JP2010197030A - Heat pump hot water supply system utilizing solar heat - Google Patents

Heat pump hot water supply system utilizing solar heat Download PDF

Info

Publication number
JP2010197030A
JP2010197030A JP2009103841A JP2009103841A JP2010197030A JP 2010197030 A JP2010197030 A JP 2010197030A JP 2009103841 A JP2009103841 A JP 2009103841A JP 2009103841 A JP2009103841 A JP 2009103841A JP 2010197030 A JP2010197030 A JP 2010197030A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
heat exchanger
hot water
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009103841A
Other languages
Japanese (ja)
Other versions
JP5329289B2 (en
Inventor
Shuichi Ishii
秀一 石井
Tatsunori Bano
達徳 万尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2009103841A priority Critical patent/JP5329289B2/en
Publication of JP2010197030A publication Critical patent/JP2010197030A/en
Application granted granted Critical
Publication of JP5329289B2 publication Critical patent/JP5329289B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/60Details of absorbing elements characterised by the structure or construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/40Solar heat collectors combined with other heat sources, e.g. using electrical heating or heat from ambient air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/67Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of roof constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a system capable of dispensing with double equipment of a boiler and the like, collecting heat from the outside of a system even in cloudy and rainy weather in winter, simplifying a system constitution, and improving costs, construction performance and maintenance performance. <P>SOLUTION: A heat collection-side heat exchanger 2 has the outer shape in which peaks and troughs are continuously formed at least at its outdoor side, a selective absorption film 2d is formed on a surface, and a refrigerant flow channel 2e is formed along an inclined section 2c connecting at least peaks 2a and troughs 2b inside. The heat collection-side heat exchanger 2 has a structure configured by vertically stacking two sheets of moldings obtained by molding metal into the corrugated shape, at least a part of the peak facing the outdoor side is thickened, and a number of refrigerant flow channels 2e in parallel with the inclined section 2c are formed between the inclined section 2c of the upper corrugated plate and the inclined section 2c of the lower corrugated plate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプ給湯機を利用した太陽熱利用給湯システムにおいて、太陽熱のほかに外気(自然風)の熱から採熱するシステムに関する。より具体的には、気液相変化して加熱冷却に資する冷媒を建物の屋根部に送り、その蒸発特性から冬期の曇雨天時にも自然風から採熱し得るようにした太陽熱利用ヒートポンプ給湯システムと、そのシステムを有効かつ安定的に運転できるようにした運転方法に関する。   The present invention relates to a system for collecting heat from the heat of outside air (natural wind) in addition to solar heat in a solar water heating hot water supply system using a heat pump water heater. More specifically, a solar-powered heat pump hot water supply system that sends a refrigerant that contributes to heating and cooling by changing the gas-liquid phase to the roof of the building, and that can collect heat from natural winds even during cloudy rainy weather in winter due to its evaporation characteristics The present invention relates to an operation method that enables the system to be operated effectively and stably.

図10から図13は背景技術の例を示す。図10は太陽熱温水器+補助ボイラのシステムで、屋根面に表面をガラス面とした太陽熱集熱部、地上に貯湯槽・集熱ポンプ・補助ボイラを設置する。日中に集熱ポンプとしての水ポンプを運転して、水を媒体として太陽熱を貯湯槽に集熱する。太陽熱が不足する場合や夜間は、補助ボイラで追い焚きして給湯温度を維持する。   10 to 13 show examples of the background art. FIG. 10 shows a solar water heater + auxiliary boiler system in which a solar heat collecting section with a glass surface on the roof surface, and a hot water tank, a heat collecting pump, and an auxiliary boiler are installed on the ground. During the day, a water pump as a heat collecting pump is operated to collect solar heat in a hot water tank using water as a medium. When solar heat is insufficient or at night, the hot water supply temperature is maintained with an auxiliary boiler.

図11は、熱源として自然冷媒を用いたヒートポンプ給湯機のシステムである。ここでは、地上にヒートポンプ給湯機本体と貯湯槽を設置する。ヒートポンプ給湯機本体には採熱側熱交換器として外気を強制的に通風する空気熱交換器が機内に内蔵されており、ここで冷媒を蒸発させて外気から熱を汲み上げる。このシステムでは、運転費を抑えるために、安価な夜間電力で運転されることが多い。なお、自然冷媒としては例えば二酸化炭素が用いられる。従来のフロン系冷媒では50〜60℃程度までしか水を加熱することができないが、二酸化炭素は90℃程度まで加熱することが可能で、給湯に採用されている。このような自然冷媒を利用したヒートポンプ給湯機は電力会社と給湯機メーカーが共同で開発しており、通称「エコキュート(登録商標)」として販売されている。   FIG. 11 shows a heat pump water heater system using a natural refrigerant as a heat source. Here, the heat pump water heater main body and hot water storage tank are installed on the ground. The heat pump water heater main body includes an air heat exchanger that forcibly vents outside air as a heat collecting side heat exchanger, and evaporates the refrigerant to pump up heat from the outside air. This system is often operated with inexpensive nighttime power in order to reduce operating costs. For example, carbon dioxide is used as the natural refrigerant. Conventional fluorocarbon refrigerants can only heat water up to about 50 to 60 ° C., but carbon dioxide can be heated up to about 90 ° C. and is used for hot water supply. A heat pump water heater using such a natural refrigerant has been jointly developed by an electric power company and a water heater manufacturer, and is marketed as “Ecocute (registered trademark)”.

図12は、太陽熱温水器とヒートポンプ給湯機を組み合わせたもので、貯湯槽は太陽熱温水器とヒートポンプ給湯機の凝縮器に流路が連通している。   FIG. 12 shows a combination of a solar water heater and a heat pump water heater, and the hot water storage tank has a flow path communicating with the condenser of the solar water heater and the heat pump water heater.

図13は、1985年に東芝株式会社が実施したパラレル型太陽熱利用ヒートポンプ(ただしこの場合は冷媒で直接集熱するのではなく、空気で間接集熱している)と呼ばれるシステムで、太陽熱と外気を同時に利用するヒートポンプである。当システムで冷媒による直接集熱をする場合、ヒートポンプの蒸発器として屋根面に太陽熱集熱部を設置し、その背面に外気から集熱するためのフィンを取り付けて集熱部背面側に風道を形成し、通風用のファンを屋根裏に設置して外気を前記背面の外気路に強制通風して、太陽エネルギーと外気の双方から熱を汲み上げる。冬季や中間期に、集熱温度が太陽熱温水器より低温になるため、前述の水媒体方式よりも集熱効率が高いという利点がある。   FIG. 13 shows a system called a parallel solar heat pump (in this case, which collects heat indirectly using air rather than directly using refrigerant), which was implemented by Toshiba Corporation in 1985. It is a heat pump used at the same time. When directly collecting heat with a refrigerant in this system, a solar heat collecting part is installed on the roof surface as an evaporator of the heat pump, and fins for collecting heat from outside air are attached to the back of the heat collecting part. A ventilation fan is installed in the attic, and the outside air is forcibly ventilated through the outside air passage on the back surface to pump heat from both solar energy and outside air. Since the heat collection temperature is lower than that of the solar water heater in the winter and intermediate periods, there is an advantage that the heat collection efficiency is higher than that of the above-described aqueous medium method.

図10ないし図13に示すシステムの他に、本願発明に関連する先行技術として次のものがある。   In addition to the system shown in FIGS. 10 to 13, there are the following as prior arts related to the present invention.

実公昭57―17262号公報Japanese Utility Model Publication No.57-17262 特公昭57―55991号公報Japanese Patent Publication No.57-55991 特開昭59―217451号公報JP 59-217451 特公平3―32708号公報Japanese Patent Publication No. 3-32708 実開昭59―79772号公報Japanese Utility Model Publication No.59-79772 特開平1―134164号公報JP-A-1-134164

しかし、図10のシステムにおいては、給湯温度が集熱温度より低いので、冬期や中間期は十分に太陽熱を利用できず、補助ボイラで追い焚きする必要がある。また水を熱媒に使うため、冬季の凍結対策として定期的にブラインを補充したり、集熱部内部の汚れや腐食に注意したりする必要がある。   However, in the system of FIG. 10, since the hot water supply temperature is lower than the heat collection temperature, solar heat cannot be used sufficiently in the winter and intermediate periods, and it is necessary to catch up with an auxiliary boiler. In addition, since water is used as a heat medium, it is necessary to replenish brine periodically as a countermeasure against freezing in winter and to be careful of dirt and corrosion inside the heat collecting section.

図11のシステムにおいては、夜間の外気温度が日中より低温であること、また湯の製造時間帯と使用時間帯が離れていて貯湯槽からの放熱ロスが大きいことが、運転効率を下げる要因となっている。また翌日の使用湯量を推測して貯湯するため、日中の使用湯量によって貯湯量に過不足が生じる。貯湯量が不足する場合は電力料金の安価な23時から7時以外にも、熱源機を運転することが必要となる。   In the system of FIG. 11, the fact that the nighttime outside air temperature is lower than that of the daytime, and that the heat production loss and hot water use time zone are separated and the heat dissipation loss from the hot water storage tank is large are factors that reduce operating efficiency. It has become. In addition, since hot water is stored by estimating the amount of hot water used the next day, the amount of hot water stored is excessive or insufficient depending on the amount of hot water used during the day. When the amount of hot water storage is insufficient, it is necessary to operate the heat source machine other than 23:00 to 7 o'clock, which is an inexpensive electricity bill.

図12のシステムにおいては、日中に集熱ポンプを運転して水の循環により貯湯し、貯湯量が不足した場合には、ヒートポンプ給湯機で追い焚きする。太陽熱を集熱するには水温が低くなければメリットがない。すなわち水を熱媒とする制約から上述の問題がある。
また日中に太陽熱で昇温した湯を追い焚きするので、低温の上水を加熱するより運転効率が低く、高価な昼間電力で追い焚きするため運転費が必ずしも安くならならない。
In the system of FIG. 12, the heat collecting pump is operated during the day to store hot water by circulating water, and when the amount of hot water is insufficient, the heat pump water heater is used to catch up. There is no merit in collecting solar heat unless the water temperature is low. That is, there is the above-mentioned problem due to the restriction of using water as a heat medium.
In addition, since hot water heated by solar heat is chased during the day, the operating efficiency is lower than that of heating low-temperature tap water, and chasing with expensive daytime power does not necessarily reduce the operating cost.

図13のシステムにおいては、集熱部背面の構造が複雑になり、コスト、重量、保守性に改良の余地がある。また集熱部の厚みが大きくなるため、屋根葺き材と兼用して屋根下地に固定することにも改良の余地が残されている。さらに通風用のファンの防音対策や、集熱部背面からの結露水の処理にも注意する必要がある。当システムにおいて、自然通風で外気から集熱する例も実施されているが、集熱部背面を外気に晒す必要があり、業務用建物の陸屋根などに独立して設置する。住宅の屋根葺き材と兼用して屋根下地に固定することは難しい。   In the system shown in FIG. 13, the structure of the rear surface of the heat collecting unit is complicated, and there is room for improvement in cost, weight, and maintainability. Moreover, since the thickness of the heat collecting part is increased, there is still room for improvement in fixing to the roof base as a roofing material. In addition, it is necessary to pay attention to the soundproofing measures of the fan for ventilation and the treatment of condensed water from the back of the heat collecting part. In this system, an example of collecting heat from the outside air by natural ventilation has also been implemented. However, it is necessary to expose the back of the heat collecting part to the outside air, and it is installed independently on a flat roof of a commercial building. It is difficult to fix it to the roof base as a roofing material for a house.

太陽熱集熱部を構成する部材であるパネルについていえば、工場からの運搬や屋根面への施工にあたり考慮すべきはその厚みである。図10や図12の方式では中空層があるため約50mm、図13の方式では背面に空気流路を備えるため約100mmとなっている。製作についても、中空層形成のためのガラスや背面空気流路での伝熱性能を確保するための金属フィンなど、部品点数の削減に改善の余地があった。   Regarding the panel, which is a member constituting the solar heat collecting part, the thickness to be taken into consideration when transporting from the factory or construction on the roof surface. 10 and 12 have a hollow layer, so that the thickness is about 50 mm. In the method of FIG. In terms of production, there was room for improvement in reducing the number of parts, such as glass for forming a hollow layer and metal fins for ensuring heat transfer performance in the back air flow path.

本発明は、ボイラ等のバックアップ熱源その他の2重の設備を不要とし、冬季の曇雨天時であっても系の外部から採熱が可能で、しかもシステムの構成が簡単、かつコストや施工性、保守性を改善した太陽熱利用ヒートポンプ給湯システムおよびその運転方法を提供することを目的とする。   The present invention eliminates the need for a backup heat source such as a boiler and other double facilities, enables heat collection from outside the system even in cloudy weather in winter, and has a simple system configuration, cost and workability. An object of the present invention is to provide a heat pump hot water supply system using solar heat with improved maintainability and an operation method thereof.

上記目的を達成するために請求項1に記載の発明は、ヒートポンプ給湯機の採熱側熱交換器を本体から分離して建物の屋根面に設置し、前記ヒートポンプ給湯機の圧縮機と採熱側熱交換器との間に気液相変化して加熱冷却に資する冷媒を循環流通させ、採熱側熱交換器に減圧装置を介して低圧となった気液2相の前記冷媒を導いて蒸発作用により採熱し、一方前記ヒートポンプ給湯機の熱利用側では、前記圧縮機と熱利用側熱交換器との間に前記冷媒を循環流通させ、圧縮機により高圧となったガス相の前記冷媒を前記熱利用側熱交換器に導いて凝縮作用により放熱し、さらに前記熱利用側熱交換器と貯湯槽との間に水を循環流通させるシステムであって、前記採熱側熱交換器の外形形状は少なくとも屋外側が山と谷の連続する形状として表面を選択吸収膜処理するとともに内部は少なくとも前記山と谷を結ぶ傾斜部に沿って前記冷媒が流れる冷媒流路を形成したことを特徴とする、太陽熱利用ヒートポンプ給湯システムである。   In order to achieve the above object, according to the first aspect of the present invention, a heat-collecting-side heat exchanger of a heat pump water heater is separated from a main body and installed on a roof surface of a building, and the compressor and heat collecting of the heat pump water heater A refrigerant contributing to heating and cooling is circulated and circulated between the side heat exchanger and the refrigerant that contributes to heating and cooling, and the refrigerant in the gas-liquid two phase that has become low pressure is introduced to the heat collection side heat exchanger via a decompression device. On the other hand, on the heat utilization side of the heat pump water heater, the refrigerant is circulated and circulated between the compressor and the heat utilization side heat exchanger, and the refrigerant in the gas phase is increased in pressure by the compressor. To the heat utilization side heat exchanger to dissipate heat by condensing, and further circulate and circulate water between the heat utilization side heat exchanger and the hot water storage tank. The external shape is expressed as a shape in which at least the outdoor side is continuous with peaks and valleys. Internal is characterized in that to form a refrigerant flow path through which the coolant along the inclined portion connecting at least the peaks and valleys as well as selective absorption film processing, a solar thermal heat pump hot water system.

請求項2に記載の発明は、請求項1に記載の太陽熱利用ヒートポンプ給湯システムにおいて、前記採熱側熱交換器を、外形を高さ5〜15mmの波型板の複数枚の接続体で構成し、前記波型板それぞれに冷媒の流入口と排出口を備え、内部に多数の扁平な冷媒流路を内蔵させて成り、前記接続は並列接続とし、さらに波型板の長手方向が建物の屋根の頂面に向かって起立するよう傾斜して設置し、前記冷媒の流入口を屋根の下方、前記冷媒の流出口を屋根の頂面側に配置したことを特徴としている。   Invention of Claim 2 is a solar-heat-use heat pump hot-water supply system of Claim 1, Comprising: The said heat collection side heat exchanger is comprised with the connection body of several sheets of a corrugated board whose height is 5-15 mm. The corrugated plates are each provided with a refrigerant inlet and outlet, and a large number of flat refrigerant flow paths are built in, the connections are connected in parallel, and the longitudinal direction of the corrugated plates is The coolant is installed so as to stand up toward the top surface of the roof, and the refrigerant inlet is disposed below the roof, and the refrigerant outlet is disposed on the roof top.

波型板の山と谷は鋭角状であってもよいし、曲面であってもよい。集熱部の気密耐圧性能の確保や施工性の観点から、2枚の波型板および2つのヘッダを工場で接続して気密耐圧試験に合格した単位体(パネル)を、施工現場で屋根に揚重して据え付けることが望ましい。ここで、「波型板の長手方向」とは、波の形成される方向(起伏する方向)と直交する方向を意味する。   The peaks and valleys of the corrugated plate may be acute or curved. From the viewpoint of ensuring the airtight pressure resistance performance of the heat collecting part and workability, the unit body (panel) that has passed the airtight pressure resistance test with two corrugated plates and two headers connected at the factory is applied to the roof at the construction site. It is desirable to lift and install. Here, the “longitudinal direction of the corrugated plate” means a direction orthogonal to the direction in which waves are formed (the direction in which the waves are undulated).

請求項3に記載の発明は、請求項1または2に記載の太陽熱利用ヒートポンプ給湯システムにおいて、前記採熱側熱交換器の表面側は金属を波型に成型したものを上下に2枚重ねた構造であり、少なくとも屋外に面する山の部分に厚みを持たせることによって、上の波型板の傾斜部と下の波型板の傾斜部の間に、前記傾斜部に平行な多数の冷媒流路を形成したことを特徴としている。
ここで、ヒートポンプ給湯機と採熱側熱交換器の間に、例えば高圧の冷媒である二酸化炭素を流すためには、火気を使用して冷媒配管のろう付け作業を行うことや、気密耐圧性能を確保するために気密耐圧試験を実施する必要があるが、作業現場でのこれらの作業や試験を実施することが困難な場合がある。その場合は、高圧の冷媒配管系をヒートポンプ給湯機内部で完結させ、冷媒とブラインの熱交換器を別途追加することにより、採熱側熱交換器からヒートポンプ給湯機に至る配管を低圧のブライン配管とすることも可能である。
The invention described in claim 3 is the solar heat-use heat pump hot water supply system according to claim 1 or 2, wherein the surface side of the heat collecting side heat exchanger is formed by stacking two metal plates in a corrugated shape vertically. A large number of refrigerants parallel to the inclined portion between the inclined portion of the upper corrugated plate and the inclined portion of the lower corrugated plate by providing a thickness to at least the mountain portion facing the outdoors. It is characterized in that a flow path is formed.
Here, for example, in order to flow carbon dioxide, which is a high-pressure refrigerant, between the heat pump water heater and the heat-collecting side heat exchanger, it is possible to braze the refrigerant pipe using fire, It is necessary to conduct a hermetic pressure resistance test in order to ensure this, but it may be difficult to carry out these operations and tests at the work site. In that case, the high-pressure refrigerant piping system is completed inside the heat pump water heater, and the refrigerant and brine heat exchangers are added separately, so that the piping from the heat collection side heat exchanger to the heat pump water heater is connected to the low-pressure brine piping. It is also possible.

請求項4に記載の発明は、請求項1から3のいずれかに記載の太陽熱利用ヒートポンプ給湯システムにおいて、前記ヒートポンプ給湯機に冷媒タンクを設け、前記冷媒タンクは前記減圧装置と前記採熱側熱交換器の冷媒入口との間に位置し、前記採熱側熱交換器から圧縮機に戻る冷媒管路と前記冷媒タンクとの間をバイパス管で接続し、前記バイパス管には第2の減圧装置を介装させて前記冷媒タンク内の冷媒が減圧されて圧縮機に吸い込まれるよう構成したことを特徴としている。   According to a fourth aspect of the present invention, in the solar heat utilization heat pump hot water supply system according to any one of the first to third aspects, a refrigerant tank is provided in the heat pump water heater, and the refrigerant tank includes the decompression device and the heat collecting side heat. A refrigerant pipe located between the refrigerant inlet of the exchanger and returning from the heat collection side heat exchanger to the compressor and the refrigerant tank are connected by a bypass pipe, and a second decompression is connected to the bypass pipe. It is characterized in that the apparatus is arranged so that the refrigerant in the refrigerant tank is decompressed and sucked into the compressor.

請求項5に記載の発明は、請求項4に記載の太陽熱利用ヒートポンプ給湯システムの、前記冷媒タンクと前記採熱側熱交換器の冷媒入口を結ぶ管路と前記バイパス管にそれぞれ弁を介装して構成したシステムの運転方法であって、前記貯湯槽に所定温度の湯が溜まって圧縮機をいったん停止した後、前記採熱側熱交換器の冷媒入口の管路の弁を閉じ、前記バイパス管の弁を閉じ、圧縮機を再度運転することを特徴とする、太陽熱利用ヒートポンプ給湯システムの運転方法である。
請求項6に記載の発明は、ヒートポンプ給湯機の採熱側熱交換器を本体から分離して建物の屋根面に設置し、前記ヒートポンプ給湯機の内部に第一の熱交換器と第二の熱交換器を設け、前記採熱側熱交換器と前記第一の熱交換器との間にブラインを循環流通させるとともに、圧縮機および前記第二の熱交換器が配設される前記ヒートポンプ給湯機内の冷媒管路に前記第一の熱交換器を介して前記ブラインと熱交換が可能な気液2相に相変化する冷媒を循環流通させ、前記ヒートポンプ給湯機と貯湯槽との間に前記第二の熱交換器を介して前記冷媒と熱交換が可能な水を循環流通させるシステムであって、前記採熱側熱交換器の外形形状は少なくとも屋外側が山と谷の連続する形状として表面を選択吸収膜処理するとともに内部は少なくとも前記山と谷を結ぶ傾斜部に沿って前記ブラインが流れる冷媒流路を形成したことを特徴とする、太陽熱利用ヒートポンプ給湯システムである。
According to a fifth aspect of the present invention, in the solar heat-use heat pump hot water supply system according to the fourth aspect, a valve is provided in each of the pipe line connecting the refrigerant tank and the refrigerant inlet of the heat collecting side heat exchanger and the bypass pipe. The operation method of the system configured as described above, after hot water of a predetermined temperature is accumulated in the hot water storage tank and the compressor is once stopped, the valve of the refrigerant inlet pipe of the heat collecting side heat exchanger is closed, The operation method of the solar heat-based heat pump hot water supply system is characterized in that the valve of the bypass pipe is closed and the compressor is operated again.
The invention according to claim 6 separates the heat-collecting-side heat exchanger of the heat pump water heater from the main body and installs it on the roof surface of the building, and the first heat exchanger and the second heat exchanger are installed inside the heat pump water heater. The heat pump hot water supply provided with a heat exchanger, circulating brine between the heat collection side heat exchanger and the first heat exchanger, and in which the compressor and the second heat exchanger are arranged Through the first heat exchanger, a refrigerant that is phase-changed into a gas-liquid two phase that can exchange heat with the brine is circulated and circulated in a refrigerant pipe in the machine, and the refrigerant is connected between the heat pump water heater and the hot water storage tank. It is a system for circulating and circulating water that can exchange heat with the refrigerant through a second heat exchanger, and the outer shape of the heat collecting side heat exchanger is at least as a shape in which the outdoor side is a continuous mountain and valley The selective absorption membrane is processed and the inside is at least before Along the inclined portion connecting the peaks and valleys, characterized in that the formation of the coolant channel in which the brine flows, a solar thermal heat pump hot water system.

請求項1に記載の発明によれば、冬期や曇雨天時であっても冷媒の蒸発温度を外気より低くして外気から採熱できることから、バックアップ熱源等の2重設備を必要としない。また日射がある場合は前述の場合よりも蒸発温度を高くして外気と太陽熱の双方から採熱できることからヒートポンプの活用効率が向上する。さらに、採熱側熱交換器の少なくとも表面(屋外側の面)の形状自体が外気から十分な熱を汲み上げられるだけの表面積を確保しているため、集熱部としての採熱側熱交換器に送風機等や風道を要しない。構成が簡単、かつコストや施工性、保守性を改善したシステムを提供することができる。   According to the first aspect of the present invention, even in the winter season or in cloudy weather, the refrigerant evaporating temperature is lower than that of the outside air and heat can be collected from the outside air, so that a double facility such as a backup heat source is not required. Further, when there is solar radiation, the evaporating temperature is higher than in the case described above, and heat can be collected from both outside air and solar heat, so the utilization efficiency of the heat pump is improved. Furthermore, since the shape of at least the surface (outdoor side surface) of the heat collection side heat exchanger ensures a sufficient surface area to pump out sufficient heat from the outside air, the heat collection side heat exchanger as a heat collecting part There is no need for a blower or wind path. It is possible to provide a system that is simple in configuration and improved in cost, workability, and maintainability.

システムの構成が簡単であるので、コストの低減や施工性を改善できるとともに、保守性を容易にすることができる。加えて、貯湯ロスが減る分だけ貯湯槽のサイズも縮小でき、省スペースに貢献する。また冬季運転中に集熱部に霜が付いた場合であっても、空気熱交換器のようにフィン隙間が霜で閉塞して外気が通らなくなる恐れがなく、一定の加熱能力を維持できるので、システムを有効かつ安定的に運転することができる。   Since the system configuration is simple, cost reduction and workability can be improved, and maintainability can be facilitated. In addition, the size of the hot water tank can be reduced as much as hot water loss is reduced, contributing to space saving. In addition, even when frost is formed on the heat collection part during winter operation, it is possible to maintain a certain heating capacity without the possibility that the outside of the air will not pass due to the gap between the fins being blocked by frost unlike the air heat exchanger. The system can be operated effectively and stably.

請求項2に記載の発明によれば、雨水をそのまま自然流下させ得て採熱側熱交換器を屋根材の代替として使用することができる。また波の高さ(山と谷の高さの差)を5〜15mmとしているが、これは5mm未満であると波型板とヘッダの溶接作業性が悪くなるという問題があり、15mmを越えると採熱側熱交換器の厚さが大きくなりすぎるという問題があるためである。また、冷媒を下から上に流すことにより、採熱側熱交換器で蒸発し密度の低下した冷媒の流れを促進する。さらに、採熱側熱交換器の外形を波型とすることで、曲げに対する断面係数を大に確保でき、変形に対する高い強度が得られる。   According to the second aspect of the present invention, rainwater can be allowed to flow as it is, and the heat collection side heat exchanger can be used as an alternative to the roofing material. The height of the wave (the difference between the heights of the peaks and valleys) is 5 to 15 mm. However, if the height is less than 5 mm, there is a problem that the workability of the corrugated plate and the header deteriorates, and the height exceeds 15 mm. This is because there is a problem that the thickness of the heat collecting side heat exchanger becomes too large. In addition, by flowing the refrigerant from the bottom to the top, the flow of the refrigerant having evaporated and reduced in density at the heat collecting side heat exchanger is promoted. Furthermore, by making the outer shape of the heat collecting side heat exchanger corrugated, a large section modulus for bending can be secured, and high strength against deformation can be obtained.

請求項3に記載の発明によれば、冷媒流路を内部に形成した波型板を、例えば溶接の手間をかけずに、安価に製造することができる。また、山と谷とを結ぶ傾斜部全体を冷媒流路として構成することで、伝熱面積を広く取ることができる。すなわち、本発明のシステムでは、気液相変化して加熱冷却に資する冷媒、好ましくは二酸化炭素の気液2相の混合ガスを採熱部位としての建物屋根面に流通させるので、気液2相流の冷媒の液比率(湿り度)が低いと、圧縮機から近い流路と遠い流路で入口冷媒流速の差が増大して冷媒流入量に差が生じ、集熱部全体の伝熱面積を有効に使えなくなる場合が想定されるが、山と谷を結ぶ傾斜部全体を冷媒流路として機能させることで、伝熱面積を広く取ることができる。   According to invention of Claim 3, the corrugated board which formed the refrigerant | coolant flow path inside can be manufactured cheaply, without taking the effort of welding, for example. Moreover, a heat transfer area can be taken wide by comprising the whole inclination part which connects a peak and a valley as a refrigerant | coolant flow path. That is, in the system of the present invention, a gas / liquid phase change and a gas, which is a gas / liquid two-phase mixed gas of carbon dioxide that preferably contributes to heating and cooling, are circulated on the roof surface of the building as a heat collection site. If the liquid ratio (wetness) of the refrigerant in the flow is low, the difference in the inlet refrigerant flow rate increases between the flow path close to the compressor and the flow path far from the compressor, resulting in a difference in the refrigerant flow rate, and the heat transfer area of the entire heat collecting section However, it is assumed that the entire inclined portion connecting the peaks and valleys functions as a refrigerant flow path, so that the heat transfer area can be widened.

請求項4に記載の発明によれば、採熱側熱交換器と圧縮機との距離が相対的に遠い場合は、湿り度の程度により部位による冷媒流量、流速の差が懸念されるが、冷媒タンクの上部のガス冷媒をバイパス管から圧縮機に吸わせるため、低圧液冷媒を冷媒タンクの下部に溜めることができる。従って湿り度の高い冷媒だけを集めることが可能となり、採熱側熱交換器へ送液することができる。   According to the invention described in claim 4, when the distance between the heat collecting side heat exchanger and the compressor is relatively long, there is a concern about the difference in the flow rate of refrigerant and the flow velocity depending on the degree of wetness, Since the gas refrigerant in the upper part of the refrigerant tank is sucked into the compressor from the bypass pipe, the low-pressure liquid refrigerant can be stored in the lower part of the refrigerant tank. Therefore, it becomes possible to collect only the refrigerant with high wetness, and the liquid can be sent to the heat collecting side heat exchanger.

請求項5に記載の発明によれば、システムの運転時には熱利用側熱交換器を介して貯湯槽に採熱した熱が放熱される。しかし圧縮機停止後は冷媒の流通が停滞し、熱の逃げ場がなくなり採熱側熱交換器内で冷媒が膨張するが、上記の運転方法により、冷媒は採熱側熱交換器から抜けてタンク内に回収されるため、運転再開した場合に支障がない。すなわち、真夏の給湯停止時には集熱部(蒸発器)の温度が100℃以上になり、冷媒配管系の圧力が高まって機械的な損傷を招くことが懸念されるが、上記の運転方法により圧縮機の吸引力で採熱側熱交換器から冷媒が強制的に戻されるので、機械的な損傷の発生を回避することができる。
請求項6に記載の発明によれば、高圧の冷媒管路をヒートポンプ給湯機内部で完結させ、冷媒と水との熱交換を行う熱交換器の他に冷媒とブラインとの熱交換を行う熱交換器を別途追加し、採熱側熱交換器からヒートポンプ給湯機に至る配管を低圧のブライン配管としたので、ヒートポンプ給湯機を製造する工場において配管ろう付けや気密耐圧試験を実施できる。これにより、作業現場での配管ろう付けや気密耐圧試験は不要となり、作業能率を高めることができる。さらに、ブライン配管系に必要な気密耐圧性能は、冷媒配管より大幅に低いので、従来の太陽熱温水器の施工技術を転用でき、ヒートポンプ給湯機と採熱側熱交換器間の配管の気密耐圧性能の確保も容易となる。
同様に、採熱側熱交換器からヒートポンプ給湯機に至る配管をブライン配管とすることにより、採熱側熱交換器が2重になることで熱交換効率が多少低下するが、冷媒配管をヒートポンプ給湯機内に収納できるため、盛夏のような高温環境下での給湯運転停止時に、冷媒配管系の冷媒が極端に加熱される恐れがなくなり、冷媒回収をする機構も不要となる。
According to the fifth aspect of the present invention, the heat collected in the hot water storage tank is radiated through the heat utilization side heat exchanger during operation of the system. However, after the compressor stops, the refrigerant flow stagnates and there is no heat escape, and the refrigerant expands in the heat collection side heat exchanger. Because it is collected in the inside, there is no problem when the operation is resumed. That is, when hot water supply stops in midsummer, the temperature of the heat collecting section (evaporator) becomes 100 ° C. or higher, and there is a concern that the pressure of the refrigerant piping system increases and causes mechanical damage. Since the refrigerant is forcibly returned from the heat collecting side heat exchanger by the suction force of the machine, the occurrence of mechanical damage can be avoided.
According to the sixth aspect of the present invention, the heat for exchanging heat between the refrigerant and the brine is obtained in addition to the heat exchanger for exchanging heat between the refrigerant and water by completing the high-pressure refrigerant pipe in the heat pump water heater. Since an additional exchanger is added and the piping from the heat collecting side heat exchanger to the heat pump water heater is a low-pressure brine pipe, pipe brazing and an airtight pressure resistance test can be performed in a factory that manufactures the heat pump water heater. This eliminates the need for pipe brazing and an airtight pressure resistance test at the work site, and can increase work efficiency. In addition, the airtight pressure resistance required for the brine piping system is significantly lower than that of the refrigerant piping, so the conventional solar water heater construction technology can be diverted, and the airtight pressure resistance of the pipe between the heat pump water heater and the heat collection side heat exchanger Can be easily secured.
Similarly, by making the piping from the heat collection side heat exchanger to the heat pump water heater a brine pipe, the heat exchange efficiency is somewhat reduced due to the double heat collection side heat exchanger, but the refrigerant piping is a heat pump. Since it can be stored in the water heater, there is no possibility that the refrigerant in the refrigerant piping system will be extremely heated when the hot water supply operation is stopped in a high temperature environment such as a midsummer, and a mechanism for collecting the refrigerant becomes unnecessary.

本発明の実施の形態1に係るシステム全体の構成図。1 is a configuration diagram of an entire system according to Embodiment 1 of the present invention. 本発明の実施の形態1に係るシステムを構成する採熱側熱交換器の構成図。The block diagram of the heat-collection side heat exchanger which comprises the system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るシステムを構成する採熱側熱交換器のヘッダの断面図であって、図4のA−A線に沿う断面図である。It is sectional drawing of the header of the heat collecting side heat exchanger which comprises the system which concerns on Embodiment 1 of this invention, Comprising: It is sectional drawing which follows the AA line of FIG. 図3の採熱側熱交換器におけるヘッダを別方向からみた断面図。Sectional drawing which looked at the header in the heat collecting side heat exchanger of FIG. 3 from another direction. 本発明の実施の形態1に係るシステムを構成する採熱側熱交換器のヘッダの断面図である。It is sectional drawing of the header of the heat collection side heat exchanger which comprises the system which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係るシステムを構成する採熱側熱交換器を屋根面に設置する際の配置図。The arrangement | positioning at the time of installing the heat collection side heat exchanger which comprises the system which concerns on Embodiment 1 of this invention on a roof surface. 本発明の実施の形態1に係るシステムを構成するヒートポンプ給湯機の構成図。The block diagram of the heat pump water heater which comprises the system which concerns on Embodiment 1 of this invention. 図7の装置を運転する際の運転フロー図。The operation | movement flowchart at the time of driving | operating the apparatus of FIG. 本発明の実施の形態2に係るシステム全体の構成図。The block diagram of the whole system which concerns on Embodiment 2 of this invention. 本発明の従来技術を示す図。The figure which shows the prior art of this invention. 本発明の従来技術を示す図。The figure which shows the prior art of this invention. 本発明の従来技術を示す図。The figure which shows the prior art of this invention. 本発明の従来技術を示す図。The figure which shows the prior art of this invention.

図1ないし図8は、本発明の実施の形態1を示している。図1は本システムの全体構成を示す。ヒートポンプ給湯機1は後述するように圧縮機1aと熱利用側熱交換器(凝縮器として作用する)1cと減圧装置としての膨張弁1b、それらを連結する冷媒配管、機外の貯湯槽3と熱利用側熱交換器1cとの間で熱媒としての水を循環させる水ポンプ1pから主として構成されている。   1 to 8 show Embodiment 1 of the present invention. FIG. 1 shows the overall configuration of this system. As will be described later, the heat pump water heater 1 includes a compressor 1a, a heat utilization side heat exchanger (acting as a condenser) 1c, an expansion valve 1b as a pressure reducing device, a refrigerant pipe connecting them, a hot water tank 3 outside the machine, It is mainly comprised from the water pump 1p which circulates the water as a heat medium between heat utilization side heat exchangers 1c.

採熱側熱交換器2は太陽熱集熱器として作用し、詳細を図2で説明するが、波型板の長手方向が建物の屋根5の頂面に向かって起立するよう傾斜して設置している。それにより日射を受け集熱する。また屋根5の表面の近傍では0.5〜1.0[m/s]以上の風速の風が間欠的あるいは常時吹いているため、広い表面積にわたって外気と冷媒Cの熱交換がされる。   The heat-collecting side heat exchanger 2 acts as a solar heat collector and will be described in detail with reference to FIG. 2. However, the heat collecting side heat exchanger 2 is installed so as to incline so that the longitudinal direction of the corrugated plate rises toward the top surface of the roof 5 of the building. ing. It receives sunlight and collects heat. Further, in the vicinity of the surface of the roof 5, wind with a wind speed of 0.5 to 1.0 [m / s] or more blows intermittently or constantly, so heat exchange between the outside air and the refrigerant C is performed over a wide surface area.

そして、ヒートポンプ給湯機1と採熱側熱交換器2は往還の冷媒配管で接続され、両者の系内を冷媒Cが循環する。循環する冷媒Cは気液相変化して加熱冷却に資する冷媒を用いるが、フロン系冷媒よりも加熱能力が大きい点で自然冷媒、特に二酸化炭素を採用することが望ましい。   The heat pump water heater 1 and the heat collecting side heat exchanger 2 are connected by a return refrigerant pipe, and the refrigerant C circulates in both systems. As the circulating refrigerant C, a refrigerant that changes the gas-liquid phase and contributes to heating and cooling is used, but it is desirable to employ natural refrigerant, particularly carbon dioxide, in terms of higher heating capacity than the chlorofluorocarbon refrigerant.

ヒートポンプ給湯機1の熱利用側熱交換器1cは貯湯槽3と水配管を介して接続されている。より詳しくは、貯湯槽3の下部から前述の水ポンプ1pで水を取り出し、熱利用側熱交換器1cで凝縮熱を得て槽内に戻される。さらに貯湯槽3には溜めた湯を熱負荷としての給湯栓4に送るポンプ3aが付設され、消費した湯の不足分を補給する給水管が接続される。   The heat utilization side heat exchanger 1c of the heat pump water heater 1 is connected to the hot water storage tank 3 via a water pipe. More specifically, water is taken out from the lower part of the hot water tank 3 by the water pump 1p described above, condensed heat is obtained by the heat utilization side heat exchanger 1c, and returned to the tank. Further, the hot water storage tank 3 is provided with a pump 3a for sending the stored hot water to a hot water tap 4 as a heat load, and a water supply pipe for replenishing the shortage of consumed hot water is connected.

次に、採熱側熱交換器2の構成について図2により説明する。この外形形状は少なくとも屋外側が山2aと谷2bの連続する形状としており(屋内側がフラットでも本発明は成立する)、表面を選択吸収膜処理されている。内部は少なくとも山と谷を結ぶ斜面部2cに沿って前記冷媒Cが流れる冷媒流路2eを形成している。また波の高さ(山と谷の高さの差)を5〜15mmとする波型板で単位体を形成し、冷媒Cの流入口と排出口を備え、内部に斜面部2cの数に対応する多数の扁平な冷媒流路2eを内蔵している。   Next, the structure of the heat collection side heat exchanger 2 will be described with reference to FIG. The outer shape is such that at least the outdoor side is continuous with peaks 2a and valleys 2b (the present invention can be established even if the indoor side is flat), and the surface is treated with a selective absorption film. The interior forms a refrigerant flow path 2e through which the refrigerant C flows along at least the slope portion 2c connecting the peaks and valleys. Moreover, a unit body is formed with a corrugated plate having a wave height (difference between the heights of peaks and valleys) of 5 to 15 mm, provided with an inlet and an outlet for the refrigerant C, and the number of the slope portions 2c is set inside. A number of corresponding flat refrigerant flow paths 2e are incorporated.

採熱側熱交換器2の屋外側表面は、ここではアルミ、銅、ステンレス、などの熱伝導の良好な部材である金属を波型に成型したものを上下に2枚重ねた構造としている。すなわち、採熱側熱交換器2の屋外側表面は、波型板21と波型板22とを上下に重ね合わせた構造をしている。少なくとも屋外に面する山の部分イに厚みを持たせることによって、上側の波型板21の斜面部2cと下側の波型板22の斜面部2cの間に、この斜面部2cに平行で相似の冷媒流路2eを形成している。これにより多数の冷媒流路2eを、溶接の手間をかけずに作り出している。なお、下側(屋内側)には谷部は必ずしも必要でなく山形でなく台形状の底部としてもよい。   Here, the outdoor side surface of the heat collecting side heat exchanger 2 has a structure in which two pieces of metal, which is a heat conductive member such as aluminum, copper, stainless steel, etc., which are formed into a corrugated shape, are stacked one above the other. That is, the outdoor side surface of the heat collecting side heat exchanger 2 has a structure in which the corrugated plate 21 and the corrugated plate 22 are stacked one above the other. By providing a thickness to at least the portion of the mountain that faces the outdoors, the slope 2c of the upper corrugated plate 21 and the slope 2c of the lower corrugated plate 22 are parallel to the slope 2c. A similar refrigerant flow path 2e is formed. Thereby, many refrigerant | coolant flow paths 2e are produced without taking the effort of welding. In addition, a trough is not necessarily required on the lower side (indoor side), and may be a trapezoidal bottom instead of a mountain.

選択吸収膜処理としては、ここではアルミ表面に特殊電解膜を被覆することで選択吸収膜2dを形成している、なお、好適な選択吸収膜処理の手段としてはほかに、銅にブラッククロムをめっきする方法、ステンレスを化成処理して着色する方法などが挙げられる。そして、採熱側熱交換器2の屋内側には、グラスウールなどの断熱材2fを貼り付けている。この構成により、ルーフィングなどの屋根5の下地材にそのまま載置できる。   As the selective absorption film treatment, the selective absorption film 2d is formed by coating a special electrolytic film on the aluminum surface. In addition, as a suitable selective absorption film treatment means, black chromium is used for copper. Examples thereof include a plating method, a method of chemical conversion treatment of stainless steel, and a coloring method. And the heat insulating material 2f, such as glass wool, is affixed on the indoor side of the heat collecting side heat exchanger 2. With this configuration, it can be placed directly on the base material of the roof 5 such as roofing.

以上のようにして製作された採熱側熱交換器2は、山2aの頂点から背面の断熱材2fの断熱層の底面までの高さが30〜50mmで、前述した従来技術の集熱パネルよりも薄型で取り扱い易い。本発明では、冷媒Cで集熱することにより水集熱の場合の集熱温度よりも低くして従来技術の中空層を削減し、また外気からの採熱を集熱部上面で行うことにより従来技術の背面空気流路を削減している。   The heat collection side heat exchanger 2 manufactured as described above has a height from the top of the mountain 2a to the bottom surface of the heat insulating layer of the heat insulating material 2f on the back surface of 30 to 50 mm, and the above-described conventional heat collecting panel described above. Thinner and easier to handle. In the present invention, by collecting heat with the refrigerant C, the temperature is lower than the heat collecting temperature in the case of water collecting, thereby reducing the hollow layer of the prior art, and collecting heat from outside air on the upper surface of the heat collecting part. The back air flow path of the prior art is reduced.

採熱側熱交換器2は例えば図6のように屋根5、望ましくは屋根5の南面に配置される。採熱側熱交換器2(集熱部)はここでは3尺×6尺の矩形のパネル形状で、その長手方向が屋根の傾斜方向に沿って屋根下地に載置される。山2aと谷2bからなる波は、波をうつ方向がパネルの長手方向と直交、傾斜部2cの延びる方向はパネルの長手方向に沿って平行に延びている。したがって傾斜部2cに沿ってその裏面に形成された冷媒流路2eは屋根5の傾斜方向に平行に位置することになる。   The heat collection side heat exchanger 2 is disposed on the roof 5, preferably on the south surface of the roof 5, for example, as shown in FIG. 6. Here, the heat collecting side heat exchanger 2 (heat collecting part) has a 3 × 6 rectangular panel shape, and its longitudinal direction is placed on the roof base along the inclination direction of the roof. In the wave composed of the peaks 2a and the valleys 2b, the direction of wave propagation is perpendicular to the longitudinal direction of the panel, and the extending direction of the inclined portion 2c extends parallel to the longitudinal direction of the panel. Therefore, the refrigerant flow path 2 e formed on the back surface along the inclined portion 2 c is positioned in parallel to the inclination direction of the roof 5.

前述の製法で3尺×6尺の大きさで製作された採熱側熱交換器2は単位体として形成され、接続される。図5では単位体としての採熱側熱交換器2が5枚隣接して設置され、一連のパネル全体を構成している。図5に示すように、下側の波型板22における一方の端部22aと他方の端部22bは突き合わされている。上側の波型板21の一方の端部21aは、下側の波型板22の端部22aに重ねた状態で接合されている。同様に、上側の波型板21の他方の端部21bは、下側の波型板22の端部22bに重ねた状態で接合されている。上側の波型板21における端部21a、21bの端面側には、下側の波型板22との接合面をシールするシールしろ2mが冷媒流路2eと平行に延びようにそれぞれ形成されている。   The heat-collecting side heat exchanger 2 manufactured in a size of 3 × 6 by the above-described manufacturing method is formed as a unit and connected. In FIG. 5, five heat collecting side heat exchangers 2 as unit bodies are installed adjacent to each other to constitute a whole series of panels. As shown in FIG. 5, one end 22a and the other end 22b of the lower corrugated plate 22 are abutted. One end 21 a of the upper corrugated plate 21 is joined to the end 22 a of the lower corrugated plate 22 in an overlapping state. Similarly, the other end 21 b of the upper corrugated plate 21 is joined to the end 22 b of the lower corrugated plate 22 so as to overlap. On the end face side of the end portions 21a and 21b of the upper corrugated plate 21, seal margins 2m for sealing the joint surface with the lower corrugated plate 22 are formed so as to extend in parallel with the refrigerant flow path 2e. Yes.

単位体としての採熱側熱交換器2同士の配置と冷媒Cの流通関係について以下に説明する。各々のパネルへの冷媒Cの供給は、ヒートポンプ給湯機1からの冷媒往管2k1からみて並列に行う。より具体的には、図3および図4に示すように、冷媒往管2k1を屋根下地5bの裏面に沿って延設する。そして、冷媒往管2k1の先端側を屋根下地5bと防水紙5aとを貫通させて屋根5の表面に立ち上げ、この立ち上げた冷媒往管2k1の先端部をヘッダ2gの冷媒入口2jに接続する。ヘッダ2gは単位体としての採熱側熱交換器2ごとに設けられる。ヘッダ2gは、採熱側熱交換器2の短手方向に沿って同じ長さを有し、断熱層2fと隣接して設けられている。ヘッダ2g同士は、屋根5に搬入後に接続され、接続後はヘッダ2gの冷媒入口2jはソケット2hに接続される。   The arrangement of the heat collecting side heat exchangers 2 as a unit body and the flow relationship of the refrigerant C will be described below. Supply of the refrigerant | coolant C to each panel is performed in parallel seeing from the refrigerant | coolant outbound pipe | tube 2k1 from the heat pump water heater 1. FIG. More specifically, as shown in FIGS. 3 and 4, the refrigerant forward pipe 2k1 extends along the back surface of the roof base 5b. Then, the leading end side of the refrigerant forward pipe 2k1 is raised up to the surface of the roof 5 through the roof base 5b and the waterproof paper 5a, and the leading end of the raised refrigerant outgoing pipe 2k1 is connected to the refrigerant inlet 2j of the header 2g. To do. The header 2g is provided for each heat collection side heat exchanger 2 as a unit body. The header 2g has the same length along the short direction of the heat collecting side heat exchanger 2, and is provided adjacent to the heat insulating layer 2f. The headers 2g are connected to each other after being carried into the roof 5, and after the connection, the refrigerant inlet 2j of the header 2g is connected to the socket 2h.

なお、ここでは冷媒往管2k1の下流側先端部は、複数の採熱側熱交換器2のうち特定の採熱側熱交換器2のヘッダ2gの冷媒入口2jにのみ接続され、接続後一体となって採熱側熱交換器2の集合体とほぼ同じ長さを有ることになったヘッダ2gの長手方向に分配される。   Here, the downstream end portion of the refrigerant forward pipe 2k1 is connected only to the refrigerant inlet 2j of the header 2g of the specific heat collecting side heat exchanger 2 among the plurality of heat collecting side heat exchangers 2, and is integrated after the connection. And is distributed in the longitudinal direction of the header 2g which has almost the same length as the aggregate of the heat collecting side heat exchangers 2.

冷媒往管2k1と接続されるソケット2hは、左右の採熱側熱交換器2の冷媒流路2eに冷媒Cを分配するように冷媒出口が2股に分かれている。冷媒Cの出口側も以上と同様で、屋根5の頂面側に配置した出口側ソケット2iから出口側のヘッダ2gを経て冷媒還管2k2を介してヒートポンプ給湯機1に戻される。   The socket 2h connected to the refrigerant outgoing pipe 2k1 has a bifurcated refrigerant outlet so as to distribute the refrigerant C to the refrigerant flow paths 2e of the left and right heat collecting side heat exchangers 2. Similarly, the outlet side of the refrigerant C is returned to the heat pump water heater 1 from the outlet side socket 2i arranged on the top surface side of the roof 5 through the outlet side header 2g and the refrigerant return pipe 2k2.

このように採熱側熱交換器2を冷媒Cからみて並列に配置し、冷媒流路2eを屋根5の頂面に向かってそれぞれ下から上に直線状に供給することにより、冷媒Cの低圧損化の効果が得られる。また冷媒Cの流入口を屋根5の下方、前記冷媒Cの流出口を屋根5の頂面側に配置することは、採熱側熱交換器2で蒸発し密度の低下した冷媒Cの流れを促進する。また採熱側熱交換器2に除霜した場合には、後述するヒートポンプ回路を逆回転運転で対処するが、霜の融解水が屋根5の傾斜に沿って雨どいに流れるため、ドレンパンなどに滞留して再凍結する恐れがない。   In this way, the heat collecting side heat exchanger 2 is arranged in parallel when viewed from the refrigerant C, and the refrigerant flow path 2e is linearly supplied from the bottom toward the top surface of the roof 5, thereby reducing the low pressure of the refrigerant C. The effect of damage can be obtained. In addition, arranging the refrigerant C inflow port below the roof 5 and arranging the refrigerant C outflow port on the top surface side of the roof 5 evaporates the refrigerant C in the heat collecting side heat exchanger 2 and reduces the density of the refrigerant C. Facilitate. In addition, when the heat collecting side heat exchanger 2 is defrosted, a heat pump circuit to be described later is dealt with by reverse rotation operation. However, since the frost melting water flows along the slope of the roof 5 in the rain gutter, There is no risk of stagnation and refreezing.

なお、以上の構成で例えば盛夏など日射の強いときには、膨張弁1bの開度を大きくしたり、圧縮機1aの回転数を落としたりして蒸発温度を高め、ヒートポンプ給湯機1の消費電力を削減する。また貯湯槽3の設定湯温も、凝縮温度を下げてヒートポンプ給湯機1の消費電力を削減するために、必要最小限の温度とすることが望ましい。そして、ヒートポンプ給湯機1の二酸化炭素配管系の圧力が過度に上昇する恐れがある場合は、圧縮機1aの回転数を落としたり、または圧縮機1aを停止させるようにする。   In the above configuration, when the solar radiation is strong, such as in midsummer, the evaporating temperature is increased by increasing the opening degree of the expansion valve 1b or decreasing the rotational speed of the compressor 1a, thereby reducing the power consumption of the heat pump water heater 1. To do. In addition, the set hot water temperature of the hot water tank 3 is desirably set to the minimum necessary temperature in order to reduce the condensing temperature and reduce the power consumption of the heat pump water heater 1. And when there exists a possibility that the pressure of the carbon dioxide piping system of the heat pump water heater 1 may rise excessively, the rotation speed of the compressor 1a is dropped or the compressor 1a is stopped.

採熱側熱交換器2は、屋根葺き材の代替として設置することもできる。図3では屋根5の一部であるが、デザイン上の理由で必要枚数以上の採熱側熱交換器2を設置してもよい。この場合能力が出すぎるようであれば、一部の単位体(パネル)のヘッダ2gを接続せず、単なる屋根葺き材として使用する。   The heat collection side heat exchanger 2 can also be installed as an alternative to the roofing material. Although it is a part of the roof 5 in FIG. 3, you may install the heat collecting side heat exchanger 2 more than a required number for a design reason. In this case, if the capacity seems to be too high, the headers 2g of some of the unit bodies (panels) are not connected and used as a simple roofing material.

本発明の実施に用いる必要最小限のパネル枚数は、屋根面で期待できる最低風速に準じた表面熱伝達率と曇雨天時の日射量から、その必要表面積を算出して求めることができる。例えば加熱能力4.5kWのヒートポンプ給湯機1では、水平面全天日射量50[W/m]・外気温度5℃・風速1[m/s]のときに、3尺×6尺パネルが4〜6枚になる。 The minimum required number of panels used in the practice of the present invention can be determined by calculating the required surface area from the surface heat transfer coefficient according to the minimum wind speed expected on the roof surface and the amount of solar radiation in cloudy weather. For example, in the heat pump water heater 1 having a heating capacity of 4.5 kW, when the horizontal solar radiation amount is 50 [W / m 2 ], the outside air temperature is 5 ° C., and the wind speed is 1 [m / s], the 3 × 6 panel is 4 It becomes ~ 6 sheets.

なお、パネル間は公知のシール材でシールするが、採熱側熱交換器2の冷媒流路2eと平行な両端面に、切り欠き部分をシールしろとして設けておくと便利である。   The panel is sealed with a known sealing material, but it is convenient to provide notches on both end faces parallel to the refrigerant flow path 2e of the heat collecting side heat exchanger 2 as sealing margins.

本発明に係るシステムでは冷媒を比較的遠方まで搬送するため、前述したように採熱側熱交換器2の入口部等で冷媒流量、流速が部位によって偏り、採熱側熱交換器2全体を有効に利用できないことが懸念される。また多数のパネルにそれぞれ冷媒を供給することから、本発明者らは集熱効率の向上策として、供給される冷媒Cの性状に着目し、膨張弁1bを経た減圧下であっても液リッチな気液2相流とすることに想到した。そこでこれに対処する発明について図7により説明する。   In the system according to the present invention, since the refrigerant is transported relatively far away, as described above, the refrigerant flow rate and flow velocity are biased depending on the site at the inlet portion of the heat collecting side heat exchanger 2, and the entire heat collecting side heat exchanger 2 is There is concern that it cannot be used effectively. Further, since the refrigerant is supplied to each of a large number of panels, the present inventors pay attention to the property of the supplied refrigerant C as a measure for improving the heat collection efficiency, and are liquid-rich even under reduced pressure through the expansion valve 1b. I came up with a gas-liquid two-phase flow. Therefore, an invention for dealing with this will be described with reference to FIG.

本発明に係る熱源装置であるヒートポンプ給湯機1は、圧縮機1aと減圧装置としての膨張弁1bと凝縮器として作用する熱利用側熱交換器1cを備える。ここまでは公知の冷凍サイクルで、圧縮機1aにより高温高圧となったガス冷媒が逆止弁1iを通過して熱利用側熱交換器1cで放熱して液化し(このとき貯湯槽3の水に放熱する)、膨張弁1bで低圧の気液2相冷媒として採熱側熱交換器2に送られる。なお図では熱利用側熱交換器1cから膨張弁1bに至る管路の途中に圧縮機1aが現れているが、これは作図上の都合によるもので、その管路は圧縮機1aを迂回する。   A heat pump water heater 1 which is a heat source device according to the present invention includes a compressor 1a, an expansion valve 1b as a pressure reducing device, and a heat utilization side heat exchanger 1c acting as a condenser. Up to this point, in a known refrigeration cycle, the gas refrigerant that has been heated to high pressure and high pressure by the compressor 1a passes through the check valve 1i, dissipates heat in the heat utilization side heat exchanger 1c, and liquefies (the water in the hot water storage tank 3 at this time). The heat is sent to the heat collecting side heat exchanger 2 as a low-pressure gas-liquid two-phase refrigerant by the expansion valve 1b. In the figure, the compressor 1a appears in the middle of the pipe line from the heat utilization side heat exchanger 1c to the expansion valve 1b. However, this is for the convenience of drawing and the pipe line bypasses the compressor 1a. .

本発明はこれに加え、冷媒タンク1dとバイパス管1g、バイパス管1gに介装させた第2の減圧装置1hを備えている。   In addition to this, the present invention includes a refrigerant tank 1d, a bypass pipe 1g, and a second decompression device 1h interposed in the bypass pipe 1g.

冷媒タンク1dは、膨張弁1bと採熱側熱交換器2の冷媒入口との間に位置させる。   The refrigerant tank 1d is positioned between the expansion valve 1b and the refrigerant inlet of the heat collecting side heat exchanger 2.

バイパス管1gは、前記採熱側熱交換器2の冷媒出口から圧縮機に戻る冷媒管路と前記冷媒タンク1dとの間に設けられる。   The bypass pipe 1g is provided between the refrigerant pipe 1g returning from the refrigerant outlet of the heat collecting side heat exchanger 2 to the compressor and the refrigerant tank 1d.

なお、冷媒タンク1d、バイパス管1g、第2の減圧装置1hは必ずしも機内に設置する必要はなく機外側部に市販のヒートポンプの付設設備として付加してもよい。   Note that the refrigerant tank 1d, the bypass pipe 1g, and the second decompression device 1h are not necessarily installed in the machine, and may be added to the outside of the machine as an installation facility for a commercially available heat pump.

当該構成での冷媒Cの流れは次のとおりである。戻された冷媒Cが膨張弁1bを出るまでは従来と同様である。膨張弁1bを出た低圧の気液2相冷媒は冷媒タンク1dに吐出された後、冷媒タンク1d上部のガス冷媒だけがバイパス管1gに流れ、その中間に介装されたキャビラリーチューブ等の第2の減圧装置1hで減圧される。バイパス管1gの出口は、圧縮機1aに向かう冷媒還管と合流し、圧縮機1aに乾き度の高いガス冷媒として吸い込まれ、このサイクルが繰り返される。一方冷媒タンク1dの底部には低圧の液冷媒が溜まり、この液冷媒はタンク底部の取り出し開口から圧縮機1aの吸引力により吸引されて冷媒往管内を採熱側熱交換器2に向けて流れる。すなわち、湿り度の高い冷媒だけを集め、送液することができる。   The flow of the refrigerant C in the configuration is as follows. The process is the same as before until the returned refrigerant C exits the expansion valve 1b. After the low-pressure gas-liquid two-phase refrigerant exiting the expansion valve 1b is discharged to the refrigerant tank 1d, only the gas refrigerant in the upper part of the refrigerant tank 1d flows into the bypass pipe 1g, and a cavity tube or the like interposed therebetween The pressure is reduced by the second pressure reducing device 1h. The outlet of the bypass pipe 1g merges with the refrigerant return pipe toward the compressor 1a, and is sucked into the compressor 1a as a gas refrigerant having high dryness, and this cycle is repeated. On the other hand, low-pressure liquid refrigerant is accumulated at the bottom of the refrigerant tank 1d, and this liquid refrigerant is sucked by the suction force of the compressor 1a from the take-out opening at the bottom of the tank and flows in the refrigerant forward pipe toward the heat collecting side heat exchanger 2. . That is, only a highly wet refrigerant can be collected and sent.

これにより例えば、多数の冷媒流路2eにおける圧縮機1aから近い流路と遠い流路で入口冷媒流速の差が増大して冷媒流入量に差が生じるという問題を回避できる。   Thereby, for example, it is possible to avoid the problem that a difference in the refrigerant inflow amount occurs due to an increase in the difference in the inlet refrigerant flow rate between the flow paths closer to the compressor 1a and the flow paths far from the compressor 1a.

さらに本発明は、盛夏のような高温環境下での給湯運転停止時に、集熱部内部の冷媒の高圧化に伴う損傷を回避する方法を提供する。これを図7と図8により説明する。まず、装置構成としては図4の機器構成に加え、冷媒タンク1d廻りに2つの弁1eと1f(ここでは電磁弁である。手動弁よりも自動弁または自力弁の採用が望ましい)を追加する。これらもまた、機内機外にいずれに設けられてもよい。電磁弁1eは冷媒タンク1dと前記採熱側熱交換器2の冷媒入口を結ぶ管路に設ける。電磁弁1fはバイパス管1gの管路に、第2の減圧装置1hの上流に設けている。   Furthermore, this invention provides the method of avoiding the damage accompanying the high pressure of the refrigerant | coolant inside a heat collecting part at the time of hot water supply stop in the high temperature environment like a midsummer. This will be described with reference to FIGS. First, as a device configuration, in addition to the device configuration shown in FIG. 4, two valves 1e and 1f (here, electromagnetic valves. It is preferable to use an automatic valve or a self-powered valve rather than a manual valve) around the refrigerant tank 1d. . These may also be provided outside the in-flight machine. The electromagnetic valve 1e is provided in a pipe line connecting the refrigerant tank 1d and the refrigerant inlet of the heat collecting side heat exchanger 2. The electromagnetic valve 1f is provided upstream of the second pressure reducing device 1h in the pipeline of the bypass pipe 1g.

本発明では以上の構成のシステムで冷媒Cを冷媒タンク1dに戻すことで採熱側熱交換器2から冷媒抜きをする。この運転について図8により説明する。特に前記課題に対応する運転は、ステップS4の「冷媒回収運転」である。   In the present invention, the refrigerant is removed from the heat collecting side heat exchanger 2 by returning the refrigerant C to the refrigerant tank 1d in the system having the above configuration. This operation will be described with reference to FIG. In particular, the operation corresponding to the problem is the “refrigerant recovery operation” in step S4.

図8に示すように、ステップS1において、太陽熱利用ヒートポンプ給湯システムの運転が開始される。ここでは、システムの運転開始条件は、図7の温度センサT3による検出温度が設定湯温に対して1〜3℃低い場合である。ステップS1における運転開始時には、図7の電磁弁1eが開となり、圧縮機1aは最低容量で運転される。また、運転開始時には、膨張弁1bの開度は例えば20%に設定される。   As shown in FIG. 8, in step S1, the operation of the solar heat utilization heat pump hot water supply system is started. Here, the operation start condition of the system is when the temperature detected by the temperature sensor T3 in FIG. 7 is 1 to 3 ° C. lower than the set hot water temperature. At the start of operation in step S1, the solenoid valve 1e in FIG. 7 is opened, and the compressor 1a is operated at the minimum capacity. At the start of operation, the opening degree of the expansion valve 1b is set to 20%, for example.

つぎに、ステップS2に示すように、運転開始後から一定時間が経過すると貯湯運転に移行し、貯湯槽3での貯湯が開始される。貯湯の開始条件は、システムの運転開始後、2〜5分経過後に設定されている。ステップS2における運転においては、図7の電磁弁1eは開状態のままであり、圧縮機1aは容量制御とされる。この貯湯運転は、図7の温度センサT3による検出温度が設定湯温に対して1〜3℃の範囲内にあることが条件となる。また、膨張弁1bは、ある一定条件の下で開度制御が行われる。すなわち、膨張弁1bの開度制御は、図7の温度センサT1と温度センサT2との差が2〜5℃の範囲にある場合、または図7の温度センサT2と圧力センサP2より演算した過熱度が1〜3℃よりも高い場合に行われる。   Next, as shown in step S <b> 2, when a certain time has elapsed from the start of operation, the hot water storage operation is started, and hot water storage in the hot water storage tank 3 is started. The hot water start condition is set after 2 to 5 minutes have elapsed since the start of operation of the system. In the operation in step S2, the solenoid valve 1e in FIG. 7 remains open, and the compressor 1a is subjected to capacity control. This hot water storage operation is conditional on the temperature detected by the temperature sensor T3 in FIG. 7 being in the range of 1 to 3 ° C. with respect to the set hot water temperature. Further, the opening degree of the expansion valve 1b is controlled under a certain condition. That is, the degree of opening control of the expansion valve 1b is controlled when the difference between the temperature sensor T1 and the temperature sensor T2 in FIG. 7 is in the range of 2 to 5 ° C., or overheating calculated from the temperature sensor T2 and the pressure sensor P2 in FIG. It is performed when the degree is higher than 1 to 3 ° C.

ステップS3は、貯湯運転停止を示している。ここでは、システムの運転停止条件は、図7の温度センサT3による検出温度が設定湯温に対して1〜3℃高い場合とされている。ステップS3では、図7の電磁弁1eが閉となり、圧縮機1aは停止する。また、膨張弁1bは、最低開度に設定される。   Step S3 indicates that the hot water storage operation is stopped. Here, the operation stop condition of the system is that the temperature detected by the temperature sensor T3 in FIG. 7 is 1 to 3 ° C. higher than the set hot water temperature. In step S3, the solenoid valve 1e in FIG. 7 is closed and the compressor 1a is stopped. The expansion valve 1b is set to the minimum opening.

ステップS4は、冷媒回収運転を示している。冷媒回収運転は、圧縮機1aの停止(湯が溜まった状態)後の一定時間経過後に、圧縮機1aの吸込口直近の冷媒管の温度センサT2からの温度の検出によって行う。この一定時間ΔTは、貯湯運転停止時の温度センサT2の温度が高いほど短く設定する。例えば前記部位の温度が40℃のときに一定時間ΔTは10分程度である。   Step S4 shows the refrigerant recovery operation. The refrigerant recovery operation is performed by detecting the temperature from the temperature sensor T2 of the refrigerant pipe immediately adjacent to the suction port of the compressor 1a after a lapse of a fixed time after the compressor 1a is stopped (a state where hot water has accumulated). This fixed time ΔT is set shorter as the temperature of the temperature sensor T2 when the hot water storage operation is stopped is higher. For example, when the temperature of the part is 40 ° C., the predetermined time ΔT is about 10 minutes.

ステップS4においては、一定時間ΔTの経過後に圧縮機1aの停止状態が継続している場合、冷媒タンク1dから採熱側熱交換器2に冷媒を送るための電磁弁1eを閉止し、膨張弁1bを全開、圧縮機1aをフル運転する。このとき電磁弁1fは開いた状態とされる。すると、圧縮機1aの吸引力で採熱側熱交換器2から冷媒Cが強制的に戻され、冷媒Cは冷媒タンク1dに液となって溜まる。   In step S4, when the stop state of the compressor 1a continues after the lapse of the predetermined time ΔT, the electromagnetic valve 1e for sending the refrigerant from the refrigerant tank 1d to the heat collecting side heat exchanger 2 is closed, and the expansion valve 1b is fully opened and the compressor 1a is fully operated. At this time, the solenoid valve 1f is opened. Then, the refrigerant C is forcibly returned from the heat collecting side heat exchanger 2 by the suction force of the compressor 1a, and the refrigerant C accumulates in the refrigerant tank 1d as a liquid.

そして、ステップS5に示すように、冷媒回収運転は、つぎの条件で停止する。すなわち圧縮機1aの吸込口直近の冷媒管の部位P2の圧力が0.2〜0.3MPaを下回ったとき、系内の冷媒Cがほとんど抜けたと判断し前記冷媒回収運転を停止する。このステップS5においては、圧縮機1aは停止、膨張弁1bは運転再開に備えて、開度のゼロリセットをするために最低開度に設定される。   And as shown to step S5, a refrigerant | coolant collection | recovery driving | operation stops on the following conditions. That is, when the pressure in the portion P2 of the refrigerant pipe in the immediate vicinity of the suction port of the compressor 1a falls below 0.2 to 0.3 MPa, it is determined that the refrigerant C in the system is almost exhausted, and the refrigerant recovery operation is stopped. In step S5, the compressor 1a is stopped and the expansion valve 1b is set to the minimum opening in order to reset the opening to zero in preparation for restarting operation.

なお、冷媒回収運転の運転開始条件としては外気温度によってもよい。本実施形態では汎用のヒートポンプ給湯機1の図7に示した部位に各センサが装備されていることが多いため、それらを利用する形態としている。   The operation start condition for the refrigerant recovery operation may be the outside air temperature. In this embodiment, since each sensor is often equipped in the site | part shown in FIG. 7 of the general purpose heat pump water heater 1, it is set as the form which utilizes them.

図9は、本発明の実施の形態2を示している。実施の形態2が実施の形態1と異なるところは、ブライン配管系の有無であり、その他の部分は実施の形態1に準じるので、準じる部分に実施の形態1と同一の符号を付すことにより、その説明を省略する。図9に示すように、採熱側熱交換器2は、冷媒往管2k1および冷媒還管2k2を介してヒートポンプ給湯機11と接続されている。実施の形態2においては、冷媒往管2k1および冷媒還管2k2は、ブライン(二次冷媒)C1が流れるブライン配管を構成している。ヒートポンプ給湯機11は、給湯配管12を介して貯湯槽13と接続されている。ヒートポンプ給湯機11内のブライン配管には、ブラインC1を採熱側熱交換器2側に送るブラインポンプ11fが設けられている。ヒートポンプ給湯機11内のブライン配管におけるブラインポンプ11fの下流側には、冷媒還管2k2からのブラインC1の一部を冷媒往管2k1にバイパスさせることが可能な弁11eが設けられている。ヒートポンプ給湯機11内には、貯湯槽13のタンク13aに貯留された水を循環させる貯湯ポンプ11gが設けられている。   FIG. 9 shows a second embodiment of the present invention. The difference between the second embodiment and the first embodiment is the presence or absence of a brine piping system, and the other parts conform to the first embodiment, and therefore, by attaching the same reference numerals as those of the first embodiment to the conforming parts, The description is omitted. As shown in FIG. 9, the heat collection side heat exchanger 2 is connected to the heat pump water heater 11 via the refrigerant forward pipe 2k1 and the refrigerant return pipe 2k2. In the second embodiment, the refrigerant forward pipe 2k1 and the refrigerant return pipe 2k2 constitute a brine pipe through which a brine (secondary refrigerant) C1 flows. The heat pump water heater 11 is connected to a hot water storage tank 13 through a hot water supply pipe 12. The brine pipe in the heat pump water heater 11 is provided with a brine pump 11f that sends the brine C1 to the heat collecting side heat exchanger 2 side. A valve 11e capable of bypassing part of the brine C1 from the refrigerant return pipe 2k2 to the refrigerant forward pipe 2k1 is provided downstream of the brine pump 11f in the brine pipe in the heat pump water heater 11. In the heat pump water heater 11, a hot water storage pump 11 g that circulates the water stored in the tank 13 a of the hot water storage tank 13 is provided.

ヒートポンプ給湯機11内には、冷媒Cを循環させる冷媒管路としての冷媒配管11aが収納されている。冷媒配管11aには、冷媒Cを圧縮するための圧縮機11dが設けられている。冷媒配管11aの途中には、第一の熱交換器11bと第二の熱交換器11cが設けられている。第一の熱交換器11bは、冷媒CとブラインC1との熱交換を行うものであり、第二の熱交換器11cは、冷媒Cと貯湯槽13からの水との熱交換を行うものである。ヒートポンプ給湯機11内には、貯湯槽13のタンク本体13a内に貯留された水を第二の熱交換器11cに供給するための貯湯ポンプ11gが設けられている。貯湯槽13内には、タンク本体13aに貯留された温水を給湯栓4に供給するための弁13cおよび給湯ポンプ13dが設けられている。タンク本体13aの上部には、タンク本体13a内に外部からの水を供給するための弁13bが設けられている。   In the heat pump water heater 11, a refrigerant pipe 11a as a refrigerant pipe for circulating the refrigerant C is accommodated. The refrigerant pipe 11a is provided with a compressor 11d for compressing the refrigerant C. A first heat exchanger 11b and a second heat exchanger 11c are provided in the middle of the refrigerant pipe 11a. The first heat exchanger 11b performs heat exchange between the refrigerant C and the brine C1, and the second heat exchanger 11c performs heat exchange between the refrigerant C and water from the hot water tank 13. is there. In the heat pump water heater 11, a hot water storage pump 11g for supplying water stored in the tank body 13a of the hot water storage tank 13 to the second heat exchanger 11c is provided. In the hot water storage tank 13, a valve 13 c and a hot water supply pump 13 d for supplying hot water stored in the tank body 13 a to the hot water tap 4 are provided. A valve 13b for supplying water from the outside into the tank body 13a is provided at the upper part of the tank body 13a.

このように構成された実施の形態2においては、採熱側熱交換器2から冷媒還管2k2を介してヒートポンプ給湯機11に送られたブラインC1は、第一の熱交換器11bによって冷媒配管11aを流れる冷媒Cと熱交換される。そして、第二の熱交換器11cでは、冷媒Cと貯湯槽13側から供給される水との熱交換が行われ、高温となった水はタンク本体13aに戻される。ここで、ブラインC1の第一の熱交換器11bに流入するブライン流量を弁11eで絞ることもできるが、日射からできるだけ多く集熱するために、冷媒配管11a内の圧力が限度を越えない限りは、弁11eによるブラインC1の第一の熱交換器11bへの流入量を制限させないことが望ましい。また、貯湯槽13の設定湯温も、冷媒配管11a系の圧力をなるべく下げるために、必要最低限の温度とすることが望ましい。   In Embodiment 2 configured as described above, the brine C1 sent from the heat collection side heat exchanger 2 to the heat pump water heater 11 via the refrigerant return pipe 2k2 is supplied to the refrigerant pipe by the first heat exchanger 11b. Heat is exchanged with the refrigerant C flowing through 11a. And in the 2nd heat exchanger 11c, heat exchange with the refrigerant | coolant C and the water supplied from the hot water storage tank 13 side is performed, and the water which became high temperature is returned to the tank main body 13a. Here, the flow rate of the brine flowing into the first heat exchanger 11b of the brine C1 can be reduced by the valve 11e, but in order to collect as much heat as possible from the solar radiation, as long as the pressure in the refrigerant pipe 11a does not exceed the limit. It is desirable not to limit the amount of brine C1 flowing into the first heat exchanger 11b by the valve 11e. In addition, the set hot water temperature of the hot water storage tank 13 is desirably set to the minimum necessary temperature in order to reduce the pressure of the refrigerant pipe 11a system as much as possible.

このように、ブラインC1を用いる構成の場合は、ヒートポンプ給湯機11を製造する工場において、高圧の冷媒Cが流れる冷媒配管11aの配管ろう付けや気密耐圧試験を実施できるので、作業現場での配管ろう付けや気密耐圧試験は不要となり、作業能率を高めることができる。さらに、ブライン配管(冷媒往管2k1および冷媒還管2k2)系に必要な気密耐圧性能は、冷媒Cを用いる冷媒配管11aより大幅に低くできるので、従来の太陽熱温水器の施工技術を転用でき、ヒートポンプ給湯機11と採熱側熱交換器2の間の配管の気密耐圧性能の確保も容易となる。同様に、ブラインC1を用いる構成とした場合は、採熱側熱交換器が2重になることで熱交換効率が多少低下するが、冷媒配管11aをヒートポンプ給湯機11内に収納できるため、盛夏のような高温環境下での給湯運転停止時に、冷媒配管11a系の冷媒Cが極端に加熱される恐れがなくなり、冷媒回収をする機構が不要となる。   As described above, in the case of the configuration using the brine C1, the pipe for use in the work site can be performed in the factory that manufactures the heat pump water heater 11 because the pipe brazing and the airtight pressure resistance test of the refrigerant pipe 11a through which the high-pressure refrigerant C flows can be performed. Brazing and airtight pressure resistance tests are not required, and work efficiency can be increased. Furthermore, since the airtight pressure resistance required for the brine piping (refrigerant outgoing pipe 2k1 and refrigerant return pipe 2k2) system can be significantly lower than that of the refrigerant piping 11a using the refrigerant C, the construction technology of the conventional solar water heater can be diverted. It is also easy to ensure the airtight pressure resistance performance of the pipe between the heat pump water heater 11 and the heat collecting side heat exchanger 2. Similarly, when the configuration using the brine C1 is adopted, the heat exchange efficiency is somewhat lowered due to the double heat collecting side heat exchanger, but since the refrigerant pipe 11a can be stored in the heat pump water heater 11, the summer When the hot water supply operation is stopped under such a high temperature environment, there is no possibility that the refrigerant C of the refrigerant pipe 11a system is extremely heated, and a mechanism for collecting the refrigerant becomes unnecessary.

本発明は、例えば住宅に適用して全電気式ヒートポンプソーラーシステムとして構成することができる。   The present invention can be applied to, for example, a house and configured as an all-electric heat pump solar system.

1 ヒートポンプ給湯機
1a 圧縮機
1b 膨張弁
1c 熱利用側熱交換器
1d 冷媒タンク
2 採熱側熱交換器
21 上側の波型板
22 下側の波型板
2a 波型の採熱側熱交換器の山
2b 波型の採熱側熱交換器の谷
2c 傾斜部
2d 選択吸収膜
2e 冷媒流路
2f 断熱材
11a 冷媒配管(冷媒管路)
11b 第一の熱交換器
11c 第二の熱交換器
C 冷媒
C1 ブライン
DESCRIPTION OF SYMBOLS 1 Heat pump water heater 1a Compressor 1b Expansion valve 1c Heat utilization side heat exchanger 1d Refrigerant tank 2 Heat collection side heat exchanger 21 Upper wave plate 22 Lower wave plate 2a Wave type heat collection side heat exchanger 2b Wave-shaped heat-collecting side heat exchanger valley 2c Inclined portion 2d Selective absorption film 2e Refrigerant flow path 2f Insulating material 11a Refrigerant pipe (refrigerant pipe line)
11b 1st heat exchanger 11c 2nd heat exchanger C Refrigerant C1 Brine

Claims (6)

ヒートポンプ給湯機の採熱側熱交換器を本体から分離して建物の屋根面に設置し、前記ヒートポンプ給湯機の圧縮機と採熱側熱交換器との間に気液相変化して加熱冷却に資する冷媒を循環流通させ、採熱側熱交換器に減圧装置を介して低圧となった気液2相の前記冷媒を導いて蒸発作用により採熱し、一方前記ヒートポンプ給湯機の熱利用側では、前記圧縮機と熱利用側熱交換器との間に前記冷媒を循環流通させ、圧縮機により高圧となったガス相の前記冷媒を前記熱利用側熱交換器に導いて凝縮作用により放熱し、さらに前記熱利用側熱交換器と貯湯槽との間に水を循環流通させるシステムであって、前記採熱側熱交換器の外形形状は少なくとも屋外側が山と谷の連続する形状として表面を選択吸収膜処理するとともに内部は少なくとも前記山と谷を結ぶ傾斜部に沿って前記冷媒が流れる冷媒流路を形成したことを特徴とする、太陽熱利用ヒートポンプ給湯システム。   The heat collection side heat exchanger of the heat pump water heater is separated from the main body and installed on the roof surface of the building, and the gas-liquid phase changes between the compressor of the heat pump water heater and the heat collection side heat exchanger to heat and cool Circulates and circulates the refrigerant that contributes to the heat collecting side, introduces the gas-liquid two-phase refrigerant that has become low pressure through the decompression device to the heat collecting side heat exchanger, collects heat by evaporation, and on the heat utilization side of the heat pump water heater The refrigerant is circulated and circulated between the compressor and the heat utilization side heat exchanger, and the refrigerant in the gas phase that has become high pressure by the compressor is led to the heat utilization side heat exchanger to dissipate heat by the condensation action. Further, the system circulates and circulates water between the heat utilization side heat exchanger and the hot water storage tank, and the outer shape of the heat collection side heat exchanger has at least the outdoor side as a shape in which peaks and valleys are continuous. Selective absorption membrane treatment and the inside is at least before Along the inclined portion connecting the peaks and valleys, characterized in that the formation of the refrigerant flow path through which the coolant, solar thermal heat pump hot water system. 前記採熱側熱交換器を、外形を高さ5〜15mmの波型板の複数枚の接続体で構成し、前記波型板それぞれに冷媒の流入口と排出口を備え、内部に多数の扁平な冷媒流路を内蔵させて成り、前記接続は並列接続とし、さらに波型板の長手方向が建物の屋根の頂面に向かって起立するよう傾斜して設置し、前記冷媒の流入口を屋根の下方、前記冷媒の流出口を屋根の頂面側に配置したことを特徴とする、請求項1に記載の太陽熱利用ヒートポンプ給湯システム。   The heat-collecting side heat exchanger is configured by a plurality of connecting bodies of corrugated plates having an outer shape of 5 to 15 mm in height, each corrugated plate is provided with a refrigerant inlet and outlet, A flat refrigerant flow path is built in, the connection is parallel connection, and the longitudinal direction of the corrugated plate is inclined so as to stand up toward the top surface of the roof of the building, and the refrigerant inlet is provided. The solar heat-based heat pump hot water supply system according to claim 1, wherein an outlet of the refrigerant is arranged on a top surface side of the roof below the roof. 前記採熱側熱交換器の表面側は金属を波型に成型したものを上下に2枚重ねた構造であり、少なくとも屋外に面する山の部分に厚みを持たせることによって、上の波型板の傾斜部と下の波型板の傾斜部の間に、前記傾斜部に平行な多数の冷媒流路を形成したことを特徴とする、請求項1または2に記載の太陽熱利用ヒートポンプ給湯システム。   The surface side of the heat collecting side heat exchanger has a structure in which two pieces of metal formed in a corrugated shape are stacked one on top of the other. 3. The solar-powered heat pump hot water supply system according to claim 1, wherein a plurality of refrigerant flow paths parallel to the inclined portion are formed between the inclined portion of the plate and the inclined portion of the corrugated plate below. . 前記ヒートポンプ給湯機に冷媒タンクを設け、前記冷媒タンクは前記減圧装置と前記採熱側熱交換器の冷媒入口との間に位置し、前記採熱側熱交換器から圧縮機に戻る冷媒管路と前記冷媒タンクとの間をバイパス管で接続し、前記バイパス管には第2の減圧装置を介装させて前記冷媒タンク内の冷媒が減圧されて圧縮機に吸い込まれるよう構成したことを特徴とする、請求項1から3のいずれかに記載の太陽熱利用ヒートポンプ給湯システム。   A refrigerant tank is provided in the heat pump water heater, and the refrigerant tank is located between the pressure reducing device and a refrigerant inlet of the heat collection side heat exchanger, and returns from the heat collection side heat exchanger to the compressor. And the refrigerant tank are connected by a bypass pipe, and a second pressure reducing device is interposed in the bypass pipe so that the refrigerant in the refrigerant tank is decompressed and sucked into the compressor. The solar heat utilization heat pump hot water supply system according to any one of claims 1 to 3. 請求項4に記載の太陽熱利用ヒートポンプ給湯システムの、前記冷媒タンクと前記採熱側熱交換器の冷媒入口を結ぶ管路と前記バイパス管にそれぞれ弁を介装して構成したシステムの運転方法であって、前記貯湯槽に所定温度の湯が溜まって圧縮機をいったん停止した後、前記採熱側熱交換器の冷媒入口の管路の弁を閉じ、前記バイパス管の弁を閉じ、圧縮機を再度運転することを特徴とする、太陽熱利用ヒートポンプ給湯システムの運転方法。   The operating method of the system which comprised the pipe line which connects the said refrigerant | coolant tank and the refrigerant | coolant inlet_port | entrance of the said heat collection side heat exchanger, and the said bypass pipe to the solar heat utilization heat pump hot-water supply system of Claim 4 respectively. The hot water is accumulated in the hot water tank and the compressor is temporarily stopped, and then the refrigerant inlet pipe valve of the heat collecting side heat exchanger is closed, the bypass pipe valve is closed, and the compressor The operation method of the solar heat utilization heat pump hot water supply system characterized by operating again. ヒートポンプ給湯機の採熱側熱交換器を本体から分離して建物の屋根面に設置し、前記ヒートポンプ給湯機の内部に第一の熱交換器と第二の熱交換器を設け、前記採熱側熱交換器と前記第一の熱交換器との間にブラインを循環流通させるとともに、圧縮機および前記第二の熱交換器が配設される前記ヒートポンプ給湯機内の冷媒管路に前記第一の熱交換器を介して前記ブラインと熱交換が可能な気液2相に相変化する冷媒を循環流通させ、前記ヒートポンプ給湯機と貯湯槽との間に前記第二の熱交換器を介して前記冷媒と熱交換が可能な水を循環流通させるシステムであって、前記採熱側熱交換器の外形形状は少なくとも屋外側が山と谷の連続する形状として表面を選択吸収膜処理するとともに内部は少なくとも前記山と谷を結ぶ傾斜部に沿って前記ブラインが流れる冷媒流路を形成したことを特徴とする、太陽熱利用ヒートポンプ給湯システム。   A heat collecting water heat exchanger of the heat pump water heater is separated from the main body and installed on the roof surface of the building, and a first heat exchanger and a second heat exchanger are provided inside the heat pump water heater, and the heat collecting A brine is circulated between the side heat exchanger and the first heat exchanger, and the refrigerant pipe in the heat pump water heater in which the compressor and the second heat exchanger are arranged is connected to the first heat exchanger. A refrigerant changing in phase into a gas-liquid two phase that can exchange heat with the brine is circulated and circulated through the heat exchanger, and the second heat exchanger is interposed between the heat pump water heater and the hot water storage tank. It is a system that circulates and circulates water that can exchange heat with the refrigerant, and the outer shape of the heat-collecting side heat exchanger is subjected to selective absorption film treatment on the surface so that at least the outdoor side has a continuous mountain and valley, and the inside is At least along the slope connecting the mountain and valley Characterized in that the formation of the coolant channel in which the brine flows Te, solar thermal heat pump hot water system.
JP2009103841A 2008-12-11 2009-04-22 Solar-powered heat pump hot water supply system Active JP5329289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009103841A JP5329289B2 (en) 2008-12-11 2009-04-22 Solar-powered heat pump hot water supply system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008315580 2008-12-11
JP2008315580 2008-12-11
JP2009016555 2009-01-28
JP2009016555 2009-01-28
JP2009103841A JP5329289B2 (en) 2008-12-11 2009-04-22 Solar-powered heat pump hot water supply system

Publications (2)

Publication Number Publication Date
JP2010197030A true JP2010197030A (en) 2010-09-09
JP5329289B2 JP5329289B2 (en) 2013-10-30

Family

ID=42821929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009103841A Active JP5329289B2 (en) 2008-12-11 2009-04-22 Solar-powered heat pump hot water supply system

Country Status (1)

Country Link
JP (1) JP5329289B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452272B1 (en) * 2013-08-28 2014-10-22 김영진 Aluminium condenser header for join-pipe of manufacture method
JP2020143889A (en) * 2019-03-08 2020-09-10 トヨタホーム株式会社 Installation structure of solar heat utilization system
JP2020153637A (en) * 2019-03-22 2020-09-24 高砂熱学工業株式会社 Heat pump system and control method for heat pump system
CN112197324A (en) * 2020-11-10 2021-01-08 吉林省新生建筑工程公司 Indoor overhead hot-water heating heat supply temperature regulating system based on building dismounting-free template
US20230341134A1 (en) * 2022-04-26 2023-10-26 Emerson Climate Technologies, Inc. Combined Cooling, Heating, and Power System

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9598808B2 (en) 2011-10-12 2017-03-21 Whirlpool Corporation Laundry treating appliance with method to detect the type and size of a load

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236342A (en) * 1975-09-17 1977-03-19 Naonobu Ogawa Panel-type water heater applying solar heat
JPS52121834A (en) * 1976-04-07 1977-10-13 Hitachi Plant Eng & Constr Co Ltd Heat collector
JPS5717262Y2 (en) * 1977-06-02 1982-04-10
JPS5755991B2 (en) * 1980-08-20 1982-11-27
JPS57193152U (en) * 1981-05-30 1982-12-07
JPS5979772U (en) * 1982-11-17 1984-05-30 松下電器産業株式会社 heat collection device
JPS59217451A (en) * 1983-05-25 1984-12-07 Matsushita Electric Ind Co Ltd Heat collector utilizing solar heat
JPS6086859U (en) * 1983-11-21 1985-06-14 株式会社東芝 Solar heat collector plate structure
JPS6166050A (en) * 1984-09-06 1986-04-04 Sanyo Electric Co Ltd Solar heat collecting device
JPS61153463A (en) * 1984-12-27 1986-07-12 松下電器産業株式会社 Solar-heat utilizing water heater
JPS61208472A (en) * 1985-03-12 1986-09-16 松下電器産業株式会社 Solar-heat utilizing water heater
JPH01134164A (en) * 1987-11-19 1989-05-26 Matsushita Electric Ind Co Ltd Solar heater utilizing hot water feeding device
JPH0332708B2 (en) * 1984-12-27 1991-05-14 Matsushita Electric Ind Co Ltd
JP2000130859A (en) * 1998-10-23 2000-05-12 Sekisui Chem Co Ltd Solar module mounting structure, roof panel, and roof unit
JP2005076983A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Air conditioning system
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236342A (en) * 1975-09-17 1977-03-19 Naonobu Ogawa Panel-type water heater applying solar heat
JPS52121834A (en) * 1976-04-07 1977-10-13 Hitachi Plant Eng & Constr Co Ltd Heat collector
JPS5717262Y2 (en) * 1977-06-02 1982-04-10
JPS5755991B2 (en) * 1980-08-20 1982-11-27
JPS57193152U (en) * 1981-05-30 1982-12-07
JPS5979772U (en) * 1982-11-17 1984-05-30 松下電器産業株式会社 heat collection device
JPS59217451A (en) * 1983-05-25 1984-12-07 Matsushita Electric Ind Co Ltd Heat collector utilizing solar heat
JPS6086859U (en) * 1983-11-21 1985-06-14 株式会社東芝 Solar heat collector plate structure
JPS6166050A (en) * 1984-09-06 1986-04-04 Sanyo Electric Co Ltd Solar heat collecting device
JPS61153463A (en) * 1984-12-27 1986-07-12 松下電器産業株式会社 Solar-heat utilizing water heater
JPH0332708B2 (en) * 1984-12-27 1991-05-14 Matsushita Electric Ind Co Ltd
JPS61208472A (en) * 1985-03-12 1986-09-16 松下電器産業株式会社 Solar-heat utilizing water heater
JPH01134164A (en) * 1987-11-19 1989-05-26 Matsushita Electric Ind Co Ltd Solar heater utilizing hot water feeding device
JP2000130859A (en) * 1998-10-23 2000-05-12 Sekisui Chem Co Ltd Solar module mounting structure, roof panel, and roof unit
JP2005076983A (en) * 2003-09-01 2005-03-24 Mitsubishi Electric Corp Air conditioning system
JP2005241148A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Heat pump system utilizing solar light and its operation controlling method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101452272B1 (en) * 2013-08-28 2014-10-22 김영진 Aluminium condenser header for join-pipe of manufacture method
JP2020143889A (en) * 2019-03-08 2020-09-10 トヨタホーム株式会社 Installation structure of solar heat utilization system
JP7358705B2 (en) 2019-03-08 2023-10-11 トヨタホーム株式会社 Installation structure of solar heat utilization system
JP2020153637A (en) * 2019-03-22 2020-09-24 高砂熱学工業株式会社 Heat pump system and control method for heat pump system
JP7324602B2 (en) 2019-03-22 2023-08-10 高砂熱学工業株式会社 HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
CN112197324A (en) * 2020-11-10 2021-01-08 吉林省新生建筑工程公司 Indoor overhead hot-water heating heat supply temperature regulating system based on building dismounting-free template
CN112197324B (en) * 2020-11-10 2024-02-23 吉林省新生建筑工程公司 Indoor upper water heating and heat supply temperature regulating system based on building dismantling-free template
US20230341134A1 (en) * 2022-04-26 2023-10-26 Emerson Climate Technologies, Inc. Combined Cooling, Heating, and Power System

Also Published As

Publication number Publication date
JP5329289B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
KR101084569B1 (en) Hybrid hot water supplying system using solar collector and heat pump type air conditioner
KR102161125B1 (en) Intelligent dual heat exchanging type heat pump system
WO2010024553A2 (en) Heat pump system
KR101218546B1 (en) Heat pump system
JP5329289B2 (en) Solar-powered heat pump hot water supply system
US4352272A (en) Heat pump system
KR101333143B1 (en) The regenrative air conditioning apparatust
JP2008064372A (en) Heat exchanger type heat storage system
JP2008157483A (en) Photovoltaic heat pump system
CN101280941A (en) Double-cold source heat pump centralized type air conditioner device
CN109520052B (en) Renewable energy source heat pump system suitable for energy-saving reconstruction of existing residential building
JP3036634B1 (en) District heating and cooling system with distributed heat pump device
CN202254480U (en) Multifunctional water-heating air-conditioning system
CN201396872Y (en) Energy-saving full-automatic cold and hot water central air conditioner system
JP2008164237A (en) Heat pump system
WO2013061473A1 (en) Hot-water supply and air-conditioning device
CN110360769B (en) Heat pump system with phase-change energy tower and heat exchange method thereof
CN106705203B (en) A kind of family heat-pipe radiating apparatus compound using heat pump and electric heating
JP2009250555A (en) Hybrid air conditioning system using underground heat
CN110360852B (en) Phase-change energy tower and heat exchange method thereof
CN111750418A (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system and method
CN110762890A (en) Refrigerating unit with cold and hot recovery function
CN212961846U (en) Heat pipe type photovoltaic photo-thermal module-heat pump-phase change material coupling system
US20230349568A1 (en) Energy saving conditioner and heat supply method
JPS5986846A (en) Hot water supply device of heat pump type

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150