JP4206870B2 - Refrigeration cycle equipment - Google Patents

Refrigeration cycle equipment Download PDF

Info

Publication number
JP4206870B2
JP4206870B2 JP2003306264A JP2003306264A JP4206870B2 JP 4206870 B2 JP4206870 B2 JP 4206870B2 JP 2003306264 A JP2003306264 A JP 2003306264A JP 2003306264 A JP2003306264 A JP 2003306264A JP 4206870 B2 JP4206870 B2 JP 4206870B2
Authority
JP
Japan
Prior art keywords
pressure
condenser
evaporator
refrigeration cycle
cycle apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003306264A
Other languages
Japanese (ja)
Other versions
JP2005076933A (en
Inventor
信 齊藤
文雄 松岡
裕章 山本
敏郎 阿部
猛 杉本
雅夫 川崎
裕之 森本
寿彦 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003306264A priority Critical patent/JP4206870B2/en
Publication of JP2005076933A publication Critical patent/JP2005076933A/en
Application granted granted Critical
Publication of JP4206870B2 publication Critical patent/JP4206870B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • B60H1/00907Controlling the flow of liquid in a heat pump system where the flow direction of the refrigerant changes and an evaporator becomes condenser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00935Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising four way valves for controlling the fluid direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H2001/00961Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices comprising means for defrosting outside heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Description

この発明は、複数台の凝縮器を有する冷凍サイクル装置に関わるものであり、特に、供給空気の温度と湿度の双方を調整可能な冷凍サイクル装置に関するものである。   The present invention relates to a refrigeration cycle apparatus having a plurality of condensers, and more particularly to a refrigeration cycle apparatus capable of adjusting both the temperature and humidity of supply air.

従来のこの種の冷凍サイクル装置として、冷媒圧縮機、第1熱交換器、第2熱交換器、冷媒再熱器、四方弁からなり、第1熱交換器の液管に第1電磁弁を、第2熱交換器のガス管に第4電磁弁を、第2熱交換器の液管に第2電磁弁を、そして冷媒再熱器のガス管に第3電磁弁をそれぞれ設け、四方弁の接続口はそれぞれ第3、4電磁弁、第1熱交換器のガス管、アキュムレータ、冷媒圧縮機に接続され、供給風路としては第1熱交換器、冷媒再熱器を順次通過する構成となっている。そして第1熱交換器を蒸発器として使用する際は第1電磁弁が開放され、絞り装置で減圧された冷媒が第1熱交換器に流入する。   As a conventional refrigeration cycle apparatus of this type, a refrigerant compressor, a first heat exchanger, a second heat exchanger, a refrigerant reheater, and a four-way valve are used, and a first electromagnetic valve is provided in a liquid pipe of the first heat exchanger. A four solenoid valve is provided in the gas pipe of the second heat exchanger, a second solenoid valve is provided in the liquid pipe of the second heat exchanger, and a third solenoid valve is provided in the gas pipe of the refrigerant reheater. Are connected to the third and fourth solenoid valves, the gas pipe of the first heat exchanger, the accumulator, and the refrigerant compressor, respectively, and the supply air passage sequentially passes through the first heat exchanger and the refrigerant reheater. It has become. And when using a 1st heat exchanger as an evaporator, a 1st solenoid valve is open | released and the refrigerant | coolant decompressed by the expansion device flows into a 1st heat exchanger.

一方、供給空気を加熱する場合には、第1熱交換器を凝縮器として使用する。第1熱交換器で凝縮した冷媒は逆止弁を通過し、開放された第2電磁弁、絞り装置を通過して蒸発器として機能する第2熱交換器へ流入する。すなわち、逆止弁は、冷媒流通方向が逆転する場合に、絞り装置のいずれかをバイパスするように配置されている。そして、冷媒再熱器から液管に接続する配管上に設けられた逆止弁は第1熱交換器を凝縮器として使用した際に冷媒が再熱器に流入しないように配置されたものである。   On the other hand, when heating supply air, a 1st heat exchanger is used as a condenser. The refrigerant condensed in the first heat exchanger passes through the check valve, passes through the opened second electromagnetic valve and expansion device, and flows into the second heat exchanger functioning as an evaporator. That is, the check valve is arranged to bypass any of the expansion devices when the refrigerant flow direction is reversed. The check valve provided on the pipe connected from the refrigerant reheater to the liquid pipe is arranged so that the refrigerant does not flow into the reheater when the first heat exchanger is used as a condenser. is there.

この従来の冷凍サイクル装置においては、第1熱交換器を凝縮器、第2熱交換器を蒸発器として使用するモードでは供給空気を加熱でき、また、第1熱交換器を蒸発器、第2熱交換器を凝縮器として使用するモードでは供給空気を冷却できる。さらに、第1熱交換器を蒸発器、冷媒再熱器を凝縮器として使用するモードでは供給空気を常温乾燥状態にすることが可能となる。(例えば、特許文献1参照)   In this conventional refrigeration cycle apparatus, the supply air can be heated in a mode in which the first heat exchanger is used as a condenser and the second heat exchanger as an evaporator, and the first heat exchanger is used as an evaporator, In the mode in which the heat exchanger is used as a condenser, the supply air can be cooled. Further, in the mode in which the first heat exchanger is used as an evaporator and the refrigerant reheater is used as a condenser, the supply air can be dried at room temperature. (For example, see Patent Document 1)

また、例えば、上記とほぼ同様な構成で、第2熱交換器と冷媒再熱器の双方に冷媒を流通させ、それぞれの減圧手段を流量調整可能なものとし、その流量比を制御することで再熱器出口の供給空気温度を制御するものがある。(例えば、特許文献2参照)   Also, for example, with the same configuration as described above, the refrigerant can be circulated through both the second heat exchanger and the refrigerant reheater, the flow rate of each decompression means can be adjusted, and the flow rate ratio can be controlled. Some control the temperature of the supply air at the outlet of the reheater. (For example, see Patent Document 2)

特開平10−82585号公報(第2−3頁、第1図)JP 10-82585 A (page 2-3, FIG. 1) 特開平5−340594号公報(第3−4頁、第1−3図)JP-A-5-340594 (page 3-4, Fig. 1-3)

しかしながら、従来のような構成では、冷媒を凝縮させる熱交換器として再熱器か第2熱交換器かを選択させることになるため、再熱器での加熱量はそのサイズにより決まり、供給空気の温度および湿度を所定値に制御することは困難である。   However, in the conventional configuration, since the reheater or the second heat exchanger is selected as the heat exchanger for condensing the refrigerant, the amount of heating in the reheater is determined by its size, and the supply air It is difficult to control the temperature and humidity at predetermined values.

また、再熱器と第2熱交換器を同時に利用し、冷媒流量比を制御することで再熱器出口温度を目標値に調整する場合においては、再熱量を必要としない場合に再熱器に多量の液冷媒が溜まり込むこととなるため、冷媒回路に多量の冷媒を封入することとなり、冷凍サイクルに設置される受液器の大型化によるコスト増大を招くばかりでなく、圧縮機起動時の液バックなどで信頼性の悪化をも招くこととなる。   In the case where the reheater outlet temperature is adjusted to the target value by using the reheater and the second heat exchanger at the same time and controlling the refrigerant flow rate ratio, the reheater is used when the reheat amount is not required. Since a large amount of liquid refrigerant accumulates in the refrigerant circuit, a large amount of refrigerant is sealed in the refrigerant circuit, which not only increases the cost due to the increase in the size of the liquid receiver installed in the refrigeration cycle, but also when the compressor is started. The liquid back of the liquid causes deterioration of reliability.

この発明は上記のような問題点を解消するためになされたもので、目的に応じて運転モードを切り替えることにより、供給空気の温度および湿度を所望の値に調整することを可能にするとともに、再熱量の大小によらず必要冷媒量を一定とし、低コストで信頼性の高い冷凍サイクル装置を得ることを目的とする。   The present invention was made to solve the above problems, and by switching the operation mode according to the purpose, it is possible to adjust the temperature and humidity of the supply air to desired values, and An object is to obtain a refrigeration cycle apparatus that is low in cost and highly reliable with a constant amount of refrigerant regardless of the amount of reheat.

本発明の冷凍サイクル装置は、少なくとも圧縮機、凝縮器、減圧手段、蒸発器を順次配管で接続してなる冷凍サイクル装置において、前記凝縮器が複数台並列に配置され、前記凝縮器の出口側配管にそれぞれ流量調整可能な第1の減圧手段を設けるとともに、前記凝縮器の少なくとも1台以上が前記蒸発器と同一風路内に配設され、その凝縮器の入口側配管に第2の減圧手段を備え、冷却除湿運転時には、前記蒸発器と同一風路内に配設された凝縮器の圧力P2と外気に放熱する凝縮器の圧力P1とが異なる凝縮圧力となり、供給空気の目標温度に基づいて加熱量が所定値となるように前記第2の減圧手段を制御するとともに、供給空気の湿度が目標値となるような前記圧縮機の運転周波数に応じて、それぞれの凝縮器から流出する冷媒の過冷却度が一定値となるようにそれぞれの第1の減圧手段を制御するものである。 The refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which at least a compressor, a condenser, a decompression unit, and an evaporator are sequentially connected by piping, and a plurality of the condensers are arranged in parallel, and the outlet side of the condenser The pipe is provided with first pressure reducing means capable of adjusting the flow rate, and at least one of the condensers is disposed in the same air path as the evaporator, and a second pressure reducing means is provided in the inlet side pipe of the condenser. In the cooling and dehumidifying operation, the pressure P2 of the condenser disposed in the same air path as the evaporator and the pressure P1 of the condenser radiating heat to the outside air become different condensation pressures, and the target temperature of the supply air is reached. Based on this, the second pressure reducing means is controlled so that the heating amount becomes a predetermined value, and the refrigerant flows out of each condenser according to the operating frequency of the compressor so that the humidity of the supply air becomes the target value. Excessive refrigerant却度 in which controls the first pressure reducing means, respectively, as a constant value.

また、本発明の冷凍サイクル装置は、再熱量が不要な場合には、前記蒸発器と同一風路内に配設された凝縮器の圧力P2と外気に放熱する凝縮器の圧力P1とが異なる凝縮圧力となるように前記第2の減圧手段を閉止状態に制御するとともに、前記蒸発器と同一風路内に配設された凝縮器側は開放に、そして外気に放熱する凝縮器側は流出する冷媒の過冷却度が一定値となるようにそれぞれの第1の減圧手段を制御するものである。 Further, in the refrigeration cycle apparatus of the present invention, when the amount of reheat is not required , the pressure P2 of the condenser disposed in the same air path as the evaporator and the pressure P1 of the condenser that radiates heat to the outside air are different. The second decompression means is controlled to be closed so that the condensation pressure is reached, the condenser side disposed in the same air path as the evaporator is opened, and the condenser side that radiates heat to the outside flows out. Each of the first pressure reducing means is controlled so that the degree of supercooling of the refrigerant to be maintained becomes a constant value.

また、本発明の冷凍サイクル装置は、前記圧縮機から吐出した冷媒の流れ方向を切り替える四方弁を備え、加熱運転時には、前記複数の凝縮器のうち前記蒸発器と同一風路内に配設されていない熱交換器を蒸発器として機能させるものである。 Further, the refrigeration cycle apparatus of the present invention includes a four-way valve that switches a flow direction of the refrigerant discharged from the compressor, and is disposed in the same air path as the evaporator among the plurality of condensers during a heating operation. The heat exchanger that is not used functions as an evaporator.

また、本発明の冷凍サイクル装置は、前記蒸発器が、その一部の冷媒流路を閉止させる開閉弁を備えたものである。   In the refrigeration cycle apparatus of the present invention, the evaporator includes an on-off valve that closes a part of the refrigerant flow path.

また、本発明の冷凍サイクル装置は、少なくとも圧縮機、凝縮器、減圧手段、蒸発器を順次配管で接続してなる冷凍サイクル装置において、前記凝縮器が複数台並列に配置され、前記凝縮器の出口側配管にそれぞれ流量調整可能な第1の減圧手段を設けるとともに、前記凝縮器の少なくとも1台以上が前記蒸発器と同一風路内に配設され、その凝縮器の入口側配管に第2の減圧手段と、前記複数の凝縮器のうち、前記蒸発器と風路を同一としない凝縮器の少なくとも1台以上は、その凝縮器から流出する液冷媒の一部を分流して前記圧縮機の吸入側へ流通させる分岐回路に第3の減圧手段と内部熱交換器を備え、低外気時の冷却除湿運転において、再熱量最大で運転する場合、前記第2の減圧手段を全開とするとともに、前記第3の減圧手段により分流した液冷媒を減圧した後、前記主流の液冷媒との間で熱交換させて前記内部熱交換器の低圧側出口温度が所定の過熱度となるように制御したものである。 Further, the refrigeration cycle apparatus of the present invention is a refrigeration cycle apparatus in which at least a compressor, a condenser, a decompression unit, and an evaporator are sequentially connected by piping, and a plurality of the condensers are arranged in parallel, A first pressure reducing means capable of adjusting the flow rate is provided in each outlet side pipe, and at least one of the condensers is disposed in the same air path as the evaporator, and a second pipe is connected to the inlet side pipe of the condenser. of a pressure reducing means, among the plurality of condenser, the evaporator and at least one or more condensers of which does not equal the air passage, said compressor to divert part of the liquid refrigerant flowing out from the condenser The third depressurization means and the internal heat exchanger are provided in the branch circuit that circulates to the suction side, and in the cooling and dehumidification operation at low outside air, when the reheat amount is maximized, the second depressurization means is fully opened. the third pressure reducing means After decompression of a more diverted liquid refrigerant, the low-pressure side outlet temperature of the internal heat exchanger by heat exchange between the main flow of the liquid refrigerant is obtained by controlled so as to have a predetermined degree of superheat.

また、本発明の冷凍サイクル装置は、前記圧縮機の吐出圧力、吸入圧力の少なくともいずれか一方を検知する圧力検知手段を備え、前記圧力検知手段により検知された圧力値が所定範囲を外れないように前記蒸発器の熱交換量を調整する蒸発器熱交換量調整手段を備えたものである。   Further, the refrigeration cycle apparatus of the present invention includes pressure detection means for detecting at least one of the discharge pressure and the suction pressure of the compressor so that the pressure value detected by the pressure detection means does not deviate from a predetermined range. And an evaporator heat exchange amount adjusting means for adjusting the heat exchange amount of the evaporator.

また、本発明の冷凍サイクル装置は、前記第2の減圧手段が、電動モータで駆動可能な弁を有し、弁と弁座との隙間を連続的に変化させて流路抵抗を調整するものである。   In the refrigeration cycle apparatus of the present invention, the second pressure reducing means has a valve that can be driven by an electric motor, and adjusts the flow resistance by continuously changing the gap between the valve and the valve seat. It is.

また、本発明の冷凍サイクル装置は、前記第2の減圧手段が、流路抵抗の異なるキャピラリチューブと開閉弁が複数並列に配置され、前記開閉弁の開閉により流路抵抗を段階的に調節するものである。   Further, in the refrigeration cycle apparatus of the present invention, the second decompression means includes a plurality of capillary tubes and open / close valves having different flow path resistances arranged in parallel, and the flow path resistance is adjusted stepwise by opening / closing the open / close valves. Is.

また、本発明の冷凍サイクル装置は、前記第2の減圧手段が、高速で開閉可能な開閉弁としたものである。   In the refrigeration cycle apparatus of the present invention, the second pressure reducing means is an on-off valve that can be opened and closed at high speed.

本発明に係る冷凍サイクル装置によれば、少なくとも圧縮機、凝縮器、減圧手段、蒸発器を順次配管で接続してなる冷凍サイクル装置において、前記凝縮器が複数台並列に配置され、前記凝縮器の出口側配管にそれぞれ流量調整可能な第1の減圧手段を設けるとともに、前記凝縮器の少なくとも1台以上が前記蒸発器と同一風路内に配設され、その凝縮器の入口側配管に第2の減圧手段を備え、冷却除湿運転時には、前記蒸発器と同一風路内に配設された凝縮器の圧力P2と外気に放熱する凝縮器の圧力P1とが異なる凝縮圧力となり、供給空気の目標温度に基づいて加熱量が所定値となるように前記第2の減圧手段を制御するとともに、供給空気の湿度が目標値となるような前記圧縮機の運転周波数に応じて、それぞれの凝縮器から流出する冷媒の過冷却度が一定値となるようにそれぞれの第1の減圧手段を制御するので、凝縮器毎に異なる凝縮圧力で凝縮させることが可能となり、対象室に供給する空気の含有水分量を蒸発器で調整後、同一風路内にある凝縮器で温度を調整でき、供給空気の温度と湿度を同時に制御することが可能となる効果を有する。 According to the refrigeration cycle apparatus according to the present invention, in the refrigeration cycle apparatus in which at least a compressor, a condenser, a decompression unit, and an evaporator are sequentially connected by piping, a plurality of the condensers are arranged in parallel, and the condenser The outlet side piping is provided with a first pressure-reducing means capable of adjusting the flow rate, and at least one of the condensers is disposed in the same air path as the evaporator. During the cooling and dehumidifying operation, the pressure P2 of the condenser disposed in the same air passage as that of the evaporator and the pressure P1 of the condenser that radiates heat to the outside air have different condensation pressures. Each of the condensers is controlled in accordance with the operating frequency of the compressor such that the humidity of the supplied air becomes the target value while controlling the second pressure reducing means so that the heating amount becomes a predetermined value based on the target temperature. Spill from Since the degree of supercooling of the refrigerant to control the first pressure reducing means, respectively, as a constant value, it becomes possible to condense a different condensing pressure in each condenser, the water content of the air supplied to the target chamber After adjustment with the evaporator, the temperature can be adjusted with a condenser in the same air path, and the temperature and humidity of the supplied air can be controlled simultaneously.

また、本発明の冷凍サイクル装置によれば、再熱量が不要な場合には、前記蒸発器と同一風路内に配設された凝縮器の圧力P2と外気に放熱する凝縮器の圧力P1とが異なる凝縮圧力となるように前記第2の減圧手段を閉止状態に制御するとともに、前記蒸発器と同一風路内に配設された凝縮器側は開放に、そして外気に放熱する凝縮器側は流出する冷媒の過冷却度が一定値となるようにそれぞれの第1の減圧手段を制御するので、凝縮器毎に異なる凝縮圧力で凝縮させることが可能となり、これにより、各凝縮器で放熱する熱源温度が異なる場合においても、放熱量の比率を任意に調節できるとともに、一方に冷媒量が偏って溜まり込むことがないという効果を有する。 Further, according to the refrigeration cycle apparatus of the present invention, when the reheat amount is unnecessary , the pressure P2 of the condenser disposed in the same air path as the evaporator and the pressure P1 of the condenser that radiates heat to the outside air The second decompression means is controlled to be closed so that the condensation pressures are different from each other, the condenser side disposed in the same air passage as the evaporator is open, and the condenser side radiates heat to the outside air since the degree of supercooling of the refrigerant flowing out to control the first pressure reducing means, respectively, as a constant value, it becomes possible to condense a different condensing pressure in each condenser, whereby the heat dissipation in the condenser Even when the temperature of the heat source to be changed is different, the ratio of the heat radiation amount can be arbitrarily adjusted, and the refrigerant amount is not biased and collected on one side.

また、本発明の冷凍サイクル装置によれば、前記圧縮機から吐出した冷媒の流れ方向を切り替える四方弁を備え、加熱運転時には、前記複数の凝縮器のうち前記蒸発器と同一風路内に配設されていない熱交換器を蒸発器として機能させるので、供給空気を加熱して対象室に供給することが可能となる。 Further, according to the refrigeration cycle apparatus of the present invention, a four-way valve that switches the flow direction of the refrigerant discharged from the compressor is provided, and is arranged in the same air path as the evaporator among the plurality of condensers during the heating operation. Since the heat exchanger that is not provided functions as an evaporator, the supply air can be heated and supplied to the target chamber.

また、本発明の冷凍サイクル装置によれば、前記蒸発器が、その一部の冷媒流路を閉止させる開閉弁を備えたので、外気が35℃以上の高温である場合においても、凝縮圧力が異常に上昇する不具合、および圧縮機入力が異常に増大する不具合を回避できる。   Further, according to the refrigeration cycle apparatus of the present invention, since the evaporator includes an on-off valve that closes a part of the refrigerant flow path, even when the outside air is at a high temperature of 35 ° C. or higher, the condensation pressure is Problems that rise abnormally and problems that the compressor input increases abnormally can be avoided.

また、本発明の冷凍サイクル装置によれば、少なくとも圧縮機、凝縮器、減圧手段、蒸発器を順次配管で接続してなる冷凍サイクル装置において、前記凝縮器が複数台並列に配置され、前記凝縮器の出口側配管にそれぞれ流量調整可能な第1の減圧手段を設けるとともに、前記凝縮器の少なくとも1台以上が前記蒸発器と同一風路内に配設され、その凝縮器の入口側配管に第2の減圧手段と、前記複数の凝縮器のうち、前記蒸発器と風路を同一としない凝縮器の少なくとも1台以上は、その凝縮器から流出する液冷媒の一部を分流して前記圧縮機の吸入側へ流通させる分岐回路に第3の減圧手段と内部熱交換器を備え、低外気時の冷却除湿運転において、再熱量最大で運転する場合、前記第2の減圧手段を全開とするとともに、前記第3の減圧手段により分流した液冷媒を減圧した後、前記主流の液冷媒との間で熱交換させて前記内部熱交換器の低圧側出口温度が所定の過熱度となるように制御したので、外気が10℃以下の低温である場合においても、前記蒸発器と風路を同一としない凝縮器に冷媒が多量に溜まり込むことを防止できるとともに、電動膨張弁などの減圧手段に二相冷媒が流入することによる不具合を回避することができる。 Further, according to the refrigeration cycle apparatus of the present invention, in the refrigeration cycle apparatus in which at least a compressor, a condenser, a decompression unit, and an evaporator are sequentially connected by piping, a plurality of the condensers are arranged in parallel, and the condensation A first pressure-reducing means capable of adjusting the flow rate is provided in each outlet side pipe of the condenser, and at least one of the condensers is disposed in the same air path as the evaporator, and is connected to the inlet side pipe of the condenser. At least one of the second decompression means and the condenser that does not have the same air path as the evaporator among the plurality of condensers, a part of the liquid refrigerant flowing out from the condenser is shunted, A branch circuit that circulates to the suction side of the compressor is provided with a third decompression means and an internal heat exchanger, and in the cooling and dehumidification operation at the time of low outside air, when the maximum reheat amount is operated, the second decompression means is fully opened. as well as, the third reduction of After decompression of the liquid refrigerant diverted by means, since the low-pressure side outlet temperature of the internal heat exchanger by heat exchange between the main flow of the liquid refrigerant is controlled to be a predetermined degree of superheat, the outside air is 10 Even in the case of a low temperature of ℃ or less, it is possible to prevent a large amount of refrigerant from accumulating in a condenser whose air path is not the same as that of the evaporator, and two-phase refrigerant flows into a decompression means such as an electric expansion valve. It is possible to avoid problems caused by.

また、本発明の冷凍サイクル装置によれば、前記圧縮機の吐出圧力、吸入圧力の少なくともいずれか一方を検知する圧力検知手段を備え、前記圧力検知手段により検知された圧力値が所定範囲を外れないように前記蒸発器の熱交換量を調整する蒸発器熱交換量調整手段を備えたので、低外気時に蒸発器に着霜することを回避できる。さらに、高外気時においても高圧異常上昇や圧縮機入力異常増大などの不具合を回避できる。   The refrigeration cycle apparatus according to the present invention further includes pressure detection means for detecting at least one of the discharge pressure and the suction pressure of the compressor, and the pressure value detected by the pressure detection means is out of a predetermined range. Since the evaporator heat exchange amount adjusting means for adjusting the heat exchange amount of the evaporator is provided so that the evaporator is not frosted during low outside air. Furthermore, problems such as an abnormal increase in high pressure and an increase in abnormal compressor input can be avoided even during high outside air.

また、本発明の冷凍サイクル装置によれば、前記第2の減圧手段が、電動モータで駆動可能な弁を有し、弁と弁座との隙間を連続的に変化させて流路抵抗を調整するものであるので、再熱器での加熱量をきめ細やかに調整でき、供給空気の温度制御の精度が向上する。   Further, according to the refrigeration cycle apparatus of the present invention, the second pressure reducing means has a valve that can be driven by an electric motor, and the flow path resistance is adjusted by continuously changing the gap between the valve and the valve seat. Thus, the amount of heating in the reheater can be finely adjusted, and the accuracy of temperature control of the supply air is improved.

また、本発明の冷凍サイクル装置によれば、前記第2の減圧手段が、流路抵抗の異なるキャピラリチューブと開閉弁が複数並列に配置され、前記開閉弁の開閉により流路抵抗を段階的に調節するものであるので、機器コストを低減することができる。   Further, according to the refrigeration cycle apparatus of the present invention, the second decompression means includes a plurality of capillary tubes and open / close valves having different flow path resistances arranged in parallel, and the flow path resistance is gradually increased by opening / closing the open / close valves. Since the adjustment is performed, the equipment cost can be reduced.

また、本発明の冷凍サイクル装置によれば、前記第2の減圧手段が、高速で開閉可能な開閉弁としたものであるので、さらに低コスト化が可能となる。   Further, according to the refrigeration cycle apparatus of the present invention, since the second pressure reducing means is an on-off valve that can be opened and closed at high speed, the cost can be further reduced.

実施の形態1.
図1は、この発明の実施の形態1による冷凍サイクル装置の構成を示す冷媒回路図である。図において、1は圧縮機、2は四方弁である。3は室外熱交換器であり、この室外熱交換器3の近傍に設けられ外気をこの熱交換器へ送風する室外送風機4の回転数を可変とすることによって外気との熱交換量を調整できる。5は再熱器であり、室外熱交換器3と並列に配管接続されている。室外熱交換器3と再熱器5にはそれぞれ接続された凝縮出口側となる液側配管に絞り手段である第1の減圧手段(電動膨張弁)6,7が配置され、さらに再熱器5には凝縮入口側となるガス側配管にも第2の減圧手段8が配置されている。9は供給側熱交換器であり、供給風路10内に配置され、供給送風機11により供給される空気と熱交換を行なう。前記再熱器5もこの供給風路10内の供給側熱交換器9の下流側に配置されており、前記供給側熱交換器9と熱交換した後の空気と熱交換を行なうようになっている。なお、図1に示す冷媒回路図では、圧縮機1から吐出した冷媒は四方弁2を経て(図中の実線方向の流れ)、並列に接続された室外熱交換器3または再熱器5に流入し熱交換した後、第1の減圧手段(電動膨張弁)6,7を通過することによりそれぞれ減圧され、その後、一つの流路に合流して供給側熱交換器9に流入する。この供給側熱交換器9にて熱交換して吸熱蒸発したのち四方弁2を介して圧縮機1へ吸入され循環する。本実施の形態では、供給送風機11は外気を吸い込み、対象室へ供給する空気の温湿度を目標値になるように調整する。
Embodiment 1 FIG.
1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle apparatus according to Embodiment 1 of the present invention. In the figure, 1 is a compressor and 2 is a four-way valve. 3 is an outdoor heat exchanger, and the amount of heat exchange with the outside air can be adjusted by changing the number of rotations of the outdoor blower 4 that is provided in the vicinity of the outdoor heat exchanger 3 and blows outside air to the heat exchanger. . Reference numeral 5 denotes a reheater, which is connected to the outdoor heat exchanger 3 in parallel. In the outdoor heat exchanger 3 and the reheater 5, first decompression means (electric expansion valves) 6 and 7 that are throttle means are arranged in the liquid side pipes that are connected to the condensation outlets, respectively. In FIG. 5, the second decompression means 8 is also arranged in the gas side pipe on the condensation inlet side. Reference numeral 9 denotes a supply-side heat exchanger, which is disposed in the supply air passage 10 and exchanges heat with the air supplied by the supply blower 11. The reheater 5 is also arranged on the downstream side of the supply side heat exchanger 9 in the supply air passage 10 and exchanges heat with the air after heat exchange with the supply side heat exchanger 9. ing. In the refrigerant circuit diagram shown in FIG. 1, the refrigerant discharged from the compressor 1 passes through the four-way valve 2 (flow in the solid line direction in the figure) and enters the outdoor heat exchanger 3 or reheater 5 connected in parallel. After flowing in and exchanging heat, the pressure is reduced by passing through the first pressure reducing means (electric expansion valves) 6, 7, and then merges into one flow path and flows into the supply side heat exchanger 9. After the heat is exchanged by the supply side heat exchanger 9 and the heat is absorbed and absorbed, it is sucked into the compressor 1 through the four-way valve 2 and circulated. In the present embodiment, the supply blower 11 draws in outside air and adjusts the temperature and humidity of the air supplied to the target chamber so as to reach a target value.

このように構成された本実施の形態の冷凍サイクル装置では、空調の対象室へ供給する空気の温度および湿度を自在に調整できるとともに、冷媒量分布を安定に制御できる。以下、この冷凍サイクル装置の動作について、冷却除湿運転、加熱運転の順でその動作を説明する。   In the refrigeration cycle apparatus of the present embodiment configured as described above, the temperature and humidity of the air supplied to the air-conditioning target room can be freely adjusted, and the refrigerant amount distribution can be stably controlled. Hereinafter, the operation of this refrigeration cycle apparatus will be described in the order of cooling dehumidification operation and heating operation.

まず、冷却除湿運転時の冷凍サイクル動作を図1および図2を参照して説明する。図2は冷却除湿運転時の冷凍サイクル動作を表すPh線図であり、縦軸に圧力[MPa]、横軸に比エンタルピ[kJ/kg]としている。なお、図2中のA点からD点は、図1の冷媒回路図に示すA点からD点のそれぞれの位置に対応している。図1において、四方弁2は実線方向に流路を形成し、圧縮機1から吐出された高温高圧のガス冷媒(A点)を室外熱交換器3および再熱器5の両方へ並列に導く。室外熱交換器3では、冷媒が外気に放熱して凝縮液化する際、室外送風機4では室外熱交換器3での凝縮圧力が予め定められた所定の圧力値P1となるように回転数が調整される。また、室外熱交換器3の凝縮出口側配管に設けられた第1の減圧手段(電動膨張弁)6は室外熱交換器3から流出する液冷媒の過冷却度が例えば5[deg]程度となるように開度調整される。   First, the refrigeration cycle operation during the cooling and dehumidifying operation will be described with reference to FIG. 1 and FIG. FIG. 2 is a Ph diagram representing the refrigeration cycle operation during the cooling and dehumidifying operation, in which the vertical axis represents pressure [MPa] and the horizontal axis represents specific enthalpy [kJ / kg]. Note that points A to D in FIG. 2 correspond to positions A to D shown in the refrigerant circuit diagram of FIG. In FIG. 1, the four-way valve 2 forms a flow path in the solid line direction, and guides the high-temperature and high-pressure gas refrigerant (point A) discharged from the compressor 1 to both the outdoor heat exchanger 3 and the reheater 5 in parallel. . In the outdoor heat exchanger 3, when the refrigerant dissipates heat to the outside air and condensates, the rotational speed of the outdoor blower 4 is adjusted so that the condensation pressure in the outdoor heat exchanger 3 becomes a predetermined pressure value P1. Is done. The first pressure reducing means (electric expansion valve) 6 provided in the condensation outlet side pipe of the outdoor heat exchanger 3 has a degree of supercooling of the liquid refrigerant flowing out of the outdoor heat exchanger 3 of, for example, about 5 [deg]. The opening is adjusted to be

室外熱交換器3と並列に配管接続された再熱器5においては、まずその凝縮時に入口側となる配管に設けられた第2の減圧手段8によってある圧力値P2まで減圧されたガス冷媒(B点)が流入し、後述する冷却された供給空気SA1と熱交換して凝縮液化する。このときの再熱器側の凝縮圧力値P2は、供給空気の目標温度に基づいて再熱器5での空気加熱量が所定値となるよう第2の減圧手段8により調整される。再熱器5の凝縮出口側配管に設けられた第1の減圧手段(電動膨張弁)7は、室外熱交換器3側と同様に、再熱器5出口冷媒の過冷却度が所定値、例えば5[deg]程度となるよう開度調整される。   In the reheater 5 connected in parallel with the outdoor heat exchanger 3, first, a gas refrigerant (decompressed to a certain pressure value P2 by the second decompression means 8 provided in the piping on the inlet side at the time of condensation) (B point) flows in and heat-exchanges with the cooled supply air SA1 mentioned later, and is condensed and liquefied. The condensation pressure value P2 on the reheater side at this time is adjusted by the second decompression means 8 so that the air heating amount in the reheater 5 becomes a predetermined value based on the target temperature of the supply air. The first pressure reducing means (electric expansion valve) 7 provided in the condensation outlet side pipe of the reheater 5 has a predetermined degree of supercooling degree of the refrigerant at the outlet of the reheater 5, similarly to the outdoor heat exchanger 3 side. For example, the opening degree is adjusted to be about 5 [deg].

室外熱交換器3および再熱器5を流出した液冷媒は、前述のように第1の減圧手段(電動膨張弁)6、7によって減圧されて圧力値P3となった後に合流し、低圧二相冷媒(C点)となって供給側熱交換器9へ流入する。この供給側熱交換器9では、供給送風機11より供給される外気OAと熱交換を行ない、ここで低圧二相冷媒は蒸発してガス冷媒(D点)となり、四方弁2を経由して再び圧縮機1へ吸入される。また、供給側熱交換9を通過することにより冷却除湿された空気SA1は供給風路10に導かれて前記再熱器5を通過し、再加熱されて目標温度の空気SA2となって空調の対象室へと供給される。このとき、供給空気SA2の含有水分量が目標値となるように圧縮機1の運転周波数が調整されるようになっており、供給空気SA2は湿度も目標値に調整されている。   The liquid refrigerant that has flowed out of the outdoor heat exchanger 3 and the reheater 5 is decompressed by the first decompression means (electric expansion valves) 6 and 7 as described above, and is joined after the pressure value P3 is reached. It becomes a phase refrigerant (C point) and flows into the supply side heat exchanger 9. The supply side heat exchanger 9 exchanges heat with the outside air OA supplied from the supply blower 11, where the low-pressure two-phase refrigerant evaporates to become a gas refrigerant (point D), and again through the four-way valve 2. It is sucked into the compressor 1. In addition, the air SA1 cooled and dehumidified by passing through the supply side heat exchange 9 is guided to the supply air passage 10, passes through the reheater 5, and is reheated to become air SA2 having a target temperature. Supplied to the target room. At this time, the operating frequency of the compressor 1 is adjusted so that the moisture content of the supply air SA2 becomes the target value, and the humidity of the supply air SA2 is also adjusted to the target value.

ここで、この供給空気の変化を図1および図3をもとに説明する。図3は、冷却除湿運転時の供給空気の変化を表す空気線図であり、横軸に乾球温度、縦軸に絶対湿度をとる。この実施の形態の冷凍サイクル装置は、空調対象室へ供給される供給空気SA2の温度と湿度を目標値に調整するものであり、その供給空気SA2の目標値は温度T2[℃]、湿度X2[kg/kg]、供給源の空気である外気OAはTo[℃]、Xo[kg/kg]である。まず、外気OAは供給側熱交換器9を通過して冷却された状態SA1まで冷却除湿される。すなわち、温度はTo[℃]からT1[℃]まで、湿度はXo[kg/kg]からX2[kg/kg]まで低下する。このとき、圧縮機1は、冷却除湿に必要な冷却量Δi[kJ/kg]に見合う運転周波数に制御される。続いて、再熱器5を通過して温度T1から温度T2[℃]まで加熱される。前記温度T2より高いCT2[℃]は前記再熱器5での凝縮圧力P2の飽和温度であり、この再熱器における凝縮圧力P2を第2の減圧手段8により調整することで、供給空気SA2の温度をT2に制御する。   Here, the change of this supply air is demonstrated based on FIG. 1 and FIG. FIG. 3 is an air line diagram showing changes in supply air during the cooling and dehumidifying operation, in which the horizontal axis represents dry bulb temperature and the vertical axis represents absolute humidity. The refrigeration cycle apparatus of this embodiment adjusts the temperature and humidity of the supply air SA2 supplied to the air-conditioning target room to target values. The target values of the supply air SA2 are a temperature T2 [° C.] and a humidity X2. [kg / kg], the outside air OA which is the air of the supply source is To [° C.] and Xo [kg / kg]. First, the outside air OA is cooled and dehumidified to the state SA1 that has been cooled by passing through the supply-side heat exchanger 9. That is, the temperature decreases from To [° C.] to T1 [° C.], and the humidity decreases from Xo [kg / kg] to X2 [kg / kg]. At this time, the compressor 1 is controlled to an operating frequency commensurate with the cooling amount Δi [kJ / kg] required for cooling and dehumidification. Then, it passes through the reheater 5 and is heated from temperature T1 to temperature T2 [° C.]. CT2 [° C.] higher than the temperature T2 is a saturation temperature of the condensing pressure P2 in the reheater 5, and the condensing pressure P2 in the reheater is adjusted by the second decompression means 8 so that the supply air SA2 Is controlled to T2.

以上のように、本実施の形態では、再熱器5から流出する液冷媒の過冷却度を一定にしたまま、再熱器での凝縮圧力P2を可変とすることで再熱量を調整している。もちろん、再熱量が全く不要な場合においても、第2の減圧手段(流量調整が可能な電動膨張弁)8を完全に閉止し、かつ第1の減圧手段(電動膨張弁)7を開放することで再熱器5は低圧側に連通し、液冷媒が溜まり込むことはない。よって、再熱器内に滞留する液冷媒量は運転条件によらずほとんど不変となり、冷媒回路中に余剰冷媒を貯留する受液器の設置が不要あるいはその容器を小さくすることが可能となる。さらに、封入冷媒量を少なくできるため、起動時の液バックや過渡的な高圧上昇などの不具合を軽減でき、信頼性が向上する。   As described above, in the present embodiment, the amount of reheat is adjusted by changing the condensation pressure P2 in the reheater while keeping the supercooling degree of the liquid refrigerant flowing out from the reheater 5 constant. Yes. Of course, even when the amount of reheat is not required at all, the second pressure reducing means (electric expansion valve capable of adjusting the flow rate) 8 is completely closed and the first pressure reducing means (electric expansion valve) 7 is opened. Thus, the reheater 5 communicates with the low pressure side, and liquid refrigerant does not accumulate. Therefore, the amount of liquid refrigerant staying in the reheater is almost unchanged regardless of the operating conditions, so that it is not necessary to install a liquid receiver for storing excess refrigerant in the refrigerant circuit, or the container can be made smaller. Furthermore, since the amount of the enclosed refrigerant can be reduced, problems such as liquid back at startup and transient high pressure rise can be reduced, and reliability is improved.

次に加熱運転時の動作について、図1をもとに説明する。
加熱運転時には四方弁2は図中の破線方向に冷媒流路を設定する。圧縮機1から吐出された高温高圧のガス冷媒は四方弁2を経て供給側熱交換器9へ流入し、供給送風機11より供給される外気と熱交換して凝縮液化する。このとき、第1の減圧手段(電動膨張弁)6は供給側熱交換器9の出口冷媒過冷却度が5[deg]程度となるように開度調節される。一方、再熱器側の第1の減圧手段(電動膨張弁)7は閉止されており、再熱器5への冷媒の流れはない。そして、供給側熱交換器9から流出した液冷媒は、第1の減圧手段(電動膨張弁)6により減圧され、低圧二相状態となって室外熱交換器3へ流入する。ここで、室外送風機4より送られる外気から吸熱して蒸発し、四方弁2を経由して再び圧縮機1に吸入される。また、供給空気は供給側熱交換器9により加熱され、再熱器5では温度変化無く、高温となって対象室に供給される。このときの加熱量は、圧縮機1の運転周波数によって調整される。
Next, the operation during the heating operation will be described with reference to FIG.
During the heating operation, the four-way valve 2 sets the refrigerant flow path in the direction of the broken line in the figure. The high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows into the supply-side heat exchanger 9 through the four-way valve 2 and exchanges heat with the outside air supplied from the supply blower 11 to be condensed and liquefied. At this time, the opening degree of the first decompression means (electric expansion valve) 6 is adjusted so that the outlet refrigerant supercooling degree of the supply side heat exchanger 9 is about 5 [deg]. On the other hand, the first pressure reducing means (electric expansion valve) 7 on the reheater side is closed, and there is no flow of refrigerant to the reheater 5. Then, the liquid refrigerant flowing out from the supply side heat exchanger 9 is decompressed by the first decompression means (electric expansion valve) 6, enters a low pressure two-phase state, and flows into the outdoor heat exchanger 3. Here, the outside air sent from the outdoor blower 4 absorbs heat and evaporates, and is sucked into the compressor 1 again via the four-way valve 2. Further, the supply air is heated by the supply side heat exchanger 9 and is supplied to the target chamber at a high temperature without changing the temperature in the reheater 5. The amount of heating at this time is adjusted by the operating frequency of the compressor 1.

実施の形態2.
図4は、この発明の実施の形態2による冷凍サイクル装置の冷媒回路図である。本実施の形態では、上述の図1に示した冷凍サイクル装置をもとに、高外気条件および低外気条件の運転可能範囲の拡大を目的としたものである。図1と同一または相当部分には同一符号を付し、詳細な説明を省略する。
Embodiment 2. FIG.
FIG. 4 is a refrigerant circuit diagram of a refrigeration cycle apparatus according to Embodiment 2 of the present invention. In the present embodiment, the purpose is to expand the operable range of high outside air conditions and low outside air conditions based on the refrigeration cycle apparatus shown in FIG. 1 described above. The same reference numerals are given to the same or corresponding parts as in FIG. 1, and the detailed description is omitted.

この実施の形態においては、供給側熱交換器が9a、9bに分割されており、その一方の供給側熱交換器(図4では9b)の配管に電磁弁12が配置されている。また、室外熱交換器3と第1の減圧手段(電動膨張弁)6との間には、例えば二重管などの内部熱交換器14が配置されている。室外熱交換器3から流出して内部熱交換器14を流通する主流を一部分岐して減圧する第3の減圧手段(電動膨張弁)13により主流の高圧冷媒から分岐して減圧された低圧冷媒が主流の冷媒と熱交換して圧縮機の吸入側へ流れる分岐回路を構成している。圧縮機1の吸入側配管には吸入圧力を検知する吸入圧力センサ15、圧縮機1の吐出側配管には吐出圧力を検知する吐出圧力センサ16、供給側熱交換器9の接続配管には供給側熱交換器内の冷媒温度を検知する温度センサ17を備え、これらの各センサと通信可能に接続された制御手段18は、検知された圧力または温度データに基づいて供給送風機11の送風量、あるいは電磁弁12の開閉により蒸発器側となる供給側熱交換器の伝熱面積を調整できるようになっており、蒸発器熱交換量調整手段を備えている。以下に、この実施の形態において、外気が高温である場合、および外気が低温である場合の冷却除湿運転時の動作を説明する。   In this embodiment, the supply-side heat exchanger is divided into 9a and 9b, and the solenoid valve 12 is arranged in the piping of one of the supply-side heat exchangers (9b in FIG. 4). Further, an internal heat exchanger 14 such as a double pipe is disposed between the outdoor heat exchanger 3 and the first pressure reducing means (electric expansion valve) 6. Low-pressure refrigerant branched from the main-stream high-pressure refrigerant and decompressed by a third decompression means (electric expansion valve) 13 that partially branches and decompresses the main stream flowing out of the outdoor heat exchanger 3 and flowing through the internal heat exchanger 14. Constitutes a branch circuit that exchanges heat with the main refrigerant and flows to the suction side of the compressor. A suction pressure sensor 15 for detecting the suction pressure is supplied to the suction side pipe of the compressor 1, a discharge pressure sensor 16 for detecting the discharge pressure is supplied to the discharge side pipe of the compressor 1, and a supply pipe is supplied to the connection pipe of the supply side heat exchanger 9. The control means 18 provided with the temperature sensor 17 which detects the refrigerant | coolant temperature in a side heat exchanger, and was connected so that communication with each of these sensors was carried out, The ventilation volume of the supply air blower 11 based on the detected pressure or temperature data, Alternatively, the heat transfer area of the supply side heat exchanger on the evaporator side can be adjusted by opening and closing the electromagnetic valve 12, and an evaporator heat exchange amount adjusting means is provided. Hereinafter, in this embodiment, the operation during the cooling and dehumidifying operation when the outside air is at a high temperature and when the outside air is at a low temperature will be described.

冷却除湿運転モードにおいて外気が高温、例えば35℃以上であると、外気と熱交換する供給側熱交換器9a,9bでの蒸発圧力が上昇する。これに伴い、圧縮機1に吸入されるガス冷媒の密度も増大するため、冷媒循環量が増えるが、室外熱交換器3でも放熱する熱源が高温の外気であるため、室外送風機4を最大風量としても凝縮能力が不足して高圧が異常に上昇してしまう事態が発生する可能性がある。   When the outside air is at a high temperature, for example, 35 ° C. or more in the cooling and dehumidifying operation mode, the evaporation pressure in the supply side heat exchangers 9a and 9b that exchange heat with the outside air increases. Along with this, the density of the gas refrigerant sucked into the compressor 1 also increases, so that the refrigerant circulation amount increases. However, since the heat source that dissipates heat also in the outdoor heat exchanger 3 is high-temperature outside air, However, there is a possibility that the high pressure will rise abnormally due to insufficient condensing capacity.

この実施の形態の冷凍サイクル装置では、吸入圧力センサ15、および吐出圧力センサ16により圧縮機吐出圧力と吸入圧力を常時検知している。制御手段18は、吐出圧力または吸入圧力が予め設定された上限値を超えると、供給送風機11に風量を低下させるよう指令を発信する。供給側熱交換器9a、9bでは通過風量低下によって熱交換量が下がり、蒸発圧力が低下する。この蒸発圧力低下に伴って冷媒循環量も低下し、凝縮圧力も低下する。   In the refrigeration cycle apparatus of this embodiment, the compressor discharge pressure and the suction pressure are always detected by the suction pressure sensor 15 and the discharge pressure sensor 16. When the discharge pressure or the suction pressure exceeds a preset upper limit value, the control means 18 sends a command to the supply blower 11 to reduce the air volume. In the supply-side heat exchangers 9a and 9b, the amount of heat exchange decreases due to a decrease in the amount of passing air, and the evaporation pressure decreases. As the evaporation pressure decreases, the refrigerant circulation rate also decreases, and the condensation pressure also decreases.

また、供給風量が必要量に固定され、変更が許容されない場合においては、制御手段18は電磁弁12を閉止する。これにより、供給側熱交換器9の伝熱面積が減少し、蒸発圧力が低下する。その後の状態変化は前述の通りである。ここで、図においては供給側熱交換器は9a、9bに2分割となっているが、3分割以上に分割されていてもよい。以上のような動作により、吐出圧力が上限を超えるような運転を回避し、この冷凍サイクル装置の信頼性を向上することができる。   Further, when the supply air volume is fixed to the required amount and the change is not allowed, the control means 18 closes the electromagnetic valve 12. Thereby, the heat transfer area of the supply side heat exchanger 9 decreases, and the evaporation pressure decreases. The subsequent state change is as described above. Here, although the supply side heat exchanger is divided into two parts 9a and 9b in the figure, it may be divided into three or more parts. By the operation as described above, an operation in which the discharge pressure exceeds the upper limit can be avoided, and the reliability of the refrigeration cycle apparatus can be improved.

続いて、外気が低温、例えば10℃以下の場合について説明する。外気が低温であると、供給側熱交換器9の蒸発温度が0℃以下となり、着霜する可能性がある。着霜してしまうと、熱交換が阻害されるため除霜運転が必要となるが、除霜運転時には供給風の温湿度が要求される設置値を大幅に外れるため、極力回避したい。   Subsequently, a case where the outside air is at a low temperature, for example, 10 ° C. or less will be described. When the outside air is at a low temperature, the evaporation temperature of the supply-side heat exchanger 9 becomes 0 ° C. or lower, and frost formation may occur. If frost formation occurs, the heat exchange is hindered and a defrosting operation is required. However, during the defrosting operation, the installation value that requires the temperature and humidity of the supply air is significantly deviated.

そこで、この実施の形態の冷凍サイクル装置では、制御手段18で吸入圧力センサ15により検知される吸入圧力から供給側熱交換器9内の蒸発温度を演算し、それが0℃を下回るような場合には供給送風機11に風量を低下させるよう指令を発信する。供給側送風量の低下により、設定された水分含有量まで除湿するための必要冷却能力が減少し、圧縮機1の運転周波数が小さくなるよう制御される。その結果、蒸発温度は上昇することとなり、着霜を回避することができる。ここでは吸入圧力より蒸発温度を演算する方法で説明したが、図4に示すように蒸発器となる供給側熱交換器9の蒸発入口側配管に温度センサ17を配設して直接蒸発温度を検知してもよい。冷媒に非共沸混合冷媒のR407Cを用いた場合には、その温度グライド特性により蒸発器入口温度が最も低温となるため、図4のように供給側熱交換器9の蒸発入口側配管に温度センサ17を設置している。その他の冷媒の場合は蒸発器中間に設置するのが好ましい。   Therefore, in the refrigeration cycle apparatus of this embodiment, the control means 18 calculates the evaporation temperature in the supply side heat exchanger 9 from the suction pressure detected by the suction pressure sensor 15, and the temperature is below 0 ° C. Sends a command to the supply blower 11 to reduce the air volume. The required cooling capacity for dehumidifying to the set water content is reduced due to the decrease in the supply-side blast volume, and the operation frequency of the compressor 1 is controlled to be reduced. As a result, the evaporation temperature rises and frost formation can be avoided. Here, the method of calculating the evaporation temperature from the suction pressure has been described. However, as shown in FIG. 4, the temperature sensor 17 is provided in the evaporation inlet side pipe of the supply side heat exchanger 9 serving as an evaporator to directly set the evaporation temperature. It may be detected. When R407C, which is a non-azeotropic refrigerant, is used as the refrigerant, the temperature at the evaporator inlet side pipe of the supply side heat exchanger 9 as shown in FIG. A sensor 17 is installed. In the case of other refrigerants, it is preferably installed in the middle of the evaporator.

低外気時の冷却除湿運転においてもう一つ問題となるのが再熱器5を使用した場合の冷媒量分布である。再熱量最大で運転する場合、第2の減圧手段8が全開となり、再熱器5の凝縮圧力と室外熱交換器3の凝縮圧力はほぼ等しくなるが、再熱器5は供給側熱交換器9で冷却された外気より低温の空気、例えば5℃の空気と熱交換を行ない、室外熱交換器3は外気、例えば10℃の空気と熱交換を行なう。よって、凝縮温度が15℃となるような冷媒流量であると、再熱器5では温度差が10degあるため過冷却度5degとするのは容易であるが、室外熱交換器3においてはその出口冷媒温度が外気温度と一致しないと過冷却度5degに達しない。   Another problem in the cooling and dehumidifying operation during low outside air is the refrigerant amount distribution when the reheater 5 is used. When operating at the maximum amount of reheat, the second decompression means 8 is fully opened, and the condensation pressure of the reheater 5 and the condensation pressure of the outdoor heat exchanger 3 are substantially equal, but the reheater 5 is a supply side heat exchanger. Heat exchange is performed with air having a temperature lower than that of the outside air cooled at 9, for example, 5 ° C. air, and the outdoor heat exchanger 3 performs heat exchange with the outside air, for example, 10 ° C. air. Therefore, if the refrigerant flow rate is such that the condensing temperature is 15 ° C., the reheater 5 has a temperature difference of 10 deg. Therefore, it is easy to set the degree of supercooling to 5 deg. If the refrigerant temperature does not coincide with the outside air temperature, the degree of supercooling does not reach 5 deg.

このような状況では、室外熱交換器3側の第1の減圧手段(電動膨張弁)6が絞り込まれ、再熱器5にはたくさんの冷媒が流れ、室外熱交換器3には僅かな量の冷媒しか流れず、その内部には非常に長い液部が生じることとなる。すなわち、大量の液冷媒が室外熱交換器3に溜まり込むこととなる。また、これを回避するため第1の減圧手段(電動膨張弁)6を不用意に開放すると、その第1の減圧手段6を通過する冷媒が二相状態となり、ハンチングや異常音を生じるなどの不具合が発生することが懸念される。   In such a situation, the first pressure reducing means (electric expansion valve) 6 on the outdoor heat exchanger 3 side is narrowed, a lot of refrigerant flows through the reheater 5, and a small amount flows into the outdoor heat exchanger 3. Only the refrigerant flows, and a very long liquid portion is generated inside the refrigerant. That is, a large amount of liquid refrigerant accumulates in the outdoor heat exchanger 3. Further, in order to avoid this, if the first decompression means (electric expansion valve) 6 is inadvertently opened, the refrigerant passing through the first decompression means 6 becomes a two-phase state, which causes hunting or abnormal noise. There are concerns about the occurrence of defects.

この実施の形態の冷凍サイクル装置では、室外熱交換器3の凝縮出口側に内部熱交換器14が配置され、自らを流出する液冷媒を減圧したものと熱交換をするように構成されている。第3の減圧手段(電動膨張弁)13は、外気温度と凝縮温度との差異が所定値以下と判定されると、例えば内部熱交換器14の低圧側出口温度が所定の過熱度となるよう開度調節される。凝縮器としての室外熱交換器3を流出する冷媒は、この内部熱交換器14の低圧側を流通する低圧二相冷媒により冷却され、所定の過冷却度、例えば5degの過冷却度となって第1の減圧手段(電動膨張弁)6へ流入する。この際、内部熱交換器14の高圧側入口状態はわずかに二相状態となる。   In the refrigeration cycle apparatus of this embodiment, an internal heat exchanger 14 is disposed on the condensation outlet side of the outdoor heat exchanger 3, and is configured to exchange heat with a decompressed liquid refrigerant flowing out of itself. . When it is determined that the difference between the outside air temperature and the condensation temperature is equal to or less than a predetermined value, the third pressure reducing means (electric expansion valve) 13 is configured such that, for example, the low-pressure side outlet temperature of the internal heat exchanger 14 has a predetermined superheat degree. The opening is adjusted. The refrigerant flowing out of the outdoor heat exchanger 3 as a condenser is cooled by the low-pressure two-phase refrigerant flowing through the low-pressure side of the internal heat exchanger 14, and has a predetermined degree of supercooling, for example, 5 degrees. It flows into the first pressure reducing means (electric expansion valve) 6. At this time, the high-pressure side inlet state of the internal heat exchanger 14 is slightly in a two-phase state.

以上のように、低外気時に再熱器5を利用する際、内部熱交換器14で過冷却度を確保することで、室外熱交換器3への冷媒溜まり込みを回避するとともに、第1の減圧手段6へ二相冷媒が流入することによる不具合を回避することが可能となる。   As described above, when the reheater 5 is used when the outside air is low, by ensuring the degree of supercooling with the internal heat exchanger 14, it is possible to avoid the accumulation of refrigerant in the outdoor heat exchanger 3 and the first It is possible to avoid problems due to the two-phase refrigerant flowing into the decompression means 6.

ここで、第2の減圧手段8の構成について説明する。前述の実施の形態1および実施の形態2においては、通常の電動膨張弁と同様の構成であるとして1個の流量調整弁として図示している。通常電動膨張弁の構造については図5に示すが、その構造は、ニードル弁31をコイル33とマグネット34による電動モータでネジ部35を介して直動させ、弁座32との隙間を連続的に変化させて流路抵抗の調整を行なうというものである。このような流量調整手段とすることで、再熱器での凝縮圧力は連続的に調整可能となり、きめ細やかな加熱量制御が実現できる。   Here, the configuration of the second decompression means 8 will be described. In the first embodiment and the second embodiment described above, a single flow rate adjusting valve is illustrated as having the same configuration as a normal electric expansion valve. The structure of the normal electric expansion valve is shown in FIG. 5, and the structure is such that the needle valve 31 is moved directly through the screw portion 35 by the electric motor using the coil 33 and the magnet 34, and the gap with the valve seat 32 is continuously formed. The flow path resistance is adjusted by changing to the above. By using such a flow rate adjusting means, the condensation pressure in the reheater can be continuously adjusted, and fine heating amount control can be realized.

しかしながら、この第2の減圧手段8は凝縮入口側でガス冷媒が通過する部位に配置されるため、配管径が液側に比べて大きく、流量調整手段として用いる通常の電動膨張弁と同様の構成では弁サイズが非常に大きくなり、その結果、機器コストの増大を招く。よって、例えば図6に示すような構成とすることも考えられる。   However, since the second pressure reducing means 8 is disposed at a portion where the gas refrigerant passes on the condensation inlet side, the pipe diameter is larger than that on the liquid side, and the same configuration as that of a normal electric expansion valve used as a flow rate adjusting means. Then, the valve size becomes very large, resulting in an increase in equipment cost. Therefore, for example, a configuration as shown in FIG. 6 can be considered.

図6は第2の減圧手段8の他の一例を示す構成図である。図1と同一または相当部分には同一符号を付し、詳細な説明を省略する。この第2の減圧手段8は複数の電磁弁21a、21b、21cが並列に接続され、さらに、電磁弁21a、21bにはそれぞれ流路抵抗の異なるキャピラリチューブ22a、22bが接続されている。   FIG. 6 is a block diagram showing another example of the second decompression means 8. The same reference numerals are given to the same or corresponding parts as in FIG. 1, and the detailed description is omitted. In the second pressure reducing means 8, a plurality of electromagnetic valves 21a, 21b, and 21c are connected in parallel, and capillary valves 22a and 22b having different flow path resistances are connected to the electromagnetic valves 21a and 21b, respectively.

このような構成において、例えば再熱器5での加熱量が不要の場合には全ての電磁弁21a、21b、21cを閉止する。また、加熱量を最大とする場合には全ての電磁弁を開放する。そして、再熱器5での加熱量を所定値に制御する場合には再熱器5を通過後の供給空気温度が設定値に近づくように電磁弁21a、21b、21cの開閉を随時切り替えながら段階的に再熱器での凝縮圧力を調整する。一方、第1の減圧手段(電動膨張弁)6は再熱器5出口冷媒の過冷却度が常時一定となるように開度制御される。これらの構成では、数個の電磁弁21により再熱器における凝縮圧力が制御できるので、電動モータを使用する電動膨張弁に比べて安価に構成できる。   In such a configuration, for example, when the heating amount in the reheater 5 is unnecessary, all the solenoid valves 21a, 21b, and 21c are closed. When the heating amount is maximized, all the solenoid valves are opened. When the heating amount in the reheater 5 is controlled to a predetermined value, the solenoid valves 21a, 21b, and 21c are switched at any time so that the supply air temperature after passing through the reheater 5 approaches the set value. Adjust the condensing pressure in the reheater step by step. On the other hand, the opening of the first decompression means (electric expansion valve) 6 is controlled so that the degree of supercooling of the refrigerant at the outlet of the reheater 5 is always constant. In these configurations, the condensing pressure in the reheater can be controlled by several electromagnetic valves 21, so that it can be configured at a lower cost than an electric expansion valve using an electric motor.

その他の第2の減圧手段の例としては、図示は省略するが、電磁弁を1個のみ配置して高速で弁の開閉を繰り返し、その開放時間と閉止時間との比率を変化させることで流量を調整する方法もある。   As another example of the second pressure reducing means, although not shown in the drawing, only one electromagnetic valve is arranged to repeatedly open and close the valve at high speed, and the flow rate is changed by changing the ratio between the opening time and the closing time. There is also a way to adjust.

また、図7の冷媒回路図に示すように、室外熱交換器3の凝縮入口となるガス側にも第2の減圧手段8bを設けてもよい。例えば、この第2の減圧手段8bである流量調整弁を完全に閉止するモードを有することで、再熱器5だけでこの冷凍サイクルの全ての凝縮熱量を処理することができ、除湿しながら外気より高温の空気を供給することも可能となる。   Further, as shown in the refrigerant circuit diagram of FIG. 7, the second decompression means 8 b may be provided also on the gas side that becomes the condensation inlet of the outdoor heat exchanger 3. For example, by having a mode that completely closes the flow rate adjusting valve that is the second decompression means 8b, all the heat of condensation of this refrigeration cycle can be processed only by the reheater 5, and the outside air is removed while dehumidifying. It is also possible to supply hotter air.

なお、上述の実施の形態1及び2において、図中の四方弁4による流路切り替えの実線方向の場合に、凝縮器となる室外熱交換器3と再熱器5をそれぞれ1台づつ有した形態で説明をしたが、これに限るものではなく、例えば室外熱交換器を複数台並列に配管接続しても良く、上述と同様の効果が得られる。また、さらに再熱器も複数台並列に配管接続して前記室外熱交換器と組合せて冷凍サイクルを構成しても同様の効果が得られる。   In the first and second embodiments described above, one outdoor heat exchanger 3 and one reheater 5 each serving as a condenser are provided in the case of the solid line direction of the flow path switching by the four-way valve 4 in the figure. Although it demonstrated by the form, it is not restricted to this, For example, you may pipe-connect several outdoor heat exchangers in parallel, and the effect similar to the above is acquired. Further, even if a plurality of reheaters are connected in parallel and combined with the outdoor heat exchanger, the same effect can be obtained.

本発明の実施の形態1に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係わり、冷却除湿時の冷凍サイクル動作を示すPh線図である。FIG. 5 is a Ph diagram illustrating the refrigeration cycle operation during cooling and dehumidification according to the first embodiment of the present invention. 本発明の実施の形態1に係わり、冷却除湿時の供給空気の変化を示す空気線図である。It is an air line figure which concerns on Embodiment 1 of this invention and shows the change of the supply air at the time of cooling dehumidification. 本発明の実施の形態2に係る冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of the refrigerating cycle device concerning Embodiment 2 of the present invention. 本発明の実施の形態1、2に係る流量調整手段の構成断面図である。It is a composition sectional view of the flow volume adjustment means concerning Embodiments 1 and 2 of the present invention. 本発明の実施の形態1、2に係る流量調整手段の別の構成図である。It is another block diagram of the flow volume adjustment means which concerns on Embodiment 1, 2 of this invention. 本発明の実施の形態1、2に係る別の冷凍サイクル装置の冷媒回路図である。It is a refrigerant circuit figure of another refrigeration cycle device concerning Embodiments 1 and 2 of the present invention.

符号の説明Explanation of symbols

1 圧縮機、 2 四方弁、 3 室外熱交換器、 4 室外送風機、 5 再熱器、 6,7 第1の流量調整手段、 8 第2の流量調整手段、 9,9a,9b 供給側熱交換器、 10 供給風路、 11 供給送風機、 12 電磁弁、 13 第3の流量調整手段(電動膨張弁)、 14 内部熱交換器、 15 吸入圧力センサ、 16 吐出圧力センサ、 17 温度センサ、 18 制御手段、 21a、21b、21c 電磁弁、 22a、22b キャピラリチューブ、 31 ニードル弁、 32 弁座、 33 コイル、 34 マグネット、 35 ネジ部。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 Four-way valve, 3 Outdoor heat exchanger, 4 Outdoor fan, 5 Reheater, 6, 7 1st flow rate adjustment means, 8 2nd flow rate adjustment means, 9, 9a, 9b Supply side heat exchange , 10 supply air passage, 11 supply blower, 12 solenoid valve, 13 third flow rate adjusting means (electric expansion valve), 14 internal heat exchanger, 15 suction pressure sensor, 16 discharge pressure sensor, 17 temperature sensor, 18 control Means, 21a, 21b, 21c Solenoid valve, 22a, 22b Capillary tube, 31 Needle valve, 32 Valve seat, 33 Coil, 34 Magnet, 35 Screw part.

Claims (9)

少なくとも圧縮機、凝縮器、減圧手段、蒸発器を順次配管で接続してなる冷凍サイクル装置において、前記凝縮器が複数台並列に配置され、前記凝縮器の出口側配管にそれぞれ流量調整可能な第1の減圧手段を設けるとともに、前記凝縮器の少なくとも1台以上が前記蒸発器と同一風路内に配設され、その凝縮器の入口側配管に第2の減圧手段を備え、冷却除湿運転時には、前記蒸発器と同一風路内に配設された凝縮器の圧力P2と外気に放熱する凝縮器の圧力P1とが異なる凝縮圧力となり、供給空気の目標温度に基づいて加熱量が所定値となるように前記第2の減圧手段を制御するとともに、供給空気の湿度が目標値となるような前記圧縮機の運転周波数に応じて、それぞれの凝縮器から流出する冷媒の過冷却度が一定値となるようにそれぞれの第1の減圧手段を制御することを特徴とする冷凍サイクル装置。 In a refrigeration cycle apparatus in which at least a compressor, a condenser, a decompression unit, and an evaporator are connected in order by a pipe, a plurality of the condensers are arranged in parallel, and a flow rate can be adjusted to each outlet side pipe of the condenser. 1 decompression means, at least one of the condensers is disposed in the same air passage as the evaporator, and a second decompression means is provided in the inlet side piping of the condenser, and during the cooling and dehumidifying operation. The pressure P2 of the condenser disposed in the same air path as the evaporator and the pressure P1 of the condenser that radiates heat to the outside air become different condensation pressures, and the heating amount becomes a predetermined value based on the target temperature of the supply air The second depressurization means is controlled so that the supercooling degree of the refrigerant flowing out from each condenser is a constant value according to the operating frequency of the compressor such that the humidity of the supply air becomes the target value. So that Refrigerating cycle apparatus characterized by controlling the first pressure reducing means, respectively. 再熱量が不要な場合には、前記蒸発器と同一風路内に配設された凝縮器の圧力P2と外気に放熱する凝縮器の圧力P1とが異なる凝縮圧力となるように前記第2の減圧手段を閉止状態に制御するとともに、前記蒸発器と同一風路内に配設された凝縮器側は開放に、そして外気に放熱する凝縮器側は流出する冷媒の過冷却度が一定値となるようにそれぞれの第1の減圧手段を制御することを特徴とする請求項1記載の冷凍サイクル装置。 When the amount of reheat is unnecessary , the second pressure P2 of the condenser disposed in the same air path as the evaporator and the pressure P1 of the condenser radiating heat to the outside air are different from each other. The decompression means is controlled to be in a closed state, the condenser side disposed in the same air path as the evaporator is open, and the condenser side that radiates heat to the outside air has a constant supercooling degree of the refrigerant flowing out. 2. The refrigeration cycle apparatus according to claim 1, wherein each of the first pressure reducing means is controlled so as to be. 前記圧縮機から吐出した冷媒の流れ方向を切り替える四方弁を備え、加熱運転時には、前記複数の凝縮器のうち前記蒸発器と同一風路内に配設されていない熱交換器を蒸発器として機能させることを特徴とする請求項1または請求項2に記載の冷凍サイクル装置。 A four-way valve for switching the flow direction of the refrigerant discharged from the compressor is provided, and during heating operation , a heat exchanger that is not arranged in the same air path as the evaporator among the plurality of condensers functions as an evaporator The refrigeration cycle apparatus according to claim 1 or 2, wherein 前記蒸発器は、その一部の冷媒流路を閉止させる開閉弁を備えたことを特徴とする請求項1乃至請求項3のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 3, wherein the evaporator includes an on-off valve that closes a part of the refrigerant flow path. 少なくとも圧縮機、凝縮器、減圧手段、蒸発器を順次配管で接続してなる冷凍サイクル装置において、前記凝縮器が複数台並列に配置され、前記凝縮器の出口側配管にそれぞれ流量調整可能な第1の減圧手段を設けるとともに、前記凝縮器の少なくとも1台以上が前記蒸発器と同一風路内に配設され、その凝縮器の入口側配管に第2の減圧手段と、前記複数の凝縮器のうち、前記蒸発器と風路を同一としない凝縮器の少なくとも1台以上は、その凝縮器から流出する液冷媒の一部を分流して前記圧縮機の吸入側へ流通させる分岐回路に第3の減圧手段と内部熱交換器を備え、低外気時の冷却除湿運転において、再熱量最大で運転する場合、前記第2の減圧手段を全開とするとともに、前記第3の減圧手段により分流した液冷媒を減圧した後、前記主流の液冷媒との間で熱交換させて前記内部熱交換器の低圧側出口温度が所定の過熱度となるように制御したことを特徴とする冷凍サイクル装置。 In a refrigeration cycle apparatus in which at least a compressor, a condenser, a decompression unit, and an evaporator are connected in order by a pipe, a plurality of the condensers are arranged in parallel, and a flow rate can be adjusted to each outlet side pipe of the condenser. 1 decompression means, at least one of the condensers is disposed in the same air path as the evaporator, and a second decompression means and a plurality of the condensers are provided in an inlet side pipe of the condenser. Among them, at least one of the condensers that do not have the same air path as the evaporator has a branch circuit that divides a part of the liquid refrigerant flowing out of the condenser and distributes it to the suction side of the compressor. In the cooling and dehumidifying operation at the time of low outside air, when operating at the maximum reheat amount, the second decompressing means is fully opened and the current is divided by the third decompressing means. After depressurizing the liquid refrigerant, Serial refrigeration cycle apparatus low-pressure side outlet temperature of by heat exchange the internal heat exchanger is characterized by being controlled to a predetermined degree of superheat between the mainstream of the liquid refrigerant. 前記圧縮機の吐出圧力または吸入圧力の少なくともいずれか一方を検知する圧力検知手段を備え、前記圧力検知手段により検知する圧力値が所定範囲を外れないように前記蒸発器の熱交換量を調整する蒸発器熱交換量調整手段を備えたことを特徴とする請求項1乃至請求項5のいずれかに記載の冷凍サイクル装置。 Pressure detecting means for detecting at least one of the discharge pressure and suction pressure of the compressor is provided, and the heat exchange amount of the evaporator is adjusted so that the pressure value detected by the pressure detecting means does not deviate from a predetermined range. The refrigeration cycle apparatus according to any one of claims 1 to 5, further comprising an evaporator heat exchange amount adjusting means. 前記第2の減圧手段は、電動モータで駆動可能な弁を有し、弁と弁座との隙間を連続的に変化させて流路抵抗を調整することを特徴とする請求項1乃至請求項6のいずれかに記載の冷凍サイクル装置。 The second pressure reducing means has a valve that can be driven by an electric motor, and adjusts the flow path resistance by continuously changing a gap between the valve and the valve seat. 6. The refrigeration cycle apparatus according to any one of 6. 前記第2の減圧手段は、流路抵抗の異なるキャピラリチューブと開閉弁が複数並列に配置され、前記開閉弁の開閉により流路抵抗を段階的に調整することを特徴とする請求項1乃至請求項6のいずれかに記載の冷凍サイクル装置。 The second pressure reducing means includes a plurality of capillary tubes having different flow path resistances and a plurality of open / close valves arranged in parallel, and the flow path resistance is adjusted stepwise by opening / closing the open / close valves. Item 7. The refrigeration cycle apparatus according to any one of Items 6. 前記第2の減圧手段は、高速で開閉可能な開閉弁であることを特徴とする請求項1乃至請求項6のいずれかに記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to any one of claims 1 to 6, wherein the second decompression means is an on-off valve that can be opened and closed at high speed.
JP2003306264A 2003-08-29 2003-08-29 Refrigeration cycle equipment Expired - Lifetime JP4206870B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306264A JP4206870B2 (en) 2003-08-29 2003-08-29 Refrigeration cycle equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306264A JP4206870B2 (en) 2003-08-29 2003-08-29 Refrigeration cycle equipment

Publications (2)

Publication Number Publication Date
JP2005076933A JP2005076933A (en) 2005-03-24
JP4206870B2 true JP4206870B2 (en) 2009-01-14

Family

ID=34409388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306264A Expired - Lifetime JP4206870B2 (en) 2003-08-29 2003-08-29 Refrigeration cycle equipment

Country Status (1)

Country Link
JP (1) JP4206870B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006284087A (en) * 2005-03-31 2006-10-19 Daikin Ind Ltd Air cleaner
KR100749940B1 (en) 2006-02-15 2007-08-21 주식회사 초록에너지 An air-conditioner without outside instrument
JP2008128500A (en) * 2006-11-16 2008-06-05 Hitachi Plant Technologies Ltd Condenser using fine mist and its control method
JP4989307B2 (en) * 2007-05-16 2012-08-01 株式会社東洋製作所 Air conditioner
JP2009085481A (en) * 2007-09-28 2009-04-23 Daikin Ind Ltd Freezer
JP2011073190A (en) * 2009-09-29 2011-04-14 Fujifilm Corp Liquid supply apparatus and image forming apparatus
WO2011074028A1 (en) * 2009-12-15 2011-06-23 三菱電機株式会社 Air conditioner
JP5229208B2 (en) * 2009-12-24 2013-07-03 ダイキン工業株式会社 Air conditioner
JP5901107B2 (en) * 2010-08-27 2016-04-06 三菱重工業株式会社 Multi-type air conditioning system
WO2013035130A1 (en) * 2011-09-06 2013-03-14 株式会社ヴァレオジャパン Vehicle air-conditioning apparatus
KR101297383B1 (en) 2012-03-16 2013-08-16 주식회사 제이오텍 System for automatic control of temperature and humidity
DE102012111672B4 (en) * 2012-04-26 2013-12-05 Visteon Global Technologies, Inc. Refrigerant circuit of an air conditioning system with heat pump and reheat functionality
KR101206278B1 (en) 2012-07-30 2012-11-29 주)에어솔루션스 Apparatus for Constant Temperature and Humidity System Using Heat Pump And Control Method Thereof
JP5472391B2 (en) 2012-07-31 2014-04-16 ダイキン工業株式会社 Container refrigeration equipment
JP5999637B2 (en) * 2012-11-09 2016-09-28 サンデンホールディングス株式会社 Air conditioner for vehicles
JP6616635B2 (en) * 2015-09-10 2019-12-04 東プレ株式会社 Outside air treatment device
WO2020003490A1 (en) * 2018-06-29 2020-01-02 三菱電機株式会社 Air conditioning device
JP7046234B2 (en) * 2019-02-06 2022-04-01 三菱電機株式会社 Refrigeration cycle device
FR3129628B1 (en) * 2021-11-29 2023-10-20 Psa Automobiles Sa Ventilation system for motor vehicle

Also Published As

Publication number Publication date
JP2005076933A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP4206870B2 (en) Refrigeration cycle equipment
CN108027179B (en) Air conditioner
AU2008208347B2 (en) Air conditioner
US10006647B2 (en) Air conditioning system with distributor for a plurality of indoor units
JP4884365B2 (en) Refrigeration air conditioner, refrigeration air conditioner outdoor unit, and refrigeration air conditioner control device
JP5213817B2 (en) Air conditioner
JP6895901B2 (en) Air conditioner
WO2013145006A1 (en) Air conditioning device
JP6223469B2 (en) Air conditioner
JP4375171B2 (en) Refrigeration equipment
JP2002081767A (en) Air conditioner
CN111051786A (en) Air conditioner
JP2023503192A (en) air conditioner
JPWO2012085965A1 (en) Air conditioner
US11187447B2 (en) Refrigeration cycle apparatus
JP6448780B2 (en) Air conditioner
JP2007232265A (en) Refrigeration unit
JP4187008B2 (en) Air conditioner
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP6549469B2 (en) Heat pump system
JP6964776B2 (en) Refrigeration cycle equipment
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP2008002711A (en) Refrigerating device
KR101692243B1 (en) Heat pump with cascade refrigerating cycle
JP2002357353A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081007

R151 Written notification of patent or utility model registration

Ref document number: 4206870

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term