JP2005098635A - Refrigeration cycle - Google Patents

Refrigeration cycle Download PDF

Info

Publication number
JP2005098635A
JP2005098635A JP2003334770A JP2003334770A JP2005098635A JP 2005098635 A JP2005098635 A JP 2005098635A JP 2003334770 A JP2003334770 A JP 2003334770A JP 2003334770 A JP2003334770 A JP 2003334770A JP 2005098635 A JP2005098635 A JP 2005098635A
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
accumulator
internal heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003334770A
Other languages
Japanese (ja)
Inventor
Kenji Iijima
健次 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Thermal Systems Japan Corp
Original Assignee
Zexel Valeo Climate Control Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zexel Valeo Climate Control Corp filed Critical Zexel Valeo Climate Control Corp
Priority to JP2003334770A priority Critical patent/JP2005098635A/en
Priority to EP04022914A priority patent/EP1519127A1/en
Publication of JP2005098635A publication Critical patent/JP2005098635A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compressor (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigeration cycle capable of preventing the increase of pressure loss of an internal heat exchanger, reducing the dimension and weight of necessary components, and reducing the cost in constructing a component for preventing the rise in a refrigerant discharge temperature from a compressor. <P>SOLUTION: This refrigeration cycle comprising the compressor 2 for rising a pressure of the refrigerant, a radiator 3 for cooling the refrigerant compressed by the compressor, an expansion device 4 for decompressing the refrigerant cooled by the radiator 3, an evaporator 5 for evaporating the refrigerant decompressed by the expansion device 4, an accumulator 6 for performing the gas/liquid separation of the refrigerant passed through the evaporator 5 and separating the oil in the refrigerant, and the internal heat exchanger 7 performing the heat exchange between the low-pressure refrigerant guided from the accumulator 6 to the compressor 2 and the high-pressure refrigerant guided from the radiator 3 to the expansion device, is provided with a recovering passage 10 for recovering the liquid refrigerant or the oil in the accumulator 6 between the internal heat exchanger 7 and the compressor 2 while bypassing the internal heat exchanger 7, and an adjustment valve 11 for adjusting the recovering quantity through the recovering passage 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、二酸化炭素(CO2 ) などの超臨界流体が冷媒として用いられる冷凍サイクルに関する。 The present invention relates to a refrigeration cycle in which a supercritical fluid such as carbon dioxide (CO 2 ) is used as a refrigerant.

この種の冷凍サイクルにおいては、圧縮機から吐出する冷媒の温度が高負荷時において非常に高くなるので、冷凍サイクルを構成する各部材の耐久性を著しく損なう恐れがある。特に、ゴム材や樹脂材にあっては、耐久性を確保できる許容温度が他の部材に比べて低いことから、高負荷時になると、吐出冷媒温度がこの許容温度を上回り、破損するなどの恐れが生じる。   In this type of refrigeration cycle, the temperature of the refrigerant discharged from the compressor becomes very high when the load is high, and the durability of each member constituting the refrigeration cycle may be significantly impaired. In particular, in rubber materials and resin materials, the allowable temperature at which durability can be ensured is lower than that of other members. Therefore, when the load is high, the discharge refrigerant temperature will exceed this allowable temperature and may be damaged. Occurs.

また、二酸化炭素などを冷媒とする超臨界蒸気圧縮式冷凍サイクルにおいては、冷房能力を増大させる目的や圧縮機による液圧縮を防止する目的で放熱器を経た高圧冷媒と圧縮機へ吸入される低圧冷媒とを熱交換させる内部熱交換器が設けられる。   In a supercritical vapor compression refrigeration cycle using carbon dioxide or the like as a refrigerant, high-pressure refrigerant passed through a radiator and low-pressure sucked into the compressor for the purpose of increasing cooling capacity or preventing liquid compression by the compressor. An internal heat exchanger for exchanging heat with the refrigerant is provided.

このため、従来においては、特許文献1に示されるように、アキュムレータで分離された液冷媒やオイルを内部熱交換器の入口側に回収し、圧縮機の吸入冷媒の過熱度が過昇するのを抑えるようにしたものや、特許文献2及び3に示されるように、アキュムレータ内のガス冷媒を内部熱交換器の出口側と圧縮機の吸入側との間に回収するもの等が提案されている。
特開2002−228282号公報 特開平11−193967号公報 特開平11−201568号公報
For this reason, conventionally, as shown in Patent Document 1, the liquid refrigerant and oil separated by the accumulator are collected at the inlet side of the internal heat exchanger, and the superheat degree of the refrigerant sucked in the compressor is excessively increased. And those that collect the gas refrigerant in the accumulator between the outlet side of the internal heat exchanger and the suction side of the compressor, as shown in Patent Documents 2 and 3, etc. Yes.
JP 2002-228282 A JP 11-193967 A JP 11-151568 A

しかしながら、特許文献1の構成にあっては、エバポレータで吸熱された冷媒にアキュムレータ内の冷えた液冷媒やオイルが混合されるので、圧縮機の吸入冷媒温度を低下させ、引いては圧縮機の吐出冷媒温度を低下させることが可能となるが、液冷媒やオイルは内部熱交換器を通過することになるので、内部熱交換器での圧力損失が増加するという不都合がある。   However, in the configuration of Patent Document 1, since the liquid refrigerant or oil cooled in the accumulator is mixed with the refrigerant absorbed by the evaporator, the intake refrigerant temperature of the compressor is lowered, and the Although the discharge refrigerant temperature can be lowered, the liquid refrigerant and oil pass through the internal heat exchanger, so there is a disadvantage that the pressure loss in the internal heat exchanger increases.

また、特許文献2及び3の構成にあっては、アキュムレータ内のガス冷媒を内部熱交換器を迂回させて供給し、内部熱交換器から流出したガス冷媒と混合させるようにしているので、ガス冷媒を効果的に回収するためには、迂回通路の配管径や回収量を調節する調整弁を大きくしなければならず、小型化、軽量化、及び低コスト化の要請に反するものであった。   In the configurations of Patent Documents 2 and 3, the gas refrigerant in the accumulator is supplied by bypassing the internal heat exchanger and mixed with the gas refrigerant flowing out of the internal heat exchanger. In order to effectively collect the refrigerant, the adjustment valve for adjusting the pipe diameter of the bypass passage and the amount to be collected had to be enlarged, which was against the demand for miniaturization, weight reduction, and cost reduction. .

そこで、この発明においては、圧縮機の吐出冷媒温度の上昇を防止する構成において、内部熱交換器の圧損の増加を防ぎ、また、かかる構成を構築する上で必要となるコンポーネントの小型化、軽量化、低コスト化を図ることが可能な冷凍サイクルを提供することを主たる課題としている。   Therefore, in the present invention, in the configuration for preventing the rise in the refrigerant discharge refrigerant temperature, the increase in pressure loss of the internal heat exchanger is prevented, and the size and weight of components required for constructing such a configuration are reduced. The main challenge is to provide a refrigeration cycle that can be reduced in cost and cost.

上記課題を達成するために、この発明に係る冷凍サイクルは、冷媒を昇圧する圧縮機と、前記圧縮機で圧縮された冷媒を冷却する放熱器と、前記放熱器により冷却された冷媒を減圧する膨張装置と、前記膨張装置で減圧された冷媒を蒸発する蒸発器と、前記蒸発器を経た冷媒を気液分離すると共に冷媒中のオイルを分離するアキュムレータと、前記アキュムレータから前記圧縮機へ導かれる低圧冷媒と前記放熱器から前記膨張装置へ導かれる高圧冷媒とを熱交換させる内部熱交換器とを有する冷凍サイクルにおいて、前記アキュムレータ内の液冷媒又はオイルを前記内部熱交換器を迂回させて該内部熱交換器と圧縮機との間に回収可能とする回収通路と、この回収通路を介して回収される前記液冷媒又はオイルの量を調節可能とする調整弁とを設けたことを特徴としている(請求項1)。   To achieve the above object, a refrigeration cycle according to the present invention includes a compressor that boosts a refrigerant, a radiator that cools the refrigerant compressed by the compressor, and a refrigerant that is cooled by the radiator. An expansion device, an evaporator that evaporates the refrigerant decompressed by the expansion device, an accumulator that separates the refrigerant that has passed through the evaporator and separates oil in the refrigerant, and that is led from the accumulator to the compressor In a refrigeration cycle having a low-pressure refrigerant and an internal heat exchanger for exchanging heat between the low-pressure refrigerant and the high-pressure refrigerant guided from the radiator to the expansion device, the liquid refrigerant or oil in the accumulator bypasses the internal heat exchanger and A recovery passage that can be recovered between the internal heat exchanger and the compressor, and an adjustment valve that can adjust the amount of the liquid refrigerant or oil recovered through the recovery passage; It is characterized by comprising (claim 1).

したがって、アキュムレータ内で分離された液冷媒又はオイルを内部熱交換器と圧縮機との間に回収して内部熱交換器を通過したガス冷媒と混合させるようにしたので、圧縮機に吸入される冷媒温度を下げることが可能となり、引いては圧縮機の吐出冷媒温度を低下させることが可能となる。また、アキュムレータ内で分離された液冷媒又はオイルを内部熱交換器をバイパスさせて内部熱交換器と圧縮機との間に回収するようにしたので、内部熱交換器での圧損を避けることが可能となり、また、回収通路を介して液冷媒やオイルが回収されるので、回収通路の配管径をガス冷媒を通過させる場合よりも小さくすることが可能となり、小型、軽量化を図ることが可能となる。   Therefore, the liquid refrigerant or oil separated in the accumulator is collected between the internal heat exchanger and the compressor and mixed with the gas refrigerant that has passed through the internal heat exchanger, so that it is sucked into the compressor. It becomes possible to lower the refrigerant temperature and, in turn, lower the refrigerant discharge refrigerant temperature. Moreover, the liquid refrigerant or oil separated in the accumulator is recovered between the internal heat exchanger and the compressor by bypassing the internal heat exchanger, so that pressure loss in the internal heat exchanger can be avoided. In addition, since liquid refrigerant and oil are recovered through the recovery passage, the pipe diameter of the recovery passage can be made smaller than when the gas refrigerant is passed, and the size and weight can be reduced. It becomes.

上述した構成は、圧縮機の吐出冷媒温度を検知する吐出冷媒温度センサと、吐出冷媒温度センサによって検出された吐出冷媒温度に応じて調整弁を制御する制御手段とを設けて具体化してもよく(請求項2)、外気温、サイクル内の圧力、室内温度等に基づき、サイクル負荷が高く吐出温度が高くなると予測される場合に調整弁を制御する制御手段を設けて具体化してもよい(請求項3)。さらに、冷凍サイクルの軽量、小型化、低コストを実現するために、アキュムレータ内部に内部熱交換器と調整弁とを内蔵させるようにしてもよい(請求項4)。
尚、このような上述したサイクル構成は、圧縮機の吐出冷媒温度が高負荷時において非常に高くなる二酸化炭素を冷媒とする超臨界蒸気圧縮式冷凍サイクルに適している(請求項5)。
The above-described configuration may be embodied by providing a discharge refrigerant temperature sensor that detects the discharge refrigerant temperature of the compressor and a control unit that controls the adjustment valve according to the discharge refrigerant temperature detected by the discharge refrigerant temperature sensor. (Claim 2) Based on the outside air temperature, the pressure in the cycle, the room temperature, and the like, it may be embodied by providing a control means for controlling the regulating valve when the cycle load is predicted to be high and the discharge temperature becomes high ( Claim 3). Furthermore, in order to realize light weight, downsizing, and low cost of the refrigeration cycle, an internal heat exchanger and a regulating valve may be built in the accumulator.
In addition, such a cycle configuration as described above is suitable for a supercritical vapor compression refrigeration cycle using carbon dioxide as a refrigerant, which has a very high discharge refrigerant temperature when the load is high.

以上述べたように、この発明によれば、アキュムレータから圧縮機へ導かれる低圧冷媒と放熱器から膨張装置へ導かれる高圧冷媒とを熱交換させる内部熱交換器を備えた冷凍サイクルにおいて、アキュムレータ内の液冷媒又はオイルを回収通路を介して内部熱交換器を迂回させ、内部熱交換器と圧縮機との間に回収可能とし、この回収通路を介して回収される液冷媒又はオイルの量を調整弁によって調節するようにしたので、圧縮機の吸入冷媒温度を下げることが可能となり、引いては吐出冷媒温度を下げることが可能となる。また、内部熱交換器での圧損の増加を避けることができると共に回収通路の配管径をガス冷媒を通過させる場合よりも小さく設定することが可能となるので、調整弁の小型化が図れ、冷凍サイクルの軽量化、小型化、低コスト化を図ることが可能となる。   As described above, according to the present invention, in the refrigeration cycle including the internal heat exchanger for exchanging heat between the low-pressure refrigerant led from the accumulator to the compressor and the high-pressure refrigerant led from the radiator to the expansion device, The liquid refrigerant or oil is bypassed through the internal heat exchanger via the recovery passage, and can be recovered between the internal heat exchanger and the compressor, and the amount of liquid refrigerant or oil recovered through the recovery passage is reduced. Since the adjustment is made by the adjusting valve, the intake refrigerant temperature of the compressor can be lowered, and the discharge refrigerant temperature can be lowered. In addition, an increase in pressure loss in the internal heat exchanger can be avoided and the pipe diameter of the recovery passage can be set smaller than when the gas refrigerant is allowed to pass. It becomes possible to reduce the weight, size and cost of the cycle.

以下、この発明の最良の実施形態を添付図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS The best embodiment of the present invention will be described below with reference to the accompanying drawings.

図1において、冷凍サイクル1は、冷媒を昇圧する圧縮機2と、圧縮機2で圧縮された冷媒を冷却する放熱器3と、放熱器3により冷却された冷媒を減圧する膨張装置4と、膨張装置4で減圧された冷媒を蒸発気化する蒸発器5と、蒸発器5を経た冷媒を気液分離すると共に冷媒中に混在しているオイル(潤滑油)を分離するアキュムレータ6と、アキュムレータ6から圧縮機2へ導かれる低圧冷媒と放熱器3から膨張装置4へ導かれる高圧冷媒とを熱交換させる内部熱交換器7とを有して構成されている。   In FIG. 1, a refrigeration cycle 1 includes a compressor 2 that boosts the refrigerant, a radiator 3 that cools the refrigerant compressed by the compressor 2, an expansion device 4 that decompresses the refrigerant cooled by the radiator 3, An evaporator 5 for evaporating and evaporating the refrigerant decompressed by the expansion device 4, an accumulator 6 for separating the refrigerant that has passed through the evaporator 5 into gas and liquid and separating oil (lubricating oil) mixed in the refrigerant, and an accumulator 6 And an internal heat exchanger 7 for exchanging heat between the low-pressure refrigerant led to the compressor 2 and the high-pressure refrigerant led from the radiator 3 to the expansion device 4.

即ち、冷凍サイクル1は、圧縮機2の吐出側が放熱器3を介して内部熱交換器7の高圧流路7aに接続され、この高圧流路7aの流出側が膨張装置4に接続されている。また、膨張装置4の流出側が蒸発器5を介してアキュムレータ6の流入口に接続され、アキュムレータ6の流出口が内部熱交換器7の低圧流路7bを介して圧縮機2の吸入側に接続されている。したがって、圧縮機2の吐出側から放熱器3及び高圧流路7aを介して膨張装置4に至る経路により高圧ライン8が構成され、膨張装置4の流出側から蒸発器5、アキュムレータ6、及び低圧流路7bを介して圧縮機2に至る経路により低圧ライン9が構成されている。   That is, in the refrigeration cycle 1, the discharge side of the compressor 2 is connected to the high-pressure channel 7 a of the internal heat exchanger 7 via the radiator 3, and the outflow side of the high-pressure channel 7 a is connected to the expansion device 4. Further, the outflow side of the expansion device 4 is connected to the inlet of the accumulator 6 via the evaporator 5, and the outlet of the accumulator 6 is connected to the suction side of the compressor 2 via the low-pressure channel 7 b of the internal heat exchanger 7. Has been. Therefore, the high pressure line 8 is constituted by a path from the discharge side of the compressor 2 to the expansion device 4 via the radiator 3 and the high pressure flow path 7a, and the evaporator 5, the accumulator 6, and the low pressure from the outflow side of the expansion device 4. A low-pressure line 9 is constituted by a path reaching the compressor 2 through the flow path 7b.

上述した冷凍サイクル1は、冷媒として二酸化炭素(CO2 )が用いられており、圧縮機2で昇圧された冷媒は、高温高圧の超臨界圧の冷媒として放熱器3に入り、ここで放熱して冷却される。その後、内部熱交換器7の高圧流路7aに入り、アキュムレータ6から流出する低温のガス冷媒と熱交換して更に冷却され、液化されることなく膨張装置4へ送られる。そして、この膨張装置4において減圧されて低温低圧の湿り蒸気となり、蒸発器5においてここを通過する空気と熱交換して蒸発気化し、気液が混合する二相冷媒としてアキュムレータ6に流入される。 In the refrigeration cycle 1 described above, carbon dioxide (CO 2 ) is used as a refrigerant, and the refrigerant whose pressure has been increased by the compressor 2 enters the radiator 3 as a high-temperature and high-pressure supercritical refrigerant and radiates heat here. And cooled. Thereafter, the refrigerant enters the high-pressure flow path 7a of the internal heat exchanger 7, exchanges heat with the low-temperature gas refrigerant flowing out of the accumulator 6, is further cooled, and is sent to the expansion device 4 without being liquefied. Then, the pressure is reduced in the expansion device 4 to become low-temperature and low-pressure wet steam, and in the evaporator 5, heat is exchanged with the air passing therethrough to evaporate and flow into the accumulator 6 as a two-phase refrigerant in which gas and liquid are mixed. .

アキュムレータ6に流入された冷媒は、ここで気液が分離されると共に冷媒中に混在しているオイルが分離され、分離された液冷媒とオイルはアキュムレータ内に残留し、ガス冷媒は内部熱交換器7の低圧流路7bに送られ、ここで放熱器3から流出する高温冷媒と熱交換してさらに吸熱し、完全にガス化された状態で圧縮機2へ戻される。   The refrigerant flowing into the accumulator 6 is separated from gas and liquid and oil mixed in the refrigerant. The separated liquid refrigerant and oil remain in the accumulator, and the gas refrigerant exchanges heat internally. The heat is exchanged with the high-temperature refrigerant flowing out from the radiator 3 to further absorb heat and returned to the compressor 2 in a completely gasified state.

ところで、本構成においては、図2にも示されるように、上述した冷凍サイクル1に対して、一端がアキュムレータ6の底部に開口し、他端が内部熱交換器7の低圧流路7bと圧縮機2の吸入側との間に接続された回収通路10が設けられ、この回収通路10の開度を電磁弁からなる調整弁11によって調節するようにしている。   By the way, in this structure, as FIG. 2 also shows, with respect to the refrigerating cycle 1 mentioned above, one end opens to the bottom part of the accumulator 6, and the other end compresses with the low pressure flow path 7b of the internal heat exchanger 7. A recovery passage 10 connected to the suction side of the machine 2 is provided, and the opening degree of the recovery passage 10 is adjusted by an adjustment valve 11 formed of an electromagnetic valve.

12は、圧縮機2の吐出冷媒温度Tdを検出する吐出冷媒温度センサであり、この吐出冷媒温度センサ12から出力される温度信号は、コントロールユニット13に入力される。このコントロールユニット13は、中央演算装置(CPU)、読出専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、入出力ポート等を備えると共に調整弁11を駆動制御する駆動回路を有して構成され、所定の間隔で実行される図3で示す制御ルーチンによって調整弁11を制御するようにしている。即ち、所定の間隔で吐出冷媒温度Tdを入力し(ステップ50)、入力された吐出冷媒温度Tdが規定温度以上であるか否かを判定し(ステップ52)、規定温度以上であると判定された場合には、吐出冷媒温度Tdが大きいほど調整弁11の開度が大きくなるよう(回収通路10を介して回収されるオイル又は液冷媒の量が多くなるよう)吐出冷媒温度Tdに応じて調整弁11の開度を調整している(ステップ54)。   A discharge refrigerant temperature sensor 12 detects the discharge refrigerant temperature Td of the compressor 2, and a temperature signal output from the discharge refrigerant temperature sensor 12 is input to the control unit 13. The control unit 13 includes a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), an input / output port, and the like, and a drive circuit that drives and controls the regulating valve 11. The control valve 11 is controlled by the control routine shown in FIG. 3 executed at predetermined intervals. That is, the discharge refrigerant temperature Td is input at a predetermined interval (step 50), it is determined whether or not the input discharge refrigerant temperature Td is equal to or higher than a specified temperature (step 52), and it is determined to be equal to or higher than the predetermined temperature. If the discharge refrigerant temperature Td increases, the opening degree of the regulating valve 11 increases (so that the amount of oil or liquid refrigerant recovered through the recovery passage 10 increases) according to the discharge refrigerant temperature Td. The opening degree of the adjusting valve 11 is adjusted (step 54).

したがって、アキュムレータ6内で分離されたオイル20aは、図2に示されるように、液冷媒20bよりも比重が大きいことから液冷媒20bよりも下方に溜まるので、調整弁11によって回収通路10が開状態になると、液冷媒に先駆けて回収通路10を介して内部熱交換器7と圧縮機2との間に回収される。また、アキュムレータ6内のオイル20aが回収された後は、液冷媒20bが回収通路10を介して内部熱交換器7と圧縮機2との間に回収され、内部熱交換器7を通過したガス冷媒と混合されて圧縮機2へ回収されることとなる。このため、内部熱交換器7を通過した低圧ガス冷媒は、高温の高圧ガス冷媒と熱交換するので温度が高められるが、アキュムレータ6内の冷却されたオイル20a又は液冷媒20bと混合することで再び冷却されることになり、圧縮機2の吸入温度を低下させることが可能となる。   Therefore, as shown in FIG. 2, the oil 20a separated in the accumulator 6 has a specific gravity greater than that of the liquid refrigerant 20b, and therefore accumulates below the liquid refrigerant 20b. Therefore, the recovery passage 10 is opened by the regulating valve 11. If it will be in a state, it will be collect | recovered between the internal heat exchanger 7 and the compressor 2 via the collection | recovery channel | path 10 ahead of a liquid refrigerant. Further, after the oil 20a in the accumulator 6 is recovered, the liquid refrigerant 20b is recovered between the internal heat exchanger 7 and the compressor 2 through the recovery passage 10 and passes through the internal heat exchanger 7. It will be mixed with the refrigerant and recovered to the compressor 2. For this reason, the low-pressure gas refrigerant that has passed through the internal heat exchanger 7 exchanges heat with the high-temperature high-pressure gas refrigerant, so that the temperature is raised, but by mixing with the cooled oil 20a or liquid refrigerant 20b in the accumulator 6, It will be cooled again, and the suction temperature of the compressor 2 can be lowered.

以上のメカニズムを図4のモリエル線図に基づき説明すると、回収通路10を有しない従来の構成においては、モリエル線図において、A1→B1→C→D→E→A1と変化するが、本構成においては、回収通路10を介して回収された低温のオイル20a又は液冷媒20bが内部熱交換器7を通過したガス冷媒と混合することになるので、内部熱交換器7によって一旦増加したエンタルピがA1からA2に低下することとなる。したがって、本冷凍サイクルにおいては、回収通路10を介して回収されるオイル10a又は液冷媒10bの有無によって冷凍効果は殆ど変化しないが、圧縮機の吐出側のエンタルピはB1からB2に低下することになる。よって、上述した構成においては、圧縮機2の吸入冷媒温度を低下させ、引いては圧縮機2の吐出冷媒温度を低下させることが可能となる。   The above mechanism will be described with reference to the Mollier diagram of FIG. 4. In the conventional configuration without the recovery passage 10, the A1 → B1 → C → D → E → A1 changes in the Mollier diagram. , The low-temperature oil 20a or liquid refrigerant 20b recovered through the recovery passage 10 is mixed with the gas refrigerant that has passed through the internal heat exchanger 7, so that the enthalpy once increased by the internal heat exchanger 7 is increased. It will fall from A1 to A2. Therefore, in this refrigeration cycle, the refrigeration effect hardly changes depending on the presence or absence of the oil 10a or the liquid refrigerant 10b recovered through the recovery passage 10, but the enthalpy on the discharge side of the compressor is reduced from B1 to B2. Become. Therefore, in the above-described configuration, the intake refrigerant temperature of the compressor 2 can be lowered, and thus the discharge refrigerant temperature of the compressor 2 can be lowered.

実際に、吐出冷媒温度Tdが高くなる条件でアキュムレータ6からのオイルを内部熱交換器7をバイパスさせて内部熱交換器と圧縮機との間に回収し、吐出冷媒温度の変化をみると、図5に示されるように、オイル回収量が多いほど吐出冷媒温度を低くすることが可能であった。また、その時の冷房能力の変化は、図6に示されるように、オイル回収量に拘わらずほぼ同等に維持されることが確認された。   Actually, the oil from the accumulator 6 is bypassed through the internal heat exchanger 7 under the condition that the discharged refrigerant temperature Td becomes high, and is recovered between the internal heat exchanger and the compressor. As shown in FIG. 5, it was possible to lower the discharged refrigerant temperature as the oil recovery amount increased. Further, it was confirmed that the change in the cooling capacity at that time was maintained almost equal regardless of the oil recovery amount, as shown in FIG.

したがって、上述の構成においては、圧縮機の吐出冷媒温度Tdの上昇によるコンポーネントの破損を防止することが可能となり、また、圧縮機2の吐出冷媒温度を低下させるために、アキュムレータ6内のオイル20a又は液冷媒20bを内部熱交換器7をバイパスさせて回収するようにしたので、内部熱交換器7にオイルや液冷媒が流れることによる圧損の増加を避けることが可能となる。さらに、回収通路10を介して流れる流体がオイル又は液冷媒であるので、回収通路10を構成する配管をガス冷媒を流す配管に比べて径を小さくすることが可能となり、また、回収通路10に設けられる調整弁11も小型にすることが可能となる。このため、コンポーネントの小型化、軽量化、低コスト化を図ることが可能となる。   Therefore, in the above-described configuration, it is possible to prevent damage to components due to an increase in the discharge refrigerant temperature Td of the compressor, and in order to reduce the discharge refrigerant temperature of the compressor 2, the oil 20a in the accumulator 6 is used. Alternatively, since the liquid refrigerant 20b is recovered by bypassing the internal heat exchanger 7, an increase in pressure loss due to the flow of oil or liquid refrigerant to the internal heat exchanger 7 can be avoided. Furthermore, since the fluid flowing through the recovery passage 10 is oil or liquid refrigerant, it is possible to reduce the diameter of the pipe constituting the recovery passage 10 compared to the pipe through which the gas refrigerant flows. The provided regulating valve 11 can also be reduced in size. For this reason, it is possible to reduce the size, weight, and cost of the component.

尚、上述の構成においては、アキュムレータ6の下部に回収通路10を接続してアキュムレータ6内のオイル20a又は液冷媒20bを回収するようにしたが、アキュムレータ6内のオイル又は液冷媒を回収する構成としては、上述した構成に限定されず、回収通路10を構成する配管をアキュムレータ内に挿入し、この挿入された部分に、オイル回収用又は液冷媒回収用の調整弁を設けるようにしてもよい。   In the above-described configuration, the recovery passage 10 is connected to the lower portion of the accumulator 6 to recover the oil 20a or liquid refrigerant 20b in the accumulator 6. However, the oil or liquid refrigerant in the accumulator 6 is recovered. However, the present invention is not limited to the above-described configuration, and a pipe constituting the recovery passage 10 may be inserted into the accumulator, and an adjustment valve for oil recovery or liquid refrigerant recovery may be provided in the inserted portion. .

また、アキュムレータ6に内部熱交換器7を内蔵させ、オイル又は液冷媒の回収用通路と回収量を調節する調整弁とをアキュムレータの内部に設けるようにしてもよい。このような構成においては、アキュムレータ6の外部に新たな配管を増設する必要がないので、冷凍サイクル1の軽量化、小型化、低コスト化が実現しやすいものとなる。   Further, the internal heat exchanger 7 may be built in the accumulator 6, and an oil or liquid refrigerant recovery passage and a regulating valve for adjusting the recovery amount may be provided inside the accumulator. In such a configuration, it is not necessary to add a new pipe outside the accumulator 6, so that the refrigeration cycle 1 can be easily reduced in weight, size, and cost.

さらに、上述の構成においては、吐出冷媒温度が所定値以上の場合に回収量を調節するようにしたが、外気温、サイクル内の圧力、室内温度等に基づき、サイクル負荷が高く吐出温度が高くなると予測される場合に前記調整弁を制御して回収量を調節するようにしてもよい。具体的には、室内温度や外気又は放熱器3の入口空気温度が所定温度以上となった場合に回収量を調節するようにしても、蒸発器5の出口空気温度又は低圧ラインの圧力が所定値以上となった場合に回収量を調節するようにしても、空調ユニットの送風量が所定風量以上となった場合に回収量を調節するようにしてもよい。   Further, in the above-described configuration, the recovery amount is adjusted when the discharge refrigerant temperature is equal to or higher than the predetermined value. If it is predicted that this will occur, the amount of recovery may be adjusted by controlling the adjustment valve. Specifically, the outlet air temperature of the evaporator 5 or the pressure of the low-pressure line is predetermined even if the recovery amount is adjusted when the indoor temperature, the outside air, or the inlet air temperature of the radiator 3 becomes equal to or higher than a predetermined temperature. The recovery amount may be adjusted when the value becomes equal to or greater than the value, or the recovery amount may be adjusted when the airflow rate of the air conditioning unit becomes equal to or greater than a predetermined air volume.

図1は、本発明に係る冷凍サイクルの全体構成例を示す図である。FIG. 1 is a diagram showing an example of the overall configuration of a refrigeration cycle according to the present invention. 図2は、図1のアキュムレータと内部熱交換器の付近を示す拡大図である。FIG. 2 is an enlarged view showing the vicinity of the accumulator and the internal heat exchanger of FIG. 図3は、図1のコントロールユニットによる制御動作例を示すフローチャートである。FIG. 3 is a flowchart showing an example of a control operation by the control unit of FIG. 図4は、本冷凍サイクルの作動メカニズムを説明するモリエル線図である。FIG. 4 is a Mollier diagram illustrating the operating mechanism of the refrigeration cycle. 図5は、アキュムレータからのオイル回収量と圧縮機の吐出冷媒温度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the amount of oil recovered from the accumulator and the refrigerant discharge refrigerant temperature. 図6は、アキュムレータからのオイル回収量と冷凍能力との関係を示すグラフである。FIG. 6 is a graph showing the relationship between the amount of oil recovered from the accumulator and the refrigeration capacity.

符号の説明Explanation of symbols

1 冷凍サイクル
2 圧縮機
3 放熱器
4 膨張装置
5 蒸発器
6 アキュムレータ
7 内部熱交換器
10 回収通路
11 調整弁
12 吐出冷媒温度センサ
DESCRIPTION OF SYMBOLS 1 Refrigeration cycle 2 Compressor 3 Radiator 4 Expansion device 5 Evaporator 6 Accumulator 7 Internal heat exchanger 10 Recovery passage 11 Adjustment valve 12 Discharge refrigerant temperature sensor

Claims (5)

冷媒を昇圧する圧縮機と、前記圧縮機で圧縮された冷媒を冷却する放熱器と、前記放熱器により冷却された冷媒を減圧する膨張装置と、前記膨張装置で減圧された冷媒を蒸発する蒸発器と、前記蒸発器を経た冷媒を気液分離すると共に冷媒中のオイルを分離するアキュムレータと、前記アキュムレータから前記圧縮機へ導かれる低圧冷媒と前記放熱器から前記膨張装置へ導かれる高圧冷媒とを熱交換させる内部熱交換器とを有する冷凍サイクルにおいて、
前記アキュムレータ内の液冷媒又はオイルを前記内部熱交換器を迂回させて該内部熱交換器と圧縮機との間に回収可能とする回収通路と、
この回収通路を介して回収される前記液冷媒又はオイルの量を調節可能とする調整弁とを設けたことを特徴とする冷凍サイクル。
A compressor for boosting the refrigerant; a radiator for cooling the refrigerant compressed by the compressor; an expansion device for decompressing the refrigerant cooled by the radiator; and an evaporation for evaporating the refrigerant decompressed by the expansion device An accumulator for separating the refrigerant that has passed through the evaporator from gas and liquid, and separating oil in the refrigerant, a low-pressure refrigerant that is led from the accumulator to the compressor, and a high-pressure refrigerant that is led from the radiator to the expansion device In a refrigeration cycle having an internal heat exchanger for exchanging heat,
A recovery passage that allows the liquid refrigerant or oil in the accumulator to be bypassed the internal heat exchanger and recovered between the internal heat exchanger and the compressor;
A refrigeration cycle, comprising: an adjustment valve capable of adjusting an amount of the liquid refrigerant or oil recovered through the recovery passage.
前記圧縮機の吐出冷媒温度を検知する吐出冷媒温度センサと、
前記吐出冷媒温度センサによって検出された吐出冷媒温度に応じて前記調整弁を制御する制御手段とを具備することを特徴とする請求項1記載の冷凍サイクル。
A discharge refrigerant temperature sensor for detecting a discharge refrigerant temperature of the compressor;
2. The refrigeration cycle according to claim 1, further comprising control means for controlling the regulating valve in accordance with a discharge refrigerant temperature detected by the discharge refrigerant temperature sensor.
外気温、サイクル内の圧力、室内温度等に基づき、サイクル負荷が高く吐出温度が高くなると予測される場合に前記調整弁を制御する制御手段を具備することを特徴とする請求項1記載の冷凍サイクル。 2. The refrigeration according to claim 1, further comprising control means for controlling the regulating valve when it is predicted that the cycle load is high and the discharge temperature is high based on the outside air temperature, the pressure in the cycle, the room temperature, and the like. cycle. 前記アキュムレータに前記内部熱交換器と前記調整弁とを内蔵させたことを特徴とする請求項1記載の冷凍サイクル。 The refrigeration cycle according to claim 1, wherein the internal heat exchanger and the regulating valve are built in the accumulator. 前記冷凍サイクルは、二酸化炭素を冷媒とする超臨界蒸気圧縮式冷凍サイクルである請求項7記載の冷凍サイクル。 The refrigeration cycle according to claim 7, wherein the refrigeration cycle is a supercritical vapor compression refrigeration cycle using carbon dioxide as a refrigerant.
JP2003334770A 2003-09-26 2003-09-26 Refrigeration cycle Pending JP2005098635A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003334770A JP2005098635A (en) 2003-09-26 2003-09-26 Refrigeration cycle
EP04022914A EP1519127A1 (en) 2003-09-26 2004-09-27 Cooling cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003334770A JP2005098635A (en) 2003-09-26 2003-09-26 Refrigeration cycle

Publications (1)

Publication Number Publication Date
JP2005098635A true JP2005098635A (en) 2005-04-14

Family

ID=34191511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003334770A Pending JP2005098635A (en) 2003-09-26 2003-09-26 Refrigeration cycle

Country Status (2)

Country Link
EP (1) EP1519127A1 (en)
JP (1) JP2005098635A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139014A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Air conditioner and operation control method for it
JP2017101897A (en) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 Refrigeration cycle device
JP2020085269A (en) * 2018-11-16 2020-06-04 パナソニックIpマネジメント株式会社 Refrigeration cycle device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104075493B (en) * 2013-03-27 2016-08-03 特灵空调系统(中国)有限公司 The controllable compressibility of delivery temperature and delivery temperature control method thereof
GB2539911A (en) * 2015-06-30 2017-01-04 Arctic Circle Ltd Refrigeration apparatus
WO2020063678A1 (en) * 2018-09-25 2020-04-02 杭州三花研究院有限公司 Air conditioning system and control method therefor
DE102020126579A1 (en) 2020-10-09 2022-04-14 Viessmann Climate Solutions Se Method of operating a refrigeration cycle device
US12078397B2 (en) 2020-12-04 2024-09-03 Honeywell International Inc. Surge control subcooling circuit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO890076D0 (en) * 1989-01-09 1989-01-09 Sinvent As AIR CONDITIONING.
JPH1019421A (en) * 1996-07-05 1998-01-23 Nippon Soken Inc Refrigerating cycle and accumulator used for the cycle
US6105386A (en) * 1997-11-06 2000-08-22 Denso Corporation Supercritical refrigerating apparatus
JPH11193967A (en) * 1997-12-26 1999-07-21 Zexel:Kk Refrigerating cycle
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
JP2001235239A (en) * 2000-02-23 2001-08-31 Seiko Seiki Co Ltd Supercritical vapor compressing cycle system
DE10062948C2 (en) * 2000-12-16 2002-11-14 Eaton Fluid Power Gmbh Chiller with controlled refrigerant phase in front of the compressor
JP2002228282A (en) * 2001-01-29 2002-08-14 Matsushita Electric Ind Co Ltd Refrigerating device
US6694763B2 (en) * 2002-05-30 2004-02-24 Praxair Technology, Inc. Method for operating a transcritical refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139014A (en) * 2007-12-06 2009-06-25 Mitsubishi Electric Corp Air conditioner and operation control method for it
JP2017101897A (en) * 2015-12-03 2017-06-08 東芝キヤリア株式会社 Refrigeration cycle device
JP2020085269A (en) * 2018-11-16 2020-06-04 パナソニックIpマネジメント株式会社 Refrigeration cycle device
JP7236606B2 (en) 2018-11-16 2023-03-10 パナソニックIpマネジメント株式会社 refrigeration cycle equipment

Also Published As

Publication number Publication date
EP1519127A1 (en) 2005-03-30

Similar Documents

Publication Publication Date Title
EP1757879B1 (en) Refrigerant cycle apparatus
AU766121B2 (en) High pressure regulation in economized vapor compression cycles
JP6852642B2 (en) Heat pump cycle
JP6292480B2 (en) Refrigeration equipment
JP3925545B2 (en) Refrigeration equipment
JP2007155229A (en) Vapor compression type refrigerating cycle
JP4776438B2 (en) Refrigeration cycle
JP2006343017A (en) Freezer
JP2008032336A (en) Two-stage expansion refrigeration apparatus
JPH11193967A (en) Refrigerating cycle
US20110005269A1 (en) Refrigeration apparatus
JP5484890B2 (en) Refrigeration equipment
JP5473213B2 (en) Air conditioner
JP2011133204A (en) Refrigerating apparatus
JP2005098635A (en) Refrigeration cycle
JP3870951B2 (en) Refrigeration cycle apparatus and control method thereof
US20200103151A1 (en) A vapour compression system with a suction line liquid separator
JP2016205729A (en) Refrigeration cycle device
JP2009180429A (en) Refrigerating device
JP2006145144A (en) Refrigerating cycle device
JP2008096072A (en) Refrigerating cycle device
JP6467682B2 (en) Refrigeration equipment
JP2007163080A (en) Air conditioner
JP2004286322A (en) Refrigerant cycle device
JP2006317024A (en) Refrigerating device