JP2001235239A - Supercritical vapor compressing cycle system - Google Patents

Supercritical vapor compressing cycle system

Info

Publication number
JP2001235239A
JP2001235239A JP2000046045A JP2000046045A JP2001235239A JP 2001235239 A JP2001235239 A JP 2001235239A JP 2000046045 A JP2000046045 A JP 2000046045A JP 2000046045 A JP2000046045 A JP 2000046045A JP 2001235239 A JP2001235239 A JP 2001235239A
Authority
JP
Japan
Prior art keywords
heat exchange
refrigerant
pressure
flow control
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000046045A
Other languages
Japanese (ja)
Inventor
Hiroshi Iijima
博史 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Seiki KK
Original Assignee
Seiko Seiki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Seiki KK filed Critical Seiko Seiki KK
Priority to JP2000046045A priority Critical patent/JP2001235239A/en
Publication of JP2001235239A publication Critical patent/JP2001235239A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/17Control issues by controlling the pressure of the condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2102Temperatures at the outlet of the gas cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Abstract

PROBLEM TO BE SOLVED: To improve a cooling efficiency by suitably heat exchanging a supercritical high pressure vapor phase refrigerant passed through a radiator with a low pressure vapor phase refrigerant separated by an accumulator by an inner heat exchanger 3 and to prevent a rise of a compressor discharge temperature and a rise of a radiator outlet pressure due to excess heat exchanging. SOLUTION: A bypass passage 7 is provided in parallel with a heat exchanger 3b of a low pressure of the inner heat exchanger 3. A vapor phase refrigerant flow rate of the passage 3b of the low pressure side and a vapor phase refrigerant flow rate of the passage 7 are respectively controlled by flow rate control valves 9, 10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、高圧側で凝縮し
ないCO2 等の冷媒を使用するカーエアコン、空調装
置、ヒートポンプ等の超臨界蒸気圧縮サイクル装置に関
する。
BACKGROUND OF THE INVENTION This invention provides a car air conditioner that uses refrigerant of CO 2 or the like, not condense on the high pressure side, the air-conditioning apparatus, a supercritical vapor compression cycle device of the heat pump or the like.

【0002】[0002]

【従来の技術】近年、地球環境の汚染、とりわけ、オゾ
ン層の破壊、地球温暖化を防止するために、カーエアコ
ン等に使用する冷媒として、フロンよりはるかに影響の
少ない炭酸ガス(CO2 )を使用する超臨界蒸気圧縮サ
イクル装置の研究開発が進められている。
2. Description of the Related Art In recent years, in order to prevent pollution of the global environment, in particular, destruction of the ozone layer and global warming, carbon dioxide (CO 2 ), which has much less influence than fluorocarbon, has been used as a refrigerant for car air conditioners and the like. Research and development of a supercritical vapor compression cycle device that uses methane is underway.

【0003】特公平7−18602号公報には、能力を
調整、制御できる超臨界蒸気圧縮サイクル装置が開示さ
れている。この超臨界蒸気圧縮サイクル装置の概要を図
10を参照して説明すると、圧縮機1が冷媒を超臨界状
態に圧縮し、圧縮した冷媒を放熱器2で放熱して冷却
し、内部熱交換器(向流型熱交換器)3の高圧側の熱交
換通路3aに通して更に温度を下げた後、膨張弁4で膨
張させて減圧し、蒸発器5で外部からの吸熱により蒸発
させ、アキュムレータ(液体分離器)6に溜めて気液二
相に分離し、その飽和状態の気相冷媒を内部熱交換器3
の低圧側の熱交換通路3bに通して圧縮機1に戻す。内
部熱交換器3の熱交換により、高圧側の冷媒温度を一層
下げ、冷却能力を向上している。そして、上記特公平7
−18602号公報では、更に、系の冷媒流量を膨張弁
4や別途設けた絞り弁で調整して能力を調整、制御して
いる。
[0003] Japanese Patent Publication No. 7-18602 discloses a supercritical vapor compression cycle device capable of adjusting and controlling the capacity. An outline of this supercritical vapor compression cycle device will be described with reference to FIG. 10. A compressor 1 compresses a refrigerant to a supercritical state, radiates and cools the compressed refrigerant by a radiator 2, and cools the internal heat exchanger. (Counter-flow type heat exchanger) After passing through the heat exchange passage 3a on the high pressure side of 3 to further reduce the temperature, it is expanded by the expansion valve 4 to reduce the pressure, and the evaporator 5 evaporates by heat absorption from the outside. (Liquid Separator) The liquid refrigerant is stored in a liquid separator 6 and separated into a gas-liquid two-phase.
And returns to the compressor 1 through the heat exchange passage 3b on the low pressure side. By the heat exchange of the internal heat exchanger 3, the refrigerant temperature on the high pressure side is further lowered, and the cooling capacity is improved. And the above-mentioned Tokuhei 7
In Japanese Patent No. -18602, the capacity of the system is further adjusted and controlled by adjusting the flow rate of the refrigerant in the system with the expansion valve 4 or a separately provided throttle valve.

【0004】図12のモリエル線図を参照して、図10
の超臨界蒸気圧縮サイクル装置の温度と圧力の関係を説
明すると、圧縮機1はA点からB点へ圧力を上げ、その
際、温度も上昇する。放熱器2では、冷媒の圧力を維持
したまま、B点からC点へ温度を下げる。
Referring to the Mollier diagram of FIG. 12, FIG.
Explaining the relationship between the temperature and the pressure of the supercritical vapor compression cycle device described above, the compressor 1 increases the pressure from point A to point B, and at that time, the temperature also increases. The radiator 2 lowers the temperature from point B to point C while maintaining the pressure of the refrigerant.

【0005】もし、ここで、C点から膨張弁4へ直接冷
媒を送って冷媒を膨張させると、圧力が下がって図12
でC点の真下E' 点へ移動する。次の蒸発器5ではE'
点から飽和蒸気圧線Sとの交点Fまでの吸熱が行われる
ことになる。内部熱交換器3は、その高圧側熱交換通路
3aを通る冷媒をC点から更にD点まで温度降下させ、
E' 点をE点に移動することにより、蒸発器5での吸熱
量をより多くして冷凍効果を増加し、効率を向上する。
[0005] Here, if the refrigerant is expanded by sending the refrigerant directly from the point C to the expansion valve 4, the pressure decreases and the pressure decreases as shown in FIG.
To move to point E 'just below point C. In the next evaporator 5, E '
Heat absorption from the point to the intersection F with the saturated vapor pressure line S is performed. The internal heat exchanger 3 lowers the temperature of the refrigerant passing through the high-pressure side heat exchange passage 3a from point C to point D,
By moving the point E 'to the point E, the amount of heat absorbed in the evaporator 5 is increased, the refrigeration effect is increased, and the efficiency is improved.

【0006】蒸発器5とアキュムレータ6を通過してF
点にある冷媒は、内部熱交換器3の低圧側熱交換通路3
bを通って高圧側熱交換通路3a側の放熱分だけ加熱さ
れて温度が上昇し、A点に至る。
[0006] After passing through the evaporator 5 and the accumulator 6, F
The refrigerant at the point is the low pressure side heat exchange passage 3 of the internal heat exchanger 3.
Through b, it is heated by the heat radiation on the high-pressure side heat exchange passage 3a side, the temperature rises, and reaches the point A.

【0007】この低圧側熱交換通路3bにおける温度上
昇F−Aは圧縮機1にとって必ずしも好ましいことでは
ない。圧縮機1の冷媒吐出温度は、ほぼF−Aに比例し
て上昇する。特に、熱負荷が大きいと、圧力上昇に伴い
吐出温度が上昇し、それに加えて内部熱交換器3の熱交
換量が増加(C−D,F−A増)すると、更に吐出温度
上昇が大きくなってしまう。
The temperature increase FA in the low-pressure side heat exchange passage 3b is not always preferable for the compressor 1. The refrigerant discharge temperature of the compressor 1 rises substantially in proportion to FA. In particular, when the heat load is large, the discharge temperature rises with an increase in pressure, and in addition, when the heat exchange amount of the internal heat exchanger 3 increases (CD, FA), the discharge temperature further increases. turn into.

【0008】これらによる圧縮機1出口の冷媒の過度の
温度上昇は、圧縮機1の潤滑不良、シール不良等、圧縮
機1の損傷を招くおそれを生じる。
An excessive rise in the temperature of the refrigerant at the outlet of the compressor 1 due to these causes the compressor 1 to be damaged, such as poor lubrication and poor sealing of the compressor 1.

【0009】一般に、高圧側の圧力を上げると、冷房能
力が向上する。しかし、高圧側の圧力を上げるには、圧
縮機により大きい動力が必要になる。冷房能力/動力の
比、いわゆる成績係数COPと放熱器出口圧力との関係
は、図11に示すような線図となり、高圧側である放熱
器出口圧力が上昇するにつれてCOPは上昇するが、放
熱器出口圧力が限度を越えると、次第にCOPは減少に
転じる。すなわち、COPにピーク値が存在する。そし
て、図に示すように、COPのピーク値は放熱器出口温
度により変化し、放熱器出口温度が高くなるとCOPの
ピーク値が低下し、同時に、ピーク値となるときの放熱
器出口圧力は上昇する。
In general, when the pressure on the high pressure side is increased, the cooling capacity is improved. However, increasing the pressure on the high pressure side requires more power for the compressor. The relationship between the cooling capacity / power ratio, the so-called coefficient of performance COP, and the radiator outlet pressure is shown in a diagram as shown in FIG. 11, in which the COP increases as the radiator outlet pressure on the high pressure side increases. As the vessel outlet pressure exceeds the limit, the COP gradually begins to decrease. That is, the COP has a peak value. As shown in the figure, the peak value of the COP changes depending on the radiator outlet temperature. As the radiator outlet temperature increases, the peak value of the COP decreases, and at the same time, the radiator outlet pressure at the peak value increases. I do.

【0010】従って、放熱器出口温度に応じて、放熱器
出口圧力を変え、COPがピーク値となるように超臨界
蒸気圧縮サイクル装置を運転することが要求される。こ
の点は、内部熱交換器を用いる場合にも同様のことがい
える。また、このようなサイクル運転を行う場合、吐出
温度の過度の上昇は、放熱器2の出口温度を上昇させ、
等温線Iとの交点Cを右側(図示の等温線Iよりも高温
の等温線(図示省略)との交点)にシフトし、それにつ
れて、内部熱交換器3の高圧側、低圧側の出口温度も上
昇することにより、内部熱交換器3の冷房効率向上効果
を阻害し、放熱器出口等の高圧側圧力を更に上昇させて
しまうという悪循環を生じることにもなってしまう。
Therefore, it is required to change the radiator outlet pressure in accordance with the radiator outlet temperature and to operate the supercritical vapor compression cycle device so that the COP has a peak value. The same can be said for the case where an internal heat exchanger is used. When such a cycle operation is performed, an excessive rise in the discharge temperature causes the outlet temperature of the radiator 2 to rise,
The point of intersection C with the isotherm I is shifted to the right (the point of intersection with the isotherm (not shown) that is higher than the isotherm I shown in the figure), and accordingly, the outlet temperatures on the high pressure side and the low pressure side of the internal heat exchanger 3 accordingly. As a result, the effect of improving the cooling efficiency of the internal heat exchanger 3 is hindered, and a vicious cycle of further increasing the high-pressure side pressure at the radiator outlet or the like also occurs.

【0011】[0011]

【発明が解決しようとする課題】この発明は、上述の問
題点を解決し、圧縮機から吐出された超臨界高圧冷媒と
蒸発器で気化した低圧冷媒とを適度に内部熱交換器で熱
交換して冷房効率を向上するとともに、過度の熱交換に
よる圧縮機吐出温度の上昇、放熱器出口圧力の上昇を防
ぐ超臨界蒸気圧縮サイクル装置を提供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and appropriately exchanges heat between a supercritical high-pressure refrigerant discharged from a compressor and a low-pressure refrigerant vaporized in an evaporator in an internal heat exchanger. The present invention provides a supercritical vapor compression cycle device that improves cooling efficiency and prevents a rise in compressor discharge temperature and a rise in radiator outlet pressure due to excessive heat exchange.

【0012】[0012]

【課題を解決するための手段】上述の課題を解決するた
めに、この発明は、所定の過熱度に加熱された冷媒を超
臨界状態に圧縮する圧縮機と、上記圧縮機により圧縮さ
れた冷媒を放熱して冷却する放熱器と、上記放熱器で放
熱された超臨界高圧冷媒を高圧側の熱交換通路に導入し
て低圧側の熱交換通路の低圧冷媒と熱交換する内部熱交
換器と、上記高圧側の熱交換通路を通過した超臨界高圧
冷媒を減圧する膨張弁と、上記膨張弁により膨張して減
圧され、気液二相化した低圧冷媒を導入して外部からの
吸熱により蒸発させる蒸発器とを備え、上記蒸発器を通
過した低圧冷媒を上記低圧側の熱交換通路に導入して熱
交換した後、上記圧縮機に送るようにした超臨界蒸気圧
縮サイクル装置において、上記内部熱交換器の一方側の
熱交換通路と並列にバイパス路を設け、流量制御弁によ
り一方側の熱交換通路の冷媒流量とバイパス路の冷媒流
量とを制御するものである。
In order to solve the above-mentioned problems, the present invention provides a compressor for compressing a refrigerant heated to a predetermined degree of superheat to a supercritical state, and a refrigerant compressed by the compressor. A radiator for radiating heat and cooling, and an internal heat exchanger for introducing the supercritical high-pressure refrigerant radiated by the radiator into the high-pressure side heat exchange passage and exchanging heat with the low-pressure refrigerant in the low-pressure side heat exchange passage. An expansion valve that reduces the pressure of the supercritical high-pressure refrigerant that has passed through the heat exchange passage on the high-pressure side, and a low-pressure refrigerant that is expanded and decompressed by the expansion valve and gas-liquid two-phase is introduced to evaporate by heat absorption from the outside. A supercritical vapor compression cycle device, wherein the low-pressure refrigerant that has passed through the evaporator is introduced into the heat exchange passage on the low-pressure side to exchange heat, and then sent to the compressor. Parallel to the heat exchange passage on one side of the heat exchanger A bypass passage is provided, it is to control the refrigerant flow rate of the coolant flow and the bypass passage of the heat exchange passages on one side by the flow rate control valve.

【0013】流量制御弁は、上記一方側の熱交換通路側
の流路とバイパス路との双方にそれぞれ設けたり、上記
一方側の熱交換通路の中間と上記バイパス路との間に更
に第2のバイパス路を設けて、この第2のバイパス路に
第3の流量制御弁を設けたりすると、熱交換通路の冷媒
流量とバイパス路の冷媒流量との制御がしやすい。
The flow control valve may be provided in both the flow path on the one-side heat exchange passage and the bypass passage, or may be further provided between the middle of the one-side heat exchange passage and the bypass passage. By providing the bypass passage of (1) and providing the third flow control valve in the second bypass passage, it is easy to control the flow rate of the refrigerant in the heat exchange passage and the flow rate of the refrigerant in the bypass passage.

【0014】上記一方側の熱交換通路として、低圧側の
熱交換通路を用いると、流量制御弁、配管継ぎ目等に加
わる熱的、圧力的負荷が小さいのでより信頼性が高くな
る。
If a heat exchange passage on the low pressure side is used as the heat exchange passage on the one side, the thermal and pressure loads applied to the flow control valve, the pipe joint and the like are small, so that the reliability is further improved.

【0015】流量制御弁開閉の調節は、放熱器の源流に
当たる圧縮機の出口温度、すなわち、圧縮機から吐出さ
れる冷媒の温度に基づいてすると、放熱器出口温度に基
づく調節よりも、放熱器出口温度の変化を先行して検出
でき、応答遅れが起こりにくくなって好ましい。
The opening and closing of the flow control valve is adjusted based on the outlet temperature of the compressor corresponding to the source flow of the radiator, that is, the temperature of the refrigerant discharged from the compressor, rather than the adjustment based on the radiator outlet temperature. This is preferable because a change in the outlet temperature can be detected in advance and a response delay hardly occurs.

【0016】内部熱交換器の出口や入口の冷媒の温度お
よび圧力、あるいは、更に、蒸発器の温度や負荷情報
を、圧縮機の出口温度に付加して、これらを基に、流量
制御弁の開閉を調節することもでき、このようにする
と、一層適応性に優れた超臨界蒸気圧縮サイクル装置と
することができる。
The temperature and pressure of the refrigerant at the outlet and the inlet of the internal heat exchanger, or the temperature and load information of the evaporator are added to the outlet temperature of the compressor, and based on these, the flow control valve is controlled. Opening and closing can be adjusted, and in this case, a supercritical vapor compression cycle device with more excellent adaptability can be obtained.

【0017】この発明においては、内部熱交換器の熱交
換量を適度に制御して、過度の熱交換を防ぎ、放熱器出
口圧力がCOPのピーク値となるように内部熱交換器で
熱交換して冷房効率を向上するとともに、過度の熱交換
による圧縮機吐出温度の上昇を防ぐ。
In the present invention, the amount of heat exchange in the internal heat exchanger is appropriately controlled to prevent excessive heat exchange, and the heat exchange in the internal heat exchanger is performed so that the outlet pressure of the radiator becomes the peak value of COP. To improve the cooling efficiency and prevent the compressor discharge temperature from rising due to excessive heat exchange.

【0018】なお、この発明における流量制御弁は、O
N/OFF制御型、無段階開閉度制御型、あるいは、こ
れらの組み合わせを適宜選択することができる。また、
三方弁のような複数の弁を複合した弁を用いることもで
きる。
The flow control valve in the present invention is
An N / OFF control type, a stepless opening / closing degree control type, or a combination thereof can be appropriately selected. Also,
A valve combining a plurality of valves such as a three-way valve can also be used.

【0019】この発明における負荷情報とは、外気温
度、室内温度、設定室内温度、日射量等、超臨界蒸気圧
縮サイクル装置に加わる熱的な負荷、あるいは、圧縮機
の回転動力としてエンジンを用いる場合には、そのエン
ジン回転数、アクセルの開度等についての情報を意味す
る。
The load information according to the present invention is defined as the thermal load applied to the supercritical vapor compression cycle device, such as the outside air temperature, the indoor temperature, the set indoor temperature, the amount of solar radiation, or the case where the engine is used as the rotational power of the compressor. Means information on the engine speed, accelerator opening, and the like.

【0020】[0020]

【発明の実施の形態】この発明の実施の形態を、以下、
図面を参照して説明する。
Embodiments of the present invention will be described below.
This will be described with reference to the drawings.

【0021】[実施の形態1]図1は、この発明の一実
施の形態を示す説明図である。図1の超臨界蒸気圧縮サ
イクル装置は、図10に示した超臨界蒸気圧縮サイクル
装置の内部熱交換器にバイパス路を形成したものであ
り、他は同様であるので、同一部分については同一符号
を付して、その説明を省略する。
[First Embodiment] FIG. 1 is an explanatory diagram showing one embodiment of the present invention. The supercritical vapor compression cycle device of FIG. 1 is a device in which a bypass is formed in the internal heat exchanger of the supercritical vapor compression cycle device shown in FIG. 10, and the other components are the same. And description thereof is omitted.

【0022】図1において、内部熱交換器3の低圧側の
熱交換通路3bと並列にバイパス路7が設けられ、低圧
側の熱交換通路3bの一方とアキュムレータ6の出口と
の間の流路8に第1の流量制御弁9が、また、バイパス
路7には第2の流量制御弁10が設けられている。
In FIG. 1, a bypass 7 is provided in parallel with the heat exchange passage 3b on the low pressure side of the internal heat exchanger 3, and a flow path between one of the heat exchange passages 3b on the low pressure side and the outlet of the accumulator 6 is provided. A first flow control valve 9 is provided at 8, and a second flow control valve 10 is provided at the bypass 7.

【0023】超臨界状態に圧縮した冷媒が吐出する圧縮
機1の吐出口には、温度センサ11が設置され、この温
度センサ11が圧縮機1から吐出される冷媒の温度を検
出する。12は、温度センサ11の検出温度に基づいて
上記流量制御弁9、10に制御信号を送る制御部(コン
トロールユニット)である。
A temperature sensor 11 is provided at a discharge port of the compressor 1 from which the refrigerant compressed to the supercritical state is discharged, and the temperature sensor 11 detects a temperature of the refrigerant discharged from the compressor 1. Reference numeral 12 denotes a control unit (control unit) that sends a control signal to the flow control valves 9 and 10 based on the temperature detected by the temperature sensor 11.

【0024】上記第1および第2の流量制御弁9、10
としては、全開から全閉まで無段階に開度を調節できる
無段階開閉度制御型の流量制御弁を用いている。なお、
中間開度のない開閉のみのON/OFF制御型の流量制
御弁を用いてもよい。
The first and second flow control valves 9, 10
As the method, a flow control valve of a stepless opening / closing control type capable of continuously adjusting the opening from full open to fully closed is used. In addition,
It is also possible to use an ON / OFF control type flow control valve having only an opening and closing without an intermediate opening.

【0025】上記熱交換通路3a、3bとしては、高圧
側の熱交換通路3aの周囲を低圧側の熱交換通路3bが
覆う二重管を用いている。
As the heat exchange passages 3a and 3b, use is made of a double tube in which the heat exchange passage 3a on the high pressure side is covered by the heat exchange passage 3b on the low pressure side.

【0026】図1の超臨界蒸気圧縮サイクル装置の制御
動作を以下に説明する。
The control operation of the supercritical vapor compression cycle device shown in FIG. 1 will be described below.

【0027】[超臨界蒸気圧縮サイクルの説明]圧縮機
1が、所定の過熱度に加熱された冷媒(図12のAの状
態)を臨界圧力を越えた超臨界状態(図12のBの状
態)に圧縮し、この圧縮機1から吐出される超臨界高圧
冷媒を放熱器2に導入して放熱する(図12のCの状
態)。放熱器2を通過した超臨界高圧冷媒を内部熱交換
器3の高圧側の熱交換通路3aに導入して、後に説明す
る低圧側の熱交換通路3bの低圧冷媒と熱交換し、更に
温度を下げる(図12のDの状態)。この温度低下によ
り、冷房効率が向上する。
[Explanation of Supercritical Vapor Compression Cycle] The supercritical state (state of FIG. 12B) where the compressor 1 exceeds the critical pressure of the refrigerant heated to a predetermined degree of superheat (state of FIG. 12A). ), And the supercritical high-pressure refrigerant discharged from the compressor 1 is introduced into the radiator 2 to radiate heat (state C in FIG. 12). The supercritical high-pressure refrigerant that has passed through the radiator 2 is introduced into the high-pressure side heat exchange passage 3a of the internal heat exchanger 3, and heat-exchanges with a low-pressure refrigerant in a low-pressure side heat exchange passage 3b, which will be described later. Lower (state D in FIG. 12). Due to this temperature decrease, the cooling efficiency is improved.

【0028】内部熱交換器3の高圧側の熱交換通路3a
を通過した超臨界高圧冷媒を膨張弁4に導入して膨張さ
せ、減圧する。この過程で飽和蒸気圧線Sを横断して、
冷媒は気液二相となる(図12のEの状態)。この膨張
して減圧され、気液二相化した低圧冷媒を蒸発器5に導
入して外部からの吸熱により蒸発させ、これにより外部
を冷却する(図12のFの状態)。
Heat exchange passage 3a on the high pressure side of internal heat exchanger 3
Is introduced into the expansion valve 4 to expand and reduce the pressure. In this process, cross the saturated vapor pressure line S,
The refrigerant becomes a gas-liquid two-phase (state of E in FIG. 12). The low-pressure refrigerant that has been expanded and decompressed and converted into a gas-liquid two-phase is introduced into the evaporator 5 and evaporated by absorbing heat from the outside, thereby cooling the outside (the state of F in FIG. 12).

【0029】蒸発器5を通過した低圧冷媒をアキュムレ
ータ6に集め、気相と液相に分離し、そのうちの気相冷
媒を、更に、上記内部熱交換器3の低圧側の熱交換通路
3bに導入して熱交換し、高圧側の冷媒の冷却に使用す
る。この過程で飽和蒸気圧線Sを越え、冷媒は所定の過
熱度に加熱される(図12のAの状態)。
The low-pressure refrigerant that has passed through the evaporator 5 is collected in the accumulator 6 and separated into a gas phase and a liquid phase. The gas-phase refrigerant is further transferred to the heat exchange passage 3 b on the low pressure side of the internal heat exchanger 3. The heat is introduced and heat exchanged, and used for cooling the refrigerant on the high pressure side. In this process, the refrigerant exceeds the saturated vapor pressure line S, and the refrigerant is heated to a predetermined degree of superheat (state A in FIG. 12).

【0030】以後、このサイクルを繰り返す。Thereafter, this cycle is repeated.

【0031】[内部熱交換器での熱交換量制御の説明]
温度センサ11が検出した圧縮機1から吐出される冷媒
の温度は、制御部12に送られ、制御部12では、この
検出温度(圧縮機から吐出される冷媒の温度)に基づい
て流量制御弁9、10に制御信号を送る。この制御信号
に応じて流量制御弁9、10の開度はそれぞれ調節さ
れ、低圧側の温度上昇が過度にならない範囲で高圧側の
温度をできるだけ下げるように熱交換が行われる。
[Explanation of heat exchange control in internal heat exchanger]
The temperature of the refrigerant discharged from the compressor 1 detected by the temperature sensor 11 is sent to the control unit 12, and the control unit 12 controls the flow control valve based on the detected temperature (the temperature of the refrigerant discharged from the compressor). A control signal is sent to 9 and 10. The openings of the flow control valves 9 and 10 are respectively adjusted in accordance with the control signals, and heat exchange is performed so as to lower the temperature on the high pressure side as much as possible without increasing the temperature on the low pressure side excessively.

【0032】低圧側の熱交換通路3bに連なる流路8に
ある流量制御弁9は全開としておき、バイパス路7の流
量制御弁10の開度を調節して、低圧側の熱交換通路3
bの冷媒流量とバイパス路7の冷媒流量とを制御する。
あるいは、逆に、バイパス路7の流量制御弁10を全開
としておき、流路8の流量制御弁9の開度を調節して流
量を制御する。前者の状態では、バイパス路7の流量制
御弁10を全閉したとき熱交換通路3bの冷媒流量は1
00%(全冷媒が通過)となり、流量制御弁10を開く
と熱交換通路3b側とバイパス路7側との流体抵抗の比
に応じて冷媒は分流する。後者の状態では、流路8の流
量制御弁9を全閉したとき熱交換通路3bの冷媒流量は
0%(内部熱交換なし)となり、流量制御弁9を開くと
熱交換通路3b側とバイパス路7側との流体抵抗の比に
応じて冷媒は分流する。例えば、圧縮機1から吐出され
る冷媒の温度が目標値より大幅に上昇した場合は、熱交
換通路3bの冷媒流量を0%として内部熱交換を中止
し、冷媒を全部バイパス路7にバイパスして、圧縮機吐
出温度を急速に下げることができる。
The flow control valve 9 in the flow path 8 connected to the low pressure side heat exchange passage 3b is fully opened, and the opening degree of the flow control valve 10 in the bypass path 7 is adjusted so that the low pressure side heat exchange passage 3
b and the flow rate of the refrigerant in the bypass 7.
Alternatively, on the contrary, the flow rate control valve 10 of the bypass path 7 is fully opened, and the flow rate is controlled by adjusting the opening degree of the flow rate control valve 9 of the flow path 8. In the former state, when the flow control valve 10 of the bypass 7 is fully closed, the refrigerant flow rate in the heat exchange path 3b becomes 1
When the flow control valve 10 is opened, the refrigerant diverges according to the ratio of the fluid resistance between the heat exchange passage 3b side and the bypass passage 7 side. In the latter state, when the flow control valve 9 of the flow path 8 is fully closed, the refrigerant flow rate in the heat exchange passage 3b becomes 0% (no internal heat exchange), and when the flow control valve 9 is opened, the refrigerant flows into the heat exchange passage 3b and bypasses. The refrigerant diverges according to the ratio of the fluid resistance to the passage 7 side. For example, when the temperature of the refrigerant discharged from the compressor 1 rises significantly from the target value, the internal heat exchange is stopped by setting the refrigerant flow rate of the heat exchange passage 3b to 0%, and the refrigerant is entirely bypassed to the bypass passage 7. Thus, the compressor discharge temperature can be rapidly reduced.

【0033】流量制御弁9および10として、ON/O
FF制御型流量制御弁を用いた場合の制御のフローを図
2に示す。ON/OFF制御型流量制御弁は、こまかい
制御にはやや不向きだが、弁の価格が安価であり、制御
システムも簡単であり、実際の制御には十分に使用でき
る。
As the flow control valves 9 and 10, ON / O
FIG. 2 shows a control flow when the FF control type flow control valve is used. The ON / OFF control type flow control valve is somewhat unsuitable for fine control, but the valve is inexpensive, the control system is simple, and can be used sufficiently for actual control.

【0034】温度センサ11が検出する圧縮機1の吐出
温度を、図2のステップ201で一定時間間隔で制御部
12に入力する。制御部12では、予め設定した許容吐
出温度と入力された現在の吐出温度とを比較し(ステッ
プ202)、現在の吐出温度が許容温度以上であれば、
現在の吐出温度が高過ぎ、圧縮機1に好ましくないの
で、内部熱交換器3側の流量制御弁9を閉じ、バイパス
路7の流量制御弁10を開いて、内部熱交換を中止する
(ステップ203)。ステップ202で、現在の吐出温
度が許容温度未満であれば、吐出温度を今以上に上げて
も支障ないので、内部熱交換器3側の流量制御弁9を開
き、バイパス路7の流量制御弁10を閉じて、内部熱交
換を行い(ステップ204)、内部熱交換器3の高圧側
出口の冷媒の温度を下げ、冷房効率を上げる。ステップ
203または204の処理後、再びステップ201に戻
る。
The discharge temperature of the compressor 1 detected by the temperature sensor 11 is input to the control unit 12 at regular time intervals in step 201 of FIG. The control unit 12 compares the preset allowable discharge temperature with the input current discharge temperature (step 202), and if the current discharge temperature is equal to or higher than the allowable temperature,
Since the current discharge temperature is too high, which is undesirable for the compressor 1, the internal heat exchange is stopped by closing the flow control valve 9 on the internal heat exchanger 3 side and opening the flow control valve 10 on the bypass passage 7 (step). 203). In step 202, if the current discharge temperature is lower than the permissible temperature, the discharge temperature can be raised more than this, so that the flow control valve 9 on the internal heat exchanger 3 side is opened and the flow control valve on the bypass passage 7 is opened. 10 is closed and internal heat exchange is performed (step 204), and the temperature of the refrigerant at the high pressure side outlet of the internal heat exchanger 3 is reduced, and the cooling efficiency is increased. After the processing in step 203 or 204, the process returns to step 201 again.

【0035】以上のようにして、図1に示した超臨界蒸
気圧縮サイクル装置においては、内部熱交換器3の熱交
換量が制御され、圧縮機1へ送られる低圧側冷媒(図1
2のA)の過熱度を適度に抑え、圧縮機の損傷を防ぎ、
しかも、蒸発器5へ送られる冷媒の温度を内部熱交換器
3によって一層下げて蒸発器5の吸熱量を効率よく上げ
ることができる。なお、圧縮機の出口温度の許容値は、
予め実験等により求めておく。
As described above, in the supercritical vapor compression cycle device shown in FIG. 1, the amount of heat exchange in the internal heat exchanger 3 is controlled, and the low-pressure side refrigerant (FIG.
2) A) moderately superheat degree, prevent compressor damage,
In addition, the temperature of the refrigerant sent to the evaporator 5 is further reduced by the internal heat exchanger 3, so that the amount of heat absorbed by the evaporator 5 can be increased efficiently. The allowable value of the outlet temperature of the compressor is:
It is determined in advance by experiments or the like.

【0036】なお、図1において、第1の流量制御弁9
は内部熱交換器3の低圧側の熱交換通路3bの上流側で
なく、下流側に設けてもよい。また、熱交換量の制御範
囲は狭くなるが、第1の流量制御弁9か第2の流量制御
弁10かいずれか一方の流量制御弁のみとし、熱交換通
路3bまたはバイパス路7には流量制御弁なしとして
も、上記一方の流量制御弁の制御によって熱交換通路3
bの流量を調節することができる。
In FIG. 1, the first flow control valve 9
May be provided not on the upstream side of the heat exchange passage 3b on the low pressure side of the internal heat exchanger 3 but on the downstream side. Further, although the control range of the heat exchange amount is narrowed, only one of the first flow control valve 9 and the second flow control valve 10 is used, and the heat exchange passage 3b or the bypass passage 7 has a flow control valve. Even without the control valve, the heat exchange passage 3 is controlled by the control of the one flow control valve.
The flow rate of b can be adjusted.

【0037】[実施の形態2]図3は、ふたつの流量制
御弁として、ひとつの三方電磁弁13を用いた場合の例
を示す。図1の第1の実施の形態と同一の部分には、同
一の符号を付して、その説明を省略する。三方電磁弁1
3は、図に示すように、アキュムレータ6から低圧側の
熱交換通路3bとバイパス路7との分岐点に設ける。あ
るいは、低圧側の熱交換通路3bとバイパス路7との合
流点に設けてもよい。三方電磁弁13はその電磁石のO
N/OFFにより、低圧側の熱交換通路3bまたはバイ
パス路7を開通し、他方を閉鎖して、図2に準じたフロ
ーで制御を行う。
[Embodiment 2] FIG. 3 shows an example in which one three-way solenoid valve 13 is used as two flow control valves. The same parts as those in the first embodiment of FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. Three-way solenoid valve 1
3 is provided at a branch point between the heat exchange passage 3b on the low pressure side from the accumulator 6 and the bypass passage 7, as shown in the figure. Alternatively, it may be provided at the junction of the low-pressure side heat exchange passage 3 b and the bypass passage 7. The three-way solenoid valve 13 is connected to the electromagnet O
By N / OFF, the heat exchange passage 3b or the bypass passage 7 on the low pressure side is opened, and the other is closed, and control is performed according to the flow according to FIG.

【0038】[実施の形態3]図4は、この発明の他の
実施の形態を示す説明図である。図4の超臨界蒸気圧縮
サイクル装置は、図1の超臨界蒸気圧縮サイクル装置に
おいて、低圧側の熱交換通路3bの中間3cとバイパス
路7との間に第2のバイパス路14を設け、この第2の
バイパス路14に第3の流量制御弁15を設けたもので
ある。なお、図1の第1の実施の形態と同一の部分に
は、同一の符号を付して、その説明を省略する。
Third Embodiment FIG. 4 is an explanatory diagram showing another embodiment of the present invention. The supercritical vapor compression cycle device of FIG. 4 is different from the supercritical vapor compression cycle device of FIG. 1 in that a second bypass passage 14 is provided between the middle 3c of the low-pressure side heat exchange passage 3b and the bypass passage 7. A third flow control valve 15 is provided in the second bypass passage 14. The same parts as those in the first embodiment of FIG. 1 are denoted by the same reference numerals, and the description thereof will be omitted.

【0039】図4においては、第1〜第3の流量制御弁
9、10、15として、中間開度のない開閉のみのON
/OFF制御型の流量制御弁を用いている。なお、全開
から全閉まで無段階に開度を調節できる無段階開閉度制
御型の流量制御弁を用いてもよい。
In FIG. 4, the first to third flow control valves 9, 10, and 15 are ON only for opening and closing without an intermediate opening.
A / OFF control type flow control valve is used. It should be noted that a flow rate control valve of a stepless opening / closing control type that can adjust the opening in a stepless manner from fully open to fully closed may be used.

【0040】これらの第1〜第3の流量制御弁9、1
0、15は、図1の超臨界蒸気圧縮サイクル装置と同様
に、温度センサ11が検出した圧縮機1から吐出される
冷媒の温度信号に基づいて制御される。
The first to third flow control valves 9, 1
0 and 15 are controlled based on the temperature signal of the refrigerant discharged from the compressor 1 detected by the temperature sensor 11 similarly to the supercritical vapor compression cycle device of FIG.

【0041】第2のバイパス路14を設け、第1〜第3
の流量制御弁9、10、15として開閉のみの流量制御
弁を用いたことにより、(a)第1の流量制御弁9を
開、第2の流量制御弁10と第3の流量制御弁15を閉
とすれば、冷媒は全量内部熱交換器3の全熱交換通路で
熱交換が行われ、最も多く熱交換される、(b)第1の
流量制御弁9と第2の流量制御弁10を閉、第3の流量
制御弁15を開とすれば、冷媒は全量内部熱交換器3の
半分の距離の熱交換通路下流側半分(図の3c右半分)
で熱交換が行われ、(a)の約半分の熱交換量となる、
(c)第1の流量制御弁9と第3の流量制御弁15を
閉、第2の流量制御弁10を開とすれば、冷媒は全量バ
イパス路7を通り、内部熱交換は行われない。
A second bypass path 14 is provided, and the first to third
(A) The first flow control valve 9 is opened, the second flow control valve 10 and the third flow control valve 15 are used. Is closed, the entire amount of the refrigerant undergoes heat exchange in the total heat exchange passage of the internal heat exchanger 3, and the most heat exchange occurs. (B) The first flow control valve 9 and the second flow control valve If the 10 is closed and the third flow control valve 15 is opened, the whole amount of the refrigerant is the downstream half of the heat exchange passage half the distance of the internal heat exchanger 3 (the right half of FIG. 3c).
Heat exchange is performed, and the amount of heat exchange becomes about half of (a).
(C) If the first flow control valve 9 and the third flow control valve 15 are closed and the second flow control valve 10 is opened, the entire amount of the refrigerant passes through the bypass 7 and no internal heat exchange is performed. .

【0042】第1〜第3の流量制御弁9、10、15と
して開閉のみの流量制御弁を用いると、ステップ状の制
御になるが、図1の超臨界蒸気圧縮サイクル装置と同
様、内部熱交換器3の熱交換量を制御して、圧縮機1へ
送られる低圧側冷媒(図12のA)の過熱度を適度に抑
えて圧縮機の損傷を防ぎ、蒸発器5へ送られる冷媒の温
度を内部熱交換器3によって下げて蒸発器5の吸熱量を
効率よく上げることができる。
When a flow control valve that is only open / closed is used as the first to third flow control valves 9, 10, and 15, a step-like control is performed. However, similar to the supercritical vapor compression cycle device of FIG. The amount of heat exchange of the exchanger 3 is controlled, the degree of superheating of the low-pressure side refrigerant (A in FIG. 12) sent to the compressor 1 is appropriately suppressed to prevent damage to the compressor, and the amount of the refrigerant sent to the evaporator 5 is reduced. The temperature can be lowered by the internal heat exchanger 3 and the amount of heat absorbed by the evaporator 5 can be increased efficiently.

【0043】なお、図4において、第1〜第3の流量制
御弁9、10、15の設置位置は、例えば次のように変
更しても同様の制御を行うことができる。
In FIG. 4, the same control can be performed even if the installation positions of the first to third flow control valves 9, 10, 15 are changed, for example, as follows.

【0044】第1の流量制御弁9を低圧側の熱交換通路
3bの下流側に移し、第2の流量制御弁10をバイパス
路7の中で上流のアキュムレータ6側に移して、第3の
流量制御弁15のバイパス路7との接続点を第2の流量
制御弁10の下流側にする。この場合は、開閉のみの流
量制御弁であれば、低圧側の熱交換通路3bの上流側半
分で熱交換したり、全熱交換通路で熱交換することにな
る。
The first flow control valve 9 is moved to the downstream side of the heat exchange passage 3b on the low pressure side, and the second flow control valve 10 is moved to the accumulator 6 in the bypass passage 7 upstream of the heat exchange passage 3b. The connection point of the flow control valve 15 with the bypass 7 is located downstream of the second flow control valve 10. In this case, if the flow control valve is only open / closed, heat is exchanged in the upstream half of the heat exchange passage 3b on the low pressure side, or heat is exchanged in the total heat exchange passage.

【0045】また、開度を調節できる流量制御弁を用い
れば、熱交換通路3bの上流側あるいは下流側の冷媒流
量を無段階に細かく調節しながら熱交換量を制御するこ
ともできる。
If a flow control valve capable of adjusting the opening degree is used, the amount of heat exchange can be controlled while finely adjusting the flow rate of the refrigerant upstream or downstream of the heat exchange passage 3b in a stepless manner.

【0046】以上に説明した実施の形態では、圧縮機吐
出温度の情報のみにより内部熱交換量の制御を行うもの
について説明した。
In the above-described embodiment, the case where the internal heat exchange amount is controlled only by the information on the compressor discharge temperature has been described.

【0047】次に、外部の熱負荷状況に応じて膨張弁の
制御と内部熱交換量の制御とを同時に制御する、統合制
御を行う実施の形態を説明する。
Next, a description will be given of an embodiment in which integrated control is performed in which control of the expansion valve and control of the amount of internal heat exchange are simultaneously controlled in accordance with the external heat load condition.

【0048】統合制御を行う以下の実施の形態において
は、いずれも、内部熱交換器の入口温度、入口圧力ある
いは出口温度、出口圧力を検知して、膨張弁で圧力を制
御し、最良のCOP(図11参照)で運転しようとする
もので、外気温、圧縮機回転数等の運転環境に応じて高
効率を維持できる適応性の高い超臨界蒸気圧縮サイクル
装置を実現するものである。なお、以下の実施の形態に
おいても、圧縮機の出口温度の許容値は、予め実験等に
より求めておく。
In each of the following embodiments in which the integrated control is performed, the inlet temperature, inlet pressure or outlet temperature, and outlet pressure of the internal heat exchanger are detected, and the pressure is controlled by the expansion valve. (Refer to FIG. 11) It is intended to realize a highly adaptive supercritical vapor compression cycle device capable of maintaining high efficiency in accordance with an operating environment such as an outside air temperature and a compressor rotation speed. In the following embodiments, the allowable value of the outlet temperature of the compressor is determined in advance by experiments or the like.

【0049】[実施の形態4]図5は、内部熱交換量制
御に用いる情報として、図1の第1の実施の形態におけ
る圧縮機の吐出温度に加えて、内部熱交換器3の高圧側
熱交換通路3a入口、すなわち、この実施の形態では、
放熱器2の出口の冷媒の温度および圧力、蒸発器5(の
近傍の)温度、更に、外気温度、空調対象の室内温度、
設定室内温度、日射量等の負荷情報を検出して、これら
の情報を基に、内部熱交換量および膨張弁の絞り量を制
御するものである。図1の第1の実施の形態と同一の部
分には、同一の符号を付して、その説明を省略する。第
1および第2の流量制御弁9、10としては、開度が自
由に調節できる無段階開閉度制御型の電磁弁を、また、
膨張弁4にも同様に開度が自由に調節できる電磁弁を用
いる。
[Fourth Embodiment] FIG. 5 shows, in addition to the discharge temperature of the compressor in the first embodiment of FIG. 1, the high-pressure side of the internal heat exchanger 3 as information used for controlling the internal heat exchange amount. In the heat exchange passage 3a inlet, that is, in this embodiment,
The temperature and pressure of the refrigerant at the outlet of the radiator 2, the temperature of the evaporator 5 (near), the outside air temperature, the indoor temperature of the air conditioner,
The load information such as the set indoor temperature and the amount of solar radiation is detected, and the amount of internal heat exchange and the amount of throttle of the expansion valve are controlled based on the information. The same parts as those in the first embodiment of FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. As the first and second flow control valves 9 and 10, stepless open / closed degree control type solenoid valves whose opening degrees can be freely adjusted,
Similarly, an electromagnetic valve whose opening can be freely adjusted is used for the expansion valve 4.

【0050】16および17は、内部熱交換器3の高圧
側熱交換通路3a入口の冷媒の温度を検出する高圧側入
口温度センサおよび冷媒の圧力を検出する高圧側入口圧
力センサ、18は、蒸発器5の温度を検出する蒸発器温
度センサである。これらの高圧側入口温度センサ16、
高圧側入口圧力センサ17、および蒸発器温度センサ1
8の出力は、それぞれ制御部12に入力される。また、
外気温度、空調対象の室内温度、設定室内温度、日射量
等の負荷情報19は、図示しない温度センサ等により検
出され、これらも上記制御部12に入力される。
Reference numerals 16 and 17 denote a high-pressure inlet temperature sensor for detecting the temperature of the refrigerant at the inlet of the high-pressure heat exchange passage 3a of the internal heat exchanger 3, and a high-pressure inlet pressure sensor for detecting the pressure of the refrigerant. The evaporator temperature sensor detects the temperature of the vessel 5. These high-pressure inlet temperature sensors 16,
High pressure side inlet pressure sensor 17 and evaporator temperature sensor 1
The outputs of 8 are input to the control unit 12, respectively. Also,
Load information 19 such as the outside air temperature, the indoor temperature of the air-conditioning target, the set indoor temperature, and the amount of solar radiation is detected by a temperature sensor (not shown) or the like, and these are also input to the control unit 12.

【0051】この実施の形態においては、放熱器2出口
温度と出口圧力、許容吐出温度、許容高圧側圧力、蒸発
器温度、負荷情報等の度合いに応じた最適内部熱交換量
を実験的に定めておき、制御部12は、入力される諸デ
ータに応じて、放熱器出口温度に対して最適のCOPと
なるように、膨張弁4弁開度を調節して高圧側圧力を制
御し、負荷情報等の熱負荷の度合いに応じた内部熱交換
量となるように、第1の流量制御弁9、第2の流量制御
弁10の開度を調節する。
In this embodiment, the optimal internal heat exchange amount according to the degree of the radiator 2 outlet temperature and outlet pressure, allowable discharge temperature, allowable high pressure side pressure, evaporator temperature, load information, etc. is experimentally determined. In addition, the control unit 12 controls the high-pressure side pressure by adjusting the opening of the expansion valve 4 so that an optimum COP is obtained with respect to the radiator outlet temperature in accordance with various data input. The opening degree of the first flow control valve 9 and the second flow control valve 10 is adjusted so that the internal heat exchange amount according to the degree of heat load such as information is obtained.

【0052】なお、圧縮機1の吐出温度が過度に上昇し
て許容値を越えたときは、制御部が第1の流量制御弁9
を閉じ、第2の流量制御弁10全開として内部熱交換を
一時中止する。
When the discharge temperature of the compressor 1 rises excessively and exceeds the allowable value, the control unit operates the first flow control valve 9.
Is closed, the second flow control valve 10 is fully opened, and the internal heat exchange is temporarily stopped.

【0053】[実施の形態5]図6は、図5の実施の形
態における、内部熱交換器3の高圧側熱交換通路3a入
口の冷媒の温度および圧力を検出する代わりに、内部熱
交換器3の高圧側熱交換通路3a出口の冷媒の温度およ
び圧力を検出を、高圧側出口温度センサ20、高圧側出
口圧力センサ21で行うものである。図5の実施の形態
と同一の部分には、同一の符号を付して、その説明を省
略する。第1および第2の流量制御弁9、10として
は、開度が自由に調節できる無段階開閉度制御型の電磁
弁を、また、膨張弁4にも同様に開度が自由に調節でき
る電磁弁を用いる。
[Fifth Embodiment] FIG. 6 shows an embodiment in which the temperature and pressure of the refrigerant at the inlet of the high-pressure side heat exchange passage 3a of the internal heat exchanger 3 in the embodiment of FIG. The detection of the temperature and the pressure of the refrigerant at the outlet of the high-pressure side heat exchange passage 3a is performed by the high-pressure outlet temperature sensor 20 and the high-pressure outlet pressure sensor 21. The same parts as those in the embodiment of FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. As the first and second flow control valves 9 and 10, stepless opening / closing control type solenoid valves whose opening degrees can be freely adjusted, and electromagnetic valves whose opening degrees can be freely adjusted similarly for the expansion valve 4. Use a valve.

【0054】内部熱交換器3の高圧側熱交換通路3a入
口(放熱器2の出口)の冷媒の温度および圧力を検出す
る代わりに、内部熱交換器3の高圧側熱交換通路3a出
口の冷媒の温度および圧力を検出するようにすると、高
圧側熱交換通路3出口温度、出口圧力とCOPとの関係
の、図11に準じた線図が得られる。この線図から、内
部熱交換器3の高圧側熱交換通路3a出口の温度に応じ
て、COPが最大となるよう圧力を制御することができ
る。
Instead of detecting the temperature and pressure of the refrigerant at the inlet (exit of the radiator 2) of the high-pressure heat exchange passage 3a of the internal heat exchanger 3, the refrigerant at the outlet of the high-pressure heat exchange passage 3a of the internal heat exchanger 3 is used. If the temperature and pressure of the COP are detected, a graph according to FIG. 11 of the relationship between the outlet temperature of the high-pressure side heat exchange passage 3, the outlet pressure, and the COP is obtained. From this diagram, it is possible to control the pressure so that the COP becomes maximum according to the temperature at the outlet of the high-pressure side heat exchange passage 3a of the internal heat exchanger 3.

【0055】この実施の形態では、COPは高く制御で
きるがCOPを最適にすると、冷力がやや不足になるこ
とがある。そこで、例えば、外気温度の上昇や日射量が
増加した場合、強い冷力が必要なため、図12の最適C
OPになるような圧力制御を一時的に逸脱し、より高い
圧力に上昇させて急速冷房を行う。
In this embodiment, the COP can be controlled to be high, but if the COP is optimized, the cooling power may be slightly insufficient. Therefore, for example, when the outside air temperature rises or the amount of solar radiation increases, a strong cooling power is required.
Temporarily deviate from the pressure control that results in OP and increase the pressure to a higher pressure to perform rapid cooling.

【0056】図7は、上記図5または図6の制御フロー
を示すフローチャートである。
FIG. 7 is a flowchart showing the control flow of FIG. 5 or FIG.

【0057】図7において、ステップ701で、温度セ
ンサ11が検出する圧縮機1の吐出温度、内部熱交換器
3の入口(放熱器2の出口)温度および圧力、蒸発器5
の温度、更に、外気温度、室内温度、設定室内温度、日
射量等の負荷情報を、一定時間間隔で制御部12に入力
する。ステップ702で、制御部12では、予め設定し
た許容吐出温度と入力された現在の吐出温度とを比較
し、現在の圧縮機吐出温度が許容温度以下であれば、ス
テップ703で、入力された諸情報から内部熱交換器3
の入口または出口の高圧側圧力、熱交換量の最適値を演
算し、ステップ704で、この演算結果に基づいて膨張
弁4、第1および第2の流量制御弁9、10の弁の開度
を制御する。
In FIG. 7, at step 701, the discharge temperature of the compressor 1, the temperature and pressure of the inlet (outlet of the radiator 2) of the internal heat exchanger 3, and the evaporator 5
And load information such as the outside air temperature, the indoor temperature, the set indoor temperature, and the amount of solar radiation are input to the control unit 12 at regular time intervals. In step 702, the control unit 12 compares the preset allowable discharge temperature with the input current discharge temperature, and if the current compressor discharge temperature is equal to or lower than the allowable temperature, in step 703, Information from internal heat exchanger 3
Optimum values of the high pressure side pressure and the heat exchange amount at the inlet or outlet of the valve are calculated, and in step 704, the opening degrees of the expansion valve 4, the first and second flow control valves 9, 10 are determined based on the calculation results. Control.

【0058】ステップ702で、現在の圧縮機吐出温度
が許容温度を越えていれば、現在の吐出温度が高過ぎ、
圧縮機1に好ましくないので、ステップ705におい
て、上記諸情報を加味して、危険回避のための内部熱交
換量、膨張弁4の開度を演算し、ステップ706で、こ
の演算結果に基づいて膨張弁4、第1および第2の流量
制御弁9、10の弁の開度を制御する。
In step 702, if the current compressor discharge temperature exceeds the allowable temperature, the current discharge temperature is too high,
Since it is not preferable for the compressor 1, in step 705, the amount of internal heat exchange for avoiding danger and the opening degree of the expansion valve 4 are calculated in consideration of the above various information, and in step 706, based on the calculation result, The opening of the expansion valve 4 and the first and second flow control valves 9 and 10 is controlled.

【0059】ステップ704または706の処理後、再
びステップ701に戻る。
After the processing in step 704 or 706, the process returns to step 701 again.

【0060】[実施の形態6]図8は、内部熱交換量制
御に用いる情報として、図4の実施の形態における圧縮
機の吐出温度に加えて、図5の実施の形態と同様に、内
部熱交換器3の高圧側熱交換通路3a入口、すなわち、
この実施の形態では、放熱器2の出口の冷媒の温度およ
び圧力、蒸発器5(の近傍の)温度を検出して、これら
の情報を基に、内部熱交換量を制御するものである。図
4および図5の実施の形態と同一の部分には、同一の符
号を付して、その説明を省略する。第1、第2および第
3の流量制御弁9、10、15としては、ON/OFF
制御型の電磁弁を、また、膨張弁4には、開度が自由に
調節できる電磁弁を用いる。
[Sixth Embodiment] FIG. 8 shows the information used for controlling the internal heat exchange amount in addition to the discharge temperature of the compressor in the embodiment of FIG. Inlet of the high-pressure side heat exchange passage 3a of the heat exchanger 3, that is,
In this embodiment, the temperature and pressure of the refrigerant at the outlet of the radiator 2 and the temperature of (near) the evaporator 5 are detected, and the amount of internal heat exchange is controlled based on these information. 4 and FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. ON / OFF for the first, second and third flow control valves 9, 10 and 15
As the control type solenoid valve, and as the expansion valve 4, an electromagnetic valve whose opening can be freely adjusted is used.

【0061】第1、第2および第3の流量制御弁9、1
0、15は、上記図4の場合と同様に、第1の流量制御
弁9:開、第2および第3の流量制御弁10、15:閉
第2の流量制御弁10:開、第1および第3の流量制御
弁9、15:閉第3の流量制御弁15:開、第1および
第2の流量制御弁9、10:閉の3段階に内部熱交換量
が制御される。
The first, second and third flow control valves 9, 1
4, the first flow control valve 9: open, the second and third flow control valves 10, 15: closed, the second flow control valve 10: open, the first And the third flow control valves 9, 15: closed The third heat control valve 15: open, and the first and second flow control valves 9, 10: the internal heat exchange amount is controlled in three stages: closed.

【0062】この図8の実施の形態に、図5あるいは図
6で用いた負荷情報を更に付加して制御することも勿論
可能である。
It is of course possible to add the load information used in FIG. 5 or FIG. 6 to the embodiment of FIG. 8 for control.

【0063】[実施の形態7]図9は、図8の実施の形
態における、内部熱交換器3の高圧側熱交換通路3a入
口の冷媒の温度および圧力を検出する代わりに、内部熱
交換器3の高圧側熱交換通路3a出口の冷媒の温度およ
び圧力を検出を、高圧側出口温度センサ20、高圧側入
口圧力センサ21で行うものである。図8の実施の形態
と同一の部分には、同一の符号を付して、その説明を省
略する。第1、第2および第3の流量制御弁9、10、
15としては、ON/OFF制御型の電磁弁を、また、
膨張弁4には、開度が自由に調節できる電磁弁を用い
る。
[Seventh Embodiment] FIG. 9 shows an embodiment in which the temperature and pressure of the refrigerant at the inlet of the high-pressure side heat exchange passage 3a of the internal heat exchanger 3 in the embodiment of FIG. The detection of the temperature and pressure of the refrigerant at the outlet of the high-pressure side heat exchange passage 3a is performed by the high-pressure side outlet temperature sensor 20 and the high-pressure side inlet pressure sensor 21. The same parts as those in the embodiment of FIG. 8 are denoted by the same reference numerals, and description thereof will be omitted. First, second and third flow control valves 9, 10,
15 is an ON / OFF control type solenoid valve,
As the expansion valve 4, an electromagnetic valve whose opening can be freely adjusted is used.

【0064】内部熱交換器3の高圧側熱交換通路3a入
口(放熱器2の出口)の冷媒の温度および圧力を検出す
る代わりに、内部熱交換器3の高圧側熱交換通路3a出
口の冷媒の温度および圧力を検出するようにすると、高
圧側熱交換通路3出口温度、圧力とCOPとの関係の、
図12に準じた線図が得られる。この線図から、内部熱
交換器3の高圧側熱交換通路3a出口の温度に応じて、
COPが最大となるよう圧力を制御することができる。
Instead of detecting the temperature and pressure of the refrigerant at the inlet (exit of the radiator 2) of the high-pressure heat exchange passage 3a of the internal heat exchanger 3, the refrigerant at the exit of the high-pressure heat exchange passage 3a of the internal heat exchanger 3 is used. When the temperature and pressure of the COP are detected, the relationship between the temperature, the pressure and the COP at the outlet of the high-pressure side heat exchange passage 3 is
A diagram according to FIG. 12 is obtained. From this diagram, according to the temperature at the outlet of the high-pressure side heat exchange passage 3a of the internal heat exchanger 3,
Pressure can be controlled to maximize COP.

【0065】この実施の形態では、COPは高く制御で
きるがCOPを最適にすると、冷力がやや不足になるこ
とがある。そこで、例えば、外気温度の上昇や日射量が
増加した場合、強い冷力が必要なため、図12の最適C
OPになるような圧力制御を一時的に逸脱し、より高い
圧力に上昇させてで急速冷房を行う。
In this embodiment, the COP can be controlled to be high, but when the COP is optimized, the cooling power may be slightly insufficient. Therefore, for example, when the outside air temperature rises or the amount of solar radiation increases, a strong cooling power is required.
Temporarily deviate from the pressure control that becomes OP, and perform rapid cooling by increasing the pressure to a higher pressure.

【0066】なお、内部熱交換量の制御は、図8の実施
の形態同様に、3段階で行う。
The control of the amount of internal heat exchange is performed in three stages as in the embodiment of FIG.

【0067】この図9の実施の形態においても、図5あ
るいは図6で用いた負荷情報を更に付加して制御するこ
とも可能である。
In the embodiment shown in FIG. 9, it is also possible to control by further adding the load information used in FIG. 5 or FIG.

【0068】上述の実施の形態では、いずれも低圧側熱
交換通路3b側にバイパス路と流量制御弁を設けた。こ
のようにすると、低圧側の方が管路、流量制御弁等の耐
圧性が低くいもので済ませることができ、装置の信頼性
が高まるから好ましいが、高圧側熱交換通路3a側にバ
イパス路と流量制御弁を設けるようにしても、この発明
の作用効果は同様に得られる。
In the above embodiments, the bypass passage and the flow control valve are provided on the low-pressure side heat exchange passage 3b side. By doing so, the low pressure side can be reduced in pressure resistance of the pipeline, the flow control valve, and the like, which is preferable because the reliability of the apparatus is increased. However, it is preferable that the high pressure side heat exchange passage 3a has a bypass passage. Even if a flow control valve is provided, the operation and effect of the present invention can be similarly obtained.

【0069】[0069]

【発明の効果】以上詳細に説明したように、この発明
は、内部熱交換器の一方側の熱交換通路と並列にバイパ
ス路を設け、流量制御弁により一方側の熱交換通路の冷
媒流量とバイパス路の冷媒流量とを制御するようにした
から、超臨界高圧冷媒が流れる高圧側ラインと、低圧冷
媒が流れる低圧側ラインとの熱交換量を0〜100%の
範囲で制御ができる。そして、これにより、熱負荷等に
応じた効率のよい運転を可能とし、かつ、圧縮機の過度
の吐出温度上昇を回避でき、圧縮機の損傷を防ぐことが
できる。
As described above in detail, according to the present invention, the bypass passage is provided in parallel with the heat exchange passage on one side of the internal heat exchanger, and the flow rate of the refrigerant in the heat exchange passage on one side is controlled by the flow control valve. Since the flow rate of the refrigerant in the bypass passage is controlled, the amount of heat exchange between the high-pressure side line through which the supercritical high-pressure refrigerant flows and the low-pressure side line through which the low-pressure refrigerant flows can be controlled in the range of 0 to 100%. As a result, efficient operation according to the heat load and the like can be performed, and an excessive rise in the discharge temperature of the compressor can be avoided, and damage to the compressor can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態を示す説明図。FIG. 1 is an explanatory view showing an embodiment of the present invention.

【図2】この発明の一実施の形態における制御処理フロ
ーを示すフローチャート。
FIG. 2 is a flowchart showing a control processing flow according to the embodiment of the present invention.

【図3】この発明の他の実施の形態を示す説明図。FIG. 3 is an explanatory view showing another embodiment of the present invention.

【図4】この発明の他の実施の形態を示す説明図。FIG. 4 is an explanatory view showing another embodiment of the present invention.

【図5】この発明の他の実施の形態を示す説明図。FIG. 5 is an explanatory view showing another embodiment of the present invention.

【図6】この発明の他の実施の形態を示す説明図。FIG. 6 is an explanatory view showing another embodiment of the present invention.

【図7】図5または図6の実施の形態における制御処理
フローを示すフローチャート。
FIG. 7 is a flowchart showing a control processing flow in the embodiment of FIG. 5 or FIG. 6;

【図8】この発明の他の実施の形態を示す説明図。FIG. 8 is an explanatory view showing another embodiment of the present invention.

【図9】この発明の他の実施の形態を示す説明図。FIG. 9 is an explanatory view showing another embodiment of the present invention.

【図10】従来の超臨界蒸気圧縮サイクル装置を示す説
明図。
FIG. 10 is an explanatory view showing a conventional supercritical vapor compression cycle device.

【図11】超臨界蒸気圧縮サイクルにおける放熱器出口
温度と成績係数との関係を示す放熱器出口温度・成績係
数線図。
FIG. 11 is a radiator outlet temperature / performance coefficient diagram showing the relationship between the radiator outlet temperature and the coefficient of performance in the supercritical vapor compression cycle.

【図12】CO2 超臨界蒸気圧縮サイクルを示すモリエ
ル線図。
FIG. 12 is a Mollier diagram showing a CO 2 supercritical vapor compression cycle.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 放熱器 3 内部熱交換器 3a 高圧側の熱交換通路 3b 低圧側の熱交換通路 4 膨張弁 5 蒸発器 7 バイパス路 9 第1の流量制御弁 10 第2の流量制御弁 11 温度センサ 12 制御部 13 三方電磁弁 14 第2のバイパス路 15 第3の流量制御弁 16 内部熱交換器高圧側入口温度センサ 17 内部熱交換器高圧側入口圧力センサ 20 内部熱交換器高圧側出口温度センサ 21 内部熱交換器高圧側出口圧力センサ DESCRIPTION OF SYMBOLS 1 Compressor 2 Radiator 3 Internal heat exchanger 3a Heat exchange passage on the high pressure side 3b Heat exchange passage on the low pressure side 4 Expansion valve 5 Evaporator 7 Bypass passage 9 First flow control valve 10 Second flow control valve 11 Temperature Sensor 12 Control unit 13 Three-way solenoid valve 14 Second bypass path 15 Third flow control valve 16 Internal heat exchanger high-side inlet temperature sensor 17 Internal heat exchanger high-side inlet pressure sensor 20 Internal heat exchanger high-side outlet temperature Sensor 21 Internal heat exchanger high pressure side outlet pressure sensor

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 所定の過熱度に加熱された冷媒を超臨界
状態に圧縮する圧縮機と、 上記圧縮機により圧縮された冷媒を放熱して冷却する放
熱器と、 上記放熱器で放熱された超臨界高圧冷媒を高圧側の熱交
換通路に導入して低圧側の熱交換通路の低圧冷媒と熱交
換する内部熱交換器と、 上記高圧側の熱交換通路を通過した超臨界高圧冷媒を減
圧する膨張弁と、 上記膨張弁により膨張して減圧され、気液二相化した低
圧冷媒を導入して外部からの吸熱により蒸発させる蒸発
器とを備え、 上記蒸発器を通過した低圧冷媒を上記低圧側の熱交換通
路に導入して熱交換した後、上記圧縮機に送るようにし
た超臨界蒸気圧縮サイクル装置において、 上記内部熱交換器の一方側の熱交換通路と並列にバイパ
ス路を設け、流量制御弁により一方側の熱交換通路の冷
媒流量とバイパス路の冷媒流量とを制御することを特徴
とする超臨界蒸気圧縮サイクル装置。
1. A compressor for compressing a refrigerant heated to a predetermined degree of superheat into a supercritical state, a radiator for radiating and cooling the refrigerant compressed by the compressor, and a radiator radiated by the radiator. An internal heat exchanger that introduces the supercritical high-pressure refrigerant into the heat exchange passage on the high-pressure side and exchanges heat with the low-pressure refrigerant in the heat exchange passage on the low-pressure side; and depressurizes the supercritical high-pressure refrigerant that has passed through the heat exchange passage on the high-pressure side. And an evaporator for introducing a low-pressure refrigerant that has been expanded and decompressed by the expansion valve and has been converted into a gas-liquid two-phase, and evaporates by absorbing heat from the outside. In the supercritical vapor compression cycle device, which is introduced into the heat exchange passage on the low pressure side and exchanges heat and then sent to the compressor, a bypass passage is provided in parallel with the heat exchange passage on one side of the internal heat exchanger. , Heat exchange on one side by flow control valve A supercritical vapor compression cycle device that controls a refrigerant flow rate in a passage and a refrigerant flow rate in a bypass passage.
【請求項2】 上記一方側の熱交換通路側の流路とバイ
パス路との双方に流量制御弁がそれぞれ設けられた請求
項1記載の超臨界蒸気圧縮サイクル装置。
2. The supercritical vapor compression cycle device according to claim 1, wherein a flow control valve is provided in each of the flow path on the one side heat exchange path side and the bypass path.
【請求項3】 上記一方側の熱交換通路の中間と上記バ
イパス路との間に第2のバイパス路が設けられ、上記第
2のバイパス路に第3の流量制御弁が設けられた請求項
2記載の超臨界蒸気圧縮サイクル装置。
3. A method according to claim 1, wherein a second bypass passage is provided between an intermediate of said one side heat exchange passage and said bypass passage, and a third flow control valve is provided in said second bypass passage. 3. The supercritical vapor compression cycle device according to 2.
【請求項4】 上記一方側の熱交換通路が低圧側の熱交
換通路である請求項1、2または3に記載の超臨界蒸気
圧縮サイクル装置。
4. The supercritical vapor compression cycle device according to claim 1, wherein the one-side heat exchange passage is a low-pressure side heat exchange passage.
【請求項5】 圧縮機から吐出される冷媒の温度に基づ
いて流量制御弁の開閉を調節する請求項1記載の超臨界
蒸気圧縮サイクル装置。
5. The supercritical vapor compression cycle device according to claim 1, wherein the opening and closing of the flow control valve is adjusted based on the temperature of the refrigerant discharged from the compressor.
【請求項6】 内部熱交換器の出口の冷媒の温度および
圧力に基づいて流量制御弁および膨張弁の開閉を調節す
る請求項5記載の超臨界蒸気圧縮サイクル装置。
6. The supercritical vapor compression cycle device according to claim 5, wherein the opening and closing of the flow control valve and the expansion valve are adjusted based on the temperature and pressure of the refrigerant at the outlet of the internal heat exchanger.
【請求項7】 内部熱交換器の入口の冷媒の温度および
圧力に基づいて流量制御弁および膨張弁の開閉を調節す
る請求項5記載の超臨界蒸気圧縮サイクル装置。
7. The supercritical vapor compression cycle device according to claim 5, wherein the opening and closing of the flow control valve and the expansion valve are adjusted based on the temperature and pressure of the refrigerant at the inlet of the internal heat exchanger.
【請求項8】 蒸発器の温度に基づいて流量制御弁およ
び膨張弁の開閉を調節する請求項5記載の超臨界蒸気圧
縮サイクル装置。
8. The supercritical vapor compression cycle device according to claim 5, wherein the opening and closing of the flow control valve and the expansion valve are adjusted based on the temperature of the evaporator.
【請求項9】 負荷情報に基づいて流量制御弁および膨
張弁の開閉を調節する請求項5記載の超臨界蒸気圧縮サ
イクル装置。
9. The supercritical vapor compression cycle device according to claim 5, wherein opening and closing of the flow control valve and the expansion valve are adjusted based on the load information.
JP2000046045A 2000-02-23 2000-02-23 Supercritical vapor compressing cycle system Pending JP2001235239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000046045A JP2001235239A (en) 2000-02-23 2000-02-23 Supercritical vapor compressing cycle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000046045A JP2001235239A (en) 2000-02-23 2000-02-23 Supercritical vapor compressing cycle system

Publications (1)

Publication Number Publication Date
JP2001235239A true JP2001235239A (en) 2001-08-31

Family

ID=18568532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000046045A Pending JP2001235239A (en) 2000-02-23 2000-02-23 Supercritical vapor compressing cycle system

Country Status (1)

Country Link
JP (1) JP2001235239A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057245A1 (en) * 2002-12-23 2004-07-08 Sinvent As Improved vapour compression heat pump system
WO2005022051A1 (en) * 2003-08-21 2005-03-10 Daimlerchrysler Ag Method for regulating an air conditioning system
EP1519127A1 (en) * 2003-09-26 2005-03-30 Valeo Climatisation Cooling cycle
JP2007040690A (en) * 2005-04-01 2007-02-15 Denso Corp Ejector type refrigeration cycle
FR2900222A1 (en) * 2006-04-25 2007-10-26 Valeo Systemes Thermiques Air conditioning system for motor vehicle, has fluid flow regulation device that adjusts proportion of coolant to be sent in fluid derivation branch based on discharge temperature of coolant at outlet of compressor
JP2008025900A (en) * 2006-07-20 2008-02-07 Sanyo Electric Co Ltd Air conditioner
JP2009030840A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Refrigerating device
JP2009204304A (en) * 2009-06-18 2009-09-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2010043754A (en) * 2008-08-08 2010-02-25 Denso Corp Vapor compression type refrigeration cycle
JP2013164213A (en) * 2012-02-10 2013-08-22 Mitsubishi Heavy Ind Ltd Control device for heat pump, heat pump, and method of controlling heat pump
WO2013161725A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
EP2647928A3 (en) * 2007-11-30 2015-08-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2015158263A (en) * 2014-02-25 2015-09-03 三井造船株式会社 boil-off gas recovery system
WO2017094172A1 (en) * 2015-12-03 2017-06-08 三菱電機株式会社 Air conditioning device
US9813603B2 (en) 2016-02-02 2017-11-07 Sony Corporation Lens unit, imaging device, and control method
WO2018015185A1 (en) * 2016-07-18 2018-01-25 Swep International Ab A refrigeration system
JP2020046081A (en) * 2018-09-14 2020-03-26 富士電機株式会社 Heat pump type steam generating device
WO2020202553A1 (en) * 2019-04-05 2020-10-08 三菱電機株式会社 Refrigeration cycle apparatus
WO2022013975A1 (en) * 2020-07-15 2022-01-20 三菱電機株式会社 Cold heat source unit and refrigeration cycle device

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7574874B2 (en) 2002-12-23 2009-08-18 Sinvent As Vapor compression heat pump system
CN100532999C (en) * 2002-12-23 2009-08-26 辛文特公司 Operation method of compression refrigeration system
WO2004057245A1 (en) * 2002-12-23 2004-07-08 Sinvent As Improved vapour compression heat pump system
WO2005022051A1 (en) * 2003-08-21 2005-03-10 Daimlerchrysler Ag Method for regulating an air conditioning system
EP1519127A1 (en) * 2003-09-26 2005-03-30 Valeo Climatisation Cooling cycle
JP4626531B2 (en) * 2005-04-01 2011-02-09 株式会社デンソー Ejector refrigeration cycle
JP2007040690A (en) * 2005-04-01 2007-02-15 Denso Corp Ejector type refrigeration cycle
FR2900222A1 (en) * 2006-04-25 2007-10-26 Valeo Systemes Thermiques Air conditioning system for motor vehicle, has fluid flow regulation device that adjusts proportion of coolant to be sent in fluid derivation branch based on discharge temperature of coolant at outlet of compressor
EP1850075A1 (en) * 2006-04-25 2007-10-31 Valeo Systèmes Thermiques Air-conditioning circuit with supercritical cycle
JP2008025900A (en) * 2006-07-20 2008-02-07 Sanyo Electric Co Ltd Air conditioner
JP2009030840A (en) * 2007-07-25 2009-02-12 Sanyo Electric Co Ltd Refrigerating device
EP2647928A3 (en) * 2007-11-30 2015-08-05 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP2010043754A (en) * 2008-08-08 2010-02-25 Denso Corp Vapor compression type refrigeration cycle
JP2009204304A (en) * 2009-06-18 2009-09-10 Mitsubishi Electric Corp Refrigeration air conditioner
JP2013164213A (en) * 2012-02-10 2013-08-22 Mitsubishi Heavy Ind Ltd Control device for heat pump, heat pump, and method of controlling heat pump
US9822994B2 (en) 2012-04-23 2017-11-21 Mitsubishi Electric Corporation Refrigeration cycle system with internal heat exchanger
WO2013161725A1 (en) * 2012-04-23 2013-10-31 三菱電機株式会社 Refrigeration cycle system
CN104246393A (en) * 2012-04-23 2014-12-24 三菱电机株式会社 Refrigeration cycle system
JPWO2013161725A1 (en) * 2012-04-23 2015-12-24 三菱電機株式会社 Refrigeration cycle system
CN104246393B (en) * 2012-04-23 2016-06-22 三菱电机株式会社 Freezing cyclic system
JP2015158263A (en) * 2014-02-25 2015-09-03 三井造船株式会社 boil-off gas recovery system
WO2017094172A1 (en) * 2015-12-03 2017-06-08 三菱電機株式会社 Air conditioning device
JPWO2017094172A1 (en) * 2015-12-03 2018-06-28 三菱電機株式会社 Air conditioner
US9813603B2 (en) 2016-02-02 2017-11-07 Sony Corporation Lens unit, imaging device, and control method
US10567631B2 (en) 2016-02-02 2020-02-18 Sony Corporation Lens unit, imaging device, and control method
US11221462B2 (en) 2016-02-02 2022-01-11 Sony Corporation Lens unit, imaging device, and control method
WO2018015185A1 (en) * 2016-07-18 2018-01-25 Swep International Ab A refrigeration system
JP2020046081A (en) * 2018-09-14 2020-03-26 富士電機株式会社 Heat pump type steam generating device
JP7135633B2 (en) 2018-09-14 2022-09-13 富士電機株式会社 Heat pump steam generator
WO2020202553A1 (en) * 2019-04-05 2020-10-08 三菱電機株式会社 Refrigeration cycle apparatus
JPWO2020202553A1 (en) * 2019-04-05 2020-10-08
WO2022013975A1 (en) * 2020-07-15 2022-01-20 三菱電機株式会社 Cold heat source unit and refrigeration cycle device
JP7438363B2 (en) 2020-07-15 2024-02-26 三菱電機株式会社 Cold heat source unit and refrigeration cycle equipment

Similar Documents

Publication Publication Date Title
JP2001235239A (en) Supercritical vapor compressing cycle system
US6923016B2 (en) Refrigeration cycle apparatus
US6260367B1 (en) Refrigerating cycle
US8047011B2 (en) Refrigeration system
JP2002168532A (en) Supercritical steam compression system, and device for regulating pressure in high-pressure components of refrigerant circulating therein
JPH0232546B2 (en)
JP2002081767A (en) Air conditioner
US6668569B1 (en) Heat pump apparatus
JP4206870B2 (en) Refrigeration cycle equipment
US20060230773A1 (en) Method for determining optimal coefficient of performance in a transcritical vapor compression system
JP2000146322A (en) Refrigerating cycle
JP2005226950A (en) Refrigerating air conditioner
JP2002228282A (en) Refrigerating device
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP3317170B2 (en) Refrigeration equipment
JPH10185342A (en) Heat pump type air conditioner
JPH0651756U (en) Cooling system
WO2017068649A1 (en) Heat pump system
KR102313304B1 (en) Air conditioner for carbon dioxide
KR100441008B1 (en) Cooling and heating air conditioning system
JP3304866B2 (en) Thermal storage type air conditioner
JP2004226025A (en) Air-conditioner
CN219534662U (en) Direct cooling and heating management system for vehicle power battery
JP2003065584A (en) Air-conditioning apparatus and its control method
JP2004324936A (en) Refrigerating cycle device and restrictor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091106