JP3521820B2 - Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof - Google Patents

Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof

Info

Publication number
JP3521820B2
JP3521820B2 JP32532299A JP32532299A JP3521820B2 JP 3521820 B2 JP3521820 B2 JP 3521820B2 JP 32532299 A JP32532299 A JP 32532299A JP 32532299 A JP32532299 A JP 32532299A JP 3521820 B2 JP3521820 B2 JP 3521820B2
Authority
JP
Japan
Prior art keywords
cleaning
refrigerant
pipe
liquid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32532299A
Other languages
Japanese (ja)
Other versions
JP2001141340A (en
Inventor
史武 畝崎
智彦 河西
修 森本
直樹 田中
誠司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP32532299A priority Critical patent/JP3521820B2/en
Publication of JP2001141340A publication Critical patent/JP2001141340A/en
Application granted granted Critical
Publication of JP3521820B2 publication Critical patent/JP3521820B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion

Landscapes

  • Cleaning In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、配管の洗浄方法
に関するものであり、特に冷凍空調装置において使用す
る冷媒を交換すると同時に冷凍機油も交換する場合の配
管に残留する冷凍機油の洗浄方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning piping, and more particularly to a method for cleaning refrigerating machine oil remaining in the piping when the refrigerant used in a refrigerating and air-conditioning system is replaced with refrigerating machine oil. Is.

【0002】[0002]

【従来の技術】従来から一般に用いられているセパレー
ト形の冷凍空調装置を図6に示す。図6において、14
は熱源機であり、圧縮機1、四方弁3,熱源側熱交換器
10、第1の操作弁13a、第2の操作弁13b、アキ
ュムレータ11を内蔵している。15は室内機であり、
流量調整器17(あるいは流量制御弁)、及び利用側熱
交換器18を備えている。熱源機14と室内機15は離
れた場所に設置され、第1の接続配管5、第2の接続配
管7により接続されて、冷凍サイクルを形成する。
2. Description of the Related Art FIG. 6 shows a separate type refrigerating and air-conditioning apparatus that has been generally used. In FIG. 6, 14
Is a heat source device, and includes a compressor 1, a four-way valve 3, a heat source side heat exchanger 10, a first operation valve 13a, a second operation valve 13b, and an accumulator 11. 15 is an indoor unit,
A flow rate regulator 17 (or a flow rate control valve) and a use side heat exchanger 18 are provided. The heat source unit 14 and the indoor unit 15 are installed at distant places and are connected by the first connecting pipe 5 and the second connecting pipe 7 to form a refrigeration cycle.

【0003】第1の接続配管5の一端は四方弁3と第1
の操作弁13aを介して接続され、第1の接続配管5の
他の一端は利用側熱交換器18と接続されている。第2
の接続配管7の一端は熱源側熱交換器10と第2の操作
弁13bを介して接続され、第2の接続配管7の他の一
端は流量調整器17と接続されている。また、アキュム
レータ11のU字管状の流出配管の下部には返油穴11
aが設けられている。
One end of the first connecting pipe 5 is connected to the four-way valve 3 and the first
Is connected via the operation valve 13a, and the other end of the first connection pipe 5 is connected to the utilization side heat exchanger 18. Second
One end of the connection pipe 7 is connected to the heat source side heat exchanger 10 via the second operation valve 13b, and the other end of the second connection pipe 7 is connected to the flow rate regulator 17. Further, an oil return hole 11 is provided in the lower part of the U-shaped tubular outflow pipe of the accumulator 11.
a is provided.

【0004】この冷凍空調装置の冷媒の流れを図6にて
説明する。図中、実線矢印が冷房運転の流れを、波線矢
印が暖房運転の流れを示す。まず、冷房運転の流れを説
明する。圧縮機1で圧縮された高温高圧のガス冷媒は四
方弁3を経て、熱源側熱交換器10へと流入し、ここで
空気・水など熱源媒体と熱交換して凝縮液化する。凝縮
液化した冷媒は第2の操作弁13b、第2の接続配管7
を経て流量調整器17へ流入し、ここで低圧まで減圧さ
れて低圧気液二相状態となり、利用側熱交換器18で空
気などの利用側媒体と熱交換器して蒸発・ガス化する。
蒸発ガス化した冷媒は第1の接続配管5、第1の操作弁
13a、四方弁3、アキュムレータ11を経て圧縮機1
へ戻る。
The flow of the refrigerant in this refrigeration / air-conditioning system will be described with reference to FIG. In the figure, the solid line arrow shows the flow of the cooling operation, and the broken line arrow shows the flow of the heating operation. First, the flow of the cooling operation will be described. The high-temperature and high-pressure gas refrigerant compressed by the compressor 1 flows into the heat source side heat exchanger 10 through the four-way valve 3 and exchanges heat with a heat source medium such as air and water to be condensed and liquefied. The condensed and liquefied refrigerant is used as the second operation valve 13b and the second connection pipe 7
And then flows into the flow rate regulator 17 where it is decompressed to a low pressure to form a low-pressure gas-liquid two-phase state, and is vaporized and gasified in the utilization side heat exchanger 18 by exchanging heat with a utilization side medium such as air.
The evaporated gasified refrigerant passes through the first connection pipe 5, the first operation valve 13a, the four-way valve 3 and the accumulator 11 and then the compressor 1
Return to.

【0005】次に暖房運転の流れを説明する。圧縮機1
で圧縮された高温高圧のガス冷媒は四方弁3,第1の操
作弁13a、第1の接続配管5を経て、利用側熱交換器
18へと流入し、ここで空気など利用側媒体と熱交換し
て凝縮液化する。凝縮液化した冷媒は流量調整器17へ
と流入し、ここで低圧まで減圧されて低圧気液二相状態
となり、第2の接続配管7、第2の操作弁13bを経
て、熱源側熱交換器10で空気・水などの熱源媒体と熱
交換して蒸発・ガス化する。蒸発・ガス化した冷媒は四
方弁3、アキュムレータ11を経て圧縮機1へ戻る。
Next, the flow of heating operation will be described. Compressor 1
The high-temperature and high-pressure gas refrigerant compressed by means of the four-way valve 3, the first operating valve 13a, and the first connecting pipe 5 flows into the heat exchanger 18 on the side of use, where the medium of heat on the side such as air and heat Replace and condense and liquefy. The condensed and liquefied refrigerant flows into the flow rate regulator 17, where it is decompressed to a low pressure and becomes a low-pressure gas-liquid two-phase state, and passes through the second connection pipe 7 and the second operation valve 13b and then to the heat source side heat exchanger. At 10, heat is exchanged with a heat source medium such as air and water to evaporate and gasify. The evaporated and gasified refrigerant returns to the compressor 1 via the four-way valve 3 and the accumulator 11.

【0006】従来、このような冷凍空調装置の多くには
CFC(クロロフルオロカーボン)系冷媒やHCFC
(ハイドロクロロフルオロカーボン)系冷媒が用いられ
てきたが、これらの分子に含まれる塩素が成層圏でオゾ
ン層を破壊するため、CFC系冷媒は既に全廃され、H
CFC系冷媒も生産規制が開始されている。
[0006] Conventionally, most of such refrigerating and air-conditioning systems are CFC (chlorofluorocarbon) type refrigerants and HCFCs.
(Hydrochlorofluorocarbon) type refrigerants have been used, but since chlorine contained in these molecules destroys the ozone layer in the stratosphere, CFC type refrigerants have already been completely abolished, and
Production restrictions on CFC-based refrigerants have also started.

【0007】これらに替わって、分子に塩素を含まない
HFC(ハイドロフルオロカーボン)系冷媒を使用する
冷凍空調装置が実用化されている。CFC系冷媒やHC
FC系冷媒を用いた冷凍空調装置が老朽化した場合、こ
れらの冷媒は全廃・生産規制されているため、HFC系
冷媒を用いた冷凍空調装置等に入れ替える必要がある。
In place of these, a refrigerating and air-conditioning system using an HFC (hydrofluorocarbon) type refrigerant which does not contain chlorine in its molecule has been put into practical use. CFC type refrigerant and HC
When the refrigerating and air-conditioning system using the FC type refrigerant is aged, it is necessary to replace it with a refrigerating and air-conditioning system using the HFC type refrigerant because these refrigerants are completely abolished and production is regulated.

【0008】冷凍空調装置が熱源機14と室内機15お
よびこれらを接続する接続配管5と7で構成されるセパ
レート型であった場合、熱源機14と室内機15は、H
FC系冷媒で使用する冷凍機油・有機材料・熱交換器が
HCFC系冷媒やCFC系冷媒のそれらとは異なるた
め、HFC系冷媒専用のものと交換する必要がある。さ
らに元々CFC系冷媒やHCFC系冷媒用の熱源機14
と室内機15は老朽化しているため交換する必要がある
ものであり、交換も比較的容易である。
When the refrigerating and air-conditioning system is a separate type constituted by the heat source unit 14 and the indoor unit 15 and the connecting pipes 5 and 7 connecting them, the heat source unit 14 and the indoor unit 15 are
Since the refrigerating machine oil / organic material / heat exchanger used for the FC-based refrigerant is different from those of the HCFC-based refrigerant and the CFC-based refrigerant, it is necessary to replace it with a dedicated HFC-based refrigerant. Furthermore, originally, the heat source device 14 for CFC-based refrigerants and HCFC-based refrigerants
Since the indoor unit 15 is deteriorated and needs to be replaced, the replacement is relatively easy.

【0009】一方、接続配管5、7については、配管長
が長い場合や、パイプシャフトあるいは天井裏など建物
に埋設されている場合、新規配管に交換することは困難
で、しかも老朽化しにくいため、CFC系冷媒やHCF
C系冷媒を用いた冷凍サイクル装置で使用していた接続
配管5、7をそのまま使用できれば、配管工事が簡略化
できる。
On the other hand, the connection pipes 5 and 7 are difficult to replace with new pipes when the pipes are long or buried in a building such as a pipe shaft or an overhead ceiling. CFC refrigerant and HCF
If the connection pipes 5 and 7 used in the refrigeration cycle apparatus using the C-based refrigerant can be used as they are, the piping work can be simplified.

【0010】しかし、CFC系冷媒やHCFC系冷媒を
用いた冷凍空調装置で使用していた接続配管5、7に
は、CFC系冷媒やHCFC系冷媒を用いた冷凍空調装
置の冷凍機油である鉱油が残留している。
However, the connecting pipes 5 and 7 used in the refrigerating and air-conditioning apparatus using the CFC-based refrigerant or the HCFC-based refrigerant have mineral oil, which is a refrigerating machine oil of the refrigerating and air-conditioning apparatus using the CFC-based refrigerant and the HCFC-based refrigerant, Remains.

【0011】図7は、鉱油混入時のHFC系冷媒用冷凍
機油とHFC系冷媒(R407C)との溶解性を示す臨
界溶解度曲線を示す図で、横軸は油量(wt%)、縦軸
は温度(℃)を示す。冷凍機油は冷媒と混在している場
合、冷媒に溶解して相溶する状態と溶解せず分離する状
態とがあり、相溶と分離の境界点は温度に依存してい
る。相溶する範囲は下限温度と上限温度に挟まれた温度
域にあり、その溶解特性が図7の臨界溶解度曲線にて表
されている。HFC系冷媒を用いた冷凍空調装置の冷凍
機油(エステル油やエーテル油などの合成油)に鉱油が
混入し、その鉱油量が増加するにつれて相溶する温度範
囲が狭くなる。そして一定量以上混入すると、図7に示
すように、HFC系冷媒との相容性が失われ、アキュム
レータ11に液冷媒が貯まっている場合にHFC系冷媒
用冷凍機油が液冷媒の上層に分離・浮遊するため、アキ
ュムレータ11の下部にある返油穴11aから圧縮機へ
冷凍機油が戻らず圧縮機の摺動部が焼き付く恐れがあ
る。また、従来のCFC系冷媒では、潤滑油に鉱油が用
いられていたのに対し、HFC系冷媒では潤滑油に合成
油が用いられているので、鉱油が既設冷媒配管に残存し
ていると、新設の冷媒回路において、異物(コンタミネ
ーション)が生じ、絞り機構を閉塞したり、圧縮機を損
傷するという問題がある。
FIG. 7 is a diagram showing a critical solubility curve showing the solubility of the refrigerating machine oil for HFC type refrigerant and the HFC type refrigerant (R407C) when mineral oil is mixed, in which the horizontal axis is the oil amount (wt%) and the vertical axis is. Indicates temperature (° C.). When the refrigerating machine oil is mixed with the refrigerant, it may be dissolved in the refrigerant to be compatible with it or may be separated without being dissolved, and the boundary point of compatibility and separation depends on the temperature. The compatible range is in the temperature range between the lower limit temperature and the upper limit temperature, and the dissolution characteristics are represented by the critical solubility curve in FIG. 7. Mineral oil is mixed in refrigerating machine oil (synthetic oil such as ester oil and ether oil) of a refrigerating and air-conditioning apparatus using an HFC-based refrigerant, and as the amount of the mineral oil increases, the compatible temperature range becomes narrower. When a certain amount or more is mixed, as shown in FIG. 7, the compatibility with the HFC-based refrigerant is lost, and when the liquid refrigerant is stored in the accumulator 11, the HFC-based refrigerant refrigeration oil is separated into the upper layer of the liquid refrigerant. Since it floats, the refrigerating machine oil may not return to the compressor from the oil return hole 11a in the lower part of the accumulator 11, and the sliding part of the compressor may be seized. Further, in the conventional CFC-based refrigerant, mineral oil was used as the lubricating oil, whereas in the HFC-based refrigerant, synthetic oil was used as the lubricating oil, so if the mineral oil remains in the existing refrigerant pipe, In the newly installed refrigerant circuit, there is a problem that foreign matter (contamination) occurs, blocking the throttle mechanism and damaging the compressor.

【0012】このため、従来はCFC系冷媒やHCFC
系冷媒を用いた冷凍空調装置で使用していた接続配管
5、7を、洗浄装置を用いて鉱油を溶解する専用の洗浄
液(HCFC141bやHCFC225)で配管中に残
存する鉱油を洗浄することが行われている。
For this reason, CFC type refrigerants and HCFCs have been conventionally used.
The connection pipes 5 and 7 used in the refrigerating and air-conditioning system using the system refrigerant can be washed with the dedicated cleaning liquid (HCFC141b or HCFC225) that dissolves the mineral oil using the cleaning device. It is being appreciated.

【0013】[0013]

【発明が解決しようとする課題】このように従来の洗浄
方法では以下に示すような問題があった。第1に使用す
る洗浄液がHCFC系冷媒であり、オゾン破壊係数が0
でないため、冷凍空調装置の冷媒をHCFC系冷媒から
HFC系冷媒へと代替することと矛盾する。特に、HC
FC141bはオゾン破壊係数が0.11と大きく、こ
の冷媒を使用して配管を洗浄することは問題である。
As described above, the conventional cleaning method has the following problems. First, the cleaning liquid used is an HCFC refrigerant and has an ozone depletion potential of 0.
Therefore, it is inconsistent with substituting the refrigerant of the refrigerating and air-conditioning system from the HCFC refrigerant to the HFC refrigerant. In particular, HC
FC141b has a large ozone depletion potential of 0.11, and there is a problem in cleaning piping using this refrigerant.

【0014】第2に、使用する洗浄液は可燃性・毒性が
完全に安全なものではないことがあげられる。HCFC
141bは可燃性で、低毒性であり、また、HCFC2
25は不燃性だが、低毒性である。
Secondly, the cleaning liquid used is not completely safe in flammability and toxicity. HCFC
141b is flammable, low toxicity, and HCFC2
25 is nonflammable but has low toxicity.

【0015】第3に洗浄液の沸点が高いため(HCFC
141bは32℃、HCFC225は51〜56℃)洗
浄後の洗浄液が蒸発しにくく配管に付着したままで、こ
れらを回収するためには窒素ガスで洗浄液をブローして
洗浄するなど、回収行程に時間を要する。
Third, since the cleaning liquid has a high boiling point (HCFC
141b is 32 ° C., HCFC225 is 51 to 56 ° C.) The cleaning liquid after cleaning is hard to evaporate and remains attached to the pipe. To recover these, blow the cleaning liquid with nitrogen gas to clean it. Requires.

【0016】また前記のような環境上の問題のない、ま
たは回収しやすい洗浄液を用いて洗浄を行おうとして
も、このような洗浄液で鉱油に溶解性のあるものはほと
んど存在しないため、洗浄が速やかに行われないという
問題があった。
Further, even if an attempt is made to perform cleaning using a cleaning liquid which does not cause environmental problems as described above or is easy to collect, there is almost no such cleaning liquid that is soluble in mineral oil. There was a problem that it was not done promptly.

【0017】この発明は、このような問題点を解消する
ためになされたものであり、配管の洗浄を迅速にかつ環
境に支障なく行える洗浄装置および洗浄方法を得るとと
もに、冷凍空調装置において使用する冷媒を交換するた
めに装置の更新を行うときに配管の洗浄を行い、洗浄し
た既設配管を用いることで配管の再設置工事を簡略化す
る冷凍空調装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a cleaning device and a cleaning method capable of cleaning pipes promptly and without environmental trouble, and used in a refrigerating and air-conditioning device. An object of the present invention is to provide a refrigerating and air-conditioning apparatus that simplifies the re-installation work of the pipe by cleaning the pipe when updating the device to replace the refrigerant and using the washed existing pipe.

【0018】[0018]

【課題を解決するための手段】 本発明の請求項1に関
わる配管の洗浄方法は、被洗浄物である冷凍機油に対し
て非相溶性または弱相溶性の洗浄冷媒を搬送手段により
吐出して冷媒回路内に循環流を生成し、洗浄冷媒を気液
二相混合流へ状態変化させてから、冷凍機油が付着した
配管を気液二相混合流で洗浄するものである。
According to a first aspect of the present invention, there is provided a pipe cleaning method, wherein a cleaning medium that is incompatible or weakly compatible with refrigerating machine oil , which is an object to be cleaned , is discharged by a conveying means. A circulation flow is generated in the refrigerant circuit to change the state of the cleaning refrigerant into a gas-liquid two-phase mixed flow, and then the pipe to which the refrigerating machine oil is attached is cleaned with the gas-liquid two-phase mixed flow.

【0019】本発明の請求項2に関わる配管の洗浄方法
は、請求項1に記載の配管の洗浄方法において、洗浄冷
媒が液体状態で被洗浄物である冷凍機油より密度が大き
く、かつ気体状態で被洗浄物である冷凍機油より密度が
小さいものである。
The pipe cleaning method according to claim 2 of the present invention is the pipe cleaning method according to claim 1, wherein the cleaning refrigerant is in a liquid state and has a density higher than that of the refrigerating machine oil which is an object to be cleaned and is in a gas state. The density is lower than that of the refrigeration oil , which is the object to be cleaned.

【0020】本発明の請求項3に関わる配管の洗浄方法
は、請求項1または請求項2に記載の配管の洗浄方法に
おいて、洗浄冷媒の気液二相混合流の流動様式が、環状
流もしくは波状流である。
A pipe cleaning method according to claim 3 of the present invention is the pipe cleaning method according to claim 1 or 2, wherein the flow mode of the gas-liquid two-phase mixed flow of the cleaning refrigerant is an annular flow or It is a wavy flow.

【0021】本発明の請求項4に関わる洗浄装置は、搬
送手段の吐出側に接続され、洗浄冷媒を熱交換して気液
二相混合流を生成する高低圧熱交換器と、気液二相混合
流が被洗浄物の付着した配管を通過して、再び高低圧熱
交換器へ流入する前に減圧する減圧装置とを備え、気液
二相混合流で配管を洗浄するものである。
A cleaning device according to a fourth aspect of the present invention includes a high-low pressure heat exchanger which is connected to a discharge side of a conveying means and which exchanges heat of a cleaning refrigerant to generate a gas-liquid two-phase mixed flow, and a gas-liquid two The pipe is washed with the gas-liquid two-phase mixed flow, which is provided with a decompression device that reduces the pressure before the mixed phase flow passes through the pipe to which the object to be cleaned adheres and flows into the high and low pressure heat exchanger again.

【0022】本発明の請求項5に関わる洗浄装置は、請
求項4に記載の洗浄装置において、洗浄冷媒を循環流出
させる搬送手段と、搬送手段の吸入側に接続され、高低
圧熱交換器から流出する洗浄冷媒を冷却する熱源側熱交
換器とを備え、熱源側熱交換器を高低圧熱交換器に接続
して回路を構成するものである。
A cleaning device according to a fifth aspect of the present invention is the cleaning device according to the fourth aspect, which is connected to a conveying means for circulating and flowing out the cleaning refrigerant and a suction side of the conveying means, and is connected to a high-low pressure heat exchanger. The heat source side heat exchanger for cooling the outflowing cleaning refrigerant is provided, and the heat source side heat exchanger is connected to the high and low pressure heat exchanger to form a circuit.

【0023】本発明の請求項6に関わる洗浄装置は、請
求項4または請求項5に記載の洗浄装置において、被洗
浄物が付着した配管を通過した洗浄冷媒から被洗浄物を
除去する分離装置を配管と搬送手段との間に設けたもの
である。
A cleaning device according to claim 6 of the present invention is the cleaning device according to claim 4 or 5, wherein the cleaning device removes the object to be cleaned from the cleaning refrigerant passing through the pipe to which the object to be cleaned is attached. Is provided between the pipe and the conveying means.

【0024】本発明の請求項7に関わる洗浄装置は、請
求項4乃至請求項6のいずれかに記載の洗浄装置におい
て、被洗浄物は塩素分を含むハイドロクロロフルオロカ
ーボン(HCFC)系冷媒またはクロロフルオロカーボ
ン(CFC)系冷媒を使用する冷凍機油に用いる鉱油で
あり、洗浄冷媒として、塩素分を含まないハイドロフル
オロカーボン(HFC)系冷媒またはハイドロカーボン
(HC)系冷媒または自然冷媒を用いるものである。
The cleaning apparatus according to claim 7 of the present invention is the cleaning apparatus according to any one of claims 4 to 6, wherein the object to be cleaned is a chlorine-containing hydrochlorofluorocarbon (HCFC) type refrigerant or chlorofluorocarbon. It is a mineral oil used as a refrigerating machine oil that uses a fluorocarbon (CFC) -based refrigerant, and uses a hydrofluorocarbon (HFC) -based refrigerant, a hydrocarbon (HC) -based refrigerant, or a natural refrigerant that does not contain chlorine as a cleaning refrigerant.

【0025】本発明の請求項8に関わる洗浄装置は、請
求項4乃至請求項7のいずれかに記載の洗浄装置におい
て、HFC系冷媒としてR407Cを使用するものであ
る。
A cleaning device according to claim 8 of the present invention is the cleaning device according to any one of claims 4 to 7, wherein R407C is used as an HFC refrigerant.

【0026】本発明の請求項9に関わる洗浄装置は、請
求項4乃至請求項7のいずれかに記載の洗浄装置におい
て、HC系冷媒としてイソブタン系またはプロパン系を
使用するものである。
A cleaning apparatus according to claim 9 of the present invention is the cleaning apparatus according to any one of claims 4 to 7, wherein isobutane or propane is used as the HC refrigerant.

【0027】本発明の請求項10に関わる冷凍空調装置
は、請求項4乃至請求項6のいずれかに記載の洗浄装置
で洗浄された配管を、圧縮機、熱源側熱交換器、減圧装
置、利用側熱交換器を接続した冷凍サイクルの熱源機と
室内機とを接続する配管としたものである。
According to a tenth aspect of the present invention, there is provided a refrigerating and air-conditioning apparatus in which a pipe cleaned by the cleaning apparatus according to any one of the fourth to sixth aspects is provided with a compressor, a heat source side heat exchanger, a pressure reducing device, This is a pipe for connecting the indoor unit with the heat source unit of the refrigeration cycle to which the use side heat exchanger is connected.

【0028】本発明の請求項11に関わる洗浄装置は、
洗浄冷媒の循環流量を可変させる搬送手段の回転数を調
整し、または減圧装置の開度を調整する制御手段を備
え、洗浄冷媒の気液二相混合流の流動様式を環状流もし
くは波状流として、配管内を洗浄するものである。
A cleaning apparatus according to claim 11 of the present invention comprises:
The cleaning refrigerant is provided with a control means for adjusting the rotation speed of the conveying means for varying the circulating flow rate or for adjusting the opening degree of the decompression device, and the flow mode of the gas-liquid two-phase mixed flow of the cleaning refrigerant is changed to an annular flow or a wavy flow. Then, the inside of the pipe is washed .

【0029】本発明の請求項12に関わる冷凍空調装置
の取替え方法は、塩素分を含む冷媒を使用した冷凍空調
装置を熱源機側と利用機側および接続配管に切り離し、
その間に高低圧熱交換器と減圧装置で構成される洗浄装
置を接続するステップと、熱源機側に塩素分を含まない
冷媒を置換封入するステップと、冷媒を高低圧熱交換器
で気液二相混合流に生成してから利用機側および接続配
管へ導き洗浄するステップとを備えたものである。
According to a twelfth aspect of the present invention, there is provided a method for replacing a refrigerating and air-conditioning apparatus, wherein a refrigerating and air-conditioning apparatus using a refrigerant containing chlorine is separated into a heat source unit side, a user side and a connecting pipe.
In the meantime, a step of connecting a cleaning device composed of a high-low pressure heat exchanger and a pressure reducing device, a step of replacing and enclosing a refrigerant containing no chlorine on the heat source unit side, and a refrigerant in a high-low pressure heat exchanger The step of producing the mixed phase flow and introducing it to the user side and the connection pipe for cleaning.

【0030】本発明の請求項13に関わる冷凍空調装置
の取替え方法は、請求項12に記載の冷凍空調装置の取
替え方法において、利用機側および接続配管は冷媒回路
を全開にするとともに、強制した熱交換を行わないもの
である。
According to a thirteenth aspect of the present invention, there is provided a method of replacing a refrigerating and air-conditioning apparatus according to the twelfth aspect of the present invention, wherein the refrigerant circuit is fully opened and forced on the user side and the connecting pipe. It does not exchange heat.

【0031】[0031]

【発明の実施の形態】実施の形態1.以下本発明の実施
の形態1を図に基づいて説明する。図1は実施の形態1
による洗浄装置の冷媒回路図である。図において、1は
圧縮機、2は油分離器、3は四方弁、4は高低圧熱交換
器、19、20は冷凍空調装置の熱源機と室内機を接続
する既設配管であり、洗浄を行う配管、6は既設配管1
9、20の一端を接続するバイパス管、8は減圧装置、
9は被洗浄物の分離装置、10は熱源側熱交換器、11
はアキュムレータである。12は洗浄装置であり、洗浄
装置12は圧縮機1、油分離器2、四方弁3、高低圧熱
交換器4、減圧装置8、分離装置9、熱源側熱交換器1
0、アキュムレータ11で構成され、既設配管19、2
0のバイパス管6が接続されなかったもう一端に操作弁
13a、13bを介して接続される。21は洗浄冷媒の
循環流量や流動状態を制御するために、圧縮機1の回転
数を変化させる運転回転数を調整したり、または減圧装
置8の開度調整を行う制御手段である。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Embodiment 1 of the present invention will be described below with reference to the drawings. FIG. 1 shows the first embodiment.
3 is a refrigerant circuit diagram of the cleaning device according to FIG. In the figure, 1 is a compressor, 2 is an oil separator, 3 is a four-way valve, 4 is a high and low pressure heat exchanger, and 19 and 20 are existing pipes that connect the heat source unit of the refrigerating and air-conditioning system to the indoor unit. Piping performed, 6 is existing piping 1
By-pass pipe connecting one end of 9, 20, 8 is a pressure reducing device,
9 is a separation device for the object to be cleaned, 10 is a heat source side heat exchanger, 11
Is an accumulator. A cleaning device 12 includes a compressor 1, an oil separator 2, a four-way valve 3, a high / low pressure heat exchanger 4, a pressure reducing device 8, a separating device 9, and a heat source side heat exchanger 1.
0, accumulator 11, existing pipes 19, 2
The bypass pipe 6 of No. 0 is connected to the other end which is not connected via the operation valves 13a and 13b. Reference numeral 21 is a control means for adjusting the operating speed of changing the speed of the compressor 1 or adjusting the opening degree of the decompression device 8 in order to control the circulation flow rate and the flow state of the cleaning refrigerant.

【0032】この発明では、図1に示すように冷凍サイ
クルが構成されており、冷凍サイクルを循環する冷媒と
してHFC系混合冷媒であるR407Cが用いられる。
R407Cは、R32/R125/R134aが23/
25/52wt%の割合で混合した非共沸混合冷媒であ
り、冷凍機油としてはこの冷媒と相溶性を有するエステ
ル油が使用される。また既設配管19、20はHCFC
系冷媒を用いた冷凍空調装置が過去に接続されており、
この既設配管にはHCFC系冷媒用の冷凍機油である鉱
油が残存している。R407Cに対する鉱油の溶解度は
1%以下であり、鉱油とはほとんど溶解性がない。
In the present invention, the refrigeration cycle is configured as shown in FIG. 1, and R407C, which is an HFC mixed refrigerant, is used as the refrigerant circulating in the refrigeration cycle.
R407C has 23 / R32 / R125 / R134a
It is a non-azeotropic mixed refrigerant mixed in a ratio of 25/52 wt%, and as refrigerating machine oil, ester oil compatible with this refrigerant is used. The existing pipes 19 and 20 are HCFC
Refrigeration air conditioners using system refrigerants have been connected in the past,
Mineral oil, which is refrigerating machine oil for the HCFC refrigerant, remains in this existing pipe. The solubility of mineral oil in R407C is 1% or less, and it is almost insoluble in mineral oil.

【0033】次に本発明の洗浄手順について説明する。
既設配管19、20に接続されている交換の必要な空調
装置、利用側熱交換器を取り外し、図1のように既設配
管19、20に洗浄装置12、バイパス管6を接続す
る。接続後冷凍サイクル全体を真空引きした後、R40
7Cを適量充填する。その後圧縮機1を運転し、四方弁
の流れ方向を図1の実線方向に設定する。このときの冷
凍サイクルの運転状況は以下のようになる。圧縮機1か
ら吐出された高温高圧のガス冷媒はまず油分離器2を通
過する。この段階でガス冷媒と一緒に圧縮機1から吐出
された冷凍機油は油分離器2で分離され圧縮機1吸入側
に戻される。高温高圧のガス冷媒はその後四方弁3を通
過し、高低圧熱交換器4によってガスが一部冷却され液
となり、高圧の気液二相冷媒になる。この高圧の気液二
相冷媒は既設配管19、バイパス管6、既設配管20を
通過した後、減圧装置8によって低圧の気液二相冷媒に
減圧される。この後高低圧熱交換器4で加熱され低圧の
ガスになる。次に分離装置9を通過し、この際、既設配
管19、20内で洗浄された鉱油が分離され、鉱油は分
離装置9に保持される。低圧の冷媒ガスは圧縮機1の吐
出温度が高くなりすぎないよう熱源側熱交換器10で温
度を下げられた後、四方弁3、アキュムレータ11を経
て圧縮機1に吸入される。
Next, the cleaning procedure of the present invention will be described.
The air conditioner and the use side heat exchanger that are connected to the existing pipes 19 and 20 and need to be replaced are removed, and the cleaning device 12 and the bypass pipe 6 are connected to the existing pipes 19 and 20 as shown in FIG. After connecting, after vacuuming the entire refrigeration cycle, R40
Fill an appropriate amount of 7C. After that, the compressor 1 is operated and the flow direction of the four-way valve is set to the solid line direction in FIG. The operation status of the refrigeration cycle at this time is as follows. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 first passes through the oil separator 2. At this stage, the refrigerating machine oil discharged from the compressor 1 together with the gas refrigerant is separated by the oil separator 2 and returned to the suction side of the compressor 1. The high-temperature and high-pressure gas refrigerant then passes through the four-way valve 3, and the high- and low-pressure heat exchanger 4 partially cools the gas to become a liquid, which becomes a high-pressure gas-liquid two-phase refrigerant. This high-pressure gas-liquid two-phase refrigerant passes through the existing pipe 19, the bypass pipe 6, and the existing pipe 20, and then is decompressed by the decompression device 8 into a low-pressure gas-liquid two-phase refrigerant. After this, it is heated in the high and low pressure heat exchanger 4 to become a low pressure gas. Next, it passes through the separation device 9, and at this time, the mineral oil washed in the existing pipes 19 and 20 is separated, and the mineral oil is held in the separation device 9. The low-pressure refrigerant gas is cooled by the heat source side heat exchanger 10 so that the discharge temperature of the compressor 1 does not become too high, and then is sucked into the compressor 1 through the four-way valve 3 and the accumulator 11.

【0034】このように冷凍サイクルを運転させること
で既設配管に気液二相混合流、すなわちガスと液の混合
された冷媒を流すことが可能となる。ここで、既設配管
に気液二相冷媒を流して洗浄を行う理由について説明す
る。図2は本発明に関して、洗浄する際の冷媒の状態毎
に鉱油の洗浄特性を示したグラフであり、横軸は洗浄時
間、縦軸は洗浄後配管に残留する鉱油量を表している。
図2にあるように鉱油の洗浄を行う場合、ガス単相、液
単相、気液二相(ガス液混合)の3つの状態のなかでは
気液二相で洗浄を行ったときの洗浄特性が優れているこ
とがわかる。従来の洗浄ではHCFC225などの洗浄
液を液として配管に流し、洗浄液が鉱油を溶解すること
で洗浄を行っていた。R407Cを流して洗浄を行った
場合、従来と同様に配管に液として流して洗浄を行う
と、溶解性がほとんどないので、鉱油をR407Cとの
せん断力で引っ張って移動させて洗浄することになる。
この場合、鉱油の移動速度は冷媒液の流速に比べて著し
く遅く、洗浄を行うのに時間がかかり実用的でない。ま
た配管にR407Cをガスとして流す方法もあるが、こ
の場合も同様に鉱油をR407Cとのせん断力で引っ張
って移動させて洗浄することになり、鉱油の移動速度が
遅く洗浄を行うのに時間がかかり実用的でない。一方、
気液二相混合流で洗浄する場合、二相流は気液が混合し
て流れるため流れの乱れ具合が液単相、ガス単相を流す
場合よりも大きくなる。そのため気液二相冷媒中の液冷
媒の乱れが配管壁面付近で大きくなり、壁面に付着して
いる鉱油を壁面から引き剥がす作用を行う。壁面から引
き剥がされた鉱油は冷媒中を移動するので、移動速度は
冷媒と同じとなる。従ってR407Cとのせん断力で引
っ張って移動させて洗浄することに比べ高速で冷媒を移
動させることが可能となり、鉱油の洗浄が速やかに短時
間で行われる。なお、鉱油の洗浄特性は、配管から鉱油
を引き剥がす能力に依存する。鉱油を引き剥がす能力は
気液二相流の乱れ具合によって決定され、二相流の乱れ
具合は、二相流中の液、ガスの割合、および二相流の流
速によって決定される。従ってこれらの二相流を流す条
件としては、配管中の鉱油をどれぐらいの時間で、どの
量まで洗浄するかで決定される。
By operating the refrigeration cycle in this manner, it becomes possible to flow a gas-liquid two-phase mixed flow, that is, a refrigerant in which gas and liquid are mixed, in the existing pipe. Here, the reason why the gas-liquid two-phase refrigerant is caused to flow through the existing pipe for cleaning will be described. FIG. 2 is a graph showing the cleaning characteristics of mineral oil for each state of the refrigerant during cleaning in the present invention, where the horizontal axis represents the cleaning time and the vertical axis represents the amount of mineral oil remaining in the pipe after cleaning.
When cleaning mineral oil as shown in Fig. 2, among the three states of gas single-phase, liquid single-phase, and gas-liquid two-phase (gas-liquid mixture), cleaning characteristics when cleaning with gas-liquid two-phase It turns out that is excellent. In the conventional cleaning, a cleaning liquid such as HCFC225 is poured as a liquid into a pipe, and the cleaning liquid dissolves mineral oil for cleaning. When R407C is washed by flowing it, as in the conventional case, when it is poured as a liquid in the pipe and washed, since it has almost no solubility, mineral oil is pulled and moved by the shearing force with R407C to be washed. .
In this case, the moving speed of the mineral oil is remarkably slower than the flow speed of the refrigerant liquid, and it takes a long time to perform the cleaning, which is not practical. There is also a method of flowing R407C into the pipe as a gas, but in this case as well, mineral oil is pulled and moved by a shearing force with R407C in the same manner for cleaning, and the moving speed of mineral oil is slow and it takes time to perform cleaning. It is not practical. on the other hand,
In the case of cleaning with the gas-liquid two-phase mixed flow, the two-phase flow causes the gas-liquid to mix and flow, so that the turbulence of the flow becomes larger than that in the case of flowing the liquid single phase and the gas single phase. Therefore, the turbulence of the liquid refrigerant in the gas-liquid two-phase refrigerant becomes large near the wall surface of the pipe, and the mineral oil adhering to the wall surface is peeled off from the wall surface. Since the mineral oil peeled off from the wall surface moves in the refrigerant, the moving speed becomes the same as that of the refrigerant. Therefore, the refrigerant can be moved at a higher speed as compared with the case where the refrigerant is pulled and moved by the shearing force with R407C to be washed, and the mineral oil is quickly washed in a short time. It should be noted that the cleaning characteristics of mineral oil depend on the ability to strip the mineral oil from the pipe. The ability to strip mineral oil is determined by the turbulence of gas-liquid two-phase flow, which is determined by the proportion of liquid, gas in the two-phase flow and the flow velocity of the two-phase flow. Therefore, the conditions for flowing these two-phase flows are determined by how long and how much mineral oil in the pipe is washed.

【0035】配管の洗浄終了後は、圧縮機の運転を停止
し、四方弁の流れ方向を図1の点線方向に設定し、第2
の操作弁13bを閉じる。その後再度圧縮機の運転を行
うと、第2の操作弁13bが閉じられているので、圧縮
機1から吐出された冷媒は熱源側熱交換器10や分離装
置9などに追い込まれて蓄積され、一方既設配管19,
20やバイパス管6内の冷媒はアキュムレータ11ヘ引
き出され、所謂ポンプダウン運転を行うことで、既設配
管19、20中に残存するR407Cを回収する。R4
07Cの沸点は−43℃と低いため、このポンプダウン
運転を行うことで容易に蒸発ガス化するため、洗浄液と
してのR407Cの回収も容易に行うことができる。ポ
ンプダウン運転終了後は第1の操作弁13aを閉じ、R
407Cの回収を終了する。
After the completion of cleaning the pipe, the operation of the compressor is stopped, the flow direction of the four-way valve is set to the dotted line direction in FIG.
The operation valve 13b is closed. Then, when the compressor is operated again, the second operation valve 13b is closed, so that the refrigerant discharged from the compressor 1 is driven into the heat source side heat exchanger 10, the separation device 9, etc. and accumulated, Meanwhile, existing piping 19,
The refrigerant in 20 and the bypass pipe 6 is drawn out to the accumulator 11, and the so-called pump down operation is performed to recover the R407C remaining in the existing pipes 19 and 20. R4
Since the boiling point of 07C is as low as −43 ° C., it is easily vaporized and gasified by performing this pump down operation, so that R407C as a cleaning liquid can be easily recovered. After the pump down operation is completed, the first operation valve 13a is closed and R
The collection of 407C is completed.

【0036】R407C回収後は既設配管から洗浄装置
12、バイパス管6を取り外し、新規に交換後設置され
る熱源機14、室内機15を取り付け、既設配管の洗浄
および冷凍空調装置の交換を完了する。このように行う
ことで、配管の再設置を行うことなく簡単に冷凍空調装
置の入れ替えが可能となる。また洗浄装置では洗浄冷媒
を回路ヘ搬送する手段としては圧縮機に限るものではな
く、液ポンプでもよく、洗浄冷媒の特性に合わせて選択
できる。
After the recovery of R407C, the cleaning device 12 and the bypass pipe 6 are removed from the existing pipe, the heat source unit 14 and the indoor unit 15 which are newly installed after replacement are attached, and the cleaning of the existing pipe and the replacement of the refrigeration / air-conditioning system are completed. . By doing so, it becomes possible to easily replace the refrigerating and air-conditioning device without re-installing the pipe. Further, in the cleaning device, the means for conveying the cleaning refrigerant to the circuit is not limited to the compressor, but may be a liquid pump and can be selected according to the characteristics of the cleaning refrigerant.

【0037】実施の形態2.図3は本発明の実施の形態
2を示す図で、洗浄装置の冷媒回路図である。図におい
て、前述の図1と同符号は相当部分を示し、熱源機14
は、圧縮機1、油分離器2、四方弁3、熱源側熱交換器
10、アキュムレータ11で構成され、鉱油回収装置1
6は高低圧熱交換器4、減圧装置8、分離装置9で構成
される。また13a、13bは鉱油回収装置16と既設
配管19、20を接続する操作弁、13c、13d、1
3e、13fは熱源機14と鉱油回収装置16を接続す
る接続弁である。図1に示す洗浄装置12の代わりに、
交換後設置される熱源機14と鉱油回収装置16を組み
合わせて洗浄を行うものである。図3で構成される冷凍
サイクルは図1と同じ構成となり、上述の実施の形態1
と同様の効果を奏するものであり、洗浄も同様に行うこ
とが可能となる。洗浄完了後は鉱油回収装置16、およ
びバイパス管6を取り外し、既設配管19、20と熱源
機14、室内機15を接続することで、配管の洗浄およ
び冷凍空調装置の交換を完了する。
Embodiment 2. FIG. 3 is a diagram showing a second embodiment of the present invention and is a refrigerant circuit diagram of a cleaning device. In the figure, the same reference numerals as those in FIG.
Is composed of a compressor 1, an oil separator 2, a four-way valve 3, a heat source side heat exchanger 10, and an accumulator 11.
Reference numeral 6 includes a high and low pressure heat exchanger 4, a pressure reducing device 8 and a separating device 9. Further, 13a and 13b are operation valves for connecting the mineral oil recovery device 16 and the existing pipes 19 and 20, 13c, 13d and 1
3e and 13f are connection valves that connect the heat source device 14 and the mineral oil recovery device 16. Instead of the cleaning device 12 shown in FIG.
Cleaning is performed by combining the heat source device 14 and the mineral oil recovery device 16 installed after the replacement. The refrigeration cycle configured in FIG. 3 has the same configuration as in FIG.
The same effect as above can be obtained, and the cleaning can be similarly performed. After the cleaning is completed, the mineral oil recovery device 16 and the bypass pipe 6 are removed, and the existing pipes 19 and 20 are connected to the heat source device 14 and the indoor unit 15 to complete the cleaning of the pipes and the replacement of the refrigeration / air-conditioning device.

【0038】また、室内機15に設けられた図6に示す
ような流量調整器17の冷媒回路を開閉する装置を全開
とし、さらに熱交換用送風機への通電を遮断すれば、既
設配管と直列に接続して同時に冷媒回路洗浄が可能とな
る。
If the device for opening and closing the refrigerant circuit of the flow rate regulator 17 as shown in FIG. 6 provided in the indoor unit 15 is fully opened and the heat exchange blower is de-energized, it is connected in series with the existing pipe. It becomes possible to wash the refrigerant circuit at the same time by connecting to.

【0039】なお既設配管19、20に洗浄冷媒を気液
二相混合流で供給できるような構成であれば前記のよう
な構成に限定されることなく配管の洗浄を行うことが可
能となる。
Note that, as long as the cleaning refrigerant can be supplied to the existing pipes 19 and 20 in a gas-liquid two-phase mixed flow, the pipes can be cleaned without being limited to the above-described structure.

【0040】配管を洗浄する洗浄冷媒としてはR407
Cに限るものではなく、他のHFC系の単一冷媒や混合
冷媒でもよく、例えばR32(微燃性・無毒)、R12
5(不燃性・無毒)、R134a(不燃性・無毒)、R
410A(不燃性・無毒)、R404A(不燃性・無
毒)で洗浄を行ってもよい。またプロパンやブタンなど
のHC系冷媒およびその混合冷媒、アンモニア、炭酸ガ
ス、水などの自然冷媒を用いてもよい。また二相流とし
ては、同一洗浄液のガス化されたものと洗浄液との組み
合わせに限らず、別種のガスと液を組み合わせてもよ
い。例えば、空気と水を混合した二相流で洗浄を行って
もよい。
R407 is used as a cleaning refrigerant for cleaning the piping.
Not limited to C, other HFC-based single or mixed refrigerants may be used, such as R32 (slightly flammable / non-toxic) and R12.
5 (nonflammable / nontoxic), R134a (nonflammable / nontoxic), R
Cleaning may be performed with 410A (nonflammable / nontoxic) and R404A (nonflammable / nontoxic). Alternatively, an HC-based refrigerant such as propane or butane and a mixed refrigerant thereof, or a natural refrigerant such as ammonia, carbon dioxide, or water may be used. Further, the two-phase flow is not limited to the combination of the gasified liquid of the same cleaning liquid and the cleaning liquid, and different types of gas and liquid may be combined. For example, cleaning may be performed with a two-phase flow in which air and water are mixed.

【0041】実施の形態3.以下本発明の実施の形態3
について説明する。本発明の実施の形態3では、図1の
ように洗浄を行い、洗浄冷媒としてR407Cのガス、
液を混合した気液二相混合流を用い、配管中に残留する
鉱油を洗浄する。このとき洗浄冷媒として用いるR40
7Cの既設配管入口での圧力が15kgf/cm2ab
sになるように洗浄条件を設定する。このときR407
Cの液の密度は1100kg/m3、R407Cのガス
の密度は66kg/m3となる。鉱油の密度は900k
g/m3であり、R407Cの液の密度は鉱油の密度よ
り大きくなる。
Embodiment 3. Hereinafter, a third embodiment of the present invention
Will be described. In the third embodiment of the present invention, cleaning is performed as shown in FIG. 1, and R407C gas is used as a cleaning refrigerant.
A gas-liquid two-phase mixed flow in which the liquids are mixed is used to wash the residual mineral oil in the piping. R40 used as a cleaning refrigerant at this time
The pressure at the existing pipe inlet of 7C is 15 kgf / cm 2 ab
The cleaning conditions are set so as to be s. At this time R407
The density of the C liquid is 1100 kg / m 3 , and the density of the R407C gas is 66 kg / m 3 . The density of mineral oil is 900k
a g / m 3, the density of R407C liquid is greater than the density of the mineral oil.

【0042】ここで、配管の内部流れのような管内流で
は、一般に管中心部の速度が速く、管壁に近づくほど速
度が遅くなる流速分布をとる。このとき密度の大きいも
のと小さいものが混在して流れる場合の運動エネルギを
考える。密度の大きいものが管中心部を流れ密度が小さ
いものが管壁に近いところを流れた場合と、逆に密度の
小さいものが管中心部を流れ密度が大きいものが管壁に
近いところを流れた場合を比較すると、密度の大きいも
のが管中心部を流れ、密度が小さいものが管壁に近いと
ころを流れる場合の方が、密度の大きいものの流速が早
いため、運動エネルギが大きくなる。一般に流体は流体
の持つエネルギが減少するように流れるため、密度の大
きいものと小さいものが混在して流れる場合、運動エネ
ルギが小さくなるよう、密度の小さいものが管中心部を
流れ密度が大きいものが管壁に近いところを流れる。
Here, in an in-pipe flow such as the internal flow of a pipe, generally, the velocity at the center of the pipe is high, and the velocity becomes slower as it gets closer to the pipe wall. At this time, consider the kinetic energy when a mixture of high density and low density flows. The one with a high density flows in the center of the pipe and the one with a low density flows near the pipe wall, while the one with a low density flows in the center of the pipe and the one with a high density flows near the pipe wall. Comparing the cases, when the density is high in the center of the tube and the density is low near the wall of the tube, the flow velocity of the density is high and the kinetic energy is high. Generally, a fluid flows so that the energy of the fluid decreases, so when a mixture of high density and low density flows together, a fluid with a low density flows through the center of the pipe so that the kinetic energy is low. Flows near the tube wall.

【0043】気液二相混合流で洗浄を行う場合、前述し
たように液によって壁面に付着している鉱油を引き剥が
し移動させる。この後、もし、液の密度が鉱油に比べて
軽いのであれば鉱油が壁面近くを流れやすくなり、再付
着を起こしやすくなる。再付着すると鉱油の移動はせん
断力による移動となるため移動速度が遅くなり洗浄に時
間を要するようになる。
When cleaning is performed with a gas-liquid two-phase mixed flow, the mineral oil adhering to the wall surface is peeled off and moved by the liquid as described above. After that, if the density of the liquid is lighter than that of the mineral oil, the mineral oil easily flows near the wall surface, and redeposition is likely to occur. When reattached, the movement of the mineral oil is due to the shearing force, so the movement speed becomes slow and it takes time to wash.

【0044】ところが、実施の形態3のように洗浄液と
してR407Cを用い、R407Cの液の密度が鉱油の
密度より大きくなるように洗浄条件を設定すると、液に
よって鉱油を引き剥がした後、鉱油は液を介して壁面か
ら離れた管中心よりの位置で流れるため、壁面に再付着
しなくなる。従って、鉱油は洗浄液と同じ速度で移動す
るようになり、速やかに洗浄が可能となる。
However, when R407C is used as the cleaning liquid as in the third embodiment and the cleaning conditions are set so that the density of the liquid of R407C is higher than the density of the mineral oil, the mineral oil is peeled off by the liquid and then the mineral oil is liquefied. Since it flows through the pipe at a position away from the wall surface and closer to the center of the pipe, it does not reattach to the wall surface. Therefore, the mineral oil moves at the same speed as the cleaning liquid, which enables quick cleaning.

【0045】ここで、図4は気液二相混合流の流動様式
を表した図である。図4において、(a)は液相流量が
小の場合で、成層流や波状流そして環状流などと呼ばれ
る気液二相の偏流が大きい流動状態であり、一方(c)
は液相流量が大の場合で、気泡流や環状噴霧流と呼ばれ
る気液二相が混合、攪拌された流動状態である。配管が
水平管である場合には二相流の流れとして図4の中に示
すようにガスが管上部、液が管下部を流れる波状流と呼
ばれる流動状態となる場合がある。このとき仮に鉱油の
密度がR407Cのガス密度より小さいと、引き剥がさ
れた鉱油が重力の影響で上部に浮き、管上部に再付着し
てしまい、洗浄速度が遅くなる。R407Cのガス密度
は鉱油より小さため、波状流のような流れであっても引
き剥がされた鉱油は重力の影響で気相と液相の間で移動
するため、鉱油の移動速度は洗浄物と同じ速度となり、
速やかに洗浄が可能となる。
Here, FIG. 4 is a diagram showing the flow pattern of the gas-liquid two-phase mixed flow. In FIG. 4, (a) shows a flow state in which the liquid-phase flow rate is small, and gas-liquid two-phase uneven flow called a stratified flow, a corrugated flow, and an annular flow is large, while (c)
Is a case where the liquid phase flow rate is large, and is a flow state in which gas-liquid two phases called a bubbly flow and an annular spray flow are mixed and stirred. When the pipe is a horizontal pipe, as a two-phase flow, as shown in FIG. 4, a gas may be in a flow state called a wavy flow in which the gas flows in the upper part of the pipe and the liquid flows in the lower part of the pipe. At this time, if the density of the mineral oil is lower than the gas density of R407C, the peeled mineral oil floats to the upper part due to the effect of gravity and redeposits on the upper part of the pipe, which slows down the cleaning speed. Since the gas density of R407C is smaller than that of mineral oil, the peeled mineral oil moves between the gas phase and the liquid phase due to the effect of gravity even in a flow like a wavy flow. The same speed,
Quick cleaning is possible.

【0046】実施の形態4.以下本発明の実施の形態4
について説明する。本発明の実施の形態4では、図1の
ように洗浄を行い、洗浄冷媒としてR407Cのガス、
液を混合した気液二相混合流を用い、配管中に残留する
鉱油を洗浄する。
Fourth Embodiment Fourth Embodiment of the Present Invention
Will be described. In the fourth embodiment of the present invention, cleaning is performed as shown in FIG. 1, and R407C gas is used as a cleaning refrigerant.
A gas-liquid two-phase mixed flow in which the liquids are mixed is used to wash the residual mineral oil in the piping.

【0047】管内を流れる気液二相流は図4に示すよう
な形で分類できる。実施の形態4ではこのなかでも波状
流(成層流)、環状流で表される流動状態になるように
洗浄を行う。波状流(成層流)で洗浄を行うと、前述し
たように、鉱油を壁面から引き剥がした後、鉱油は重力
の影響で気相と液相の間で移動するため、鉱油の移動速
度は洗浄物と同じ速度となり、速やかに洗浄が可能とな
る。また環状流で流したときは、液とガスと鉱油の密
度、および流体の運動エネルギの関係より壁面から引き
剥がされた鉱油は液とガスの間を流れる。従って鉱油の
移動速度は洗浄冷媒と同じ速度となり、速やかに洗浄が
可能となる。また環状噴霧流でも環状流と同様な効果が
得られるので、環状噴霧流で洗浄を行っても良い。一
方、それ以外の流動様式、特に気泡流では二相流の中の
ガスの割合が低いため、波状流、環状流に比べ、流れの
乱れ具合が低くなる。従って壁面に付着した鉱油を引き
剥がす能力が波状流、環状流に比べ低下してしまう。ま
た水平配管の場合、気泡流では、鉱油の密度より洗浄液
の密度が大きいため重力の影響により鉱油が配管上部を
流れてしまう。この場合、配管から引き剥がされた鉱油
が配管上部に再付着しやすくなり結果的に洗浄に時間が
かかり、洗浄には不適当となる。
The gas-liquid two-phase flow flowing in the tube can be classified as shown in FIG. In the fourth embodiment, cleaning is performed so that the flow state is represented by a wavy flow (stratified flow) or an annular flow. When cleaning is performed in a wavy flow (stratified flow), as described above, after the mineral oil is peeled off from the wall surface, the mineral oil moves between the gas phase and the liquid phase due to the effect of gravity, so the movement speed of the mineral oil is The speed is the same as that of the product, and it is possible to wash quickly. When flowing in an annular flow, the mineral oil peeled off from the wall surface flows between the liquid and the gas due to the relationship between the densities of the liquid, the gas and the mineral oil, and the kinetic energy of the fluid. Therefore, the moving speed of the mineral oil becomes the same as that of the cleaning refrigerant, and the cleaning can be carried out quickly. Further, since the same effect as the annular flow can be obtained with the annular spray flow, the cleaning may be performed with the annular spray flow. On the other hand, in other flow modes, in particular, in the bubbly flow, the proportion of gas in the two-phase flow is low, so that the turbulence of the flow is lower than that in the wavy flow or the annular flow. Therefore, the ability to peel off the mineral oil adhering to the wall surface becomes lower than that of the wavy flow or the annular flow. Further, in the case of horizontal piping, in the bubbly flow, the density of the cleaning liquid is higher than the density of mineral oil, and therefore the mineral oil flows through the upper portion of the piping due to the effect of gravity. In this case, the mineral oil peeled off from the pipe is likely to reattach to the upper portion of the pipe, resulting in a long cleaning time, which is unsuitable for cleaning.

【0048】二相流の流動様式がどのようになるかはR
407Cの流速や液ガスの割合などの洗浄条件で決定さ
れる。図5は気液二相流の流動様式を表したベーカー
(Baker)線図と呼ばれるものである。図5の縦
軸、横軸はそれぞれ冷媒の流動状態を表す値であり、縦
軸は冷媒の質量流量の大きさを示し上に行くほどその値
は大きくなる。また、横軸は冷媒のガス質量流量と液質
量流量の比、即ち乾き度を示し、右に行くほど乾き度は
小さくなり液リッチの状態になる。この線図から環状
流、波状流(成層流)で流動させる条件が明らかにな
り、洗浄条件を決定できる。例えば本発明のR407C
の場合では、流速にあたる質量流量が100〜300
[kg/m2・s]、液ガスの割合、つまり乾き度(=
ガスの質量流量/(ガスの質量流量+液の質量流量))
が0.2以上の条件となるように、搬送手段である圧縮
機の回転数を変化させる運転周波数制御または減圧装置
の開度調整制御を行う。またベーカー線図以外にも、例
えばMandhane線図等いくつか流動様式を表した
線図があり、その線図に基づいて洗浄条件を決定しても
よい。
The flow pattern of the two-phase flow is R
It is determined by cleaning conditions such as the flow rate of 407C and the ratio of liquid gas. FIG. 5 is called a Baker diagram showing the flow pattern of gas-liquid two-phase flow. The ordinate and the abscissa of FIG. 5 are values showing the flow state of the refrigerant, and the ordinate shows the magnitude of the mass flow rate of the refrigerant, and the values increase toward the top. The horizontal axis represents the ratio of the gas mass flow rate of the refrigerant to the liquid mass flow rate, that is, the dryness. The dryness decreases toward the right and the liquid becomes rich. From this diagram, the conditions for flowing in the annular flow and the wavy flow (stratified flow) are clarified, and the cleaning conditions can be determined. For example, R407C of the present invention
In the case of, the mass flow rate corresponding to the flow velocity is 100 to 300.
[Kg / m 2 · s], ratio of liquid gas, that is, dryness (=
Mass flow rate of gas / (mass flow rate of gas + mass flow rate of liquid))
Is controlled to be 0.2 or more, the operating frequency control for changing the rotation speed of the compressor, which is the conveying means, or the opening adjustment control for the pressure reducing device is performed. In addition to the Baker diagram, there are diagrams showing several flow patterns such as the Mandhane diagram, and the washing conditions may be determined based on the diagram.

【0049】また、気液二相流を用いた配管付着物の剥
離効果による除去では、液送ポンプと圧縮空気を使って
洗浄液と空気とを交互に、所定の間隔で配管へ圧入する
ウオータープラグ法による洗浄があるが、これに比べて
本発明による、圧縮機による循環冷媒を状態変化させ
て、配管を流れる気液二相流を環状流もしくは波状流の
流動状態とするので、装置が簡単にできる。
In addition, in the removal of pipe deposits by the separation effect using the gas-liquid two-phase flow, the water plug is used to alternately press the cleaning liquid and the air using the liquid feed pump and the compressed air into the pipe at predetermined intervals. Although there is cleaning by the method, in comparison with this, the circulating refrigerant by the compressor is changed in state to make the gas-liquid two-phase flow flowing through the pipe into an annular flow or wavy flow, so that the device is simple. You can

【0050】[0050]

【発明の効果】本発明の請求項1に関わる配管の洗浄方
法は、被洗浄物である冷凍機油に対して非相溶性または
弱相溶性の洗浄冷媒を搬送手段により吐出して冷媒回路
内に循環流を生成し、洗浄冷媒を気液二相混合流へ状態
変化させてから、冷凍機油が付着した配管を気液二相混
合流で洗浄するので、環境に問題のある洗浄液を用いな
くても既設配管の洗浄を速やかに実施することができ
る。
The pipe cleaning method according to claim 1 of the present invention discharges the cleaning refrigerant, which is incompatible or weakly compatible with the refrigerating machine oil , which is the object to be cleaned, into the refrigerant circuit by discharging the cleaning refrigerant. A circulation flow is generated, the state of the cleaning refrigerant is changed to a gas-liquid two-phase mixed flow, and then the pipe with the refrigerating machine oil is cleaned with the gas-liquid two-phase mixed flow, so there is no need to use a cleaning liquid that has environmental problems. Also, the existing pipes can be washed promptly.

【0051】本発明の請求項2に関わる配管の洗浄方法
は、請求項1に記載の配管の洗浄方法において、洗浄冷
媒が液体状態で被洗浄物である冷凍機油より密度が大き
く、かつ気体状態で被洗浄物である冷凍機油より密度が
小さいものを使用するので、被洗浄物を剥離した後の再
付着を防止し、また洗浄液冷媒と同じ速度で移動させて
短時間で洗浄が可能となる。
The pipe cleaning method according to claim 2 of the present invention is the pipe cleaning method according to claim 1, wherein the cleaning refrigerant is in a liquid state and has a density higher than that of the refrigerating machine oil which is the object to be cleaned and is in a gas state. Since the one to be cleaned has a lower density than the refrigerating machine oil, it prevents re-adhesion after peeling off the to-be-cleaned object, and it can be moved in the same speed as the cleaning liquid refrigerant and cleaned in a short time. .

【0052】本発明の請求項3に関わる配管の洗浄方法
は、請求項1または請求項2に記載の配管の洗浄方法に
おいて、洗浄冷媒の気液二相混合流の流動様式が、環状
流もしくは波状流であるので、速やかに既設配管の洗浄
を実施することができる。
A pipe cleaning method according to claim 3 of the present invention is the pipe cleaning method according to claim 1 or 2, wherein the flow mode of the gas-liquid two-phase mixed flow of the cleaning refrigerant is an annular flow or Since the flow is wavy, it is possible to quickly clean the existing pipe.

【0053】本発明の請求項4に関わる洗浄装置は、搬
送手段の吐出側に接続され、洗浄冷媒を熱交換して気液
二相混合流を生成する高低圧熱交換器と、気液二相混合
流が被洗浄物の付着した配管を通過して、再び高低圧熱
交換器へ流入する前に減圧する減圧装置とを備え、気液
二相混合流で配管を洗浄するので、環境に問題のある洗
浄液を用いなくても既設配管の洗浄を速やかに実施する
ことができる。
A cleaning apparatus according to a fourth aspect of the present invention comprises a high-low pressure heat exchanger which is connected to the discharge side of the conveying means and which exchanges heat with the cleaning refrigerant to generate a gas-liquid two-phase mixed flow, and a gas-liquid two-phase heat exchanger. It is equipped with a decompression device that reduces the pressure before the phase-mixed flow passes through the pipe with the object to be cleaned and flows into the high-and-low pressure heat exchanger again. It is possible to quickly clean the existing pipe without using a problematic cleaning liquid.

【0054】本発明の請求項5に関わる洗浄装置は、請
求項4に記載の洗浄装置において、洗浄冷媒を循環流出
させる搬送手段と、搬送手段の吸入側に接続され、高低
圧熱交換器から流出する洗浄冷媒を冷却する熱源側熱交
換器とを備え、熱源側熱交換器を高低圧熱交換器に接続
して回路を構成するので、再設置利用後の使用冷媒に限
定することなく、環境上の問題のない他の洗浄冷媒を用
いて既設配管の洗浄を速やかに実施することができる。
A cleaning apparatus according to a fifth aspect of the present invention is the cleaning apparatus according to the fourth aspect, which is connected to a conveying means for circulating and flowing out the cleaning refrigerant and a suction side of the conveying means, and is connected to a high-low pressure heat exchanger. The heat source side heat exchanger for cooling the outflowing cleaning refrigerant is provided, and since the heat source side heat exchanger is connected to the high and low pressure heat exchanger to form a circuit, without being limited to the refrigerant used after the re-use, It is possible to quickly clean the existing pipe using another cleaning refrigerant that does not cause environmental problems.

【0055】本発明の請求項6に関わる洗浄装置は、請
求項4または請求項5に記載の洗浄装置において、被洗
浄物が付着した配管を通過した洗浄冷媒から被洗浄物を
除去する分離装置を配管と搬送手段との間に設けたの
で、被洗浄物を効率よく捕集でき、被洗浄物による冷媒
回路の目詰まりや搬送手段の摺動部焼き付き故障を防ぐ
ことができる。
A cleaning device according to claim 6 of the present invention is the cleaning device according to claim 4 or 5, wherein the cleaning device removes the object to be cleaned from the cleaning refrigerant that has passed through the pipe to which the object to be cleaned adheres. Is provided between the pipe and the conveying means, it is possible to efficiently collect the object to be cleaned and prevent clogging of the refrigerant circuit due to the object to be cleaned and seizure failure of the sliding part of the conveying means.

【0056】本発明の請求項7に関わる洗浄装置は、請
求項4乃至請求項6のいずれかに記載の洗浄装置におい
て、被洗浄装置は塩素分を含むハイドロクロロフルオロ
カーボン(HCFC)系冷媒またはクロロフルオロカー
ボン(CFC)系冷媒を使用する冷凍機油に用いる鉱油
であり、洗浄冷媒として、塩素分を含まないハイドロフ
ルオロカーボン(HFC)系冷媒またはハイドロカーボ
ン(HC)系冷媒または自然冷媒を用いるので、環境に
問題のある洗浄液を用いなくても既設配管の洗浄を速や
かに実施することができる。
A cleaning device according to claim 7 of the present invention is the cleaning device according to any one of claims 4 to 6, wherein the device to be cleaned is a hydrochlorofluorocarbon (HCFC) -based refrigerant or chlorine containing chlorine. It is a mineral oil used as a refrigerating machine oil that uses a fluorocarbon (CFC) -based refrigerant, and as a cleaning refrigerant, a hydrofluorocarbon (HFC) -based refrigerant or a hydrocarbon (HC) -based refrigerant or a natural refrigerant that does not contain chlorine is used. It is possible to quickly clean the existing pipe without using a problematic cleaning liquid.

【0057】本発明の請求項8に関わる洗浄装置は、請
求項4乃至請求項7のいずれかに記載の洗浄装置におい
て、HFC系冷媒としてR407Cを使用するので、環
境に問題のある洗浄液を用いなくても既設配管の洗浄を
速やかに実施することができる。
The cleaning apparatus according to claim 8 of the present invention is the cleaning apparatus according to any one of claims 4 to 7, in which R407C is used as the HFC refrigerant, so that a cleaning solution that is environmentally problematic is used. Even without it, the cleaning of the existing pipe can be carried out promptly.

【0058】本発明の請求項9に関わる洗浄装置は、請
求項4乃至請求項7のいずれかに記載の洗浄装置におい
て、HC系冷媒としてイソブタン系またはプロパン系を
使用するので、環境に問題のある洗浄液を用いなくても
既設配管の洗浄を速やかに実施することができる。
The cleaning device according to claim 9 of the present invention is the cleaning device according to any one of claims 4 to 7, in which isobutane-based or propane-based refrigerant is used as the HC-based refrigerant. It is possible to quickly clean the existing pipe without using a certain cleaning liquid.

【0059】本発明の請求項10に関わる冷凍空調装置
は、請求項4乃至請求項6のいずれかに記載の洗浄装置
で洗浄された配管を、圧縮機、熱源側熱交換器、減圧装
置、利用側熱交換器を接続した冷凍サイクルの熱源機と
室内機とを接続する配管としたので、冷凍空調装置にお
ける使用冷媒を交換するために装置の更新を行う場合、
配管の再設置工事を簡略化することができる。
According to a tenth aspect of the present invention, there is provided a refrigerating and air-conditioning apparatus in which a pipe cleaned by the cleaning apparatus according to any one of the fourth to sixth aspects is provided with a compressor, a heat source side heat exchanger, a pressure reducing device, Since it was a pipe connecting the heat source unit and the indoor unit of the refrigeration cycle connected to the use side heat exchanger, when updating the device to replace the refrigerant used in the refrigerating air conditioner,
The re-installation work of the pipe can be simplified.

【0060】本発明の請求項11に関わる洗浄装置は、
洗浄冷媒の循環流量を可変させる搬送手段の回転数を調
整し、または減圧装置の開度を調整する制御手段を備
え、洗浄冷媒の気液二相混合流の流動様式を環状流もし
くは波状流として、配管内を洗浄するので、速やかに既
設配管の洗浄を実施することができる。
The cleaning apparatus according to claim 11 of the present invention is
The cleaning refrigerant is provided with a control means for adjusting the rotation speed of the conveying means for varying the circulating flow rate or for adjusting the opening degree of the decompression device, and the flow mode of the gas-liquid two-phase mixed flow of the cleaning refrigerant is changed to an annular flow or a wavy flow. Then, since the inside of the pipe is cleaned , the existing pipe can be promptly cleaned.

【0061】本発明の請求項12に関わる冷凍空調装置
の取替え方法は、塩素分を含む冷媒を使用した冷凍空調
装置を熱源機側と利用機側および接続配管に切り離し、
その間に高低圧熱交換器と減圧装置で構成される洗浄装
置を接続するステップと、熱源機側に塩素分を含まない
冷媒を置換封入するステップと、冷媒を高低圧熱交換器
で気液二相混合流に生成してから利用機側および接続配
管へ導き洗浄するステップとを備えたので、環境に問題
のある洗浄液を用いなくても既設の冷凍空調装置の洗浄
を効率良く速やかに実施でき、省工事性が得られる。
According to a twelfth aspect of the present invention, there is provided a method for replacing a refrigerating and air-conditioning apparatus, wherein a refrigerating and air-conditioning apparatus using a refrigerant containing chlorine is separated into a heat source unit side, a user side and a connecting pipe.
In the meantime, a step of connecting a cleaning device composed of a high-low pressure heat exchanger and a pressure reducing device, a step of replacing and enclosing a refrigerant containing no chlorine on the heat source unit side, and a refrigerant in a high-low pressure heat exchanger Since it has a step of generating a mixed phase flow and guiding it to the user side and connecting pipes for cleaning, the existing refrigerating air conditioner can be cleaned efficiently and promptly without using a cleaning solution that is environmentally problematic. Therefore, the work efficiency can be reduced.

【0062】本発明の請求項13に関わる冷凍空調装置
の取替え方法は、請求項12に記載の冷凍空調装置の取
替え方法において、利用機側および接続配管は冷媒回路
を全開にするとともに、強制した熱交換を行わないの
で、環境に問題のある洗浄液を用いなくても既設配管と
ともに室内機側も短時間で洗浄ができる。
According to a thirteenth aspect of the present invention, there is provided a method for replacing a refrigerating and air-conditioning apparatus according to the twelfth aspect, wherein the refrigerant circuit is fully opened and forced on the user side and the connecting pipe. Since heat exchange is not performed, it is possible to wash the existing pipes and the indoor unit side in a short time without using a washing solution that is environmentally problematic.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1を示す洗浄装置の冷媒
回路図である。
FIG. 1 is a refrigerant circuit diagram of a cleaning device showing a first embodiment of the present invention.

【図2】 図1の洗浄装置による配管残油量と洗浄時間
の関係を示すゲラフである。
FIG. 2 is a geraph showing a relationship between a residual oil amount in a pipe and a cleaning time in the cleaning apparatus of FIG.

【図3】 本発明の実施の形態2を示す洗浄装置の冷媒
回路図である。
FIG. 3 is a refrigerant circuit diagram of a cleaning device showing a second embodiment of the present invention.

【図4】 実施の形態3、4に係る、気液二相流の流動
様式を表した説明図である。
FIG. 4 is an explanatory diagram showing a flow pattern of a gas-liquid two-phase flow according to the third and fourth embodiments.

【図5】 本発明の実施の形態4に係る、既設配管にお
いて、気液二相冷媒の流動状態を表した特性図である。
FIG. 5 is a characteristic diagram showing a flow state of a gas-liquid two-phase refrigerant in an existing pipe according to the fourth embodiment of the present invention.

【図6】 従来の冷凍空調装置の冷媒回路図である。FIG. 6 is a refrigerant circuit diagram of a conventional refrigeration / air-conditioning system.

【図7】 従来の冷凍機油(鉱油)混入時のHFC用冷
凍機油とHFC冷媒との溶解性を示す臨界溶解度曲線の
関係線図である。
FIG. 7 is a relationship diagram of a critical solubility curve showing solubility of a HFC refrigerating machine oil and an HFC refrigerant when a conventional refrigerating machine oil (mineral oil) is mixed.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 油分離器、3 四方弁、4 高低圧熱
交換器、5 第1の接続配管、6 バイパス管、7 第
2の接続配管、8 減圧装置、9 分離装置、10 熱
源側熱交換器、11 アキュムレータ、12 洗浄装
置、13a 第1の操作弁、13b 第2の操作弁、1
3c、13d、13e、13f 接続弁、14 熱源
機、15 室内機、16 鉱油回収装置、17 流量調
整器、18利用側熱交換器、19、20 既設配管、2
1 制御手段。
1 compressor, 2 oil separator, 3 four-way valve, 4 high and low pressure heat exchanger, 5 first connecting pipe, 6 bypass pipe, 7 second connecting pipe, 8 pressure reducing device, 9 separating device, 10 heat source side heat Exchanger, 11 Accumulator, 12 Cleaning device, 13a 1st operation valve, 13b 2nd operation valve, 1
3c, 13d, 13e, 13f connection valve, 14 heat source device, 15 indoor unit, 16 mineral oil recovery device, 17 flow rate regulator, 18 utilization side heat exchanger, 19, 20 existing pipe, 2
1 Control means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 直樹 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (72)発明者 井上 誠司 東京都千代田区丸の内二丁目2番3号 三菱電機株式会社内 (56)参考文献 特開 平6−86907(JP,A) 特開 平11−182991(JP,A) 特開 平4−265370(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 47/00 B08B 9/027 F25B 45/00 ─────────────────────────────────────────────────── ─── Continued front page (72) Inventor Naoki Tanaka 2-3-3 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Seiji Inoue 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric (56) References JP-A-6-86907 (JP, A) JP-A-11-182991 (JP, A) JP-A-4-265370 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25B 47/00 B08B 9/027 F25B 45/00

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 被洗浄物である冷凍機油に対して非相溶
性または弱相溶性の洗浄冷媒を搬送手段により吐出して
冷媒回路内に循環流を生成し、前記洗浄冷媒を気液二相
混合流へ状態変化させてから、前記冷凍機油が付着した
配管を前記気液二相混合流で洗浄することを特徴とする
配管の洗浄方法。
1. A cleaning refrigerant that is incompatible or weakly compatible with refrigerating machine oil , which is an object to be cleaned , is discharged by a conveying means to generate a circulating flow in a refrigerant circuit, and the cleaning refrigerant is vapor-liquid two-phase. A method for cleaning a pipe, characterized in that after the state is changed to a mixed flow, the pipe to which the refrigerating machine oil adheres is washed with the gas-liquid two-phase mixed flow.
【請求項2】 洗浄冷媒が液体状態において被洗浄物
ある冷凍機油より密度が大きく、かつ気体状態において
被洗浄物である冷凍機油より密度が小さいことを特徴と
する請求項1に記載の配管の洗浄方法。
2. When the cleaning refrigerant is in a liquid state, it is an object to be cleaned.
Greater density than a refrigerating machine oil, and pipe cleaning method according to claim 1, wherein the density is less than the refrigerating machine oil to be cleaned in the gaseous state.
【請求項3】 洗浄冷媒の気液二相混合流の流動様式
が、環状流もしくは波上流であることを特徴とする請求
項1または請求項2に記載の配管の洗浄方法。
3. The pipe cleaning method according to claim 1, wherein the flow mode of the gas-liquid two-phase mixed flow of the cleaning refrigerant is an annular flow or a wave upstream.
【請求項4】 搬送手段の吐出側に接続され、洗浄冷媒
を熱交換して気液二相混合流を生成する高低圧熱交換器
と、前記気液二相混合流が被洗浄物の付着した配管を通
過して、再び前記高低圧熱交換器へ流入する前に減圧す
る減圧装置とを備え、前記気液二相混合流で前記配管を
洗浄することを特徴とする洗浄装置。
4. A high / low pressure heat exchanger which is connected to the discharge side of the conveying means and exchanges heat with a cleaning refrigerant to generate a gas-liquid two-phase mixed flow, and the gas-liquid two-phase mixed flow adheres to an object to be cleaned. And a pressure reducing device for reducing the pressure before flowing into the high and low pressure heat exchanger again, and cleaning the pipe with the gas-liquid two-phase mixed flow.
【請求項5】 洗浄冷媒を循環流出させる搬送手段と、
前記搬送手段の吸入側に接続され、高低圧熱交換器から
流出する洗浄冷媒を冷却する熱源側熱交換器とを備え、
前記熱源側熱交換器を前記高低圧熱交換器に接続して回
路を構成することを特徴とする請求項4に記載の洗浄装
置。
5. Conveying means for circulating and flowing out the cleaning refrigerant,
A heat source side heat exchanger that is connected to the suction side of the conveying means and cools the cleaning refrigerant flowing out from the high and low pressure heat exchanger,
The cleaning device according to claim 4, wherein the heat source side heat exchanger is connected to the high and low pressure heat exchanger to form a circuit.
【請求項6】 被洗浄物が付着した配管を通過した洗浄
冷媒から被洗浄物を除去する分離装置を前記配管と搬送
手段との間に設けたことを特徴とする請求項4または請
求項5に記載の洗浄装置。
6. The separation device for removing the object to be cleaned from the cleaning refrigerant that has passed through the tube to which the object to be cleaned has adhered is provided between the pipe and the conveying means. The cleaning device according to.
【請求項7】 被洗浄物は塩素分を含むハイドロクロロ
フルオロカーボン(HCFC)系冷媒またはクロロフル
オロカーボン(CFC)系冷媒を使用する冷凍機油に用
いる鉱油であり、前記洗浄冷媒として、塩素分を含まな
いハイドロフルオロカーボン(HFC)系冷媒またはハ
イドロカーボン(HC)系冷媒または自然冷媒を用いる
ことを特徴とする請求項4乃至請求項6のいずれかに記
載の洗浄装置。
7. The object to be cleaned is a mineral oil used as a refrigerating machine oil that uses a hydrochlorofluorocarbon (HCFC) -based refrigerant or a chlorofluorocarbon (CFC) -based refrigerant containing chlorine, and the cleaning refrigerant does not contain chlorine. The cleaning apparatus according to any one of claims 4 to 6, wherein a hydrofluorocarbon (HFC) -based refrigerant, a hydrocarbon (HC) -based refrigerant, or a natural refrigerant is used.
【請求項8】 HFC系冷媒として、R407Cを使用
することを特徴とする請求項4乃至請求項7のいずれか
に記載の洗浄装置。
8. The cleaning device according to claim 4, wherein R407C is used as the HFC refrigerant.
【請求項9】 HC系冷媒として、イソブタン系または
プロパン系を使用することを特徴とする請求項4乃至請
求項7のいずれかに記載の洗浄装置。
9. The cleaning device according to claim 4, wherein an isobutane type or a propane type is used as the HC type refrigerant.
【請求項10】 請求項4乃至請求項6のいずれかに記
載の洗浄装置で洗浄された配管を、圧縮機、熱源側熱交
換器、減圧装置、利用側熱交換器を接続した冷凍サイク
ルの熱源機と室内機とを接続する配管としたことを特徴
とする冷凍空調装置。
10. A pipe that has been cleaned in the cleaning device according to any one of claims 4 to 6, compressors, heat source side heat exchanger, a decompression device, a refrigeration cycle that connects the utilization-side heat exchanger A refrigerating and air-conditioning device, characterized in that it is a pipe connecting between the heat source unit and the indoor unit.
【請求項11】 洗浄冷媒の循環流量を可変させる搬送
手段の回転数を調整し、または減圧装置の開度を調整す
る制御手段を備え、前記洗浄冷媒の気液二相混合流の流
動様式を環状流もしくは波状流として、配管内を洗浄す
ことを特徴とする洗浄装置。
11. A control means for adjusting the number of revolutions of a conveying means for varying the circulation flow rate of the cleaning refrigerant or for adjusting the opening degree of a decompression device, the flow mode of the gas-liquid two-phase mixed flow of the cleaning refrigerant is provided. and an annular flow or wavy flow, to clean the inside of the pipe
Cleaning apparatus, characterized in that that.
【請求項12】 塩素分を含む冷媒を使用した冷凍空調
装置を熱源機側と利用機側および接続配管に切り離し、
その間に高低圧熱交換器と減圧装置で構成される洗浄装
置を接続するステップと、前記熱源機側に塩素分を含ま
ない冷媒を置換封入するステップと、前記冷媒を高低圧
熱交換器で気液二相混合流に生成させてから利用機側お
よび接続配管へ導き洗浄するステップと、を備えたこと
を特徴とする冷凍空調装置の取替え方法。
12. A refrigeration / air-conditioning system using a refrigerant containing chlorine is separated into a heat source machine side, a user machine side and a connection pipe,
In the meantime, a step of connecting a cleaning device composed of a high and low pressure heat exchanger and a pressure reducing device, a step of substituting and enclosing a refrigerant that does not contain chlorine on the heat source unit side, and a vapor of the refrigerant in the high and low pressure heat exchanger. A method for replacing a refrigerating and air-conditioning apparatus, the method comprising: producing a liquid two-phase mixed flow, and then introducing the liquid two-phase mixed flow to the user side and connection pipes for cleaning.
【請求項13】 利用機側および接続配管は冷媒回路を
全開にするとともに、強制した熱交換を行わないことを
特徴とする請求項12に記載の冷凍空調装置の取替え方
法。
13. The method of replacing a refrigerating and air-conditioning apparatus according to claim 12, wherein the refrigerant circuit is fully opened and the forced heat exchange is not performed on the user side and the connection piping.
JP32532299A 1999-11-16 1999-11-16 Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof Expired - Lifetime JP3521820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32532299A JP3521820B2 (en) 1999-11-16 1999-11-16 Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32532299A JP3521820B2 (en) 1999-11-16 1999-11-16 Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof

Publications (2)

Publication Number Publication Date
JP2001141340A JP2001141340A (en) 2001-05-25
JP3521820B2 true JP3521820B2 (en) 2004-04-26

Family

ID=18175535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32532299A Expired - Lifetime JP3521820B2 (en) 1999-11-16 1999-11-16 Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof

Country Status (1)

Country Link
JP (1) JP3521820B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098582A1 (en) 2011-01-20 2012-07-26 三菱電機株式会社 Refrigeration cycle apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263885A (en) 2003-02-07 2004-09-24 Daikin Ind Ltd Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
FR2860001B1 (en) * 2003-09-19 2008-02-15 Arkema COMPOSITION BASED ON HFCs (HYDROFLUOROCARBONS) AND USE THEREOF
ES2311882T3 (en) * 2003-11-25 2009-02-16 Daikin Industries, Ltd. COOLING DEVICE.
CN100381769C (en) * 2003-11-25 2008-04-16 大金工业株式会社 Refrigerating apparatus
US8087258B2 (en) * 2005-10-25 2012-01-03 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
JP5574638B2 (en) * 2009-08-20 2014-08-20 三菱電機株式会社 Refrigeration air conditioner
CN113654191B (en) * 2021-07-15 2023-04-21 青岛海尔空调器有限总公司 In-pipe self-cleaning control method of outdoor heat exchanger
CN113654196B (en) * 2021-07-15 2023-03-24 青岛海尔空调器有限总公司 Method for controlling self-cleaning in indoor heat exchanger
CN113654192B (en) * 2021-07-15 2023-04-18 青岛海尔空调器有限总公司 Method for controlling self-cleaning in pipe of outdoor heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098582A1 (en) 2011-01-20 2012-07-26 三菱電機株式会社 Refrigeration cycle apparatus
EP2905562A1 (en) 2011-01-20 2015-08-12 Mitsubishi Electric Corporation Refrigeration cycle apparatus

Also Published As

Publication number Publication date
JP2001141340A (en) 2001-05-25

Similar Documents

Publication Publication Date Title
US10077388B2 (en) Use of R-1233 in liquid chillers
JP3521820B2 (en) Cleaning device, piping cleaning method, refrigeration air conditioner and replacement method thereof
JP4120221B2 (en) Refrigerant and oil recovery operation method, and refrigerant and oil recovery control device
JP4855256B2 (en) Compositions based on hydrofluorocarbons and their use
JP3361771B2 (en) Operation method of refrigeration cycle device
JP3491629B2 (en) Piping cleaning device and piping cleaning method
JP2004263885A (en) Cleaning method of refrigerant pipe, renewing method of air conditioner and air conditioner
JP4391559B2 (en) Refrigerant changing method of refrigerant circuit for refrigeration apparatus and refrigeration apparatus
JP3666343B2 (en) Cleaning device, refrigeration air conditioner and its replacement method
JPH11325621A (en) Refrigerator and method for utilizing existing piping for refrigerator
JP4517834B2 (en) How to use existing refrigerant piping
JPH11201588A (en) Refrigeration system
JP3680740B2 (en) How to use existing refrigerant piping, how to install air conditioner, air conditioner
JP5063670B2 (en) AIR CONDITIONER AND METHOD OF CLEANING OPERATION OF AIR CONDITIONER
JP2004333121A (en) Method for updating air conditioner, and air conditioner
JP2002107011A (en) Cleaning operation method of refrigerating cycle equipment
JP3370959B2 (en) Renewal method and operation method of refrigeration cycle device
KR100709595B1 (en) Refrigerating apparatus
JP2004333121A5 (en)
JP2003139444A (en) Refrigerant replacement method for air conditioner, cleaner, and air conditioner
JP2004308934A (en) Freezing apparatus and method of washing piping
JP2004293945A (en) Freezer
JP2010145078A (en) Refrigerating machine device with inner surface of tube being metal-plated
JPH0933122A (en) Refrigerating device
JP2004361014A (en) Refrigerating cycle device and refrigerant replacing method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

R151 Written notification of patent or utility model registration

Ref document number: 3521820

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term