。この図4からも分かるように、配管長が長くなると共に暖房能力は低下するが、配管径の太い高圧ガス管を使用する場合の方が、一般的な液管を使用するよりも先に述べたように圧力損失が低く、このため暖房を行う際の凝縮圧力が高くなり、暖房能力の低下が小さくすることができる。
【0037】
また、室内機60aが冷房運転、室内機60bが暖房運転し、さらに、室内機60aの冷房負荷よりも室内機60bの暖房負荷が大きい場合には、第1の電磁弁37aと第2の電磁弁39bを開き、第1の電磁弁37bと第2の電磁弁39aを閉じると共に、圧縮機2を駆動する。これにより、圧縮機2を出たガス冷媒は、四方弁3、第4の逆止弁12を介して高圧ガス管21を流れ、分流コントローラ30の気液分離器31に流れ込む。その後、ガス冷媒は、配管38から流出し、第2の電磁弁39b、ガス枝管50bを介して室内機60bに流れ込む。室内機60bでは、負荷側熱交換器61bで凝縮・液化し、第3の絞り装置62bで中間圧の液冷媒となった後、液枝管51bを流れる。
【0038】
この液枝管51bを流れた液冷媒のうち、一部は第2の絞り装置35を介して、低圧ガス管20を流れる。また、残りは液枝管51aを介して、室内機60aの流れ込む。室内機60aでは、第3の絞り装置62aで低圧まで絞られ、負荷側熱交換器61aで蒸発・気化してガス冷媒となり、ガス枝管50a、第1の電磁弁37aを介して低圧ガス管20を流れる。この低圧ガス管20を流れる冷媒は、第3の逆止弁10を介して熱源側熱交換器4で蒸発・気化し、四方弁3、アキュムレータ5を介して圧縮機2に戻る。
【0039】
なお、この場合でも、高圧ガス管21を液管として使用しているので、配管径が細い通常の液管よりも室外機1から分流コントローラ30に至る管内での圧力損失を小さくすることができ、負荷側熱交換器61bでの凝縮圧力は高く維持できるので、暖房能力を十分に発揮することができるようになる。
【0040】
このように、室外機と室内機を3本の冷媒配管で接続してなる空調・冷凍システムのうち、高圧ガス管と低圧ガス管のみを利用して2管の空調・冷凍システムにリプレースすることにより、配管内に残留するR22用の冷凍機油を簡単に除去でき、スラッジの発生や冷凍機油の劣化が防止でき、信頼性の高い空調・冷凍システムにすることができる。
【0041】
また、冷暖房同時運転が可能であり、冷暖房同時運転を行う際の暖房室内機の能力低下を小さくできる。
【0042】
さらに、既設の配管を流用することにより、コスト及び施工時間を短縮することができる。
【0043】
なお、室外機と室内機を接続する既設の3本の配管の内、高圧ガス管と中間圧の液管を2本1組として液管とし、低圧ガス管をガス管にして、2管の空調・冷凍システムを作成してもよい。
また、S8で、異物捕獲器70、分岐管72、分岐管74、第1の開閉弁70を切り離しさずに、単に、第1の開閉弁70を開き、第2の開閉弁71、第3の開閉弁73を閉じるだけにしてもよい。このようにすれば、簡単な操作で異物捕獲を再度実行することが可能となる。
【0044】
実施の形態2.
図5は、この発明の実施の形態2における冷凍・空調システムのリプレース方法を示すフローチャートであり、図1に示すフローチャートにおいて、異物捕獲器の代わりにオイルトラップを使用して配管中の鉱油を除去するようにしたものである。
図5中、S1からS6までは図1と同様である。
S6で冷媒チャージが終了した後に、オイルトラップを接続させる(S11)。
【0045】
図6は、S11が終了した時点での空調・冷凍システムの冷媒回路図である。なお、図6中、図2と同様の構成には同一の符号を付し、説明を省略する。
図6中、80はオイルトラップであり、室外機1の配管7と第4の開閉弁85を介して、配管9と第5の開閉弁86を介して接続され、さらに、低圧ガス管20と第6の開閉弁87を介して、高圧ガス管21と第7の開閉弁88を介して接続されている。
【0046】
また、オイルトラップ80は、第4の開閉弁85に接続された配管から分岐した一方の配管に設けられた返油用キャビラリーチューブ81、及びこの配管に接続された油分離器82と、鉱油回収器83と低圧ガス管20とを繋ぐ配管、及び油分離器82と高圧ガス管21とを繋ぐ配管との間で熱交換を行うための冷媒熱交換器84とを有している。
【0047】
次に、フラッシング運転を行うが(S12)、この運転での冷媒の流れについて、図6に基づいて説明する。
圧縮機2を吐出した高温・高圧のガス冷媒は、熱源側熱交換器4で凝縮しない程度に熱交換し、ガス状態のまま、第2の逆止弁8、第5の開閉弁86を介して油分離器82に入る。油分離器82では、圧縮機2から冷媒ガスと共に持出されたR407C用の冷凍機油が分離され、ガス冷媒のみが冷媒熱交換器84へ流れる。また、油分離器82で分離されたR407C用の冷凍機油は返油用キャビラリーチューブ81、第4の開閉弁85を介して圧縮機2へ戻る。また、油分離器82から冷媒熱交換器84に至った高温・高圧のガス冷媒は、冷媒熱交換器84で、適度な乾き度の気液二相冷媒となるまで凝縮・液化し、第7の開閉弁88を介して高圧ガス管21に流れ、高圧ガス管21内に残留する鉱油を押し流し、分流コントローラ30に流れ込む。
【0048】
分流コントローラ30では、気液分離器31、第1の絞り装置33を介して、液枝管51a、51bを流れ、室内機60a、60bに流れ込む。室内機60a、60bでは、第3の絞り装置62a,62bを介して、負荷側熱交換器61a,61bに流れ、さらに、ガス枝管50a、50bを流れ、第1の電磁弁37a,37bを介して低圧ガス管20を流れ、低圧ガス管20に残留する鉱油を押し流しながら、第6の開閉弁87を介して冷媒熱交換器84で蒸発・気化し、鉱油回収器83に流入する。鉱油回収器83では、鉱油を分離し、ガス冷媒のみが、第4の開閉弁85を介して室外機1に流入する。室外機1に流入したガス冷媒は、第1の逆止弁6、四方弁2、アキュムレータ5を介して圧縮機2に戻る。
【0049】
このフラッシング運転を所定時間実施した後、第4の開閉弁85、第5の開閉86、第6の開閉弁87、第7の開閉弁88を閉じ、オイルトラップ80を取外し、第4の開閉弁85と第6の開閉弁87を接続し、第5の開閉弁86と第7の開閉弁88とを接続することで、図2に示した冷媒回路と同等の回路とし(S13)、通常の冷・暖房運転を行う(S10)。
【0050】
なお、図7の冷媒回路に充填されている冷媒量とその空調装置でフラッシング運転を行った場合の圧縮機吐出冷媒の加熱度の関係図に示すように、圧縮機吐出冷媒の加熱度は、冷媒充填量が増加するにしたがって減少する傾向にあるので、圧縮機吐出冷媒の加熱度が30〜60degになるように冷媒充填量を調整することにより、既設配管の長さが不明であっても、冷媒充填量を適正にすることができる。
【0051】
このような方法であっても、配管内に残留するR22用の冷凍機油を気液二相冷媒で除去でき、スラッジの発生や冷凍機油の劣化がなく、信頼性の高い空調装置とすることができる。
【0052】
実施の形態3.
実施の形態1、2では、既設の3管のうち2管を利用して新しい空調・冷凍システムにリプレースするものであったが、既設の3管すべてを使用して新しい空調・冷凍システムにリプレースしても当然によい。
図8は、3管を利用した空調・冷凍システムをリプレースする方法を示すフローチャートである。
まず、図13に示した冷凍・空調システムから従来使用していたR22冷媒を回収する(S1)。次に、R22冷媒用の3管式室外機、室内機を取り外し、R407C冷媒用の3管式室外機、及び室内機を3管の既設配管に接続させるように設置する(S20)。なお、この作業により、図12に示す従来と同様の冷媒回路となる。次に、冷媒配管の気密試験(S4)と、冷媒配管の真空引き(S5)と順次行い、必要な量のR407Cを冷媒配管にチャージする(S6)。その後に、異物捕獲器を設置して(S21)、フラッシング運転を実施し、既設配管中に残留する鉱油を異物捕獲器に回収する(S22)。
【0053】
図9は、S21で、異物捕獲器を設置した状態での冷媒回路図である。なお、図9中、図3、及び図12と同様の構成に関しては、同一の符号を付し説明を省略する。
図3中、低圧ガス管301に第1の開閉弁70を設け、その前後の低圧ガス管301を分岐して、第2の開閉弁71を有する分岐管72と、第3の開閉弁73を有する分岐管74とを接続し、異物捕獲器75を分岐管72と分岐管74に接続させている。
【0054】
次に、図9の冷媒回路の構成で、フラッシング運転を行う(S22)。
なお、このフラッシング運転は、冷房運転と暖房運転が混在し、かつ、冷房の負荷容量が暖房の負荷容量よりも大きい設定で冷凍・空調システムを所定期間動作させることである。例えば、室内機200aが冷房運転、室内機200bが暖房運転にし、さらに、室内機200aの冷房負荷よりも室内機200bの暖房負荷を小さく設定し、第1の電磁弁102を開き、第2の電磁弁107を閉じ、第3の電磁弁206aを開き、第4の電磁弁208aを閉じ、第3の電磁弁206bを閉じ、第4の電磁弁208bを開き圧縮機101を起動する。
【0055】
圧縮機101を吐出した高温・高圧のガス冷媒は、第1の電磁弁102を介して熱源側熱交換器103で凝縮・液化した後に、中間圧の液管302を流れ、液管302に残存する鉱油を押し流す。また一方で、圧縮機101を吐出した高温・高圧のガス冷媒の一部は、高圧ガス管300を流れ、高圧ガス管300に残存する鉱油を押し流し、第4の電磁弁208bを介して負荷側熱交換器203bに流れ凝縮・液化する。熱源側熱交換器203bで凝縮・液化した液冷媒は、液枝管201bを介して中間圧の液管を流れる。ここで、中間圧の液管302では、室外機100から流れる冷媒液と、第2の室内機200bから流れる冷媒液とが合流し、液枝管201aを介して室内機200aに流れ、絞り202aで低圧まで絞られた後に、負荷側熱交換器203aで蒸発・気化し、低圧ガス枝管205aおよび低圧ガス管301を流れて、第3の開閉弁73を介して異物捕獲器75に流れ込む。この異物捕獲器75では、ガス冷媒と鉱油とが分離し、ガス冷媒のみが第2の開閉弁71を介して流れ、アキュムレータ106を介して圧縮機101に戻る。
【0056】
また、この運転を所定時間行った後、今度は圧縮機101を運転したまま、第3の電磁弁206aを閉じ,第4の電磁弁208aを開き、第2の絞り装置202aを開き、第3の電磁弁206bを開き、第4の電磁弁208bを閉じ、第2の絞り装置202bを開くと、高圧ガス管300を流れた高温・高圧のガス冷媒は、第4の電磁弁108aを介して負荷側熱交換器203aに流入し、ここで凝縮・液化し、第2の絞り装置202aで中間圧まで減圧され、液枝管201aを流れた後、液管302で熱源側熱交換器103で凝縮・液化した液冷媒と合流し、液枝管201bに流れる。液枝管201bを流れた液冷媒は、第2の絞り装置202bで低圧まで絞られ、低圧の気液二相冷媒となって、負荷側熱交換器203bに流入し、ここで、蒸発・気化し、第3の電磁弁206bを介して低圧ガス枝管205bおよび低圧ガス管301を流れて、第3の開閉弁73を介して異物捕獲器75に流れ込む。この異物捕獲器75では、ガス冷媒と鉱油とが分離し、ガス冷媒のみが第2の開閉弁71を介して流れ、アキュムレータ106を介して圧縮機101に戻る。
【0057】
なお、S22でフラッシング運転を実行した後に、異物捕獲器70、分岐管72、分岐管74、第1の開閉弁70を切り離して図12に示した冷媒回路図の構成することで回収した異物を空調・冷凍システムから排出し(S23)、通常運転を開始する(S10)。
【0058】
このように、3管式の室外機、室内機を接続した後に、暖房・冷房が混合し、冷房負荷の方が暖房負荷よりも大きくなる運転を行わせることで、一度に3管に残存した鉱油を除去することができ、作業負荷を大幅に減らすことができるとともに、通常運転時での信頼性も向上する。
【0059】
実施の形態4.
図10は、実施の形態4における3管を利用した空調・冷凍システムをリプレースする方法を示すフローチャートであり、図8に示すリプレース方法において、異物捕獲器のかわりに、オイルストラップを使用するものである。
図10中、まず図8と同様の方法で、冷媒チャージまでを行う。
その後に、オイルトラップを接続させる(S30)。
図11は、S30でオイルトラップを接続させた後の冷媒回路図である。なお、図11中、図13及び図6と同様の構成には同一の符号を付し説明を省略する。
【0060】
図11中、圧縮機101の吐出側の配管を分岐させて配管に第4の開閉弁85を、アキュムレータ106に接続する配管に第5の開閉弁86を、絞り104に接続する配管に第8の開閉弁89を設け、さらに、第4の開閉弁85の先の配管と第8の開閉弁89の先の配管とを合流させている。また、鉱油回収器83と接続される配管を第6の開閉弁87を介して低圧ガス管301に接続させ、油分離器82と接続される配管を分岐させ、一方を第7の開閉弁88を介して液管302に接続させ、他方を第9の開閉弁90を介して高圧ガス管300に接続させている。
【0061】
S30で、オイルトラップを接続させた後に、フラッシング運転を行う(S31)。
このフラッシング運転では、圧縮機101を駆動し、高温・高圧のガス冷媒を第4の開閉弁85を介してオイルトラップ80へ流す。オイルトラップ80に流れたガス冷媒は、油分離器82に流れ、冷媒ガス中に含まれるエステル油を分離し、冷媒熱交換器84へ冷媒ガスのみを流す。冷媒熱交換器84へ流れたガス冷媒は、適度な乾き度まで凝縮・液化し、この気液二相冷媒の一部は第6の開閉弁87を介して高圧ガス管300に流れると共に、残りの気液二相冷媒は第9の開閉弁90を介して中間圧の液管302に流れる。高圧ガス管300に流れた気液二相冷媒は、第4の電磁弁208a、208bと第3の電磁弁206a、206bを介して低圧ガス管301に流れる。中間圧の液管302を流れる気液二相冷媒は、第2の絞り装置202a、202bと負荷側熱交換器203a、203bを介して低圧ガス管301に流れる。低圧ガス管301を流れた気液二相冷媒は、オイルトラップ80に至り、冷媒熱交換器84で蒸発・気化し、鉱油回収器83に流入する。鉱油回収器83では、ガス冷媒中の鉱油を分離し、ガス冷媒のみが流出し、第5の開閉弁86とアキュムレータ106を介して圧縮機101に戻る。
【0062】
なお、このフラッシング運転を所定時間行なった後に、第4の開閉弁85、第5の開閉弁86、第6の開閉弁87、第7の開閉弁88、第8の開閉弁89、第9の開閉弁90を閉じ、オイルトラップ80を取り除いた後に、第4の開閉弁85と第6の開閉弁87を接続し、第5の開閉弁86と第7の開閉弁88とを接続し、第8の開閉弁89と第9の開閉弁90とを接続させた後に真空引きし、その後に全て開いて(S32)、通常の冷暖房運転を行う(S10)。
【0063】
このように方法であっても、3管式の室外機、室内機を接続した後に運転を行わせることで、一度の3管に残存した鉱油を除去することができ、作業負荷を大幅に減らすことができるとともに、通常運転時での信頼性も向上する。
【0064】
【発明の効果】
このように、この発明では、第1の冷媒と第1の冷凍機油等の冷凍機油を使用していた3管式の冷凍・空調システムの既設配管を流用することにより、第2の冷媒と第2の冷凍機油を使用する冷凍・空調システムに、簡単に、かつ確実にリプレースすることができる。
【図面の簡単な説明】
【図1】 実施の形態1における空調・冷凍システムのリプレース方法を示すフローチャートである。
【図2】 実施の形態1の空調・冷凍システムの冷媒回路図である。
【図3】 実施の形態1の空調・冷凍システムに異物捕獲器を取り付けた冷媒回路図である。
【図4】 配管長と能力との関係を示す図である。
【図5】 実施の形態2における空調・冷凍システムのリプレース方法を示すフローチャートである。
【図6】 実施の形態2の空調・冷凍システムにオイルトラッパを取り付けた冷媒回路図である。
【図7】 冷媒充填量と吐出冷媒加熱度との関係を示す図である。
【図8】 実施の形態3における空調・冷凍システムのリプレース方法を示すフローチャートである。
【図9】 実施の形態3の空調・冷凍システムに異物捕獲器を取り付けた冷媒回路図である。
【図10】 実施の形態4における空調・冷凍システムのリプレース方法を示すフローチャートである。
【図11】 実施の形態4の空調・冷凍システムにオイルトラッパを取り付けた冷媒回路図である。
【図12】 従来の空調・冷凍システムの冷媒回路図である。
【符号の説明】
1 室外機、 2 圧縮機、 3 四方弁、 4 熱源側熱交換器、
5 アキュムレータ、 6 第1の逆止弁、 7 配管、
8 第2の逆止弁、 9 配管、 10 第3の逆止弁、 11 配管、
20 低圧ガス管、 21 高圧ガス管、 30 分流コントローラ、
31 気液分離器、 32 配管、 33 第1の絞り装置、 34 配管、
35 第2の絞り装置、 36 配管、 37a、37b 第1の電磁弁、
38 配管、 39a、39b 第2の電磁弁、
50a、50b ガス枝管、 51a、51b 液枝管、
60a、60b 室内機、 61a、61b 負荷側熱交換器、
62a、62b 第3の絞り装置、 70 第1の開閉弁、
71 第2の開閉弁、 72 分岐管、 73 第3の開閉弁、
74 分岐管、 75 異物捕獲器、 80 オイルトラッパ、
81 返油用キャビラリチューブ、 油分離器、 83 鉱油回収器、
84 冷媒熱交換器、 85 第4の開閉弁、 86 第5の開閉弁、
87 第6の開閉弁、 88 第7の開閉弁、 89 第8の開閉弁、
90 第9の開閉弁、 100 室外機、 101 圧縮機、
102 第1の電磁弁、 103 熱源側熱交換器、
104 第1の絞り装置、 105 逆止弁、 106 アキュムレータ、
107 第2の電磁弁、 200a、200b 室内機、
201a、201b 枝液管、 202a、202b 第2の絞り装置、
203a、203b 負荷側熱交換器、 204a、204b ガス枝管、
205a、205b 低圧ガス管、 206a、206b 第3の電磁弁、
207a、207b 高圧ガス管、 208a、208b 第4の電磁弁、
209a、209b 冷媒コントローラ、 300 高圧ガス管、
301 低圧ガス管、 302 液管。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for replacing a refrigeration / air conditioning system that uses R22 refrigerant and mineral oil with a refrigeration / air conditioning system that uses R407C refrigerant and refrigeration oil such as ester oil, particularly in the refrigeration / air conditioning system. .
[0002]
[Prior art]
FIG. 12 is a refrigerant circuit diagram showing a conventional three-tube connection air-conditioning / refrigeration system capable of simultaneous operation of cooling and heating in an indoor unit.
In FIG. 12, the air conditioning / refrigeration system includes an outdoor unit 100 and two indoor units 200a and 200b, and a high pressure gas pipe 300, a low pressure gas pipe 301, and a liquid pipe 302 that connect the outdoor unit 100 and the indoor units 200a and 200b. It is mainly composed. Further, the pipe diameters of these three pipes have the following relationship.
Pipe diameter of low-pressure gas pipe> Pipe diameter of high-pressure gas pipe> Pipe diameter of liquid pipe
The reason for this relationship is as follows.
(1) The reason for increasing the diameter of the low-pressure gas pipe than the high-pressure is that the density of the refrigerant in the pipe increases because the density of the low-pressure gas is smaller. Therefore, by designing it to be thick, the performance of the gas refrigerant in the low-pressure gas pipe is reduced by reducing the flow speed of the gas refrigerant, and the flow rate of the gas refrigerant in the high-pressure gas pipe is adjusted.
{Circle around (2)} The liquid is remarkably larger in density than the gas, and a thick tube is not necessary. In addition, it is necessary to limit the amount of flowing liquid refrigerant to a range that can be controlled by a throttle.
[0003]
In the outdoor unit 100, an accumulator 106 is connected to the suction side pipe of the compressor 101, the discharge side pipe of the compressor 101 is branched, and one pipe is connected to the heat source side heat exchanger via the first solenoid valve 102. The other pipe is connected to the high-pressure gas pipe 300. Also, the suction side piping of the accumulator 106 is branched to connect one piping to the downstream side of the first electromagnetic valve 102 via the second electromagnetic valve 107, and the other piping is connected to the low pressure gas pipe 301. Yes. Further, a pipe in which the first expansion device 104 and the check valve 105 are connected in parallel is connected to the heat source side heat exchanger 103, and this pipe is connected to the liquid pipe 302.
[0004]
In addition, the indoor unit 200a partially extends from a housing (not shown) to the outside, and is connected to a liquid branch pipe 201a and a second throttle device 202a connected to the liquid branch pipe 201a. The load side heat exchanger 203a is connected to the second expansion device 202a by piping, and the gas branch pipe 204a is connected to the load side heat exchanger 203a. In this gas branch pipe 204a, one low-pressure gas branch pipe 205a is connected to the low-pressure gas pipe 301 via the third electromagnetic valve 206a, and the other high-pressure gas branch pipe 207a is connected to the fourth electromagnetic valve 208a. The refrigerant controller 209 a having a branch pipe connected to the high-pressure gas pipe 300 is connected to the high-pressure gas pipe 300.
The indoor unit 200b and the refrigerant controller 209b have the same configuration as the indoor unit 200a and the refrigerant controller 209a.
[0005]
Next, the flow of the refrigerant during operation will be described.
When both the indoor units 200a and 200b perform the cooling operation, the first electromagnetic valve 102 is opened, the second electromagnetic valve 107 is closed, the third electromagnetic valves 206a and 206b are opened, and the fourth electromagnetic valve 208a. 208b and the compressor 101 is started.
In this case, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows to the heat source side heat exchanger 103 via the first solenoid valve 102, and after being condensed and liquefied, The flow is throttled to a low pressure by the second throttle devices 202a and 202b to become a gas-liquid two-phase state, evaporated and vaporized by the load side heat exchangers 203a and 203b, and the low pressure gas branch pipes 205a and 205b and the low pressure gas pipe 301. , And returns to the compressor 101 via the accumulator 106.
[0006]
When both the indoor units 200a and 200b perform the heating operation, the first electromagnetic valve 102 is closed, the second electromagnetic valve 107 is opened, the third electromagnetic valves 206a and 206b are closed, and the fourth electromagnetic valve is closed. The valves 208a and 208b are opened and the compressor 101 is started.
In this case, the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows through the high-pressure gas pipe 300, flows into the load-side heat exchangers 203a and 203b via the high-pressure gas branch pipes 207a and 207b, and is condensed and liquefied. After the pressure is reduced to the intermediate pressure by the second throttle devices 202a and 202b, it flows through the liquid pipe 302 via the liquid branch tubes 201a and 201b, and is throttled to the low pressure by the first throttle device 104 to be in a gas-liquid two-phase state. Then, it evaporates and vaporizes in the heat source side heat exchanger 103 and returns to the compressor 101 via the second electromagnetic valve 107 and the accumulator 106.
[0007]
When the indoor unit 200a is in cooling operation, the indoor unit 200b is in heating operation, and the heating load of the indoor unit 200b is smaller than the cooling load of the indoor unit 200a, the first electromagnetic valve 102 is opened, The electromagnetic valve 107 is closed, the third electromagnetic valve 206a is opened, the fourth electromagnetic valve 208a is closed, the third electromagnetic valve 206b is closed, the fourth electromagnetic valve 208b is opened, and the compressor 101 is started.
[0008]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 is condensed and liquefied by the heat source side heat exchanger 103 via the first electromagnetic valve 102 and then flows through the intermediate-pressure liquid pipe 302. On the other hand, part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows through the high-pressure gas pipe 300 and flows to the load-side heat exchanger 203b via the fourth electromagnetic valve 208b to be condensed and liquefied. . The liquid refrigerant condensed and liquefied by the heat source side heat exchanger 203b flows through the intermediate pressure liquid pipe via the liquid branch pipe 201b. Here, in the intermediate-pressure liquid pipe 302, the liquid refrigerant flowing from the outdoor unit 100 and the liquid refrigerant flowing from the second indoor unit 200b merge and flow into the indoor unit 200a via the liquid branch pipe 201a. After being throttled to a low pressure by the expansion device 202 a, the load side heat exchanger 203 a evaporates and vaporizes, flows through the low pressure gas branch pipe 205 a and the low pressure gas pipe 301, and returns to the compressor 101 via the accumulator 106.
[0009]
When the indoor unit 200a is in cooling operation, the indoor unit 200b is in heating operation, and the heating load of the indoor unit 200b is larger than the cooling load of the indoor unit 200a, the first electromagnetic valve 102 is closed, The second solenoid valve 107 is opened, the third solenoid valve 206a is opened, the fourth solenoid valve 208a is closed, the third solenoid valve 206b is closed, the fourth solenoid valve 208b is opened, and the compressor 101 is started.
[0010]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows through the high-pressure gas pipe 300, flows into the load-side heat exchanger 203b via the fourth electromagnetic valve 208b, and is condensed and liquefied. This liquid refrigerant flows through the intermediate pressure liquid pipe 302 via the second expansion device 202b and the liquid branch pipe 201b. Note that. A part of the liquid refrigerant flowing through the liquid pipe 302 flows to the load-side heat exchanger 203a via the liquid branch pipe 201a and the second expansion device 202a, evaporates and vaporizes, and the low-pressure gas branch pipe 205a and the low-pressure gas pipe 301, and returns to the compressor 101 via the accumulator 106. The remaining liquid refrigerant flowing through the intermediate-pressure liquid pipe 302 is throttled to a low pressure by the first throttle device 104, evaporated and vaporized by the heat source side heat exchanger 103, and then the second electromagnetic valve 107 and the accumulator 106. To return to the compressor 101.
[0011]
[Problems to be solved by the invention]
In the conventional three-tube type air conditioning / refrigeration system as described above, R22 is used as the refrigerant, mineral oil is used as the refrigerating machine oil, the outdoor unit / indoor unit is used as the refrigerant, R407C is used as the refrigerant, and synthetic oil such as ester oil is used as the refrigerating machine oil. In order to wash the mineral oil adhering to the existing three pipes, either blow out with nitrogen gas one by one to eliminate the mineral oil, or remove two of the three pipes. Work to select and clean.
[0012]
However, with the method of blowing with nitrogen gas one by one, no matter how long the blowing time is, mineral oil will remain in the piping, so it can be mixed with ester oil after replacement, resulting in reliable operation. There was a problem that it might be damaged.
[0013]
In addition, the method of selecting and cleaning two at a time has a problem of requiring a lot of labor and time.
[0014]
This invention was made in order to solve the above-mentioned subject, and it aims at providing the method which can be easily replaced by the refrigerating and air-conditioning system which uses a new refrigerant | coolant and refrigerating machine oil using the existing 3 pipe | tube. It is said.
[0015]
[Means for Solving the Problems]
  The replacement method of the refrigeration / air conditioning system according to the present invention includes a first step of removing the first outdoor unit and the first indoor unit from the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe, and piping the heat source side heat exchanger. Through high pressure gas pipeOr a new high-pressure pipe that is one of a set of high-pressure gas pipe and liquid pipeConnect the four-way valve to the low-pressure gas pipe through the pipeNew low pressure pipeThe second outdoor unit is installed by connecting to a gas-liquid separator via a pipe.New high pressure pipeConnect to multiple valves via pipingNew low pressure pipeTo install a shunt controller, connect the expansion device to the gas-liquid separator via piping, and install multiple indoor units by connecting the load-side heat exchanger to multiple valves via piping A second step of evacuation, and a second refrigerant as a second outdoor unit, a second indoor unit, a shunt controller,New high pressure pipe,New low pressure pipeA third step of injecting into at least one ofA foreign matter trapping device that separates and collects the first refrigerating machine oil from the inflowing second refrigerant and then flows out only the gaseous second refrigerant is installed in a new low-pressure pipe, and the second refrigerant is connected to the shunt controller. By operating the second indoor unit for a certain period of time so that it flows into the four-way valve after flowing into the foreign matter trapping device from the valve, a new high-pressure pipe and a new low-pressure pipeAnd remaining in the second1And a fourth step of recovering the refrigerating machine oil.
[0017]
  The replacement method of the refrigeration / air conditioning system according to the present invention includes a first step of removing the first outdoor unit and the first indoor unit from the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe, and piping the heat source side heat exchanger. Connect to a new high-pressure pipe that is either a high-pressure gas pipe or a set of a high-pressure gas pipe and a liquid pipe through a pipe, and connect the four-way valve to a new low-pressure pipe that is a low-pressure gas pipe through a pipe. The second outdoor unit is installed, the gas-liquid separator is connected to a new high-pressure pipe via a pipe, and a plurality of valves are connected to a new low-pressure pipe via a pipe to install a shunt controller. A second step of installing a plurality of indoor units by connecting a throttling device to a gas-liquid separator via a pipe and connecting a load side heat exchanger to a plurality of valves via a pipe; Second refrigerant, second outdoor unit, second indoor unit, shunt controller, new high pressure A third step of injecting at least one new low pressure pipe,
Oil recovery unit, oil separator, and oil trapper equipped with a refrigerant heat exchanger that exchanges heat between the refrigerant suction side piping of the oil recovery unit and the refrigerant discharge side piping of the oil separator Installed between the second outdoor unit and the shunt controller so that the refrigerant suction side pipe of the cooler is connected to a new low pressure pipe and the refrigerant discharge side pipe of the oil separator is connected to a new high pressure pipe The second indoor unit is operated for a certain period of time so that the refrigerant discharged from the second outdoor unit flows through the oil separator and the refrigerant discharged from the shunt controller flows through the oil recovery unit. And a fourth step of recovering the first refrigerating machine oil remaining in the pipe and the new low-pressure pipe.
[0018]
  In the refrigeration / air conditioning system replacement method according to the present invention, the indoor unit and the outdoor unit using the first refrigerant and the first refrigerator oil are separated from the high pressure gas pipe, the low pressure gas pipe, and the liquid pipe, The first step of connecting the indoor unit and the outdoor unit using the refrigeration oil of No. 2 to the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe, evacuation, and the second refrigerant to the second outdoor unit, the second Indoor unit,RefrigerantThe second step of injecting into at least one of the controller, the high-pressure gas pipe, and the low-pressure gas pipe, and two branch pipes are installed in the low-pressure gas pipe, and a foreign substance capturing device is installed in the two branch pipes. The third step of causing the plurality of indoor units to be mixed with cooling and heating so that the entire cooling load is larger than the heating load for a certain time after flowing through the foreign matter trapping device. It was supposed to have.
[0019]
  In the refrigeration / air conditioning system replacement method according to the present invention, the indoor unit and the outdoor unit using the first refrigerant and the first refrigerator oil are separated from the high pressure gas pipe, the low pressure gas pipe, and the liquid pipe, The first step of connecting the indoor unit and the outdoor unit using the refrigeration oil of No. 2 to the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe, evacuation, and the second refrigerant to the second outdoor unit, the second Indoor unit,RefrigerantA second step of injecting into at least one of the controller, the high-pressure gas pipe, the low-pressure gas pipe or the liquid pipe; the low-pressure gas pipe, the high-pressure gas pipe and the liquid pipe; an oil recovery device; an oil separator; An oil trapper having a refrigerant heat exchanger for exchanging heat between the refrigerant suction side pipe of the condenser and the refrigerant discharge side pipe of the oil separator, and the refrigerant suction side pipe of the oil collector is a low pressure gas pipe The refrigerant discharged from the outdoor unit is installed between the outdoor unit and the plurality of indoor units so that the pipe on the refrigerant discharge side of the oil separator is connected to the high-pressure gas pipe and the liquid pipe. A third step of operating the indoor unit for a certain period of time after flowing through the oil separator and allowing the refrigerant discharged from the indoor unit to flow through the oil recovery unit is provided.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a flowchart showing a replacement method for a refrigeration / air-conditioning system according to Embodiment 1 of the present invention. 2 and 3 are configuration diagrams of the refrigeration / air conditioning system at the stage of the creation process.
[0021]
First, the R22 refrigerant conventionally used is recovered from the refrigeration / air conditioning system shown in FIG. 12 (step (hereinafter referred to as “S”) 1).
Next, the existing three-tube type outdoor unit / indoor unit is removed, and the two-tube type outdoor unit for R407C refrigerant is installed so as to be connected to the low-pressure gas pipe and the high-pressure gas pipe among the three existing pipes. (S2). Next, the shunt controller is connected to the low pressure gas pipe and the high pressure gas pipe, and the indoor unit is further connected to the shunt controller (S3). In addition, it will be in a completion state by the work so far.
[0022]
FIG. 2 is a refrigerant circuit diagram showing the refrigeration / air conditioning system at the end of the operation up to this stage.
In FIG. 2, the outdoor unit 1 is connected to a compressor 2, a four-way valve 3, a heat source side heat exchanger 4, and an accumulator 5. A pipe 7 having a first check valve 6 extends from the four-way valve 3 and is connected to a low-pressure gas pipe 20. A pipe 9 having a second check valve 8 is also connected to the heat source side heat exchanger 4. Extends and is connected to the high pressure gas pipe 21. Further, a pipe 11 having a third check valve 10 is connected between the low pressure gas pipe 20 side of the pipe 7 and the heat source side heat exchanger 4 side of the pipe 9, and the four-way valve 3 side of the pipe 7 is connected. A pipe 13 having a fourth check valve 12 is connected between the pipe 9 and the high-pressure gas pipe 21 side.
[0023]
A diversion controller 30 is connected to the low pressure gas pipe 20 and the high pressure gas pipe 21. The shunt controller 30 includes a gas-liquid separator 31 connected to the high-pressure gas pipe 21, a first throttling device 33 provided in a pipe 32 through which the liquid refrigerant separated by the gas-liquid separator 31 flows, A second throttling device 35 provided in one pipe 34 branched from the gas pipe 20 and a second pipe 36 branched from the low-pressure gas pipe 20 branch, and a first electromagnetic valve 37a connected to one of the two pipes 36; And the first solenoid valve 37b connected to the other side, the pipe 38 through which the gas refrigerant separated by the gas-liquid separator 31 flows, and the second solenoid valve 39a connected to one side and connected to the other side. A second electromagnetic valve 39b.
[0024]
Also, the pipes exiting from the first electromagnetic valve 37a and the second electromagnetic valve 39a merge to form a gas branch pipe 50a, which is connected to the indoor unit 60a, and the first electromagnetic valve 37b and the second electromagnetic valve 39b. The pipes that exit from the pipes merge to form a gas branch pipe 50b, which is connected to the indoor unit 60b. Further, the pipe 32 and the pipe 35 are once joined and then separated, and one liquid branch pipe 51a is connected to the indoor unit 60a, and the other liquid branch pipe 51b is connected to the indoor unit 60b.
[0025]
In the indoor unit 60a, the gas branch pipe 50a is connected to the load-side heat exchanger 61a, the liquid branch pipe 51a is connected to the third expansion device 62a, and the load-side heat exchanger 61a and the third expansion device 62a are further connected. Is connected to the pipe. Similarly, in the indoor unit 60b, the gas branch pipe 50b is connected to the load-side heat exchanger 61b, the liquid branch pipe 51b is connected to the third expansion device 62b, and the load-side heat exchanger 61b and the third throttle are connected. The device 62b is connected by piping.
[0026]
In S3, after the configuration shown in FIG. 2 is performed, a refrigerant pipe airtight test (S4) and a refrigerant pipe evacuation (S5) are sequentially performed, and thereafter, a necessary amount of R407C is charged into the refrigerant pipe ( S6). Thereafter, the foreign matter trap is installed in the low pressure gas pipe (S7), the flushing operation is performed, and the mineral oil remaining in the existing pipe is collected in the foreign matter trap (S8).
[0027]
FIG. 3 is a refrigerant circuit diagram after the execution of S7, in which a foreign substance trap is installed in the refrigerant circuit diagram of FIG.
In FIG. 3, reference numeral 70 denotes a first on-off valve provided in the low-pressure gas pipe 20. The first on-off valve 70 is branched before and after the first on-off valve 70, and a branch pipe 72 having a second on-off valve 71, A branch pipe 74 having three open / close valves 73 is connected, and a foreign substance trap 75 is connected to the ends of the branch pipe 72 and the branch pipe 74.
[0028]
Next, a specific refrigerant flow in the flushing operation will be described with reference to FIG. In this flushing operation, the first solenoid valves 37a, 37b are opened, the second solenoid valves 39a, 39b are closed, the first on-off valve 70 is closed, the second on-off valve 71, the third on-off valve. The valve 73 is open.
[0029]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 condenses and liquefies in the heat source side heat exchanger 4, and passes through the second check valve 8 to push the remaining mineral oil in the pipe while flowing through the high-pressure gas pipe 21. The flow flows through the gas-liquid separator 31 and the first throttling device 33 and the liquid branch pipes 51a and 51b in the flow dividing controller 30, and reaches the indoor units 60a and 60b. In the indoor units 60a and 60b, the refrigerant flows into the load side heat exchangers 61a and 61b via the third expansion devices 62a and 62b, and is evaporated and vaporized therein to become a gas refrigerant. This gas refrigerant flows through the gas branch pipes 50 a and 50 b, flows into the low-pressure gas pipe 20 through the first electromagnetic valves 37 a and 37 b, and flows into the foreign matter trap 75 through the third on-off valve 73.
[0030]
The foreign matter trap 75 separates the mineral oil recovered together with the refrigerant from the existing piping, and only the gas refrigerant flows out through the second on-off valve 71, and passes through the check valve 6, the four-way valve 3, and the accumulator 5. To return to the compressor 2. By performing such an operation for a predetermined time, the mineral oil in the existing piping can be collected in the foreign matter trap 75.
[0031]
In addition, after performing the flushing operation in S8, the foreign matter trap 70, the branch pipe 72, the branch pipe 74, and the first on-off valve 70 are separated and the collected foreign matter is configured by configuring the refrigerant circuit diagram shown in FIG. The air-conditioning / refrigeration system is discharged (S9), and normal operation is started (S10).
[0032]
In the refrigerant circuit diagram shown in FIG. 2, when performing the cooling operation, first, the first electromagnetic valves 37a and 37b are opened, the second electromagnetic valves 39a and 39b are closed, and the compressor 2 is driven. . As a result, the gas refrigerant exiting the compressor 2 is condensed and liquefied by the heat source side heat exchanger 4 to become a liquid refrigerant, flows through the high-pressure gas pipe 21, the gas-liquid separator 31 of the shunt controller 30, and the first refrigerant. After flowing into the indoor units 60a and 60b through the expansion device 33 and the liquid branch pipes 51a and 51b, and being reduced to a low pressure by the third expansion devices 62a and 62b, they are evaporated and vaporized by the load side heat exchangers 61a and 61b. To do. The gas refrigerant evaporated and vaporized in the load side heat exchangers 61a and 61b flows through the gas branch pipes 50a and 50b, and then flows into the low pressure gas pipe 20 via the first electromagnetic valves 37a and 37b. 6, it returns to the compressor 2 through the four-way valve 3 and the accumulator 5.
[0033]
When performing the heating operation, first, the second electromagnetic valves 39a and 39b are opened, the first electromagnetic valves 37a and 37b are closed, and the compressor 2 is driven. As a result, the gas refrigerant exiting the compressor 2 flows into the gas-liquid separator 31 of the shunt controller 30 via the four-way valve 3, the fourth check valve 12, and the high-pressure gas pipe 21. The gas refrigerant flows from the gas-liquid separator 31 to the pipe 38, and flows to the indoor units 60a and 60b via the second electromagnetic valves 39a and 39b and the gas branch pipes 50a and 50b. In the indoor units 60a and 60b, condensation and liquefaction are performed by the load side heat exchangers 61a and 61b, and after the third expansion devices 62a and 62b are throttled to an intermediate pressure, they flow through the liquid branch pipes 51a and 51b. It is throttled to a low pressure by the device 35 to become a gas-liquid two-phase refrigerant, flows through the low-pressure gas pipe 20, evaporates and vaporizes in the heat source side heat exchanger 4 via the third check valve 10, and the four-way valve 3 and accumulator. Return to the compressor 2 via 5.
[0034]
Further, when the indoor unit 60a is in the cooling operation, the indoor unit 60b is in the heating operation, and the cooling load of the indoor unit 60a is larger than the heating load of the indoor unit 60b, the first electromagnetic valve 37a and the second electromagnetic valve The valve 39b is opened, the first electromagnetic valve 37b and the second electromagnetic valve 39a are closed, and the compressor 2 is driven. As a result, the gas refrigerant exiting the compressor 2 flows into the heat source side heat exchanger 4 via the four-way valve 3 and is condensed until it reaches an appropriate dryness, and becomes a high-temperature / high-pressure gas-liquid two-phase state. Thereafter, the refrigerant in the gas-liquid two-phase state flows through the high-pressure gas pipe 21 via the second check valve 8 and flows into the gas-liquid separator 31 of the flow dividing controller 30. Since the high-pressure gas pipe 21 is used as a liquid pipe, the pipe diameter is larger than that of a normal two-pipe air conditioner. As a result, the gas-liquid two from the outdoor unit 1 to the shunt controller 30 is increased. Even if the refrigerant in the phase state flows, the high pressure of the gas-liquid two-phase refrigerant flowing into the diversion controller 30 can be maintained.
[0035]
In the gas-liquid separator 31 of the shunt controller 30, the gas refrigerant and the liquid refrigerant are separated, and the gas refrigerant flows to the indoor unit 60b through the pipe 38, the second electromagnetic valve 39b, and the gas branch pipe 50b. In the indoor unit 60b, it is condensed and liquefied by the load-side heat exchanger 61b, becomes an intermediate-pressure liquid refrigerant by the third expansion device 62b, flows through the liquid branch pipe 51b, and is separated by the gas-liquid separator 31. The liquid refrigerant is squeezed to the intermediate pressure by the first throttling device 33, and flows through the liquid branch pipe 51a into the indoor unit 60a. In the indoor unit 60a, after being throttled to a low pressure by the third throttle device 62a, it is evaporated and vaporized by the load side heat exchanger 61a, flows through the gas branch pipe 50a and the first electromagnetic valve 37a, and passes through the low pressure gas pipe 20 The flow returns to the compressor 2 via the first check valve 6, the four-way valve 3, and the accumulator 5.
[0036]
FIG. 4 shows the piping from the outdoor unit 1 to the shunt controller 30 when a high-pressure gas pipe is used as a liquid pipe among the existing three pipes and when a liquid pipe used for two general pipes is used. It is a figure which shows the change of the heating capability in the load side heat exchanger 61 with respect to the change of length. As can be seen from FIG. 4, the heating capacity decreases as the length of the pipe increases, but the case where a high-pressure gas pipe with a large pipe diameter is used is described before the use of a general liquid pipe. Thus, the pressure loss is low, so that the condensation pressure when heating is increased, and the decrease in heating capacity can be reduced.
[0037]
When the indoor unit 60a is in cooling operation, the indoor unit 60b is in heating operation, and the heating load of the indoor unit 60b is larger than the cooling load of the indoor unit 60a, the first electromagnetic valve 37a and the second electromagnetic valve The valve 39b is opened, the first electromagnetic valve 37b and the second electromagnetic valve 39a are closed, and the compressor 2 is driven. As a result, the gas refrigerant exiting the compressor 2 flows through the high-pressure gas pipe 21 via the four-way valve 3 and the fourth check valve 12 and flows into the gas-liquid separator 31 of the shunt controller 30. Thereafter, the gas refrigerant flows out from the pipe 38 and flows into the indoor unit 60b through the second electromagnetic valve 39b and the gas branch pipe 50b. In the indoor unit 60b, it is condensed and liquefied by the load-side heat exchanger 61b, becomes an intermediate-pressure liquid refrigerant by the third expansion device 62b, and then flows through the liquid branch pipe 51b.
[0038]
Part of the liquid refrigerant that has flowed through the liquid branch pipe 51 b flows through the low-pressure gas pipe 20 via the second expansion device 35. Further, the remainder flows into the indoor unit 60a through the liquid branch pipe 51a. In the indoor unit 60a, the pressure is reduced to a low pressure by the third expansion device 62a, evaporated and vaporized by the load side heat exchanger 61a to become a gas refrigerant, and the low pressure gas pipe is passed through the gas branch pipe 50a and the first electromagnetic valve 37a. 20 flows. The refrigerant flowing through the low-pressure gas pipe 20 evaporates and evaporates in the heat source side heat exchanger 4 via the third check valve 10 and returns to the compressor 2 via the four-way valve 3 and the accumulator 5.
[0039]
Even in this case, since the high-pressure gas pipe 21 is used as the liquid pipe, the pressure loss in the pipe from the outdoor unit 1 to the branch flow controller 30 can be made smaller than a normal liquid pipe having a small pipe diameter. Since the condensing pressure in the load side heat exchanger 61b can be maintained high, the heating capacity can be sufficiently exhibited.
[0040]
As described above, among the air conditioning / refrigeration system in which the outdoor unit and the indoor unit are connected by the three refrigerant pipes, only the high-pressure gas pipe and the low-pressure gas pipe are used and replaced with the two-pipe air conditioning / refrigeration system. Thus, the R22 refrigerating machine oil remaining in the pipe can be easily removed, sludge generation and deterioration of the refrigerating machine oil can be prevented, and a highly reliable air conditioning / refrigeration system can be achieved.
[0041]
Moreover, the simultaneous cooling and heating operation is possible, and the capability deterioration of the heating indoor unit when performing the simultaneous cooling and heating operation can be reduced.
[0042]
Furthermore, cost and construction time can be shortened by diverting existing piping.
[0043]
  Of the existing three pipes connecting the outdoor unit and the indoor unit, two high pressure gas pipes and one intermediate pressure liquid pipe are used as a liquid pipe.Low pressure gas pipeA gas pipe may be used to create a two-pipe air conditioning / refrigeration system.
  In S8, the first on-off valve 70 is simply opened, the second on-off valve 71, the third on-off valve 70, without disconnecting the foreign matter catcher 70, the branch pipe 72, the branch pipe 74, and the first on-off valve 70. The on-off valve 73 may be simply closed. In this way, it is possible to execute foreign object capture again with a simple operation.
[0044]
Embodiment 2. FIG.
FIG. 5 is a flowchart showing a replacement method of the refrigeration / air-conditioning system according to Embodiment 2 of the present invention. In the flowchart shown in FIG. 1, mineral oil in the pipe is removed using an oil trap instead of the foreign matter trap. It is what you do.
In FIG. 5, S1 to S6 are the same as those in FIG.
After the refrigerant charge is completed in S6, an oil trap is connected (S11).
[0045]
FIG. 6 is a refrigerant circuit diagram of the air conditioning / refrigeration system at the time when S11 is completed. In FIG. 6, the same components as those in FIG.
In FIG. 6, reference numeral 80 denotes an oil trap, which is connected to the outdoor unit 1 via the pipe 7 and the fourth on-off valve 85 via the pipe 9 and the fifth on-off valve 86. The high-pressure gas pipe 21 is connected to the seventh on-off valve 88 through the sixth on-off valve 87.
[0046]
The oil trap 80 includes an oil return cavities tube 81 provided in one pipe branched from a pipe connected to the fourth on-off valve 85, an oil separator 82 connected to the pipe, a mineral oil It has a refrigerant heat exchanger 84 for exchanging heat between a pipe connecting the recovery unit 83 and the low pressure gas pipe 20 and a pipe connecting the oil separator 82 and the high pressure gas pipe 21.
[0047]
Next, a flushing operation is performed (S12). The flow of the refrigerant in this operation will be described with reference to FIG.
The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 exchanges heat to the extent that it does not condense in the heat source side heat exchanger 4 and remains in a gas state via the second check valve 8 and the fifth on-off valve 86. Into the oil separator 82. In the oil separator 82, the R407C refrigerating machine oil taken out together with the refrigerant gas from the compressor 2 is separated, and only the gas refrigerant flows to the refrigerant heat exchanger 84. In addition, the R407C refrigerating machine oil separated by the oil separator 82 returns to the compressor 2 via the oil return cabinet 81 and the fourth on-off valve 85. Further, the high-temperature and high-pressure gas refrigerant that has reached the refrigerant heat exchanger 84 from the oil separator 82 is condensed and liquefied in the refrigerant heat exchanger 84 until it becomes a gas-liquid two-phase refrigerant having an appropriate dryness. The mineral oil that flows into the high-pressure gas pipe 21 through the open / close valve 88 is pushed away and flows into the diversion controller 30.
[0048]
In the diversion controller 30, the liquid branch pipes 51a and 51b flow through the gas-liquid separator 31 and the first throttling device 33, and flow into the indoor units 60a and 60b. In the indoor units 60a and 60b, the flow passes through the third expansion devices 62a and 62b to the load-side heat exchangers 61a and 61b, further flows through the gas branch pipes 50a and 50b, and the first electromagnetic valves 37a and 37b. The refrigerant heat exchanger 84 evaporates and vaporizes through the sixth on-off valve 87 while flowing down the low-pressure gas pipe 20 through the mineral oil remaining in the low-pressure gas pipe 20 and flows into the mineral oil collector 83. In the mineral oil collector 83, the mineral oil is separated, and only the gas refrigerant flows into the outdoor unit 1 through the fourth on-off valve 85. The gas refrigerant flowing into the outdoor unit 1 returns to the compressor 2 via the first check valve 6, the four-way valve 2, and the accumulator 5.
[0049]
After performing this flushing operation for a predetermined time, the fourth on-off valve 85, the fifth on-off valve 86, the sixth on-off valve 87, and the seventh on-off valve 88 are closed, the oil trap 80 is removed, and the fourth on-off valve 85 and the sixth on-off valve 87, and the fifth on-off valve 86 and the seventh on-off valve 88 are connected to obtain a circuit equivalent to the refrigerant circuit shown in FIG. 2 (S13). Cooling / heating operation is performed (S10).
[0050]
In addition, as shown in the relationship diagram of the amount of refrigerant charged in the refrigerant circuit of FIG. 7 and the degree of heating of the refrigerant discharged from the compressor when the flushing operation is performed by the air conditioner, the degree of heating of the refrigerant discharged from the compressor is Since the refrigerant filling amount tends to decrease, the length of the existing piping is unknown by adjusting the refrigerant filling amount so that the degree of heating of the refrigerant discharged from the compressor becomes 30 to 60 deg. The refrigerant charging amount can be made appropriate.
[0051]
Even with such a method, the R22 refrigerating machine oil remaining in the pipe can be removed with a gas-liquid two-phase refrigerant, and there is no sludge generation or deterioration of the refrigerating machine oil. it can.
[0052]
Embodiment 3 FIG.
In the first and second embodiments, two of the existing three pipes are used to replace the new air conditioning / refrigeration system. However, all the existing three pipes are used to replace the new air conditioning / refrigeration system. Of course it is good.
FIG. 8 is a flowchart showing a method of replacing an air conditioning / refrigeration system using three tubes.
First, the conventionally used R22 refrigerant is recovered from the refrigeration / air conditioning system shown in FIG. 13 (S1). Next, the three-pipe outdoor unit for R22 refrigerant and the indoor unit are removed, and the three-pipe outdoor unit for R407C refrigerant and the indoor unit are installed so as to be connected to the three existing pipes (S20). By this operation, the refrigerant circuit similar to the conventional one shown in FIG. 12 is obtained. Next, the refrigerant pipe airtight test (S4) and the refrigerant pipe evacuation (S5) are sequentially performed to charge the refrigerant pipe with a necessary amount of R407C (S6). Thereafter, a foreign matter trap is installed (S21), a flushing operation is performed, and the mineral oil remaining in the existing pipe is collected in the foreign matter trap (S22).
[0053]
FIG. 9 is a refrigerant circuit diagram in a state where a foreign matter trap is installed in S21. In FIG. 9, the same components as those in FIGS. 3 and 12 are denoted by the same reference numerals and description thereof is omitted.
In FIG. 3, a first on-off valve 70 is provided in the low-pressure gas pipe 301, the low-pressure gas pipe 301 before and after the first on-off valve is branched, a branch pipe 72 having a second on-off valve 71, and a third on-off valve 73. The branch pipe 74 is connected, and the foreign substance trap 75 is connected to the branch pipe 72 and the branch pipe 74.
[0054]
Next, the flushing operation is performed with the configuration of the refrigerant circuit of FIG. 9 (S22).
The flushing operation is to operate the refrigeration / air-conditioning system for a predetermined period with a setting in which the cooling operation and the heating operation are mixed and the cooling load capacity is larger than the heating load capacity. For example, the indoor unit 200a is in the cooling operation, the indoor unit 200b is in the heating operation, the heating load of the indoor unit 200b is set smaller than the cooling load of the indoor unit 200a, the first electromagnetic valve 102 is opened, and the second The electromagnetic valve 107 is closed, the third electromagnetic valve 206a is opened, the fourth electromagnetic valve 208a is closed, the third electromagnetic valve 206b is closed, the fourth electromagnetic valve 208b is opened, and the compressor 101 is started.
[0055]
The high-temperature and high-pressure gas refrigerant discharged from the compressor 101 is condensed and liquefied by the heat source side heat exchanger 103 via the first electromagnetic valve 102, then flows through the intermediate-pressure liquid pipe 302 and remains in the liquid pipe 302. To wash away mineral oil. On the other hand, a part of the high-temperature and high-pressure gas refrigerant discharged from the compressor 101 flows through the high-pressure gas pipe 300, pushes away the mineral oil remaining in the high-pressure gas pipe 300, and passes through the fourth solenoid valve 208b to the load side. It flows into the heat exchanger 203b and is condensed and liquefied. The liquid refrigerant condensed and liquefied by the heat source side heat exchanger 203b flows through the intermediate pressure liquid pipe via the liquid branch pipe 201b. Here, in the intermediate-pressure liquid pipe 302, the refrigerant liquid flowing from the outdoor unit 100 and the refrigerant liquid flowing from the second indoor unit 200b merge to flow to the indoor unit 200a via the liquid branch pipe 201a, and the restriction 202a After being throttled to a low pressure, the load side heat exchanger 203 a evaporates and vaporizes, flows through the low pressure gas branch pipe 205 a and the low pressure gas pipe 301, and flows into the foreign matter trap 75 through the third on-off valve 73. In the foreign matter trap 75, the gas refrigerant and mineral oil are separated, and only the gas refrigerant flows through the second on-off valve 71 and returns to the compressor 101 through the accumulator 106.
[0056]
In addition, after performing this operation for a predetermined time, the third electromagnetic valve 206a is closed, the fourth electromagnetic valve 208a is opened, the second expansion device 202a is opened, and the third electromagnetic valve 206a is opened while the compressor 101 is operated. When the solenoid valve 206b is opened, the fourth solenoid valve 208b is closed, and the second throttle device 202b is opened, the high-temperature and high-pressure gas refrigerant that has flowed through the high-pressure gas pipe 300 passes through the fourth solenoid valve 108a. It flows into the load side heat exchanger 203a, condenses and liquefies here, is depressurized to an intermediate pressure by the second expansion device 202a, flows through the liquid branch pipe 201a, and then flows through the liquid branch pipe 201a in the heat source side heat exchanger 103. It merges with the condensed and liquefied liquid refrigerant and flows to the liquid branch pipe 201b. The liquid refrigerant that has flowed through the liquid branch pipe 201b is throttled to a low pressure by the second expansion device 202b, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the load-side heat exchanger 203b. And flows through the low pressure gas branch pipe 205b and the low pressure gas pipe 301 via the third electromagnetic valve 206b, and flows into the foreign matter trap 75 via the third on-off valve 73. In the foreign matter trap 75, the gas refrigerant and mineral oil are separated, and only the gas refrigerant flows through the second on-off valve 71 and returns to the compressor 101 through the accumulator 106.
[0057]
After performing the flushing operation in S22, the foreign matter trap 70, the branch pipe 72, the branch pipe 74, and the first on-off valve 70 are separated, and the collected foreign matter is configured by configuring the refrigerant circuit diagram shown in FIG. The air-conditioning / refrigeration system is discharged (S23), and normal operation is started (S10).
[0058]
In this way, after connecting the three-pipe outdoor unit and the indoor unit, the heating and cooling are mixed, and the cooling load is made larger than the heating load, so that the three pipes remain in one pipe at a time. Mineral oil can be removed, the work load can be greatly reduced, and reliability during normal operation is also improved.
[0059]
Embodiment 4 FIG.
FIG. 10 is a flowchart showing a method for replacing the air-conditioning / refrigeration system using the three tubes in the fourth embodiment. In the replacement method shown in FIG. 8, an oil strap is used instead of the foreign matter trap. is there.
In FIG. 10, first, the refrigerant charging is performed by the same method as in FIG.
Thereafter, an oil trap is connected (S30).
FIG. 11 is a refrigerant circuit diagram after the oil trap is connected in S30. In FIG. 11, the same components as those in FIGS. 13 and 6 are denoted by the same reference numerals and description thereof is omitted.
[0060]
In FIG. 11, the discharge-side pipe of the compressor 101 is branched to provide a fourth on-off valve 85 for the pipe, a fifth on-off valve 86 for the pipe connected to the accumulator 106, and an eighth for the pipe connected to the throttle 104. The on-off valve 89 is further provided, and the pipe ahead of the fourth on-off valve 85 and the pipe ahead of the eighth on-off valve 89 are merged. Further, the pipe connected to the mineral oil recovery unit 83 is connected to the low pressure gas pipe 301 via the sixth on-off valve 87, the pipe connected to the oil separator 82 is branched, and one side is connected to the seventh on-off valve 88. The other is connected to the high-pressure gas pipe 300 via the ninth on-off valve 90.
[0061]
In S30, after the oil trap is connected, the flushing operation is performed (S31).
In this flushing operation, the compressor 101 is driven, and high-temperature and high-pressure gas refrigerant is caused to flow to the oil trap 80 via the fourth on-off valve 85. The gas refrigerant that has flowed to the oil trap 80 flows to the oil separator 82, separates the ester oil contained in the refrigerant gas, and flows only the refrigerant gas to the refrigerant heat exchanger 84. The gas refrigerant that has flowed to the refrigerant heat exchanger 84 is condensed and liquefied to an appropriate dryness, and a part of this gas-liquid two-phase refrigerant flows to the high-pressure gas pipe 300 via the sixth on-off valve 87 and remains. The gas-liquid two-phase refrigerant flows into the intermediate-pressure liquid pipe 302 via the ninth on-off valve 90. The gas-liquid two-phase refrigerant that has flowed to the high pressure gas pipe 300 flows to the low pressure gas pipe 301 via the fourth solenoid valves 208a and 208b and the third solenoid valves 206a and 206b. The gas-liquid two-phase refrigerant flowing through the intermediate pressure liquid pipe 302 flows into the low pressure gas pipe 301 via the second expansion devices 202a and 202b and the load side heat exchangers 203a and 203b. The gas-liquid two-phase refrigerant that has flowed through the low-pressure gas pipe 301 reaches the oil trap 80, is evaporated and vaporized by the refrigerant heat exchanger 84, and flows into the mineral oil collector 83. The mineral oil recovery unit 83 separates the mineral oil in the gas refrigerant, and only the gas refrigerant flows out, and returns to the compressor 101 via the fifth on-off valve 86 and the accumulator 106.
[0062]
After performing the flushing operation for a predetermined time, the fourth on-off valve 85, the fifth on-off valve 86, the sixth on-off valve 87, the seventh on-off valve 88, the eighth on-off valve 89, the ninth After closing the on-off valve 90 and removing the oil trap 80, the fourth on-off valve 85 and the sixth on-off valve 87 are connected, the fifth on-off valve 86 and the seventh on-off valve 88 are connected, After connecting the eight on-off valve 89 and the ninth on-off valve 90, vacuuming is performed, and then all the valves are opened (S32), and normal cooling / heating operation is performed (S10).
[0063]
Even if it is a method like this, it is possible to remove the mineral oil remaining in the three pipes at a time by operating after connecting the three-pipe outdoor unit and the indoor unit, greatly reducing the work load. As well as improved reliability during normal operation.
[0064]
【The invention's effect】
Thus, in the present invention, the second refrigerant and the second refrigerant are obtained by diverting the existing piping of the three-pipe refrigeration / air-conditioning system that uses the first refrigerant and the first refrigerating machine oil. The refrigeration / air-conditioning system using the refrigerating machine oil 2 can be easily and reliably replaced.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a method for replacing an air conditioning / refrigeration system in a first embodiment.
FIG. 2 is a refrigerant circuit diagram of the air conditioning / refrigeration system according to the first embodiment.
3 is a refrigerant circuit diagram in which a foreign matter trap is attached to the air-conditioning / refrigeration system of Embodiment 1. FIG.
FIG. 4 is a diagram showing the relationship between pipe length and capacity.
5 is a flowchart showing a method for replacing an air conditioning / refrigeration system in Embodiment 2. FIG.
6 is a refrigerant circuit diagram in which an oil trapper is attached to the air-conditioning / refrigeration system of Embodiment 2. FIG.
FIG. 7 is a diagram showing a relationship between a refrigerant filling amount and a discharge refrigerant heating degree.
FIG. 8 is a flowchart showing a method for replacing an air conditioning / refrigeration system in a third embodiment.
9 is a refrigerant circuit diagram in which a foreign matter trap is attached to the air-conditioning / refrigeration system of Embodiment 3. FIG.
FIG. 10 is a flowchart showing a method for replacing an air conditioning / refrigeration system in a fourth embodiment.
FIG. 11 is a refrigerant circuit diagram in which an oil trapper is attached to the air-conditioning / refrigeration system according to the fourth embodiment.
FIG. 12 is a refrigerant circuit diagram of a conventional air conditioning / refrigeration system.
[Explanation of symbols]
1 outdoor unit, 2 compressor, 3 four-way valve, 4 heat source side heat exchanger,
5 accumulator, 6 first check valve, 7 piping,
8 Second check valve, 9 Piping, 10 Third check valve, 11 Piping,
20 low pressure gas pipe, 21 high pressure gas pipe, 30 split flow controller,
31 gas-liquid separator, 32 piping, 33 first throttling device, 34 piping,
35 second throttle device, 36 piping, 37a, 37b first solenoid valve,
38 piping, 39a, 39b second solenoid valve,
50a, 50b gas branch pipe, 51a, 51b liquid branch pipe,
60a, 60b indoor unit, 61a, 61b load side heat exchanger,
62a, 62b third throttle device, 70 first on-off valve,
71 second on-off valve, 72 branch pipe, 73 third on-off valve,
74 branch pipe, 75 foreign matter catcher, 80 oil trapper,
81 Cavity tube for oil return, oil separator, 83 mineral oil collector,
84 refrigerant heat exchanger, 85 fourth open / close valve, 86 fifth open / close valve,
87 sixth on-off valve, 88 seventh on-off valve, 89 eighth on-off valve,
90 ninth on-off valve, 100 outdoor unit, 101 compressor,
102 1st solenoid valve, 103 heat source side heat exchanger,
104 first throttle device, 105 check valve, 106 accumulator,
107 2nd solenoid valve, 200a, 200b indoor unit,
201a, 201b branch liquid pipe, 202a, 202b second throttle device,
203a, 203b load side heat exchanger, 204a, 204b gas branch pipe,
205a, 205b low pressure gas pipe, 206a, 206b third solenoid valve,
207a, 207b high pressure gas pipe, 208a, 208b fourth solenoid valve,
209a, 209b refrigerant controller, 300 high pressure gas pipe,
301 Low pressure gas pipe, 302 liquid pipe.

Claims (6)

第1の冷凍機油を備えた第1の室外機と、複数の第1の室内機と、前記第1の室外機と前記第の室内機とを接続する高圧ガス管、低圧ガス管、液管の3つの配管と、第1の冷媒とを有し、管径が液管、高圧ガス管、低圧ガス管の順に太くなることを特徴とする冷凍・空調システムを、前記高圧ガス管を新たな高圧管として使用し、前記低圧ガス管を新たな低圧管として使用して、圧縮機と、四方弁と、熱源側熱交換器と、第2の冷凍機油とを備えた第2の室外機と、気液分離器と、複数の弁とを備えた分流コントローラと、絞り装置と負荷側熱交換器とを備えた複数の第2の室内機と、第2の冷媒とを有し、前記第2の室内機が冷房運転をする場合には、前記気液分離器で分離された液冷媒をこの冷房運転する前記第2の室内機に流し、前記第2の室内機が暖房運転をする場合には、前記気液分離器で分離されたガス冷媒をこの暖房運転する前記第2の室内機に流す冷凍・空調システムにリプレースする冷凍・空調システムのリプレース方法であって、
前記第1の室外機、及び前記第1の室内機を前記高圧ガス管、前記低圧ガス管、前記液管から取り外す第1の工程と、
前記熱源側熱交換器を配管を介して前記高圧ガス管である新たな高圧管に接続し、前記四方弁を配管を介して前記低圧ガス管である新たな低圧管に接続することで前記第2の室外機を設置し、前記気液分離器を配管を介して前記新たな高圧管に接続し、前記複数の弁を配管を介して前記新たな低圧管に接続することで前記分流コントローラを設置し、前記絞り装置を配管を介して前記気液分離器に接続し、前記負荷側熱交換器を配管を介して前記複数の弁に接続することで前記複数の第2の室内機を設置する第2の工程と、
真空引き、及び前記第2の冷媒を前記第2の室外機、前記第2の室内機、前記分流コントローラ、前記新たな高圧管、前記新たな低圧管の少なくとも1つに注入する第3の工程と、
流入する前記第2の冷媒から前記第1の冷凍機油を分離して回収した後にガス状の前記第2の冷媒のみを流出する異物捕獲装置を前記新たな低圧管に設置し、前記第2の冷媒が前記分流コントローラの前記弁から前記異物捕獲装置に流入した後に前記四方弁に流れるように前記第2の室内機の運転を一定時間行うことで、前記新たな高圧管と前記新たな低圧管とに残留する前記の冷凍機油を回収する第4の工程とを有することを特徴とする冷凍・空調システムのリプレース方法。
A first outdoor unit including a first refrigerating machine oil, a plurality of first indoor units, a high-pressure gas pipe, a low-pressure gas pipe, and a liquid that connect the first outdoor unit and the first indoor unit A refrigeration / air-conditioning system having three pipes and a first refrigerant and having a pipe diameter that increases in the order of a liquid pipe, a high-pressure gas pipe, and a low- pressure gas pipe . A second outdoor unit including a compressor, a four-way valve, a heat source side heat exchanger, and a second refrigerating machine oil, using the low pressure gas pipe as a new low pressure pipe. A diversion controller including a gas-liquid separator, a plurality of valves, a plurality of second indoor units including a throttle device and a load-side heat exchanger, and a second refrigerant, when the second indoor unit to the cooling operation, flows the separated liquid refrigerant in the gas-liquid separator to the second indoor unit to drive the cooling, before When the second indoor unit to the heating operation, the refrigeration and air conditioning systems to replace the gas refrigerant separated in the gas-liquid separator in the refrigeration and air-conditioning system to flow into the second indoor unit to operate the heating A replacement method,
A first step of removing the first outdoor unit and the first indoor unit from the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe;
The heat source side heat exchanger is connected to a new high-pressure pipe that is the high-pressure gas pipe via a pipe , and the four-way valve is connected to a new low-pressure pipe that is the low-pressure gas pipe via a pipe . 2 is installed, the gas-liquid separator is connected to the new high-pressure pipe via a pipe , and the plurality of valves are connected to the new low-pressure pipe via a pipe. And installing the plurality of second indoor units by connecting the throttle device to the gas-liquid separator via a pipe and connecting the load side heat exchanger to the plurality of valves via a pipe. A second step of:
A third step of evacuating and injecting the second refrigerant into at least one of the second outdoor unit, the second indoor unit, the shunt controller, the new high pressure pipe , and the new low pressure pipe When,
A foreign matter capturing device for separating only the second refrigerant in a gaseous form after separating and collecting the first refrigerating machine oil from the second refrigerant flowing in is installed in the new low-pressure pipe, and the second The second high-pressure pipe and the new low-pressure pipe are operated by operating the second indoor unit for a predetermined time so that the refrigerant flows from the valve of the shunt controller into the foreign matter capturing device and then flows into the four-way valve. fourth replacement method of the refrigeration and air-conditioning systems, characterized by a step of recovering the first refrigeration oil remaining in and.
第1の冷凍機油を備えた第1の室外機と、複数の第1の室内機と、前記第1の室外機と前記第1の室内機とを接続する高圧ガス管、低圧ガス管、液管の3つの配管と、第1の冷媒とを有し、管径が液管、高圧ガス管、低圧ガス管の順に太くなることを特徴とする冷凍・空調システムを、前記高圧ガス管と前記液管とからなる一組を新たな高圧管として使用し、前記低圧ガス管を新たな低圧管として使用して、圧縮機と、四方弁と、熱源側熱交換器と、第2の冷凍機油とを備えた第2の室外機と、気液分離器と、複数の弁とを備えた分流コントローラと、絞り装置と負荷側熱交換器とを備えた複数の第2の室内機と、第2の冷媒とを有し、前記第2の室内機が冷房運転をする場合には、前記気液分離器で分離された液冷媒をこの冷房運転する前記第2の室内機に流し、前記第2の室内機が暖房運転をする場合には、前記気液分離器で分離されたガス冷媒をこの暖房運転する前記第2の室内機に流す冷凍・空調システムにリプレースする冷凍・空調システムのリプレース方法であって、
前記第1の室外機、及び前記第1の室内機を前記高圧ガス管、前記低圧ガス管、前記液管から取り外す第1の工程と、
前記熱源側熱交換器を配管を介して前記高圧ガス管と前記液管とからなる一組である新たな高圧管に接続し、前記四方弁を配管を介して前記低圧ガス管である新たな低圧管に接続することで前記第2の室外機を設置し、前記気液分離器を配管を介して前記新たな高圧管に接続し、前記複数の弁を配管を介して前記新たな低圧管に接続することで前記分流コントローラを設置し、前記絞り装置を配管を介して前記気液分離器に接続し、前記負荷側熱交換器を配管を介して前記複数の弁に接続することで前記複数の第2の室内機を設置する第2の工程と、
真空引き、及び前記第2の冷媒を前記第2の室外機、前記第2の室内機、前記分流コントローラ、前記新たな高圧管、前記新たな低圧管の少なくとも1つに注入する第3の工程と、
流入する前記第2の冷媒から前記第1の冷凍機油を分離して回収した後にガス状の前記第2の冷媒のみを流出する異物捕獲装置を前記新たな低圧管に設置し、前記第2の冷媒が前記分流コントローラの前記弁から前記異物捕獲装置に流入した後に前記四方弁に流れるように前記第2の室内機の運転を一定時間行うことで、前記新たな高圧管と前記新たな低圧管とに残留する前記第1の冷凍機油を回収する第4の工程とを有することを特徴とする冷凍・空調システムのリプレース方法。
A first outdoor unit including a first refrigerating machine oil, a plurality of first indoor units, a high-pressure gas pipe, a low-pressure gas pipe, and a liquid that connect the first outdoor unit and the first indoor unit A refrigeration / air-conditioning system having three pipes of a pipe and a first refrigerant and having a pipe diameter that increases in the order of a liquid pipe, a high-pressure gas pipe, and a low-pressure gas pipe. A set of liquid pipes is used as a new high-pressure pipe, the low-pressure gas pipe is used as a new low-pressure pipe, a compressor, a four-way valve, a heat source side heat exchanger, and a second refrigerating machine oil A second outdoor unit comprising: a gas-liquid separator; a shunt controller comprising a plurality of valves; a plurality of second indoor units comprising a throttling device and a load-side heat exchanger; In the case where the second indoor unit performs a cooling operation, the liquid refrigerant separated by the gas-liquid separator is cooled before the cooling operation. When the second indoor unit is heated for the heating operation, the gas refrigerant separated by the gas-liquid separator is allowed to flow to the second indoor unit for the heating operation. A replacement method for a refrigeration / air conditioning system that replaces the system,
A first step of removing the first outdoor unit and the first indoor unit from the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe;
The heat source side heat exchanger is connected to a new high-pressure pipe that is a set of the high-pressure gas pipe and the liquid pipe via a pipe, and the four-way valve is a new low-pressure gas pipe that is a pipe. The second outdoor unit is installed by connecting to a low pressure pipe, the gas-liquid separator is connected to the new high pressure pipe via a pipe, and the plurality of valves are connected to the new low pressure pipe via a pipe. Connecting the flow controller to the gas-liquid separator via a pipe, and connecting the load-side heat exchanger to the plurality of valves via a pipe. A second step of installing a plurality of second indoor units;
A third step of evacuating and injecting the second refrigerant into at least one of the second outdoor unit, the second indoor unit, the shunt controller, the new high pressure pipe, and the new low pressure pipe When,
A foreign matter capturing device for separating only the second refrigerant in a gaseous form after separating and collecting the first refrigerating machine oil from the second refrigerant flowing in is installed in the new low-pressure pipe, and the second The second high-pressure pipe and the new low-pressure pipe are operated by operating the second indoor unit for a predetermined time so that the refrigerant flows from the valve of the shunt controller into the foreign matter capturing device and then flows into the four-way valve. And a fourth step of recovering the first refrigerating machine oil remaining in the refrigeration / air conditioning system.
第1の冷凍機油を備えた第1の室外機と、複数の第1の室内機と、前記第1の室外機と前記第1の室内機とを接続する高圧ガス管、低圧ガス管、液管の3つの配管と、第1の冷媒とを有し、管径が液管、高圧ガス管、低圧ガス管の順に太くなることを特徴とする冷凍・空調システムを、前記高圧ガス管を新たな高圧管として使用し、前記低圧ガス管を新たな低圧管として使用して、圧縮機と、四方弁と、熱源側熱交換器と、第2の冷凍機油とを備えた第2の室外機と、気液分離器と、複数の弁とを備えた分流コントローラと、絞り装置と負荷側熱交換器とを備えた複数の第2の室内機と、第2の冷媒とを有し、前記第2の室内機が冷房運転をする場合には、前記気液分離器で分離された液冷媒をこの冷房運転する前記第2の室内機に流し、前記第2の室内機が暖房運転をする場合には、前記気液分離器で分離されたガス冷媒をこの暖房運転する前記第2の室内機に流す冷凍・空調システムにリプレースする冷凍・空調システムのリプレース方法であって、
前記第1の室外機、及び前記第1の室内機を前記高圧ガス管、前記低圧ガス管、前記液管から取り外す第1の工程と、
前記熱源側熱交換器を配管を介して前記高圧ガス管である新たな高圧管に接続し、前記四方弁を配管を介して前記低圧ガス管である新たな低圧管に接続することで前記第2の室外機を設置し、前記気液分離器を配管を介して前記新たな高圧管に接続し、前記複数の弁を配管を介して前記新たな低圧管に接続することで前記分流コントローラを設置し、前記絞り装置を配管を介して前記気液分離器に接続し、前記負荷側熱交換器を配管を介して前記複数の弁に接続することで前記複数の第2の室内機を設置する第2の工程と、
真空引き、及び前記第2の冷媒を前記第2の室外機、前記第2の室内機、前記分流コントローラ、前記新たな高圧管、前記新たな低圧管の少なくとも1つに注入する第3の工程と、
油回収器、油分離器、および前記油回収器の冷媒吸込側の配管と前記油分離器の冷媒吐出側の配管との間で熱交換を行う冷媒熱交換器を備えたオイルトラッパを、前記油回収器の冷媒吸込側の配管が前記新たな低圧管に接続され、前記油分離器の冷媒吐出側の配管が前記新たな高圧管に接続されるように、前記第2の室外機と前記分流コントローラとの間に設置し、前記第2の室外機から吐き出される冷媒が前記油分離器を流れ、前記分流コントローラから吐き出される冷媒が前記油回収器を流れるように、前記第2の室内機の運転を一定時間行うことで、前記新たな高圧管と前記新たな低圧管とに残留する前記第1の冷凍機油を回収する第4の工程とを有することを特徴とする冷凍・空調システムのリプレース方法。
A first outdoor unit including a first refrigerating machine oil, a plurality of first indoor units, a high-pressure gas pipe, a low-pressure gas pipe, and a liquid that connect the first outdoor unit and the first indoor unit A refrigeration / air-conditioning system having three pipes and a first refrigerant and having a pipe diameter that increases in the order of a liquid pipe, a high-pressure gas pipe, and a low-pressure gas pipe. A second outdoor unit including a compressor, a four-way valve, a heat source side heat exchanger, and a second refrigerating machine oil, using the low pressure gas pipe as a new low pressure pipe. A diversion controller including a gas-liquid separator, a plurality of valves, a plurality of second indoor units including a throttle device and a load-side heat exchanger, and a second refrigerant, When the second indoor unit performs cooling operation, the liquid refrigerant separated by the gas-liquid separator is caused to flow to the second indoor unit that performs cooling operation, When the second indoor unit performs a heating operation, a refrigeration / air conditioning system that replaces the gas refrigerant separated by the gas-liquid separator with a refrigeration / air conditioning system that flows to the second indoor unit that performs the heating operation. A replacement method,
A first step of removing the first outdoor unit and the first indoor unit from the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe;
The heat source side heat exchanger is connected to a new high-pressure pipe that is the high-pressure gas pipe via a pipe, and the four-way valve is connected to a new low-pressure pipe that is the low-pressure gas pipe via a pipe. 2 is installed, the gas-liquid separator is connected to the new high-pressure pipe via a pipe, and the plurality of valves are connected to the new low-pressure pipe via a pipe. And installing the plurality of second indoor units by connecting the throttle device to the gas-liquid separator via a pipe and connecting the load side heat exchanger to the plurality of valves via a pipe. A second step of:
A third step of evacuating and injecting the second refrigerant into at least one of the second outdoor unit, the second indoor unit, the shunt controller, the new high pressure pipe, and the new low pressure pipe When,
An oil trapper comprising an oil collector, an oil separator, and a refrigerant heat exchanger that performs heat exchange between a refrigerant suction side pipe of the oil collector and a refrigerant discharge side pipe of the oil separator, The second outdoor unit is connected so that a pipe on the refrigerant suction side of the oil recovery unit is connected to the new low-pressure pipe, and a pipe on the refrigerant discharge side of the oil separator is connected to the new high-pressure pipe. The second indoor unit is installed between the second flow controller and the refrigerant discharged from the second outdoor unit so that the refrigerant flows through the oil separator, and the refrigerant discharged from the branch controller flows through the oil collector. And a fourth step of recovering the first refrigerating machine oil remaining in the new high-pressure pipe and the new low-pressure pipe by operating the machine for a predetermined time. How to replace
第1の冷凍機油を備えた第1の室外機と、複数の第1の室内機と、前記第1の室外機と前記第1の室内機とを接続する高圧ガス管、低圧ガス管、液管の3つの配管と、第1の冷媒とを有し、管径が液管、高圧ガス管、低圧ガス管の順に太くなることを特徴とする冷凍・空調システムを、前記高圧ガス管と前記液管とからなる一組を新たな高圧管として使用し、前記低圧ガス管を新たな低圧管として使用して、圧縮機と、四方弁と、熱源側熱交換器と、第2の冷凍機油とを備えた第2の室外機と、気液分離器と、複数の弁とを備えた分流コントローラと、絞り装置と負荷側熱交換器とを備えた複数の第2の室内機と、第2の冷媒とを有し、前記第2の室内機が冷房運転をする場合には、前記気液分離器で分離された液冷媒をこの冷房運転する前記第2の室内機に流し、前記第2の室内機が暖房運転をする場合には、前記気液分離器で分離されたガス冷媒をこの暖房運転する前記 第2の室内機に流す冷凍・空調システムにリプレースする冷凍・空調システムのリプレース方法であって、
前記第1の室外機、及び前記第1の室内機を前記高圧ガス管、前記低圧ガス管、前記液管から取り外す第1の工程と、
前記熱源側熱交換器を配管を介して前記高圧ガス管と前記液管とからなる一組である新たな高圧管に接続し、前記四方弁を配管を介して前記低圧ガス管である新たな低圧管に接続することで前記第2の室外機を設置し、前記気液分離器を配管を介して前記新たな高圧管に接続し、前記複数の弁を配管を介して前記新たな低圧管に接続することで前記分流コントローラを設置し、前記絞り装置を配管を介して前記気液分離器に接続し、前記負荷側熱交換器を配管を介して前記複数の弁に接続することで前記複数の第2の室内機を設置する第2の工程と、
真空引き、及び前記第2の冷媒を前記第2の室外機、前記第2の室内機、前記分流コントローラ、前記新たな高圧管、前記新たな低圧管の少なくとも1つに注入する第3の工程と、
油回収器、油分離器、および前記油回収器の冷媒吸込側の配管と前記油分離器の冷媒吐出側の配管との間で熱交換を行う冷媒熱交換器を備えたオイルトラッパを、前記油回収器の冷媒吸込側の配管が前記新たな低圧管に接続され、前記油分離器の冷媒吐出側の配管が前記新たな高圧管に接続されるように、前記第2の室外機と前記分流コントローラとの間に設置し、前記第2の室外機から吐き出される冷媒が前記油分離器を流れ、前記分流コントローラから吐き出される冷媒が前記油回収器を流れるように、前記第2の室内機の運転を一定時間行うことで、前記新たな高圧管と前記新たな低圧管とに残留する前記第1の冷凍機油を回収する第4の工程とを有することを特徴とする冷凍・空調システムのリプレース方法。
A first outdoor unit including a first refrigerating machine oil, a plurality of first indoor units, a high-pressure gas pipe, a low-pressure gas pipe, and a liquid that connect the first outdoor unit and the first indoor unit A refrigeration / air-conditioning system having three pipes of a pipe and a first refrigerant and having a pipe diameter that increases in the order of a liquid pipe, a high-pressure gas pipe, and a low-pressure gas pipe. A set of liquid pipes is used as a new high-pressure pipe, the low-pressure gas pipe is used as a new low-pressure pipe, a compressor, a four-way valve, a heat source side heat exchanger, and a second refrigerating machine oil A second outdoor unit comprising: a gas-liquid separator; a shunt controller comprising a plurality of valves; a plurality of second indoor units comprising a throttling device and a load-side heat exchanger; In the case where the second indoor unit performs a cooling operation, the liquid refrigerant separated by the gas-liquid separator is cooled before the cooling operation. Flowing the second indoor unit, wherein when the second indoor unit to the heating operation, the refrigerating and air-conditioning flowing gas refrigerant separated in the gas-liquid separator to the second indoor unit to operate the heating A replacement method for a refrigeration / air conditioning system that replaces the system,
A first step of removing the first outdoor unit and the first indoor unit from the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe;
The heat source side heat exchanger is connected to a new high-pressure pipe that is a set of the high-pressure gas pipe and the liquid pipe via a pipe, and the four-way valve is a new low-pressure gas pipe that is a pipe. The second outdoor unit is installed by connecting to a low pressure pipe, the gas-liquid separator is connected to the new high pressure pipe via a pipe, and the plurality of valves are connected to the new low pressure pipe via a pipe. Connecting the flow controller to the gas-liquid separator via a pipe, and connecting the load-side heat exchanger to the plurality of valves via a pipe. A second step of installing a plurality of second indoor units;
A third step of evacuating and injecting the second refrigerant into at least one of the second outdoor unit, the second indoor unit, the shunt controller, the new high pressure pipe, and the new low pressure pipe When,
An oil trapper comprising an oil collector, an oil separator, and a refrigerant heat exchanger that performs heat exchange between a refrigerant suction side pipe of the oil collector and a refrigerant discharge side pipe of the oil separator, The second outdoor unit is connected so that a pipe on the refrigerant suction side of the oil recovery unit is connected to the new low-pressure pipe, and a pipe on the refrigerant discharge side of the oil separator is connected to the new high-pressure pipe. The second indoor unit is installed between the second flow controller and the refrigerant discharged from the second outdoor unit so that the refrigerant flows through the oil separator, and the refrigerant discharged from the branch controller flows through the oil collector. And a fourth step of recovering the first refrigerating machine oil remaining in the new high-pressure pipe and the new low-pressure pipe by operating the machine for a predetermined time. How to replace
圧縮機の吸入側配管にアキュムレータを接続し、前記圧縮機の吐出側配管を分岐させて第1の配管と第2の配管とし、前記第2の配管を第1の弁を介して熱源側熱交換器に接続し、前記アキュムレータの吸入側配管を分岐させて第3の配管と第4の配管とし、前記第3の配管を第2の弁を介して前記第2の配管に接続し、前記熱源側熱交換器に、逆止弁と第1の絞り装置とが並列に接続された第5の配管を接続させた第1の室外機と、前記第1の配管に接続された高圧ガス管と、前記第4の配管に接続された低圧ガス管と、前記第5の配管に接続された液管と、第2の絞り装置と、前記第2の絞り装置に接続された負荷側熱交換器とを備え、前記第2の絞り装置が配管を介して前記液管に接続し、前記負荷側熱交換器が、一方の分岐に第3の弁を、他方の分岐に第4の弁を有する冷媒コントローラを介して前記高圧ガス管、及び前記低圧ガス管に接続された複数の室内機とを有し、第1の冷媒と第1の冷凍機油とを使用する冷凍・空調システムを第2の冷媒と第2の冷凍機油とを使用する冷凍・空調システムにリプレースする冷凍・空調システムのリプレース方法であって、
前記第1の冷媒と前記第1の冷凍機油を使用した室内機及び室外機を前記高圧ガス管、前記低圧ガス管、前記液管から切り離し、前記第2の冷媒と前記第2の冷凍機油を使用する室内機及び室外機を前記高圧ガス管、前記低圧ガス管、前記液管に接続させる第1の工程と、
真空引き、及び前記第2の冷媒を前記第2の室外機、前記第2の室内機、前記冷媒コントローラ、前記高圧ガス管、前記低圧ガス管の少なくとも1つに注入する第2の工程と、
低圧ガス管に2つの分岐管を設置し、この2つの分岐管に異物捕獲装置を設置することで、冷媒がこの異物捕獲装置を流れるようにした後に、一定時間、全体の冷房負荷の方が暖房負荷よりも大きくなるように、前記複数の室内機を冷房と暖房とが混合した運転をさせる第3の工程とを有することを特徴とする冷凍・空調システムのリプレース方法。
An accumulator is connected to the suction side piping of the compressor, the discharge side piping of the compressor is branched to form a first piping and a second piping, and the second piping is connected to the heat source side heat via the first valve. Connecting to the exchanger, branching the suction side pipe of the accumulator to form a third pipe and a fourth pipe, connecting the third pipe to the second pipe via a second valve, and A first outdoor unit in which a heat source side heat exchanger is connected to a fifth pipe in which a check valve and a first throttle device are connected in parallel, and a high-pressure gas pipe connected to the first pipe A low-pressure gas pipe connected to the fourth pipe, a liquid pipe connected to the fifth pipe, a second throttle device, and a load-side heat exchange connected to the second throttle device The second expansion device is connected to the liquid pipe via a pipe, and the load-side heat exchanger is connected to a third branch on one branch. And a plurality of indoor units connected to the high-pressure gas pipe and the low-pressure gas pipe via a refrigerant controller having a fourth valve at the other branch, the first refrigerant and the first refrigerating machine oil A refrigeration / air conditioning system that replaces a refrigeration / air conditioning system that uses a second refrigerant with a refrigeration / air conditioning system that uses a second refrigerant oil,
The indoor unit and the outdoor unit using the first refrigerant and the first refrigerating machine oil are separated from the high pressure gas pipe, the low pressure gas pipe, and the liquid pipe, and the second refrigerant and the second refrigerating machine oil are separated. A first step of connecting an indoor unit and an outdoor unit to be used to the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe;
Evacuation, and a second step of injecting the second refrigerant into at least one of the second outdoor unit, the second indoor unit, the refrigerant controller, the high-pressure gas pipe, and the low-pressure gas pipe;
By installing two branch pipes in the low-pressure gas pipe and installing a foreign matter trapping device in these two branch pipes, after allowing the refrigerant to flow through this foreign matter trapping apparatus, the overall cooling load is more A replacement method for a refrigeration / air conditioning system, comprising: a third step of causing the plurality of indoor units to be mixed with cooling and heating so as to be larger than a heating load.
圧縮機の吸入側配管にアキュムレータを接続し、前記圧縮機の吐出側配管を分岐させて第1の配管と第2の配管とし、前記第2の配管を第1の弁を介して熱源側熱交換器に接続し、前記アキュムレータの吸入側配管を分岐させて第3の配管と第4の配管とし、前記第3の配管を第2の弁を介して前記第2の配管に接続し、前記熱源側熱交換器に、逆止弁と第1の絞り装置とが並列に接続された第5の配管を接続させた第1の室外機と、前記第1の配管に接続された高圧ガス管と、前記第4の配管に接続された低圧ガス管と、前記第5の配管に接続された液管と、第2の絞り装置と、前記第2の絞り装置に接続された負荷側熱交換器とを備え、前記第2の絞り装置が配管を介して前記液管に接続し、前記負荷側熱交換器が、一方の分岐に第3の弁を、他方の分岐に第4の弁を有する冷媒コントローラを介して前記高圧ガス管、及び前記低圧ガス管に接続された複数の室内機とを有し、第1の冷媒と第1の冷凍機油とを使用する冷凍・空調システムを第2の冷媒と第2の冷凍機油とを使用する冷凍・空調システムにリプレースする冷凍・空調システムのリプレース方法であって、
前記第1の冷媒と前記第1の冷凍機油を使用した室内機及び室外機を前記高圧ガス管、前記低圧ガス管、前記液管から切り離し、前記第2の冷媒と前記第2の冷凍機油を使用する室内機及び室外機を前記高圧ガス管、前記低圧ガス管、前記液管に接続させる第1の工程と、
真空引き、及び前記第2の冷媒を前記第2の室外機、前記第2の室内機、前記冷媒コントローラ、前記高圧ガス管、前記低圧ガス管又は液管の少なくとも1つに注入する第2の工程と、
低圧ガス管と高圧ガス管と液管とに、油回収器と、油分離器と、前記油回収器の冷媒吸込側の配管と前記油分離器の冷媒吐出側の配管との間で熱交換を行う冷媒熱交換器とを有するオイルトラッパを、前記油回収器の冷媒吸込側の配管が前記低圧ガス管に接続され、前記油分離器の冷媒吐出側の配管が高圧ガス管及び液管に接続されるように、室外機と複数の室内機との間に設置することで、前記室外機から吐き出される冷媒がこの油分離器を流れ、前記室内機から吐き出される冷媒がこの油回収器を流れるようにした後に、一定時間室内機の運転を行う第3の工程とを有することを特徴とする冷凍・空調システムのリプレース方法。
An accumulator is connected to the suction side piping of the compressor, the discharge side piping of the compressor is branched to form a first piping and a second piping, and the second piping is connected to the heat source side heat via the first valve. Connecting to the exchanger, branching the suction side pipe of the accumulator to form a third pipe and a fourth pipe, connecting the third pipe to the second pipe via a second valve, and A first outdoor unit in which a heat source side heat exchanger is connected to a fifth pipe in which a check valve and a first throttle device are connected in parallel, and a high-pressure gas pipe connected to the first pipe A low-pressure gas pipe connected to the fourth pipe, a liquid pipe connected to the fifth pipe, a second throttle device, and a load-side heat exchange connected to the second throttle device The second expansion device is connected to the liquid pipe via a pipe, and the load-side heat exchanger is connected to a third branch on one branch. And a plurality of indoor units connected to the high-pressure gas pipe and the low-pressure gas pipe via a refrigerant controller having a fourth valve at the other branch, the first refrigerant and the first refrigerating machine oil A refrigeration / air conditioning system that replaces a refrigeration / air conditioning system that uses a second refrigerant with a refrigeration / air conditioning system that uses a second refrigerant oil,
The indoor unit and the outdoor unit using the first refrigerant and the first refrigerating machine oil are separated from the high pressure gas pipe, the low pressure gas pipe, and the liquid pipe, and the second refrigerant and the second refrigerating machine oil are separated. A first step of connecting an indoor unit and an outdoor unit to be used to the high-pressure gas pipe, the low-pressure gas pipe, and the liquid pipe;
Evacuation and a second refrigerant is injected into at least one of the second outdoor unit, the second indoor unit, the refrigerant controller, the high-pressure gas pipe, the low-pressure gas pipe, or the liquid pipe. Process,
Heat exchange between the low pressure gas pipe, the high pressure gas pipe, and the liquid pipe between the oil recovery unit, the oil separator, the refrigerant suction side pipe of the oil recovery unit, and the refrigerant discharge side pipe of the oil separator An oil trapper having a refrigerant heat exchanger, wherein a refrigerant suction side pipe of the oil recovery unit is connected to the low pressure gas pipe, and a refrigerant discharge side pipe of the oil separator is a high pressure gas pipe and a liquid pipe The refrigerant discharged from the outdoor unit flows through the oil separator by being installed between the outdoor unit and the plurality of indoor units so that the refrigerant discharged from the indoor unit is the oil recovery unit. And a third step of operating the indoor unit for a certain period of time after flowing through the refrigeration / air-conditioning system.
JP2001323024A 2001-10-22 2001-10-22 Replacement method for refrigeration and air conditioning systems Expired - Lifetime JP3903763B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323024A JP3903763B2 (en) 2001-10-22 2001-10-22 Replacement method for refrigeration and air conditioning systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323024A JP3903763B2 (en) 2001-10-22 2001-10-22 Replacement method for refrigeration and air conditioning systems

Publications (2)

Publication Number Publication Date
JP2003130503A JP2003130503A (en) 2003-05-08
JP3903763B2 true JP3903763B2 (en) 2007-04-11

Family

ID=19139974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323024A Expired - Lifetime JP3903763B2 (en) 2001-10-22 2001-10-22 Replacement method for refrigeration and air conditioning systems

Country Status (1)

Country Link
JP (1) JP3903763B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007232244A (en) * 2006-02-28 2007-09-13 Mitsubishi Electric Corp Replacement kit for cleaning piping, its use method, and refrigerating cycle device
JP5239427B2 (en) * 2008-03-18 2013-07-17 ダイキン工業株式会社 Method for updating air conditioner
GB2481128B (en) * 2009-04-08 2015-04-29 Mitsubishi Electric Corp Refrigeration air-conditioning apparatus and refrigerant charging method therefor
JP6429358B2 (en) * 2014-01-08 2018-11-28 株式会社前川製作所 Ceiling-type air conditioning unit
WO2016203507A1 (en) * 2015-06-15 2016-12-22 三菱電機株式会社 Refrigeration cycle device
JP7270214B2 (en) * 2019-06-07 2023-05-10 レッキス工業株式会社 Refrigerant pipe inspection device
JP6974762B2 (en) * 2019-12-27 2021-12-01 ダイキン工業株式会社 Equipment for performing airtightness pressure resistance confirmation processing, vacuum drying processing, and refrigerant filling processing

Also Published As

Publication number Publication date
JP2003130503A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
KR100569547B1 (en) Refrigeration equipment
JP3903763B2 (en) Replacement method for refrigeration and air conditioning systems
JP5762441B2 (en) Refrigeration cycle equipment
JP5610843B2 (en) Air conditioner
WO2004013550A1 (en) Refrigeration equipment
JP4061494B2 (en) Connection pipe cleaning method, refrigerating device renewal method, and freezing device
AU2007225990B2 (en) Method for the recovery of refrigeration oil
JP4063229B2 (en) Piping cleaning method and piping cleaning device
JP4393786B2 (en) Refrigeration or air conditioner and method for updating the same
JP2008190790A (en) Refrigerating device
JP2005076983A (en) Air conditioning system
JP4186764B2 (en) Refrigeration equipment
JP4141339B2 (en) Air conditioner and refrigerating machine oil recovery method thereof
KR101120371B1 (en) A refrigerant system
JP4279080B2 (en) Refrigeration air conditioner and update method thereof
JP4803234B2 (en) Pipe cleaning device
JP2007255876A (en) Refrigerating device
JP2004044939A (en) Existing pipe washing method and system for air conditioner
JP5574638B2 (en) Refrigeration air conditioner
WO2022264311A1 (en) Air conditioner cleaning system, foreign matter recovery unit, and air conditioner cleaning method
KR101328761B1 (en) Air conditioner
JP2000249433A (en) Air conditioner and method for refrigerant recovery
JPH08178450A (en) Air conditioner
KR100463549B1 (en) Multi-type air conditioner for cooling/heating the same time
JP2004251555A (en) Air-conditioning system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070101

R151 Written notification of patent or utility model registration

Ref document number: 3903763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130119

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term