JP5574638B2 - Refrigeration air conditioner - Google Patents

Refrigeration air conditioner Download PDF

Info

Publication number
JP5574638B2
JP5574638B2 JP2009191104A JP2009191104A JP5574638B2 JP 5574638 B2 JP5574638 B2 JP 5574638B2 JP 2009191104 A JP2009191104 A JP 2009191104A JP 2009191104 A JP2009191104 A JP 2009191104A JP 5574638 B2 JP5574638 B2 JP 5574638B2
Authority
JP
Japan
Prior art keywords
refrigerant
pipe
heat exchanger
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009191104A
Other languages
Japanese (ja)
Other versions
JP2011043279A (en
Inventor
孝好 本多
修 森本
博幸 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009191104A priority Critical patent/JP5574638B2/en
Publication of JP2011043279A publication Critical patent/JP2011043279A/en
Application granted granted Critical
Publication of JP5574638B2 publication Critical patent/JP5574638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、熱源側ユニットと負荷側ユニットとを接続する冷凍空調装置に係り、既設の冷媒配管を取り替えることなく熱源側ユニット及び負荷側ユニットを更新した後、空調運転を実施しながら、既設の冷媒配管の洗浄を行うことができる冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner that connects a heat source side unit and a load side unit, and after renewing the heat source side unit and the load side unit without replacing existing refrigerant pipes, The present invention relates to a refrigeration air conditioner capable of cleaning refrigerant piping.

従来の冷凍空調装置においては、ガス配管と液配管の冷媒同士を熱交換させて冷媒を気液二相状態にする冷媒熱交換器を設けることで、熱源側ユニットと負荷側ユニットを接続する既設の冷媒配管を交換することなくユニットを新規に更新した後に、冷暖房運転をしながら既設の冷媒配管の洗浄を行っていた(例えば、特許文献1参照)。   In the conventional refrigeration and air-conditioning apparatus, a heat exchanger is installed to connect the heat source side unit and the load side unit by providing a refrigerant heat exchanger that exchanges heat between the refrigerant in the gas pipe and the liquid pipe to bring the refrigerant into a gas-liquid two-phase state. After the unit was newly updated without replacing the refrigerant pipe, the existing refrigerant pipe was washed while performing the cooling / heating operation (for example, see Patent Document 1).

特開2007−064558号公報(第1図)Japanese Unexamined Patent Publication No. 2007-064558 (FIG. 1)

しかしながら、上記特許文献1に記載された冷凍空調装置では、特に暖房運転を行いながら配管洗浄(以下、暖房洗浄)する場合に、冷媒熱交換器でガス配管と液配管の全流量同士を熱交換させるので、冷媒熱交換器のガス配管側出口での乾き度が必要以上に低下してしまうことがあった。それにより、ガス配管内の液冷媒量が増加して、冷媒不足のような状態になり、冷媒回路中を循環する冷媒流量が低下してしまい、配管洗浄に時間がかかる場合があった。   However, in the refrigerating and air-conditioning apparatus described in Patent Document 1, when the pipes are washed while performing heating operation (hereinafter referred to as heating washing), heat exchange is performed between the total flow rates of the gas pipe and the liquid pipe by the refrigerant heat exchanger. Therefore, the dryness at the gas pipe side outlet of the refrigerant heat exchanger may be unnecessarily lowered. As a result, the amount of liquid refrigerant in the gas pipe increases, resulting in a state of refrigerant shortage, the flow rate of refrigerant circulating in the refrigerant circuit is reduced, and pipe cleaning may take time.

この発明は、上述のような問題を解決するためになされたものであり、特に暖房洗浄時に、ガス配管内の冷媒の乾き度を最適にして、洗浄運転を迅速に終了させることができる冷凍空調装置である。   The present invention has been made to solve the above-described problems, and in particular, a refrigerating and air-conditioning system capable of quickly ending the cleaning operation by optimizing the dryness of the refrigerant in the gas pipe during heating cleaning. Device.

本発明に係る冷凍空調装置においては、圧縮機、四方弁、熱源側熱交換器、冷媒熱交換器を備えた熱源側ユニットと、絞り装置、負荷側熱交換器を備えた負荷側ユニットと、絞り装置および熱源側熱交換器を接続する第一の冷媒配管と、四方弁および負荷側熱交換器を接続する第二の冷媒配管と、第一の冷媒配管に接続され、負荷側熱交換器側から熱源側熱交換器側に冷媒を流す第一の逆止弁と、冷媒熱交換器の流路のうちの第二の冷媒配管が接続されていない側に接続され、第一の逆止弁をバイパスする冷媒分岐管と、冷房運転時における冷媒流れ方向において冷媒分岐管のうちの冷媒熱交換器よりも下流側に接続され、冷媒熱交換器側から第一の冷媒配管側に冷媒を流す第二の逆止弁と、圧縮機の入口側配管にアキュムレータと、冷媒熱交換器により第二の冷媒配管内の冷媒と熱交換した第一の冷媒配管内の冷媒をアキュムレータの入口側配管に流すバイパス配管と、を備え、冷房運転時、冷媒熱交換器により、第一の冷媒配管を流れる冷媒と第二の冷媒配管を流れる冷媒とを熱交換させることで、第一の冷媒配管を流れる冷媒を過冷却し、暖房運転時、冷媒熱交換器により、圧縮機から吐き出されたガス冷媒を第一の冷媒配管内の冷媒の一部と熱交換させることで気液二相の状態とし、第二の冷媒配管に流して冷媒配管の洗浄を行うものである。 In the refrigeration air conditioner according to the present invention, a compressor, a four-way valve, a heat source side heat exchanger, a heat source side unit provided with a refrigerant heat exchanger, a throttling device, a load side unit provided with a load side heat exchanger, A first refrigerant pipe connecting the expansion device and the heat source side heat exchanger, a second refrigerant pipe connecting the four-way valve and the load side heat exchanger, and the first refrigerant pipe, the load side heat exchanger A first check valve that causes the refrigerant to flow from the side to the heat source side heat exchanger side, and a side that is not connected to the second refrigerant pipe in the flow path of the refrigerant heat exchanger. A refrigerant branch pipe that bypasses the valve, and is connected to the downstream side of the refrigerant heat exchanger in the refrigerant branch pipe in the refrigerant flow direction during cooling operation, and the refrigerant is supplied from the refrigerant heat exchanger side to the first refrigerant pipe side. a second check valve to flow, and an accumulator to the inlet side pipe of the compressor, the refrigerant heat Comprising a bypass pipe for passing a second of the first refrigerant in the refrigerant in the pipe that exchanges heat with the refrigerant of the refrigerant in the pipe to the accumulator inlet-side pipe by exchanger, a cooling operation, the refrigerant heat exchanger, a first The refrigerant flowing through the first refrigerant pipe and the refrigerant flowing through the second refrigerant pipe are heat-exchanged to supercool the refrigerant flowing through the first refrigerant pipe, and are discharged from the compressor by the refrigerant heat exchanger during heating operation. The gas refrigerant thus obtained is heat-exchanged with a part of the refrigerant in the first refrigerant pipe so as to be in a gas-liquid two-phase state, and flows into the second refrigerant pipe to clean the refrigerant pipe.

この発明によれば、冷媒熱交換器に流れる冷媒流量を最適なものとし、ガス冷媒配管内の冷媒の乾き度を最適なものとすることによって、ガス配管内の液冷媒量が増加して冷媒回路中の循環流量が低下してしまうことがなく、暖房洗浄を迅速に終了させることができる冷凍空調装置を得ることができる。   According to the present invention, by optimizing the flow rate of the refrigerant flowing through the refrigerant heat exchanger and optimizing the dryness of the refrigerant in the gas refrigerant pipe, the amount of liquid refrigerant in the gas pipe increases and the refrigerant It is possible to obtain a refrigeration air-conditioning apparatus that can quickly finish heating washing without reducing the circulating flow rate in the circuit.

この発明の実施の形態1に係る冷凍空調装置を示す冷媒回路図である。It is a refrigerant circuit figure which shows the refrigerating air conditioning apparatus which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る動作フローチャートである。It is an operation | movement flowchart which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る洗浄中の冷凍サイクルを示すモリエル線図である。It is a Mollier diagram which shows the refrigerating cycle in washing | cleaning which concerns on Embodiment 1 of this invention.

実施の形態1.
図1は、本実施の形態に係る冷凍空調装置を示すものである。
図1において、冷凍空調装置1は、熱源側ユニット2と負荷側ユニット3とが、冷媒配管で接続されて冷媒回路が構成されている。冷凍空調装置1の更新時には、熱源側ユニット2と負荷側ユニット3のみを新規に更新し、両ユニット間の冷媒配管は既設の冷媒配管が再利用される。本実施の形態は、冷凍空調装置1の更新後の冷凍空調装置1について説明するものである。
Embodiment 1 FIG.
FIG. 1 shows a refrigerating and air-conditioning apparatus according to the present embodiment.
In FIG. 1, a refrigeration air conditioner 1 includes a heat source side unit 2 and a load side unit 3 connected by a refrigerant pipe to form a refrigerant circuit. When the refrigerating and air-conditioning apparatus 1 is updated, only the heat source side unit 2 and the load side unit 3 are newly updated, and the existing refrigerant pipe is reused as the refrigerant pipe between both units. This Embodiment demonstrates the refrigerating air conditioning apparatus 1 after the refrigerating air conditioning apparatus 1 updated.

熱源側ユニット2は、アキュムレータ6と、圧縮機7と、油分離器8と、鉱油回収装置90を備えたオイルタンク9と、逆止弁10と、四方弁11と、熱源側熱交換器12が配管で順次接続されて構成されている。負荷側ユニット3は、負荷側熱交換器16、絞り装置15が順次接続されて構成されている。ガス冷媒配管4は、四方弁11から冷媒熱交換器17を介して負荷側熱交換器16に接続されている。また、液冷媒配管5は、絞り装置15から熱源側ユニット2内の圧力調整弁14、逆止弁13を介して、熱源側熱交換器12に接続されている。   The heat source side unit 2 includes an accumulator 6, a compressor 7, an oil separator 8, an oil tank 9 including a mineral oil recovery device 90, a check valve 10, a four-way valve 11, and a heat source side heat exchanger 12. Are sequentially connected by piping. The load side unit 3 is configured by sequentially connecting a load side heat exchanger 16 and an expansion device 15. The gas refrigerant pipe 4 is connected to the load side heat exchanger 16 via the refrigerant heat exchanger 17 from the four-way valve 11. In addition, the liquid refrigerant pipe 5 is connected to the heat source side heat exchanger 12 from the expansion device 15 via the pressure adjustment valve 14 and the check valve 13 in the heat source side unit 2.

冷媒熱交換器17は、逆止弁13の出口側配管から分岐されて入口側配管に戻る冷媒分岐配管170とガス冷媒配管4に流れる冷媒同士とが熱交換するように設けられている。更に、冷媒熱交換器17と逆止弁13の入口側に接続される冷媒分岐配管170中に逆止弁18が設けられ、逆止弁18の入口側配管より分岐され、暖房洗浄時に予め決められた開度で冷媒を通過させてそれ以外は遮断する電磁弁19を介して、アキュムレータ6の入口側配管に接続するバイパス配管171が設けられている。なお、冷媒熱交換器17はプレート式熱交換器や二重管熱交換器を用いると小型化ができる効果を有するが、その他の熱交換器を用いても良い。   The refrigerant heat exchanger 17 is provided such that heat is exchanged between the refrigerant branch pipe 170 branched from the outlet side pipe of the check valve 13 and returning to the inlet side pipe and the refrigerant flowing in the gas refrigerant pipe 4. Further, a check valve 18 is provided in the refrigerant branch pipe 170 connected to the refrigerant heat exchanger 17 and the inlet side of the check valve 13, and is branched from the inlet side pipe of the check valve 18. A bypass pipe 171 connected to the inlet-side pipe of the accumulator 6 is provided through an electromagnetic valve 19 that allows the refrigerant to pass through at a given opening and blocks the others. In addition, although the refrigerant | coolant heat exchanger 17 has an effect which can be reduced in size when a plate-type heat exchanger or a double pipe heat exchanger is used, other heat exchangers may be used.

ここで、電磁弁19は、例えば、装置製造時に試験等により最適な開度を決めておき固定開度とした電磁弁を用いても良いし、ガス冷媒配管4内の冷媒の状態等に基いて開閉度を調節することのできる電磁弁を用いても良い。また、配管洗浄後には配管を外すなどで冷媒の流れを遮断する冷媒遮断手段として構成しても良い。   Here, the electromagnetic valve 19 may be, for example, an electromagnetic valve having a fixed opening degree determined by a test or the like at the time of manufacturing the apparatus, or based on the state of the refrigerant in the gas refrigerant pipe 4. An electromagnetic valve that can adjust the degree of opening and closing may be used. Moreover, you may comprise as a refrigerant | coolant interruption | blocking means which interrupts | blocks the flow of a refrigerant | coolant by removing piping after piping washing | cleaning.

次に図2のフローチャートを用いて、冷凍空調装置1を更新後、通常の空調運転を開始するまでの動作について説明する。
冷凍空調装置1の更新後、熱源側ユニット2または負荷側ユニット3に設けられた運転開始スイッチ(図示せず)により、配管洗浄を行いながら空調運転を開始する。(ステップ1)
Next, after the refrigerating and air-conditioning apparatus 1 is updated, the operation until the normal air-conditioning operation is started will be described using the flowchart of FIG.
After the refrigerating and air-conditioning apparatus 1 is updated, the air-conditioning operation is started while the pipe is washed by an operation start switch (not shown) provided in the heat source side unit 2 or the load side unit 3. (Step 1)

次に、冷房運転を行うか、または暖房運転を行うかを選択し、運転モードを決定する。(ステップ2)運転モードの決定に当たっては、室内空気温度や室外空気温度などを検知し、それらの値に基いて自動で決定しても良いし、ユーザが手動で決定しても良い。   Next, it is selected whether the cooling operation or the heating operation is performed, and the operation mode is determined. (Step 2) In determining the operation mode, the indoor air temperature, the outdoor air temperature, or the like may be detected and automatically determined based on those values, or may be determined manually by the user.

運転モードが決定されると、圧縮機7が起動し、空調運転とともに配管洗浄が開始される。(ステップ3)まず、冷房運転しながら配管洗浄を行う(冷房洗浄)場合の動作について説明する。圧縮機7が起動すると、圧縮機7より吐出された高温高圧のガス冷媒が吐出されて油分離器8に入る。ガス冷媒とともに圧縮機7より持ち出された冷凍機油は油分離器8で分離されて、油分離器8下部とオイルタンク9を接続する配管172を流れてオイルタンク9に入り、返油用毛細管21を介して圧縮機7に戻る。ここで、ガス冷媒の油は油分離器8とオイルタンク9とで各々、ガス冷媒から分離されるため、分離効率を上げることができる。また、オイルタンク9の容積を調整することで、冷媒の圧力脈動を抑える効果がある。一方、ガス冷媒は、四方弁11を介して熱源側熱交換器12に流れ、凝縮、液化される。熱源側熱交換器12で凝縮した冷媒は、液冷媒配管5、冷媒分岐配管170より冷媒熱交換器17に流れ込み、ガス冷媒配管4の低圧の気液二相冷媒と熱交換をして更に凝縮して、液冷媒または低乾き度の気液二相冷媒となる。このとき、電磁弁19はバイパス配管171に冷媒が流れないように遮断されており、冷媒は逆止弁18を介して液冷媒配管5に戻る。この冷媒は、圧力センサ50の検知値が液冷媒配管5の許容圧力を超えないように圧力調整弁14によって液冷媒配管5の耐圧よりも低くなる中間圧力に制御される。また、圧力センサ50で検出された中間圧力が万が一、液冷媒配管5の耐圧を超えそうになった場合には、冷凍空調装置1の運転を停止する。   When the operation mode is determined, the compressor 7 is started, and piping cleaning is started together with the air conditioning operation. (Step 3) First, the operation in the case where pipe cleaning is performed during cooling operation (cooling cleaning) will be described. When the compressor 7 is started, the high-temperature and high-pressure gas refrigerant discharged from the compressor 7 is discharged and enters the oil separator 8. The refrigerating machine oil taken out from the compressor 7 together with the gas refrigerant is separated by the oil separator 8, flows through a pipe 172 connecting the lower part of the oil separator 8 and the oil tank 9, enters the oil tank 9, and returns to the oil return capillary 21. To return to the compressor 7. Here, since the oil of the gas refrigerant is separated from the gas refrigerant by the oil separator 8 and the oil tank 9, respectively, the separation efficiency can be increased. Moreover, adjusting the volume of the oil tank 9 has an effect of suppressing pressure pulsation of the refrigerant. On the other hand, the gas refrigerant flows to the heat source side heat exchanger 12 via the four-way valve 11 and is condensed and liquefied. The refrigerant condensed in the heat source side heat exchanger 12 flows into the refrigerant heat exchanger 17 through the liquid refrigerant pipe 5 and the refrigerant branch pipe 170, and further exchanges heat with the low-pressure gas-liquid two-phase refrigerant in the gas refrigerant pipe 4. Thus, a liquid refrigerant or a low-dryness gas-liquid two-phase refrigerant is obtained. At this time, the electromagnetic valve 19 is blocked so that the refrigerant does not flow into the bypass pipe 171, and the refrigerant returns to the liquid refrigerant pipe 5 via the check valve 18. This refrigerant is controlled to an intermediate pressure that is lower than the pressure resistance of the liquid refrigerant pipe 5 by the pressure adjusting valve 14 so that the detected value of the pressure sensor 50 does not exceed the allowable pressure of the liquid refrigerant pipe 5. Also, if the intermediate pressure detected by the pressure sensor 50 is likely to exceed the pressure resistance of the liquid refrigerant pipe 5, the operation of the refrigeration air conditioner 1 is stopped.

このように構成することにより、R22とR410AまたはR407CからR410Aのように動作圧力が異なる冷媒でユニットを更新する場合にも、液冷媒配管5、ガス冷媒配管4の耐圧を越えないように運転を制御することができ安全である。   With this configuration, even when the unit is updated with a refrigerant having different operating pressures such as R22 and R410A or R407C to R410A, the operation is performed so as not to exceed the pressure resistance of the liquid refrigerant pipe 5 and the gas refrigerant pipe 4. It can be controlled and is safe.

中間圧力に制御された液または気液二相冷媒は負荷側ユニット3に入り、絞り装置15によってさらに低圧まで絞られる。低圧まで絞られた液または気液二相冷媒は、負荷側熱交換器16に流れて蒸発、気化され、空調対象となる室内を冷房する。蒸発、気化された冷媒は高乾き度の気液二相冷媒となり、冷媒熱交換器17に流れ込む。冷媒は、更に蒸発、気化されてガス冷媒となり、冷媒配管内に残留するユニット更新前の作動冷媒に適合する冷凍機油等の液状のコンタミと一緒になって四方弁11を介してアキュムレータ6に入る。アキュムレータ6では冷媒ガスとコンタミとが分離され、冷媒ガスは圧縮機7に戻り、コンタミはアキュムレータ6内に滞留する。アキュムレータ6に回収されたコンタミは、アキュムレータ6の底からオイルタンク9に設けられ、オイルタンク9とは別空間の鉱油回収器90へ流れて貯留される。ここで、鉱油回収器90の上部から、冷媒の流れによってアキュムレータ6の内圧よりも静圧が低下したアキュムレータ6の入口配管に接続する。これにより、鉱油回収器90の内圧をアキュムレータ6の内圧よりも低下させて、アキュムレータ6から鉱油回収器90へのコンタミの移動を促進させることができる。   The liquid or gas-liquid two-phase refrigerant controlled to the intermediate pressure enters the load side unit 3 and is further throttled to a low pressure by the throttle device 15. The liquid or gas-liquid two-phase refrigerant that has been squeezed to a low pressure flows into the load-side heat exchanger 16 and is evaporated and vaporized to cool the room to be air-conditioned. The evaporated and vaporized refrigerant becomes a gas-liquid two-phase refrigerant with high dryness and flows into the refrigerant heat exchanger 17. The refrigerant further evaporates and vaporizes to become a gas refrigerant, and enters the accumulator 6 through the four-way valve 11 together with liquid contaminants such as refrigeration oil that is compatible with the working refrigerant before the unit replacement remaining in the refrigerant pipe. . In the accumulator 6, the refrigerant gas and the contamination are separated, the refrigerant gas returns to the compressor 7, and the contamination stays in the accumulator 6. Contamination collected in the accumulator 6 is provided in the oil tank 9 from the bottom of the accumulator 6, and flows and stored in a mineral oil collector 90 in a space different from the oil tank 9. Here, it connects from the upper part of the mineral oil collection | recovery apparatus 90 to the inlet piping of the accumulator 6 from which the static pressure fell rather than the internal pressure of the accumulator 6 with the flow of the refrigerant | coolant. Thereby, the internal pressure of the mineral oil collector 90 can be made lower than the internal pressure of the accumulator 6, and the movement of contamination from the accumulator 6 to the mineral oil collector 90 can be promoted.

次に、ステップ3において、暖房洗浄運転時の動作について説明する。圧縮機7が起動すると、圧縮機7より吐出された高温高圧のガス冷媒が吐出されて油分離器8に入る。ガス冷媒とともに圧縮機7より持ち出された冷凍機油は油分離器8で分離され油分離器8下部とオイルタンク9を接続する配管172を流れて、オイルタンク9に入り、返油用毛細管21を介して圧縮機7に戻る。一方、ガス冷媒は、四方弁11を介して冷媒熱交換器17に流れ込み、冷媒分岐配管170の低温低圧の気液二相冷媒と熱交換をして凝縮、液化され、高乾き度の気液二相冷媒となる。ここで、予め、バイパス配管171側に流れる液冷媒の量を冷媒熱交換器17出口の電磁弁19の大きさで調節することでバイパス流量を所定の値に調整する。これによって、冷媒熱交換器17での熱交換量は、バイパス流量に応じた熱交換量とすることが可能となり、さらに、熱交換量を所定の値に調整することで、冷媒熱交換器17出口での冷媒の乾き度も調整することが可能となる。   Next, in step 3, the operation during the heating cleaning operation will be described. When the compressor 7 is started, the high-temperature and high-pressure gas refrigerant discharged from the compressor 7 is discharged and enters the oil separator 8. The refrigerating machine oil taken out from the compressor 7 together with the gas refrigerant is separated by the oil separator 8, flows through a pipe 172 connecting the lower part of the oil separator 8 and the oil tank 9, enters the oil tank 9, and connects the oil return capillary 21. To the compressor 7. On the other hand, the gas refrigerant flows into the refrigerant heat exchanger 17 through the four-way valve 11, exchanges heat with the low-temperature and low-pressure gas-liquid two-phase refrigerant in the refrigerant branch pipe 170, is condensed and liquefied, and has a high dryness. It becomes a two-phase refrigerant. Here, the bypass flow rate is adjusted to a predetermined value by adjusting the amount of the liquid refrigerant flowing to the bypass piping 171 side in advance by the size of the electromagnetic valve 19 at the outlet of the refrigerant heat exchanger 17. As a result, the heat exchange amount in the refrigerant heat exchanger 17 can be a heat exchange amount corresponding to the bypass flow rate, and further, the refrigerant heat exchanger 17 can be adjusted by adjusting the heat exchange amount to a predetermined value. It is also possible to adjust the dryness of the refrigerant at the outlet.

ガス冷媒配管4内の冷媒の圧力は圧力センサ40により検知されて、その検知値が一定となるように、圧縮機7の容量を制御する。このとき、高圧がガス冷媒配管4の耐圧を超えそうな場合には、圧力スイッチ(図示せず)により、冷凍空調装置1の運転を停止する。   The pressure of the refrigerant in the gas refrigerant pipe 4 is detected by the pressure sensor 40, and the capacity of the compressor 7 is controlled so that the detected value becomes constant. At this time, if the high pressure is likely to exceed the pressure resistance of the gas refrigerant pipe 4, the operation of the refrigeration air conditioner 1 is stopped by a pressure switch (not shown).

このように構成することにより、R22とR410AまたはR407CからR410Aのように動作圧力が異なる冷媒でユニットを更新する場合にも、液冷媒配管5、ガス冷媒配管4の耐圧を越えないように運転を制御することができる。   With this configuration, even when the unit is updated with a refrigerant having different operating pressures such as R22 and R410A or R407C to R410A, the operation is performed so as not to exceed the pressure resistance of the liquid refrigerant pipe 5 and the gas refrigerant pipe 4. Can be controlled.

なお、圧縮機7の容量制御は、圧縮機7をインバータ駆動させて周波数制御するのみならず、定速運転する圧縮機を複数台設置させての台数変更や、バイパス弁(図示せず)の開閉などにより容量制御するようにしてもよい。   The capacity control of the compressor 7 not only controls the frequency by driving the compressor 7 with an inverter, but also changes the number of compressors that are installed at a constant speed or sets a bypass valve (not shown). The capacity may be controlled by opening and closing.

高乾き度の気液二相冷媒は負荷側ユニット3に入り、ガス冷媒配管4を流れて負荷側熱交換器16に流れ込み、凝縮、液化されて、空調対象となる室内を暖房する。凝縮、液化された冷媒は、絞り装置15および圧力調整弁14によって低圧まで絞られる。低圧となった気液二相冷媒は、液冷媒配管5内を逆止弁13を介して流れ、逆止弁13の出口配管にて分岐されて、一方は冷媒分岐配管170に、もう一方は熱源側熱交換器12に流れる。冷媒分岐配管170に流れた冷媒は、冷媒熱交換器17に入り、ガス冷媒配管4の高温高圧のガス冷媒と熱交換して蒸発・気化し、ガス冷媒または高乾き度の気液二相冷媒となる。この冷媒は、冷媒分岐配管170より分岐した冷媒回路に流れ、電磁弁19を介してアキュムレータ6の入口側配管に戻るバイパス配管171を流れて、アキュムレータ6の入口側に流れる。このとき、電磁弁19は予め決められた冷媒量が流れる固定の開度とされており、冷媒熱交換器17の熱交換量が最適となるようにされている。また、冷媒熱交換器17によって熱交換された冷媒は液冷媒配管5内の冷媒と比較して低圧のため、液冷媒配管5には冷媒はほとんど戻らない。   The gas-liquid two-phase refrigerant with high dryness enters the load side unit 3, flows through the gas refrigerant pipe 4, flows into the load side heat exchanger 16, is condensed and liquefied, and heats the room to be air-conditioned. The condensed and liquefied refrigerant is throttled to a low pressure by the throttle device 15 and the pressure regulating valve 14. The low-pressure gas-liquid two-phase refrigerant flows through the liquid refrigerant pipe 5 via the check valve 13 and is branched at the outlet pipe of the check valve 13, one at the refrigerant branch pipe 170 and the other at the other. It flows to the heat source side heat exchanger 12. The refrigerant that has flowed into the refrigerant branch pipe 170 enters the refrigerant heat exchanger 17 and exchanges heat with the high-temperature and high-pressure gas refrigerant in the gas refrigerant pipe 4 to evaporate and vaporize, so that the gas refrigerant or a highly dry gas-liquid two-phase refrigerant is obtained. It becomes. This refrigerant flows into the refrigerant circuit branched from the refrigerant branch pipe 170, flows through the bypass pipe 171 returning to the inlet side pipe of the accumulator 6 through the electromagnetic valve 19, and flows to the inlet side of the accumulator 6. At this time, the solenoid valve 19 has a fixed opening through which a predetermined amount of refrigerant flows, and the heat exchange amount of the refrigerant heat exchanger 17 is optimized. Further, since the refrigerant heat-exchanged by the refrigerant heat exchanger 17 has a lower pressure than the refrigerant in the liquid refrigerant pipe 5, the refrigerant hardly returns to the liquid refrigerant pipe 5.

このように構成することで、ガス冷媒配管4の冷媒の乾き度が最適となるようにできるため、冷媒熱交換器17によって熱交換した後のガス冷媒配管4内を流れる液冷媒量が増加して冷媒回路中の冷媒流量が相対的に減少することもなく、暖房洗浄に必要な時間が短くなってしまうこともないので、迅速に暖房洗浄を終了させることができる。   With this configuration, the dryness of the refrigerant in the gas refrigerant pipe 4 can be optimized, so that the amount of liquid refrigerant flowing in the gas refrigerant pipe 4 after heat exchange by the refrigerant heat exchanger 17 increases. As a result, the flow rate of the refrigerant in the refrigerant circuit does not decrease relatively, and the time required for the heating and cleaning is not shortened, so that the heating and cleaning can be completed quickly.

なお、前述したとおり、電磁弁19は開度を調整できる電磁弁として、ガス冷媒配管4の、例えば乾き度などの冷媒の状態を検知して、その乾き度を最適にするように開度を調整できるように制御しても良い。このように、冷媒分岐配管170内の冷媒流量を調整することで、冷媒熱交換器17の熱交換量を制御できるので、ガス冷媒配管4内の冷媒の乾き度を最適にすることができる。このときの最適な乾き度とは、0.1〜0.9であればよく、好ましくは0.8程度に設定するとなお良い。この条件を外れた乾き度の場合には、液に近いと冷媒の流速が落ちて異物を除去する効果が低下し、また、ガスに近いと壁面を流れる液膜がなくなり、配管の中央部を噴霧状の液冷媒が流れるのみとなるため、液膜に異物を取り込み、もしくは、浮かせて、異物を回収することができず、異物を回収するための時間が長くなるため、適正な乾き度で運転させるのが、洗浄時間を短縮するためには重要である。   As described above, the electromagnetic valve 19 is an electromagnetic valve whose opening degree can be adjusted, and detects the state of the refrigerant such as the dryness of the gas refrigerant pipe 4, and the opening degree is optimized so as to optimize the dryness. You may control so that it can adjust. As described above, the amount of heat exchange in the refrigerant heat exchanger 17 can be controlled by adjusting the flow rate of the refrigerant in the refrigerant branch pipe 170, so that the dryness of the refrigerant in the gas refrigerant pipe 4 can be optimized. The optimum dryness at this time may be 0.1 to 0.9, preferably about 0.8. In the case of dryness outside this condition, if it is close to liquid, the flow rate of the refrigerant will drop and the effect of removing foreign matter will be reduced, and if it is close to gas, there will be no liquid film flowing on the wall surface, and the central part of the pipe will be Since the sprayed liquid refrigerant only flows, foreign matter cannot be collected or floated in the liquid film, and the foreign matter cannot be collected, and the time for collecting the foreign matter becomes longer. It is important to operate in order to shorten the cleaning time.

熱源側熱交換器12に入った冷媒は、蒸発、気化され、四方弁11を介して流れ、バイパス配管171より流入した冷媒と合流し、アキュムレータ6に入る。アキュムレータ6では冷媒ガスとコンタミとが分離され、冷媒ガスは圧縮機7に戻り、コンタミはアキュムレータ6内に滞留する。アキュムレータ6に回収されたコンタミは、冷房洗浄時と同様に、アキュムレータ6の底に設けた排出用ポート(図示せず)から、配管洗浄後に適宜鉱油回収器90に貯留される。   The refrigerant that has entered the heat source side heat exchanger 12 is evaporated and vaporized, flows through the four-way valve 11, merges with the refrigerant that flows in from the bypass pipe 171, and enters the accumulator 6. In the accumulator 6, the refrigerant gas and the contamination are separated, the refrigerant gas returns to the compressor 7, and the contamination stays in the accumulator 6. Contamination collected in the accumulator 6 is stored in the mineral oil collector 90 as appropriate after washing the pipe from a discharge port (not shown) provided at the bottom of the accumulator 6 as in the case of cooling washing.

ここで、冷媒熱交換器17によって熱交換されたガス冷媒または高乾き度の気液二相冷媒を液冷媒配管5に戻すと熱源側熱交換器12に流れる冷媒の乾き度が大きくなり、かつ、アキュムレータ6の入口に冷媒を流した場合と比較して熱源側熱交換器12を流れる冷媒流量も多くなるため、液冷媒配管5中の圧損を増大させ、圧縮機7の吸入側の低圧が低下してしまうことがあるが、本実施の形態のようにアキュムレータ6の入口にバイパス配管171を設けて冷媒を流すことで、液冷媒配管5の冷媒は熱源側熱交換器12と冷媒熱交換器17とに分流して流れるため、そのような不具合を生じさせることがない。   Here, when the gas refrigerant heat-exchanged by the refrigerant heat exchanger 17 or the gas-liquid two-phase refrigerant having a high dryness is returned to the liquid refrigerant pipe 5, the dryness of the refrigerant flowing through the heat source side heat exchanger 12 increases, and Since the flow rate of the refrigerant flowing through the heat source side heat exchanger 12 increases as compared with the case where the refrigerant flows through the inlet of the accumulator 6, the pressure loss in the liquid refrigerant pipe 5 is increased, and the low pressure on the suction side of the compressor 7 is increased. However, the refrigerant in the liquid refrigerant pipe 5 may exchange heat with the heat source side heat exchanger 12 by providing the bypass pipe 171 at the inlet of the accumulator 6 and flowing the refrigerant as in the present embodiment. Since it flows in a diverted manner to the vessel 17, such a problem does not occur.

さらに、図3を用いて、暖房洗浄運転時における冷凍サイクルの動作を説明する。図3は、本発明の冷凍空調装置の暖房洗浄時における冷凍サイクルの動作を表すP−h線図であり、横軸は比エンタルピh、縦軸は冷媒圧力Pの大きさを示し、Tは等温線である。図3において、圧縮機7で圧縮されて高温高圧となった状態R2の冷媒は冷媒熱交換器17に流れ込み、冷媒分岐配管170の低圧の気液二相冷媒(後述の状態R5の冷媒)と熱交換して凝縮されて状態R3の高乾き度の気液二相冷媒となる。このとき、状態R3は最適な乾き度とするため、バイパスする冷媒流量を所定の冷媒流量となるようにすることで、冷媒熱交換器17の熱交換量を調整する。状態R3の冷媒は負荷側熱交換器16に流れ込み、凝縮、液化して状態R4となる。状態R4の冷媒は、絞り装置15および圧力調整弁14で減圧されて気液二相の状態R5となる。状態R5の冷媒の一部は冷媒分岐配管170に流れて冷媒熱交換器17でガス冷媒配管4の高温高圧のガス冷媒と熱交換し蒸発、気化して、バイパス配管171に流れてアキュムレータ6の入口配管に戻る。液冷媒配管5を流れる状態R5のもう一方の冷媒は、熱源側熱交換器12にて蒸発、気化して状態R1となり、再び圧縮機1に吸い込まれて冷凍サイクルを完結する。   Furthermore, the operation | movement of the refrigerating cycle at the time of a heating washing operation is demonstrated using FIG. FIG. 3 is a Ph diagram illustrating the operation of the refrigeration cycle during heating and cleaning of the refrigeration air-conditioning apparatus of the present invention, where the horizontal axis indicates the specific enthalpy h, the vertical axis indicates the refrigerant pressure P, and T is Isotherm. In FIG. 3, the refrigerant in the state R2 compressed by the compressor 7 to a high temperature and high pressure flows into the refrigerant heat exchanger 17, and the low-pressure gas-liquid two-phase refrigerant (the refrigerant in the state R5 described later) in the refrigerant branch pipe 170. It is condensed by heat exchange and becomes a gas-liquid two-phase refrigerant with high dryness in the state R3. At this time, since the state R3 has an optimal dryness, the heat exchange amount of the refrigerant heat exchanger 17 is adjusted by setting the bypass refrigerant flow rate to a predetermined refrigerant flow rate. The refrigerant in the state R3 flows into the load side heat exchanger 16, condenses and liquefies, and becomes the state R4. The refrigerant in the state R4 is depressurized by the expansion device 15 and the pressure regulating valve 14, and becomes a gas-liquid two-phase state R5. A part of the refrigerant in the state R5 flows into the refrigerant branch pipe 170, exchanges heat with the high-temperature and high-pressure gas refrigerant in the gas refrigerant pipe 4 in the refrigerant heat exchanger 17, evaporates and vaporizes, flows into the bypass pipe 171 and flows into the accumulator 6 Return to the inlet piping. The other refrigerant in the state R5 flowing through the liquid refrigerant pipe 5 is evaporated and vaporized in the heat source side heat exchanger 12 to become the state R1, and is sucked into the compressor 1 again to complete the refrigeration cycle.

ステップ3では、冷凍サイクルが定常状態に安定するまでの所定の時間、空調運転を行う。なお、所定の時間とは、例えば、圧縮機7の周波数が所定の周波数に達して一定となった状態において、高圧もしくは低圧の時間変化が所定の圧力以下の変化になった場合とする。または、試験などにより安定するまでの時間を求めて予め決めておいた固定の時間としても良い。これによって、冷凍空調装置1内の冷媒の分布状態が適性となって、次のステップにおいて冷媒量の判定を正確に実施するための準備運転とすることができる。さらに、配管中に流れる冷媒量が極端に適正量からずれて、運転が困難になった場合には、次のステップに移る。   In step 3, the air conditioning operation is performed for a predetermined time until the refrigeration cycle is stabilized in a steady state. The predetermined time is, for example, a case where the time change of high pressure or low pressure becomes a predetermined pressure or less in a state where the frequency of the compressor 7 reaches a predetermined frequency and becomes constant. Or it is good also as fixed time which calculated | required the time until it stabilizes by a test etc. and was decided beforehand. Thereby, the distribution state of the refrigerant in the refrigerating and air-conditioning apparatus 1 becomes appropriate, and a preparatory operation for accurately determining the refrigerant amount in the next step can be performed. Further, when the amount of refrigerant flowing in the pipe is extremely deviated from an appropriate amount and operation becomes difficult, the process proceeds to the next step.

次に、冷凍空調装置1の配管中の冷媒量を調整する。(ステップ4)まず、冷媒充填ポート20より冷媒を充填する。冷凍サイクルの凝縮器側熱交換器出口の過冷却度(SC)、または、蒸発器側熱交換器出口の過熱度(SH)を検知して、所定の値となったときに冷媒の充填を終了する。所定の時間以上、冷媒を充填しても適正な冷媒量とならない場合には、運転を停止し、時間オーバーの警告を発報手段(図示せず)により外部に発報する。   Next, the amount of refrigerant in the piping of the refrigeration air conditioner 1 is adjusted. (Step 4) First, the refrigerant is charged from the refrigerant charging port 20. When the supercooling degree (SC) at the condenser-side heat exchanger outlet of the refrigeration cycle or the superheat degree (SH) at the evaporator-side heat exchanger outlet is detected, the refrigerant is charged when a predetermined value is reached. finish. If the refrigerant amount does not reach an appropriate amount even after charging for a predetermined time or longer, the operation is stopped, and a warning of time over is issued to the outside by a notifying means (not shown).

ここでは、冷媒量は、通常の空調運転で必要な冷媒量と、配管洗浄を継続するために必要な冷媒量のいずれかを満足すれば、適正と判断する。ただし、配管洗浄を継続するために必要な冷媒量は満足するが、通常の空調運転で必要な冷媒量を満足していない場合には、一連の配管洗浄動作を終了後、再度、冷媒量調整を実施する必要があることを外部に発報する。   Here, the refrigerant amount is determined to be appropriate if it satisfies either the refrigerant amount necessary for normal air conditioning operation or the refrigerant amount necessary for continuing pipe cleaning. However, the amount of refrigerant required to continue pipe cleaning is satisfied, but if the amount of refrigerant required for normal air-conditioning operation is not satisfied, the refrigerant amount is adjusted again after completing a series of pipe cleaning operations. Report to the outside that it is necessary to implement.

なお、冷媒充填については、洗浄運転中に圧縮機7の吐出温度が過昇した場合に適宜充填し、配管洗浄後に改めて冷媒量を調整してもよい。   In addition, about refrigerant | coolant filling, when the discharge temperature of the compressor 7 overheats during washing | cleaning driving | operation, it fills suitably, and it may adjust a refrigerant | coolant amount anew after piping washing | cleaning.

冷媒量の調整を終了すると、配管洗浄を再開する。(ステップ5)ステップ3と同じ運転動作を所定の時間行う。ここで、所定の時間とは、例えば、室外空気温度や室内空気温度などの冷凍サイクル運転の高低圧に影響して配管洗浄時の冷媒流量が増減するパラメータと、配管長のように配管内の残油を移動させるために必要となる時間に影響するパラメータを試験などによって選定し、それらに基いて決定される。配管長の判定は、負荷側で検知する蒸発温度と熱源側で検知する蒸発温度との差温や、バランスする絞りの開度などから判断すると良い。   When the adjustment of the refrigerant amount is completed, the pipe cleaning is resumed. (Step 5) The same operation as step 3 is performed for a predetermined time. Here, the predetermined time is, for example, a parameter that increases or decreases the refrigerant flow rate during pipe cleaning due to the high or low pressure of the refrigeration cycle operation, such as outdoor air temperature or indoor air temperature, and the pipe length such as the pipe length. Parameters that affect the time required to move the residual oil are selected by testing and determined based on them. The pipe length may be determined from the difference between the evaporation temperature detected on the load side and the evaporation temperature detected on the heat source side, the opening of the throttle to be balanced, or the like.

次に、鉱油回収器90に貯留されたコンタミは排出ポート(図示せず)から配管洗浄後に適宜排出する。また、配管洗浄後には、アキュムレータ6の底に設けた排出用ポート(図示せず)は鉱油回収器90への接続から、圧縮機7への返油回路(図示せず)への接続に切り替えられる(ステップ6)。油の排出の完了は、作業者が目視で確認し、スイッチ(図示せず)で熱源側ユニット2に知らせるなどの手段を取っても良いし、アキュムレータ6内の油を液面検知センサなどで自動で検知しても良い。更に、予め決められた所定時間以上、油の排出完了が確認されない場合には、冷凍空調装置1の運転を停止し、時間オーバーの警告を外部に発報してもよい。   Next, the contaminants stored in the mineral oil recovery device 90 are appropriately discharged from the discharge port (not shown) after pipe cleaning. Further, after the pipe cleaning, the discharge port (not shown) provided at the bottom of the accumulator 6 is switched from the connection to the mineral oil recovery device 90 to the connection to the oil return circuit (not shown) to the compressor 7. (Step 6). Completion of the oil discharge may be confirmed by an operator visually, and a means (not shown) may be used to notify the heat source side unit 2 or the oil in the accumulator 6 may be detected with a liquid level detection sensor or the like. It may be detected automatically. Furthermore, when the completion of oil discharge is not confirmed for a predetermined time or more, the operation of the refrigeration air conditioner 1 may be stopped and an overtime warning may be issued to the outside.

鉱油回収機90からのコンタミの排出を完了すると、通常の空調運転を開始する。(ステップ7)このときに、返油用電磁弁22を開放して、圧縮機7の吸入側配管を介してオイルタンク9内の冷凍機油を冷媒ガスとともに圧縮機7に戻す。   When discharge of contamination from the mineral oil recovery machine 90 is completed, normal air conditioning operation is started. (Step 7) At this time, the oil return solenoid valve 22 is opened, and the refrigerating machine oil in the oil tank 9 is returned to the compressor 7 together with the refrigerant gas via the suction side piping of the compressor 7.

このような構成とすることにより、配管洗浄時に圧縮機7から持ち出された油を、配管洗浄後に圧縮機7に速やかに返油することができ、配管洗浄後においても圧縮機7内の冷凍機油の量を十分に確保することができ、油枯渇などが発生することがなく信頼性を高くすることができる。また、洗浄後に外部から充填するなどの手間を省くことができる。   By adopting such a configuration, the oil taken out from the compressor 7 at the time of pipe cleaning can be quickly returned to the compressor 7 after the pipe cleaning, and the refrigeration oil in the compressor 7 can be obtained even after the pipe cleaning. A sufficient amount of oil can be ensured, and reliability can be increased without oil depletion. Moreover, the trouble of filling from the outside after washing can be saved.

次に、通常の冷房運転を行う場合の動作について説明する。圧縮機7が起動されると、高温高圧のガス冷媒と圧縮機7から持ち出された冷凍機油とが油分離器8で分離される。ガス冷媒は四方弁11を介して熱源側熱交換器12で凝縮、液化され、油分離器8で分離され、油分離器8下部とオイルタンク9を接続する配管172を流れてオイルタンク9に流れ、冷凍機油は返油用毛細管21を介して圧縮機7の吸入配管に流れて、冷媒とともに圧縮機7に戻る。熱源側熱交換器12で凝縮、液化された液冷媒は冷媒熱交換器17で低圧の気液二相冷媒と熱交換してさらに凝縮し、過冷却度が増大する。この液冷媒が圧力調整弁14で中間圧力まで絞られる。   Next, an operation when performing a normal cooling operation will be described. When the compressor 7 is started, the high-temperature and high-pressure gas refrigerant and the refrigerating machine oil taken out from the compressor 7 are separated by the oil separator 8. The gas refrigerant is condensed and liquefied by the heat source side heat exchanger 12 through the four-way valve 11, separated by the oil separator 8, and flows through the pipe 172 connecting the lower part of the oil separator 8 and the oil tank 9 to the oil tank 9. The refrigerating machine oil flows to the suction pipe of the compressor 7 via the oil return capillary 21 and returns to the compressor 7 together with the refrigerant. The liquid refrigerant condensed and liquefied in the heat source side heat exchanger 12 is further condensed by exchanging heat with the low-pressure gas-liquid two-phase refrigerant in the refrigerant heat exchanger 17 to increase the degree of supercooling. This liquid refrigerant is throttled to an intermediate pressure by the pressure regulating valve 14.

ここで、圧力調整弁14は液冷媒配管5の耐圧よりも低くなるように制御すると共に、中間圧まで絞っても気液二相状態とならないような十分な過冷却度をつけるようにする。中間圧力の液単相冷媒は、液冷媒配管5を流れ絞り装置15にて低圧まで絞られる。中間圧力が万が一、液冷媒配管5の耐圧を越えそうになった場合には、圧力スイッチ64が作動し、空調運転を停止する。   Here, the pressure regulating valve 14 is controlled so as to be lower than the pressure resistance of the liquid refrigerant pipe 5, and a sufficient degree of supercooling is provided so that the gas-liquid two-phase state does not occur even when the pressure is reduced to the intermediate pressure. The liquid single-phase refrigerant at the intermediate pressure flows through the liquid refrigerant pipe 5 and is throttled to a low pressure by the throttle device 15. In the unlikely event that the intermediate pressure exceeds the pressure resistance of the liquid refrigerant pipe 5, the pressure switch 64 is activated and the air conditioning operation is stopped.

負荷側熱交換器16では、低圧の液冷媒が蒸発、気化して空調対象空間を冷房するとともに、冷媒はガス冷媒となってガス冷媒配管4を流れる。ガス冷媒配管4に流れたガス冷媒は、絞り装置23を介して液冷媒配管5よりバイパスした気液二相状態の冷媒と合流する。さらに、冷媒熱交換器17で高圧の液冷媒と熱交換して気化した状態で、四方弁11、アキュムレータ6を介して圧縮機7に戻る。   In the load-side heat exchanger 16, the low-pressure liquid refrigerant evaporates and vaporizes to cool the air-conditioning target space, and the refrigerant becomes a gas refrigerant and flows through the gas refrigerant pipe 4. The gas refrigerant that has flowed into the gas refrigerant pipe 4 merges with the gas-liquid two-phase refrigerant that is bypassed from the liquid refrigerant pipe 5 via the expansion device 23. Furthermore, the refrigerant heat exchanger 17 returns to the compressor 7 via the four-way valve 11 and the accumulator 6 in a state where it is vaporized by exchanging heat with the high-pressure liquid refrigerant.

次に、通常の暖房運転を行う場合の動作について説明する。圧縮機7が駆動されると、高温高圧のガス冷媒と圧縮機7から持ち出された冷凍機油が油分離器8で分離される。油分離器8で分離された冷凍機油は油分離器8下部とオイルタンク9を接続する配管172を流れてオイルタンク9に流れ、返油用毛細管21を介して圧縮機7の吸入配管に流れ、冷媒とともに圧縮機7に戻る。冷媒ガスは四方弁11を介して冷媒熱交換器17で凝縮・液化され、ガス冷媒配管4を流れて負荷側熱交換器16に流れる。ここで、高圧のガスはガス冷媒配管4の耐圧を越えないような圧力に制御される。万が一、ガス冷媒配管4の耐圧を越えそうな場合には、圧力スイッチ64が作動し、運転を停止する。負荷側熱交換器16で高乾き度の冷媒は凝縮、液化して空調対象空間を暖房するとともに、冷媒は絞り装置15にて低圧まで絞られる。低圧の気液二相冷媒は液冷媒配管5を流れ、熱源側熱交換器12にて蒸発・気化し、四方弁11、アキュムレータ6を介して圧縮機7に戻る。   Next, the operation when performing a normal heating operation will be described. When the compressor 7 is driven, the high-temperature and high-pressure gas refrigerant and the refrigerating machine oil taken out from the compressor 7 are separated by the oil separator 8. The refrigerating machine oil separated by the oil separator 8 flows through the pipe 172 connecting the lower part of the oil separator 8 and the oil tank 9 to the oil tank 9, and then flows into the suction pipe of the compressor 7 through the oil return capillary 21. Return to the compressor 7 together with the refrigerant. The refrigerant gas is condensed and liquefied by the refrigerant heat exchanger 17 via the four-way valve 11, flows through the gas refrigerant pipe 4, and flows to the load side heat exchanger 16. Here, the high-pressure gas is controlled to a pressure that does not exceed the pressure resistance of the gas refrigerant pipe 4. In the unlikely event that the pressure resistance of the gas refrigerant pipe 4 is likely to be exceeded, the pressure switch 64 is activated to stop the operation. The high-dryness refrigerant is condensed and liquefied by the load-side heat exchanger 16 to heat the air-conditioning target space, and the refrigerant is throttled to a low pressure by the expansion device 15. The low-pressure gas-liquid two-phase refrigerant flows through the liquid refrigerant pipe 5, evaporates and vaporizes in the heat source side heat exchanger 12, and returns to the compressor 7 via the four-way valve 11 and the accumulator 6.

以上のように、空調運転開始時に液冷媒配管5、ガス冷媒配管4に流動して洗浄運転しながら、負荷側熱交換器16で凝縮して暖房運転を可能とする気液二相状態の冷媒を生成する冷媒熱交換器17を備え、更に冷媒熱交換器17の冷媒流量を調整するようにしたので、ガス冷媒配管4に流れる冷媒が必要以上に高乾き度になることがない。すなわち、特に暖房洗浄運転時に、冷媒分岐配管170中の冷媒流量を調整してガス冷媒配管4に流れる冷媒の乾き度を最適化することができるので、従来のように冷媒熱交換器17で全流量同士で熱交換する場合には配管洗浄に時間がかかってしまうことがあったが、本構成とすることで、冷媒回路上の配管中を流れる冷媒流量が低下することなく、配管洗浄の時間が長くなってしまうこともない。   As described above, the refrigerant in the gas-liquid two-phase state that enables the heating operation by condensing in the load-side heat exchanger 16 while flowing into the liquid refrigerant pipe 5 and the gas refrigerant pipe 4 at the start of the air-conditioning operation and performing the cleaning operation. The refrigerant flow rate of the refrigerant heat exchanger 17 is further adjusted so that the refrigerant flowing in the gas refrigerant pipe 4 does not have a higher dryness than necessary. That is, especially during the heating and washing operation, the refrigerant flow rate in the refrigerant branch pipe 170 can be adjusted to optimize the dryness of the refrigerant flowing in the gas refrigerant pipe 4, so that the refrigerant heat exchanger 17 can perform the entire operation as before. When heat exchange is performed between the flow rates, it may take time to clean the pipe. However, with this configuration, the pipe cleaning time does not decrease without reducing the flow rate of refrigerant flowing in the pipe on the refrigerant circuit. Will not be long.

なお、本実施例においては、熱源側ユニット2が1台の例を示したが、熱源側ユニット2が複数台接続されたシステムにおいても同様の効果を奏することは言うまでもない。また、負荷側ユニット3が複数の場合でも同様の効果を奏するのは言うまでもない。   In addition, although the example which has one heat source side unit 2 was shown in a present Example, it cannot be overemphasized that the same effect is show | played also in the system with which two or more heat source side units 2 were connected. Needless to say, the same effect can be obtained even when there are a plurality of load-side units 3.

1 冷凍空調装置、2 熱源側ユニット、3 負荷側ユニット、4 ガス冷媒配管、5 液冷媒配管、6 アキュムレータ、7 圧縮機、8 油分離機、9 オイルタンク、11 四方弁、12 熱源側熱交換器、15 絞り装置、16 負荷側熱交換器、17 冷媒熱交換器、18 逆止弁、19 電磁弁、171 バイパス配管。   DESCRIPTION OF SYMBOLS 1 Refrigeration air conditioner, 2 Heat source side unit, 3 Load side unit, 4 Gas refrigerant piping, 5 Liquid refrigerant piping, 6 Accumulator, 7 Compressor, 8 Oil separator, 9 Oil tank, 11 Four-way valve, 12 Heat source side heat exchange , 15 throttle device, 16 load side heat exchanger, 17 refrigerant heat exchanger, 18 check valve, 19 solenoid valve, 171 bypass piping.

Claims (4)

圧縮機、四方弁、熱源側熱交換器、冷媒熱交換器を備えた熱源側ユニットと、
絞り装置、負荷側熱交換器を備えた負荷側ユニットと、
前記絞り装置および前記熱源側熱交換器を接続する第一の冷媒配管と、
前記四方弁および前記負荷側熱交換器を接続する第二の冷媒配管と、
前記第一の冷媒配管に接続され、前記負荷側熱交換器側から前記熱源側熱交換器側に冷媒を流す第一の逆止弁と、
前記冷媒熱交換器の流路のうちの前記第二の冷媒配管が接続されていない側に接続され、前記第一の逆止弁をバイパスする冷媒分岐管と、
冷房運転時における冷媒流れ方向において前記冷媒分岐管のうちの前記冷媒熱交換器よりも下流側に接続され、前記冷媒熱交換器側から前記第一の冷媒配管側に冷媒を流す第二の逆止弁と、
前記圧縮機の入口側配管にアキュムレータと、
前記冷媒熱交換器により前記第二の冷媒配管内の冷媒と熱交換した前記第一の冷媒配管内の冷媒を前記アキュムレータの入口側配管に流すバイパス配管と、
を備え、
前記冷房運転時、前記冷媒熱交換器により、前記第一の冷媒配管を流れる冷媒と前記第二の冷媒配管を流れる冷媒とを熱交換させることで、前記第一の冷媒配管を流れる冷媒を過冷却し、
暖房運転時、前記冷媒熱交換器により、前記圧縮機から吐き出されたガス冷媒を前記第一の冷媒配管内の冷媒の一部と熱交換させることで気液二相の状態とし、前記第二の冷媒配管に流して冷媒配管の洗浄を行う
ことを特徴とする冷凍空調装置。
A heat source side unit including a compressor, a four-way valve, a heat source side heat exchanger, a refrigerant heat exchanger, and
A throttle unit, a load side unit equipped with a load side heat exchanger, and
A first refrigerant pipe connecting the expansion device and the heat source side heat exchanger;
A second refrigerant pipe connecting the four-way valve and the load side heat exchanger;
A first check valve that is connected to the first refrigerant pipe and causes the refrigerant to flow from the load side heat exchanger side to the heat source side heat exchanger side;
A refrigerant branch pipe connected to a side of the flow path of the refrigerant heat exchanger to which the second refrigerant pipe is not connected, and bypassing the first check valve;
A second reverse flow is connected to the downstream side of the refrigerant heat exchanger in the refrigerant branch pipe in the refrigerant flow direction during the cooling operation, and the refrigerant flows from the refrigerant heat exchanger side to the first refrigerant pipe side. A stop valve,
An accumulator on the inlet side pipe of the compressor;
A bypass pipe that flows the refrigerant in the first refrigerant pipe that has exchanged heat with the refrigerant in the second refrigerant pipe by the refrigerant heat exchanger to the inlet side pipe of the accumulator;
With
During the cooling operation, the refrigerant heat exchanger causes the refrigerant flowing through the first refrigerant pipe to pass through the heat exchange between the refrigerant flowing through the first refrigerant pipe and the refrigerant flowing through the second refrigerant pipe. Cool,
During the heating operation, the refrigerant heat exchanger makes the gas refrigerant discharged from the compressor heat-exchanged with a part of the refrigerant in the first refrigerant pipe to be in a gas-liquid two-phase state, and the second A refrigerant air-conditioning apparatus, wherein the refrigerant pipe is washed by flowing through the refrigerant pipe.
前記バイパス配管に電磁弁を設けた
ことを特徴とする請求項に記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to claim 1 , wherein an electromagnetic valve is provided in the bypass pipe.
前記電磁弁は冷媒回路の状態に応じて開度を調節可能である
ことを特徴とする請求項に記載の冷凍空調装置。
The refrigerating and air-conditioning apparatus according to claim 2 , wherein the opening degree of the electromagnetic valve can be adjusted according to a state of a refrigerant circuit.
前記第二の冷媒配管に流した気液二相の状態とされた冷媒の乾き度は、0.1以上0.9以下である
ことを特徴とする請求項1〜3のいずれか一項に記載の冷凍空調装置。
Dryness of the second state refrigerant of the refrigerant pipe into the sink gas-liquid two-phase to any one of claims 1-3, characterized in that 0.1 to 0.9 Refrigeration air conditioner of description.
JP2009191104A 2009-08-20 2009-08-20 Refrigeration air conditioner Active JP5574638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191104A JP5574638B2 (en) 2009-08-20 2009-08-20 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191104A JP5574638B2 (en) 2009-08-20 2009-08-20 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2011043279A JP2011043279A (en) 2011-03-03
JP5574638B2 true JP5574638B2 (en) 2014-08-20

Family

ID=43830835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191104A Active JP5574638B2 (en) 2009-08-20 2009-08-20 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP5574638B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019198175A1 (en) * 2018-04-11 2021-02-12 三菱電機株式会社 Refrigeration cycle equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451505B2 (en) * 1995-03-30 2003-09-29 三菱電機株式会社 Refrigerant circuit
JP3521820B2 (en) * 1999-11-16 2004-04-26 三菱電機株式会社 Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof
JP2003021436A (en) * 2001-07-04 2003-01-24 Hitachi Ltd Pipeline cleaning method, air conditioner and renewal method thereof
JP3811116B2 (en) * 2001-10-19 2006-08-16 松下電器産業株式会社 Refrigeration cycle equipment
JP4063229B2 (en) * 2004-02-19 2008-03-19 三菱電機株式会社 Piping cleaning method and piping cleaning device
JP4420871B2 (en) * 2005-08-31 2010-02-24 三菱電機株式会社 Refrigeration air conditioner
JP4816488B2 (en) * 2007-02-14 2011-11-16 パナソニック株式会社 Built-in cooking device

Also Published As

Publication number Publication date
JP2011043279A (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP6230931B2 (en) Multi-type air conditioner
JP4229188B2 (en) Air conditioner
JP5484930B2 (en) Air conditioner
JP6494778B2 (en) Refrigeration cycle equipment
JP6223469B2 (en) Air conditioner
JP2008185229A (en) Refrigerating device
JP5596745B2 (en) Air conditioner
WO2002006738A1 (en) Refrigerant circuit of air conditioner
JP2010164257A (en) Refrigerating cycle device and method of controlling the refrigerating cycle device
JP2018013286A (en) Control device, air conditioner, and control method
JP2015152205A (en) Air conditioner
JP5610843B2 (en) Air conditioner
KR102350932B1 (en) Air Conditioner
JP5138292B2 (en) Air conditioner
JP2008111585A (en) Air conditioner
JP3334222B2 (en) Air conditioner
JP5574638B2 (en) Refrigeration air conditioner
JP4289901B2 (en) Oil recovery method for air conditioner and air conditioner
JP2017142017A (en) Air conditioner
JP4420871B2 (en) Refrigeration air conditioner
EP3734192A1 (en) Air conditioner system
KR101372146B1 (en) Multi air conditioner improved air heating efficiency
JP6672860B2 (en) Air conditioner
WO2017094594A1 (en) Refrigeration device
JP4063229B2 (en) Piping cleaning method and piping cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140701

R150 Certificate of patent or registration of utility model

Ref document number: 5574638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250