JP2005076983A - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP2005076983A
JP2005076983A JP2003308182A JP2003308182A JP2005076983A JP 2005076983 A JP2005076983 A JP 2005076983A JP 2003308182 A JP2003308182 A JP 2003308182A JP 2003308182 A JP2003308182 A JP 2003308182A JP 2005076983 A JP2005076983 A JP 2005076983A
Authority
JP
Japan
Prior art keywords
refrigerant
control means
valve
compressor
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003308182A
Other languages
Japanese (ja)
Inventor
Shinichi Wakamoto
慎一 若本
Masahiro Nakayama
雅弘 中山
Hiroaki Makino
浩招 牧野
Sunao Saito
直 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003308182A priority Critical patent/JP2005076983A/en
Publication of JP2005076983A publication Critical patent/JP2005076983A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system capable of improving the operation efficiency in cooling and shortening a necessary time for refrigerant recovery in refrigerant recovery. <P>SOLUTION: The air conditioning system comprises a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow control means 4, a gas-liquid separator 5, a first opening and closing valve 6, an indoor heat exchanger 8, and a second opening and closing valve 10, which are connected in order through a refrigerant pipe 11. This air conditioning system further comprises a bypass pipe 12 for returning at least part of the refrigerant vapor in the gas-liquid separator 5 to the intake side of the compressor 2 at the time of cooling. The bypass pipe 12 comprises a pressure control means 20 having a refrigerant passage having a refrigerant inlet from the gas-liquid separator 5 and a refrigerant outlet to the compressor 1. The pressure control means 20 closes the refrigerant passage when the pressure difference between the refrigerant inlet and the refrigerant outlet exceeds a predetermined set value, and opens the refrigerant passage when the difference is the set value or less. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、空気調和装置、特に、四方弁により冷暖房の切換えを行う空気調和装置に関するものである。   The present invention relates to an air conditioner, and more particularly to an air conditioner that switches between cooling and heating with a four-way valve.

空気調和装置は、従来から、図1に示すこの発明による実施の形態の構成と同様に、圧縮機、四方弁、室外熱交換器、流量制御手段、気液分離器、第1開閉弁、第1延長配管、室内熱交換器、第2延長配管、第2開閉弁を冷媒配管で順に接続されて、冷媒回路が構成されている。
そして、従来技術においては、図1に示す構成においてバイパス配管12に設けられた圧力制御手段20の代わりに逆止弁を設け、気液分離器から、室内熱交換器をバイパスするような方向にのみ冷媒が流れるようにした空気調和装置が提案されている(例えば、特許文献1参照)。
冷房時には、気液分離器から冷媒蒸気がバイパス配管を流れ、冷媒液または冷媒蒸気との混合流体が室内熱交換器へ供給される。暖房時には、逆止弁が閉じバイパス配管を冷媒が流れない。
Conventionally, the air conditioner has a compressor, a four-way valve, an outdoor heat exchanger, a flow rate control means, a gas-liquid separator, a first on-off valve, a first valve, as in the configuration of the embodiment according to the present invention shown in FIG. A refrigerant circuit is configured by connecting one extension pipe, an indoor heat exchanger, a second extension pipe, and a second on-off valve in order through a refrigerant pipe.
In the prior art, a check valve is provided in place of the pressure control means 20 provided in the bypass pipe 12 in the configuration shown in FIG. 1, so that the indoor heat exchanger is bypassed from the gas-liquid separator. An air conditioner in which only the refrigerant flows is proposed (see, for example, Patent Document 1).
At the time of cooling, the refrigerant vapor flows from the gas-liquid separator through the bypass pipe, and the refrigerant fluid or the mixed fluid with the refrigerant vapor is supplied to the indoor heat exchanger. During heating, the check valve closes and refrigerant does not flow through the bypass piping.

特開2002−243284号公報JP 2002-243284 A

従来の空気調和装置では、室外熱交換器または室内熱交換器、またはその両方を取り外す場合に、第1開閉弁を閉じ、第2開閉弁を開いて、第1開閉弁から、第1延長配管、室内熱交換器、第2延長配管、第2開閉弁にいたる経路に存在する冷媒を圧縮機によって吸引し、室外熱交換器へ送り、そこに回収する場合に、室外熱交換器に溜まった冷媒が室外熱交換器から気液分離器、バイパス配管を通り圧縮機に戻るために、冷媒の回収に要する時間が長くなる問題がある。   In the conventional air conditioner, when removing the outdoor heat exchanger and / or the indoor heat exchanger, the first on-off valve is closed, the second on-off valve is opened, and the first extension valve is connected to the first extension pipe. When the refrigerant existing in the path leading to the indoor heat exchanger, the second extension pipe, and the second on-off valve is sucked by the compressor, sent to the outdoor heat exchanger, and collected there, it has accumulated in the outdoor heat exchanger Since the refrigerant returns from the outdoor heat exchanger to the compressor through the gas-liquid separator and the bypass pipe, there is a problem that the time required for collecting the refrigerant becomes long.

この発明は、冷房時における運転効率を向上できるとともに、冷媒回収時における冷媒回収所要時間を短縮できる空気調和装置を得ようとするものである。   An object of the present invention is to obtain an air conditioner that can improve the operation efficiency during cooling and reduce the time required for refrigerant recovery during refrigerant recovery.

この発明に係る空気調和装置では、冷房時に前記気液分離器における冷媒蒸気の少なくとも一部を前記圧縮機の吸入側に戻すバイパス配管を設けるとともに、前記気液分離器からの冷媒入口および前記圧縮機への冷媒出口を持つ冷媒流路を有する圧力制御手段を前記バイパス配管に設け、前記圧力制御手段は、前記冷媒入口と前記冷媒出口との圧力差が所定の設定値を超えた場合に前記冷媒流路を閉じ、設定値以下の場合に前記冷媒流路を開くようにしたものである。   In the air conditioner according to the present invention, a bypass pipe is provided for returning at least a part of the refrigerant vapor in the gas-liquid separator to the suction side of the compressor during cooling, and the refrigerant inlet and the compression from the gas-liquid separator are provided. A pressure control means having a refrigerant flow path having a refrigerant outlet to the machine is provided in the bypass pipe, and the pressure control means is configured so that the pressure difference between the refrigerant inlet and the refrigerant outlet exceeds a predetermined set value. The refrigerant flow path is closed, and the refrigerant flow path is opened when it is equal to or less than a set value.

この発明によれば、冷房時における運転効率を向上できるとともに、冷媒回収時における冷媒回収所要時間を短縮できる空気調和装置を得ることができる。   According to the present invention, it is possible to obtain an air conditioner that can improve the operation efficiency during cooling and reduce the time required for refrigerant recovery during refrigerant recovery.

実施の形態1.
この発明による実施の形態1を図1について説明する。図1は実施の形態1における空気調和装置の構成を示す冷媒回路図である。
Embodiment 1 FIG.
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a refrigerant circuit diagram illustrating the configuration of the air-conditioning apparatus according to Embodiment 1.

図において、圧縮機1、四方弁2、室外熱交換器3、流量制御手段4、気液分離器5、第1開閉弁6、第1延長配管7、室内熱交換器8、第2延長配管9、第2開閉弁10を冷媒配管11で順に接続されている。
そして、一方を気液分離器5に接続し他方を圧縮機1の吸入配管13に接続したバイパス配管12が設けられ、このバイパス配管12には、気液分離器5からの冷媒入口RAと圧縮機1への冷媒出口RBを持つ冷媒流路を有し、冷媒入口RAと出口RBとの圧力差が設定値を超えた場合に閉じ、設定値以下の場合に開く圧力制御手段20が設けられている。
In the figure, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate control means 4, a gas-liquid separator 5, a first on-off valve 6, a first extension pipe 7, an indoor heat exchanger 8, a second extension pipe. 9 and the 2nd on-off valve 10 are connected by the refrigerant | coolant piping 11 in order.
A bypass pipe 12 having one connected to the gas-liquid separator 5 and the other connected to the suction pipe 13 of the compressor 1 is provided. The bypass pipe 12 is connected to the refrigerant inlet RA and the compression from the gas-liquid separator 5. There is provided a pressure control means 20 having a refrigerant flow path having a refrigerant outlet RB to the machine 1 and closing when the pressure difference between the refrigerant inlet RA and the outlet RB exceeds a set value and opening when the pressure difference is less than the set value. ing.

次に、冷媒の流れを図によって説明する。
まず、冷房時には、圧縮機1の吸入配管13の低温低圧の冷媒蒸気は、圧縮機1によって圧縮され高温高圧の冷媒蒸気となって吐出される。その冷媒は、四方弁2によって室外熱交換器3に送られ、そこで空気などと熱交換して凝縮し高圧の冷媒液になる。その冷媒液は、流量制御手段4によって減圧され、低温低圧の気液二相状態に変化し、気液分離器5に流入する。この時、圧力制御手段20の出入口の圧力はともに低圧で圧力差が設定値以下であり、圧力制御手段20は開いている。
したがって、気液分離器5で一部または全部が分離された冷媒蒸気は、バイパス配管12を通り、圧縮機1に戻る。一方、気液分離器5内の残りの冷媒は、第1延長配管7を流れ、室内熱交換器8に供給され、そこで空気などと熱交換して蒸発し、低温低圧の冷媒蒸気になり、第2延長配管9、第2開閉弁10、四方弁2を通り圧縮機1に戻る。この時、第1開閉弁6、第2開閉弁10は、ともに開いている。
Next, the flow of the refrigerant will be described with reference to the drawings.
First, during cooling, the low-temperature and low-pressure refrigerant vapor in the suction pipe 13 of the compressor 1 is compressed by the compressor 1 and discharged as high-temperature and high-pressure refrigerant vapor. The refrigerant is sent to the outdoor heat exchanger 3 by the four-way valve 2, where it exchanges heat with air or the like to condense into a high-pressure refrigerant liquid. The refrigerant liquid is depressurized by the flow rate control means 4, changes to a low-temperature low-pressure gas-liquid two-phase state, and flows into the gas-liquid separator 5. At this time, the pressure at the inlet / outlet of the pressure control means 20 is low, the pressure difference is less than the set value, and the pressure control means 20 is open.
Accordingly, the refrigerant vapor partially or entirely separated by the gas-liquid separator 5 passes through the bypass pipe 12 and returns to the compressor 1. On the other hand, the remaining refrigerant in the gas-liquid separator 5 flows through the first extension pipe 7 and is supplied to the indoor heat exchanger 8, where it evaporates by exchanging heat with air or the like to become low-temperature and low-pressure refrigerant vapor, It returns to the compressor 1 through the second extension pipe 9, the second on-off valve 10, and the four-way valve 2. At this time, both the first on-off valve 6 and the second on-off valve 10 are open.

暖房時には、圧縮機1の吸入配管13の低温低圧の冷媒蒸気は、圧縮機1によって圧縮され高温高圧の冷媒蒸気となって吐出される。その冷媒は、四方弁2によって、第2開閉弁10、第2延長配管9を通り、室内熱交換器8へ送られ、そこで空気などと熱交換して凝縮し高圧の冷媒液になる。この冷媒液は、第1延長配管7、第1開閉弁6を通り、気液分離器5に流入する。この時、気液分離器5の内部の冷媒の圧力は高圧である。一方、圧縮機1の吸入側の冷媒配管11の冷媒の圧力は高圧であるため、圧力制御手段20の出入口の圧力差は設定値よりも大きく、圧力制御手段20は閉じている。
したがって、気液分離器5の内部の冷媒はバイパス配管12に流入することなく、流量制御手段4に送られ、そこで減圧されて、低温低圧の気液二相状態に変化し、室外熱交換器3で空気などと熱交換して蒸発して四方弁2を通り、圧縮機1に戻る。このときも、冷房時と同様に第1開閉弁6、第2開閉弁10は開いている。
During heating, the low-temperature and low-pressure refrigerant vapor in the suction pipe 13 of the compressor 1 is compressed by the compressor 1 and discharged as high-temperature and high-pressure refrigerant vapor. The refrigerant passes through the second on-off valve 10 and the second extension pipe 9 by the four-way valve 2 and is sent to the indoor heat exchanger 8 where the refrigerant exchanges heat with air to condense into a high-pressure refrigerant liquid. This refrigerant liquid passes through the first extension pipe 7 and the first on-off valve 6 and flows into the gas-liquid separator 5. At this time, the pressure of the refrigerant inside the gas-liquid separator 5 is high. On the other hand, since the pressure of the refrigerant in the refrigerant pipe 11 on the suction side of the compressor 1 is high, the pressure difference at the inlet / outlet of the pressure control means 20 is larger than the set value, and the pressure control means 20 is closed.
Therefore, the refrigerant inside the gas-liquid separator 5 is sent to the flow rate control means 4 without flowing into the bypass pipe 12, where it is depressurized and changed into a low-temperature low-pressure gas-liquid two-phase state, and the outdoor heat exchanger At 3, heat is exchanged with air or the like, evaporates, passes through the four-way valve 2, and returns to the compressor 1. Also at this time, the first on-off valve 6 and the second on-off valve 10 are open as in the case of cooling.

室外熱交換器3または室内熱交換器8、またはその両方を取り外す際に必要になる冷媒回収時には、第1開閉弁6を閉じ、第2開閉弁10を開いて、圧縮機1を運転することによって、第1開閉弁6から、第1延長配管7、室内熱交換器8、第2延長配管9、第2開閉弁10にいたる経路に存在する冷媒は、四方弁2を通り、圧縮機1に吸引され、その後、四方弁1を通り室外熱交換器3から第1開閉弁6にいたる経路内に蓄えられる。その際、気液分離器5は高圧であり、圧力制御手段20の前後の圧力差は設定値よりも大きく、圧力制御手段20は閉じた状態である。したがって、蓄えられた冷媒がバイパス配管12を通り、再び圧縮機1に戻ることはない。   At the time of refrigerant recovery required when removing the outdoor heat exchanger 3 or the indoor heat exchanger 8 or both, the first on-off valve 6 is closed, the second on-off valve 10 is opened, and the compressor 1 is operated. Thus, the refrigerant existing in the path from the first on-off valve 6 to the first extension pipe 7, the indoor heat exchanger 8, the second extension pipe 9, and the second on-off valve 10 passes through the four-way valve 2 and passes through the compressor 1. And then stored in a path from the outdoor heat exchanger 3 to the first on-off valve 6 through the four-way valve 1. At that time, the gas-liquid separator 5 is at a high pressure, the pressure difference before and after the pressure control means 20 is larger than the set value, and the pressure control means 20 is in a closed state. Therefore, the stored refrigerant does not pass through the bypass pipe 12 and return to the compressor 1 again.

この構成によれば、冷房運転時には、冷媒蒸気の一部または全部が気液分離器5で分離されてバイパス配管12を流れるために室内熱交換器8を流れる際に生じる冷媒の圧力損失を低減でき、冷房時の効率を向上できる。さらに、冷媒を回収する際には圧力制御手段20が閉じバイパス配管12を冷媒が流れないため、室外熱交換器3へ冷媒を回収する際に要する時間を短縮できる。   According to this configuration, during cooling operation, part or all of the refrigerant vapor is separated by the gas-liquid separator 5 and flows through the bypass pipe 12 to reduce the refrigerant pressure loss that occurs when flowing through the indoor heat exchanger 8. This can improve the efficiency during cooling. Furthermore, when the refrigerant is recovered, the pressure control means 20 is closed and the refrigerant does not flow through the bypass pipe 12, so that the time required for recovering the refrigerant to the outdoor heat exchanger 3 can be shortened.

この発明による実施の形態1によれば、圧縮機1、四方弁2、室外熱交換器3、流量制御手段4、気液分離器5、第1開閉弁6、室内熱交換器8、第2開閉弁10を冷媒配管11で順に接続した空気調和装置において、冷房時に前記気液分離器5における冷媒蒸気の少なくとも一部を前記圧縮機2の吸入側に戻すバイパス配管12を設けるとともに、前記気液分離器5からの冷媒入口RAおよび前記圧縮機への冷媒出口RBを持つ冷媒流路を有する圧力制御手段20を前記バイパス配管12に設け、前記圧力制御手段20は、前記冷媒入口RAと前記冷媒出口RBとの圧力差が所定の設定値を超えた場合に前記冷媒流路を閉じ、設定値以下の場合に前記冷媒流路を開くように動作するので、冷房時における運転効率を向上できるとともに、冷媒回収時における冷媒回収所要時間を短縮できる空気調和装置を得ることができる。   According to Embodiment 1 of the present invention, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the flow rate control means 4, the gas-liquid separator 5, the first on-off valve 6, the indoor heat exchanger 8, the second In the air conditioner in which the on-off valve 10 is connected in order through the refrigerant pipe 11, a bypass pipe 12 for returning at least a part of the refrigerant vapor in the gas-liquid separator 5 to the suction side of the compressor 2 during cooling is provided. Pressure control means 20 having a refrigerant flow path having a refrigerant inlet RA from the liquid separator 5 and a refrigerant outlet RB to the compressor is provided in the bypass pipe 12, and the pressure control means 20 includes the refrigerant inlet RA and the refrigerant When the pressure difference with the refrigerant outlet RB exceeds a predetermined set value, the refrigerant flow path is closed, and when the pressure difference is equal to or lower than the set value, the refrigerant flow path is opened, so that the operation efficiency during cooling can be improved. With cold It is possible to obtain an air conditioner which can shorten the refrigerant recovery time required at the time of recovery.

実施の形態2.
この発明による実施の形態2を図2について説明する。図2は実施の形態1における空気調和装置の構成を示す冷媒回路図である。
この実施の形態2において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1の構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 2. FIG.
A second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a refrigerant circuit diagram illustrating the configuration of the air-conditioning apparatus according to Embodiment 1.
In the second embodiment, the configuration other than the specific configuration described here has the same configuration as the configuration of the first embodiment described above, and has the same function. In the drawings, the same reference numerals indicate the same or corresponding parts.

図において、圧縮機1、四方弁2、室外熱交換器3、流量制御手段4、気液分離器5、第1開閉弁6、第1延長配管7、室内熱交換器8、第2延長配管9、第2開閉弁10を冷媒配管11で順に接続している。以上は図1に示す実施の形態1と同様のものである。
そして、一方を気液分離器5に接続し他方を圧縮機1の吸入配管13に接続したバイパス配管12、およびそのバイパス配管12に、入口と出口との圧力差が設定値を超えた場合に閉じ、設定値以下の場合に開く圧力制御手段20、および例えば毛細管などの第2流量制御手段30が設けられている。
In the figure, a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, a flow rate control means 4, a gas-liquid separator 5, a first on-off valve 6, a first extension pipe 7, an indoor heat exchanger 8, a second extension pipe. 9 and the 2nd on-off valve 10 are connected by the refrigerant | coolant piping 11 in order. The above is the same as that of Embodiment 1 shown in FIG.
When the pressure difference between the inlet and the outlet of the bypass pipe 12 connected to the gas-liquid separator 5 and the other connected to the suction pipe 13 of the compressor 1 and the bypass pipe 12 exceeds a set value. A pressure control means 20 that closes and opens when it is below a set value and a second flow rate control means 30 such as a capillary tube are provided.

次に、冷媒の流れを図によって説明する。暖房時と冷媒を回収する際には、実施の形態1と全く同様なので、説明を省略する。
冷房時には、圧縮機1の吸入配管13の低温低圧の冷媒蒸気は、圧縮機1によって圧縮され高温高圧の冷媒蒸気となって吐出される。その冷媒は、四方弁2によって室外熱交換器3に送られ、そこで空気などと熱交換して凝縮し高圧の冷媒液になる。その冷媒液は、流量制御手段4によって減圧され、低温低圧の気液二相状態に変化し、気液分離器5に流入する。この時、圧力制御手段20の前後の圧力はともに低圧で圧力差が設定値以下であり、圧力制御手段20は開いている。
したがって、気液分離器5で一部または全部が分離された冷媒蒸気は、バイパス配管12、第2流量制御手段30を通り、圧縮機1に戻る。一方、気液分離器5の内部の残りの冷媒は、第1延長配管7を流れ、室内熱交換器8に供給され、そこで空気などと熱交換して蒸発し、低温低圧の冷媒蒸気になり、第2延長配管9、第2開閉弁10、四方弁2を通り圧縮機1に戻る。この時、第1開閉弁6、第2開閉弁10は、ともに開いている。
Next, the flow of the refrigerant will be described with reference to the drawings. Since it is completely the same as Embodiment 1 at the time of heating and when collect | recovering refrigerant | coolants, description is abbreviate | omitted.
During cooling, the low-temperature and low-pressure refrigerant vapor in the suction pipe 13 of the compressor 1 is compressed by the compressor 1 and discharged as high-temperature and high-pressure refrigerant vapor. The refrigerant is sent to the outdoor heat exchanger 3 by the four-way valve 2, where it exchanges heat with air or the like to condense into a high-pressure refrigerant liquid. The refrigerant liquid is depressurized by the flow rate control means 4, changes to a low-temperature low-pressure gas-liquid two-phase state, and flows into the gas-liquid separator 5. At this time, the pressures before and after the pressure control means 20 are both low, the pressure difference is not more than the set value, and the pressure control means 20 is open.
Accordingly, the refrigerant vapor partially or entirely separated by the gas-liquid separator 5 passes through the bypass pipe 12 and the second flow rate control means 30 and returns to the compressor 1. On the other hand, the remaining refrigerant in the gas-liquid separator 5 flows through the first extension pipe 7 and is supplied to the indoor heat exchanger 8, where it evaporates by exchanging heat with air and the like, and becomes low-temperature and low-pressure refrigerant vapor. The second extension pipe 9, the second on-off valve 10, and the four-way valve 2 are returned to the compressor 1. At this time, both the first on-off valve 6 and the second on-off valve 10 are open.

この構成によれば、気液分離器5から冷媒蒸気とともに冷媒液がバイパス配管12へ流入しないようにバイパス配管12の流量を第2流量制御手段30によって制御でき、実施の形態1の効果とともに冷房時の性能を更に向上できる。   According to this configuration, the flow rate of the bypass pipe 12 can be controlled by the second flow rate control means 30 so that the refrigerant liquid does not flow into the bypass pipe 12 together with the refrigerant vapor from the gas-liquid separator 5. The time performance can be further improved.

この発明による実施の形態2によれば、実施の形態1における構成において、前記バイパス配管12に毛細管などの流量制御手段30を設けたので、冷房時における運転効率を更に向上できるとともに、冷媒回収時における冷媒回収所要時間を短縮できる空気調和装置を得ることができる。   According to the second embodiment of the present invention, since the bypass pipe 12 is provided with the flow rate control means 30 such as a capillary tube in the configuration of the first embodiment, the operation efficiency during cooling can be further improved and the refrigerant can be recovered. It is possible to obtain an air-conditioning apparatus that can shorten the refrigerant recovery time.

実施の形態3.
この発明による実施の形態3を図3について説明する。図3は実施の形態3における圧力制御手段20の構成を示す側断面図である。
この実施の形態2において、ここで説明する特有の構成以外の構成については、先に説明した実施の形態1または実施の形態2における構成と同一の構成内容を具備し、同様の作用を奏するものである。図中、同一符号は同一または相当部分を示す。
Embodiment 3 FIG.
A third embodiment of the present invention will be described with reference to FIG. FIG. 3 is a side sectional view showing the structure of the pressure control means 20 in the third embodiment.
In the second embodiment, the configuration other than the specific configuration described here has the same configuration as the configuration in the first embodiment or the second embodiment described above, and exhibits the same operation. It is. In the drawings, the same reference numerals indicate the same or corresponding parts.

実施の形態1および実施の形態2における空気調和装置の冷媒回路に適用される圧力制御手段20の具体的構成を図3に示す。
図3において、圧力制御弁45は、気液分離器5からの冷媒入口RAおよび圧縮機1への冷媒出口RBを持つ冷媒流路RPを有し、冷媒流路RPの一部を構成する冷媒流路40aを持つ弁座40、および、冷媒流路40aを閉塞し冷媒の流れを遮断する弁体41、ならびに、弁座40と弁体41の間に配置したばね42、および、弁体41のガイド43を収納している。
A specific configuration of the pressure control means 20 applied to the refrigerant circuit of the air-conditioning apparatus according to Embodiment 1 and Embodiment 2 is shown in FIG.
In FIG. 3, the pressure control valve 45 has a refrigerant channel RP having a refrigerant inlet RA from the gas-liquid separator 5 and a refrigerant outlet RB to the compressor 1, and constitutes a part of the refrigerant channel RP. The valve seat 40 having the flow path 40a, the valve body 41 that closes the refrigerant flow path 40a and blocks the flow of the refrigerant, the spring 42 disposed between the valve seat 40 and the valve body 41, and the valve body 41 The guide 43 is housed.

次に、動作について説明する。
圧力制御弁の前後の圧力差が設定値以下の場合には、ばね42が伸び弁座40と弁体41が離れ、冷媒が流れる。一方、圧力差が設定値以上の場合には、弁座40と弁体41が接触するまでばね42が縮み、冷媒の流れを遮断する。
Next, the operation will be described.
When the pressure difference before and after the pressure control valve is equal to or less than the set value, the spring 42 extends and the valve seat 40 and the valve body 41 are separated, and the refrigerant flows. On the other hand, when the pressure difference is equal to or larger than the set value, the spring 42 is contracted until the valve seat 40 and the valve body 41 come into contact with each other, thereby blocking the refrigerant flow.

上記の構成の圧力制御手段によれば、圧力制御手段を構成する部品の数を少なくでき、信頼性が向上するとともに、ばね42の特性を変えるだけで圧力制御手段が開閉する際の圧力の設定値を容易に変えることができる。   According to the pressure control means having the above configuration, the number of parts constituting the pressure control means can be reduced, the reliability is improved, and the pressure setting when the pressure control means is opened and closed simply by changing the characteristics of the spring 42 is set. The value can be easily changed.

この発明による実施の形態3によれば、実施の形態1または実施の形態2における構成において、圧力制御手段20として、冷媒流路40aを有する弁座40と、冷媒入口RAと冷媒出口RBとの圧力差を受けることによりコイルばね42に抗して移動され、前記弁座40の冷媒流路40aを閉じる方向に駆動される弁体41とで構成された圧力制御弁45を用いたので、冷房時における運転効率を向上できるとともに、冷媒回収時における冷媒回収所要時間を短縮でき、しかも、圧力制御手段を構成する部品の数を少なくでき、信頼性が向上するとともに、ばね42の特性を変えるだけで圧力制御手段が開閉する際の圧力の設定値を容易に変えることができる空気調和装置を得ることができる。   According to the third embodiment of the present invention, in the configuration in the first or second embodiment, the pressure control means 20 includes the valve seat 40 having the refrigerant flow path 40a, the refrigerant inlet RA, and the refrigerant outlet RB. Since the pressure control valve 45 constituted by the valve body 41 that is moved against the coil spring 42 by receiving the pressure difference and is driven in the direction of closing the refrigerant flow path 40a of the valve seat 40 is used. The operation efficiency at the time can be improved, the time required for refrigerant recovery at the time of refrigerant recovery can be shortened, the number of parts constituting the pressure control means can be reduced, the reliability is improved, and only the characteristics of the spring 42 are changed. Thus, it is possible to obtain an air conditioner that can easily change the set value of the pressure when the pressure control means opens and closes.

この発明による実施の形態1における空気調和装置の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the air conditioning apparatus in Embodiment 1 by this invention. この発明による実施の形態2における空気調和装置の構成を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the structure of the air conditioning apparatus in Embodiment 2 by this invention. この発明による実施の形態3における圧力制御手段の構成を示す側断面図である。It is a sectional side view which shows the structure of the pressure control means in Embodiment 3 by this invention.

符号の説明Explanation of symbols

1 圧縮機、2 四方弁、3 室外熱交換器、4 流量制御手段、5 気液分離器、6 第1開閉弁、7 第1延長配管、8 室内熱交換器、9 第2延長配管、10 第2開閉弁、11 冷媒配管、12 バイパス配管、13 吸入配管、14 逆止弁、20 圧力制御弁、30 第2流量制御手段、40 弁座、41 弁体、42 ばね、43 ガイド、45 圧力制御弁。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four way valve, 3 Outdoor heat exchanger, 4 Flow rate control means, 5 Gas-liquid separator, 6 1st on-off valve, 7 1st extension piping, 8 indoor heat exchanger, 9 2nd extension piping, 10 Second on-off valve, 11 Refrigerant pipe, 12 Bypass pipe, 13 Suction pipe, 14 Check valve, 20 Pressure control valve, 30 Second flow control means, 40 Valve seat, 41 Valve body, 42 Spring, 43 Guide, 45 Pressure Control valve.

Claims (3)

圧縮機、四方弁、室外熱交換器、流量制御手段、気液分離器、第1開閉弁、室内熱交換器、第2開閉弁を冷媒配管で順に接続した空気調和装置において、冷房時に前記気液分離器における冷媒蒸気の少なくとも一部を前記圧縮機の吸入側に戻すバイパス配管を設けるとともに、前記気液分離器からの冷媒入口および前記圧縮機への冷媒出口を持つ冷媒流路を有する圧力制御手段を前記バイパス配管に設け、前記圧力制御手段は、前記冷媒入口と前記冷媒出口との圧力差が所定の設定値を超えた場合に前記冷媒流路を閉じ、設定値以下の場合に前記冷媒流路を開くように動作することを特徴とする空気調和装置。   An air conditioner in which a compressor, a four-way valve, an outdoor heat exchanger, a flow rate control means, a gas-liquid separator, a first on-off valve, an indoor heat exchanger, and a second on-off valve are connected in order through a refrigerant pipe. A pressure having a refrigerant flow path having a bypass pipe for returning at least a part of the refrigerant vapor in the liquid separator to the suction side of the compressor and having a refrigerant inlet from the gas-liquid separator and a refrigerant outlet to the compressor A control means is provided in the bypass pipe, and the pressure control means closes the refrigerant flow path when a pressure difference between the refrigerant inlet and the refrigerant outlet exceeds a predetermined set value, and An air conditioner that operates to open a refrigerant flow path. 前記バイパス配管に流量制御手段を設けたことを特徴とする請求項1に記載の空気調和装置。   The air conditioner according to claim 1, wherein a flow rate control means is provided in the bypass pipe. 冷媒流路を有する弁座と、冷媒入口と冷媒出口との圧力差を受けることによりばねに抗して移動され前記弁座の冷媒流路を閉じる方向に駆動される弁体とで構成された圧力制御弁からなる圧力制御手段を設けたことを特徴とする請求項1または請求項2に記載の空気調和装置。
A valve seat having a refrigerant flow path, and a valve body that is moved against a spring and driven in a direction to close the refrigerant flow path of the valve seat by receiving a pressure difference between the refrigerant inlet and the refrigerant outlet. The air conditioning apparatus according to claim 1 or 2, further comprising pressure control means including a pressure control valve.
JP2003308182A 2003-09-01 2003-09-01 Air conditioning system Pending JP2005076983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003308182A JP2005076983A (en) 2003-09-01 2003-09-01 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308182A JP2005076983A (en) 2003-09-01 2003-09-01 Air conditioning system

Publications (1)

Publication Number Publication Date
JP2005076983A true JP2005076983A (en) 2005-03-24

Family

ID=34410723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308182A Pending JP2005076983A (en) 2003-09-01 2003-09-01 Air conditioning system

Country Status (1)

Country Link
JP (1) JP2005076983A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019456A (en) * 2008-07-09 2010-01-28 Nippon Soken Inc Heat pump cycle
JP2010197030A (en) * 2008-12-11 2010-09-09 Takasago Thermal Eng Co Ltd Heat pump hot water supply system utilizing solar heat
CN102506480A (en) * 2011-11-11 2012-06-20 广东美的电器股份有限公司 Air-conditioning heat pump system of multi-split air conditioner
CN102878650A (en) * 2012-09-28 2013-01-16 东南大学 Household air conditioner device capable of adjusting temperature and humidity respectively
CN106225291A (en) * 2016-07-20 2016-12-14 海信(山东)空调有限公司 Use air-conditioner control system and the air-conditioning of injector
CN113074447A (en) * 2021-03-17 2021-07-06 海信(山东)空调有限公司 Air conditioning system, control method of air conditioning system and air conditioner
CN115183413A (en) * 2022-06-27 2022-10-14 青岛海尔空调电子有限公司 Starting control method and device for refrigeration equipment, refrigeration equipment and medium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019456A (en) * 2008-07-09 2010-01-28 Nippon Soken Inc Heat pump cycle
JP2010197030A (en) * 2008-12-11 2010-09-09 Takasago Thermal Eng Co Ltd Heat pump hot water supply system utilizing solar heat
CN102506480A (en) * 2011-11-11 2012-06-20 广东美的电器股份有限公司 Air-conditioning heat pump system of multi-split air conditioner
CN102878650A (en) * 2012-09-28 2013-01-16 东南大学 Household air conditioner device capable of adjusting temperature and humidity respectively
CN106225291A (en) * 2016-07-20 2016-12-14 海信(山东)空调有限公司 Use air-conditioner control system and the air-conditioning of injector
CN113074447A (en) * 2021-03-17 2021-07-06 海信(山东)空调有限公司 Air conditioning system, control method of air conditioning system and air conditioner
CN113074447B (en) * 2021-03-17 2022-10-28 海信空调有限公司 Air conditioning system, control method of air conditioning system and air conditioner
CN115183413A (en) * 2022-06-27 2022-10-14 青岛海尔空调电子有限公司 Starting control method and device for refrigeration equipment, refrigeration equipment and medium

Similar Documents

Publication Publication Date Title
KR101122064B1 (en) Refrigeration device
US7257964B2 (en) Air conditioner
JP5698160B2 (en) Air conditioner
KR101179981B1 (en) Refrigeration device
EP1672298A2 (en) Air conditioner
CN106595105B (en) Air regulator
EP3736513B1 (en) Circulation system for air conditioner and air conditioner
AU2005280900A1 (en) Refrigeration apparatus
EP1873466A2 (en) Refrigeration cycle and water heater
EP1959214B1 (en) Expansion valve mechanism
JP2007155230A (en) Air conditioner
JP2007147212A (en) Refrigerating device
JP6318107B2 (en) heat pump
CN113251473B (en) Air conditioner
JP2005076983A (en) Air conditioning system
JP2019158308A (en) Refrigeration cycle device
JP2007032857A (en) Refrigerating device
JP2001056156A (en) Air conditioning apparatus
JP4468887B2 (en) Supercooling device and air conditioner equipped with supercooling device
JP2008190790A (en) Refrigerating device
JP2005098635A (en) Refrigeration cycle
KR100748982B1 (en) Air conditioner and Control method of the same
JP6916716B2 (en) heat pump
JP4661561B2 (en) Refrigeration equipment
KR100575693B1 (en) Air conditioner with sub compression loop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216