JP4140625B2 - Heat pump water heater and control method of heat pump water heater - Google Patents

Heat pump water heater and control method of heat pump water heater Download PDF

Info

Publication number
JP4140625B2
JP4140625B2 JP2005282418A JP2005282418A JP4140625B2 JP 4140625 B2 JP4140625 B2 JP 4140625B2 JP 2005282418 A JP2005282418 A JP 2005282418A JP 2005282418 A JP2005282418 A JP 2005282418A JP 4140625 B2 JP4140625 B2 JP 4140625B2
Authority
JP
Japan
Prior art keywords
refrigerant
expansion valve
temperature
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005282418A
Other languages
Japanese (ja)
Other versions
JP2007093097A (en
Inventor
宗 野本
史武 畝崎
一明 磯野
孝行 吉田
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005282418A priority Critical patent/JP4140625B2/en
Publication of JP2007093097A publication Critical patent/JP2007093097A/en
Application granted granted Critical
Publication of JP4140625B2 publication Critical patent/JP4140625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ給湯機及びヒートポンプ給湯機の制御方法に関するものであり、特に二酸化炭素(CO2 )を冷媒として使用するヒートポンプ給湯機及びヒートポンプ給湯機の制御方法に関するものである。 The present invention relates to a heat pump water heater and a control method for the heat pump water heater, and more particularly to a heat pump water heater that uses carbon dioxide (CO 2 ) as a refrigerant and a control method for the heat pump water heater.

従来、「回路を構成するように直列に接続された、コンプレッサと、ガスクーラと、内部熱交換器と、絞り弁と、蒸発器および低圧冷媒レシーバとからなり、高サイドにおいて超臨界圧力で操作される蒸気圧縮回路において、さらに、回路の少なくとも一つの操作状態を検出する検出手段と、予定の高圧の設定値に従って、検出される操作条件の関数として絞り弁の開度を制御することによって超臨界高サイドの圧力を調節するために、前記検出手段と絞り弁とに接続された制御手段とからなることを特徴とする蒸気圧縮回路」が開示されている(たとえば、特許文献1参照)。   Conventionally, “composed of a compressor, a gas cooler, an internal heat exchanger, a throttle valve, an evaporator and a low-pressure refrigerant receiver connected in series to form a circuit and operated at supercritical pressure on the high side. In addition, the vapor compression circuit further comprises a detection means for detecting at least one operation state of the circuit and supercriticality by controlling the opening of the throttle valve as a function of the detected operating condition according to a predetermined high pressure set value. In order to adjust the pressure on the high side, a vapor compression circuit comprising the detection means and a control means connected to the throttle valve is disclosed (for example, see Patent Document 1).

この蒸気圧縮回路は、高低圧熱交換器に相当する内部熱交換器を有するため、圧縮機に吸入する冷媒を過熱ガス化することができ、圧縮機の信頼性を向上することができるようになっている。また、冷凍サイクルに相当する超臨界蒸気圧縮回路において、検出される実際の回路の操作条件と対応する最適の高サイド圧力の予定数値との適用に基づいて絞り弁を調整するようになっている。   Since this vapor compression circuit has an internal heat exchanger corresponding to a high-low pressure heat exchanger, the refrigerant sucked into the compressor can be superheated and the reliability of the compressor can be improved. It has become. Further, in the supercritical vapor compression circuit corresponding to the refrigeration cycle, the throttle valve is adjusted based on the application of the detected actual circuit operating conditions and the corresponding optimum high side pressure value. .

また、「圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、貯湯槽と前記放熱器と流量調整手段とを有する給湯水回路と、前記圧縮機の冷媒の吐出温度を前記減圧手段を制御することにより調整する吐出温度制御手段とを備え、前記吐出温度制御手段は、前記圧縮機の運転周波数と吐出温度と外気温度と設定給湯温度と給湯水回路の放熱器の入口温度のうち少なくとも1つの値に応じて制御するヒートポンプ給湯装置」が開示されている(たとえば、特許文献2参照)。   Further, “a refrigerant circulation circuit including a compressor, a radiator, a pressure reducing unit, and a heat absorber, a hot water supply circuit having a hot water storage tank, the radiator, and a flow rate adjusting unit, and a refrigerant discharge temperature of the compressor Discharge temperature control means for adjusting by controlling the pressure reducing means, the discharge temperature control means, the operating frequency of the compressor, the discharge temperature, the outside air temperature, the set hot water supply temperature, the inlet temperature of the radiator of the hot water supply circuit A heat pump hot water supply device that is controlled according to at least one value among them is disclosed (for example, see Patent Document 2).

このヒートポンプ給湯装置は、吐出温度を減圧手段(膨張手段)で制御しているため、圧縮機の過剰な温度上昇を避けることができ、圧縮機の信頼性を向上することができるようになっている。すなわち、減圧手段を、圧縮機の運転周波数と吐出温度と外気温度と設定給湯温度と放熱器の入水温度のうち少なくとも1つの値に応じて制御して、圧縮機の冷媒の吐出温度を所定温度にするようになっている。   In this heat pump hot water supply apparatus, since the discharge temperature is controlled by the decompression means (expansion means), an excessive temperature rise of the compressor can be avoided and the reliability of the compressor can be improved. Yes. That is, the decompression means is controlled in accordance with at least one of the operating frequency of the compressor, the discharge temperature, the outside air temperature, the set hot water supply temperature, and the incoming water temperature of the radiator, and the refrigerant discharge temperature of the compressor is set to a predetermined temperature. It is supposed to be.

特許第2931668号公報(第2−3頁、第3図)Japanese Patent No. 2931668 (page 2-3, FIG. 3) 特開2004−340535号公報(第4−6頁、第1図)JP 2004-340535 A (page 4-6, FIG. 1)

しかしながら、上記の技術を組み合わせ、高低圧熱交換器を用いて、吐出温度を膨張手段(膨張弁)で制御する冷媒回路を評価した結果、吐出温度を目標値に制御する場合、同一の吐出温度に対して安定状態が複数存在することが明らかになった。すなわち、吐出温度が同一となる膨張弁の開度が複数存在するのである。そして、それらの膨張弁の開度全部が所定の能力を発揮するものではなかった。したがって、高低圧熱交換器を含む冷媒回路において、膨張弁で吐出温度制御した場合、必ずしも所定の能力を得られないという問題があった。   However, as a result of evaluating a refrigerant circuit that controls the discharge temperature with expansion means (expansion valve) using a high-low pressure heat exchanger in combination with the above technologies, when the discharge temperature is controlled to a target value, the same discharge temperature It is clear that there are multiple stable states. That is, there are a plurality of expansion valve openings at which the discharge temperatures are the same. And all the opening degrees of these expansion valves did not exhibit predetermined ability. Therefore, in the refrigerant circuit including the high / low pressure heat exchanger, when the discharge temperature is controlled by the expansion valve, there is a problem that a predetermined capacity cannot always be obtained.

本発明は、以上のような問題を解決するためになされたもので、高低圧交換器を含むヒートポンプ給湯機において、膨張手段で吐出温度及び吸入過熱度を制御し、設置される場所に応じた最適な能力を得ることのできるヒートポンプ給湯機を提供するものである。   The present invention has been made to solve the above-described problems. In a heat pump water heater including a high-low pressure exchanger, the discharge temperature and the suction superheat degree are controlled by an expansion means, and the heat pump water heater corresponds to the installation location. The present invention provides a heat pump water heater capable of obtaining an optimum capacity.

本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁と、前記圧縮機に吸入される冷媒の温度を計測検知する吸入温度検知手段と、前記蒸発器での冷媒の温度を計測検知する蒸発温度検知手段と、前記圧縮機から吐出される冷媒の温度を計測検知する吐出温度検知手段と、前記第1の膨張弁及び前記第2の膨張弁の開度を調整する計測制御手段とを有し、前記計測制御手段は、前記吐出温度検知手段から温度情報によって前記第2の膨張弁の開度を調整してから、前記吸入温度検知手段からの温度情報と前記蒸発温度検知手段からの温度情報との差から冷媒の吸入過熱度を算出し、該吸入過熱度によって前記第1の膨張弁の開度を調整することを特徴とする。 A heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, a first expansion valve that depressurizes the refrigerant, and evaporation. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant is sequentially connected by the refrigerant pipe and the refrigerant circulates, and from the radiator to the first expansion valve, and reaches the evaporator from the first expansion valve. A high-low pressure heat exchanger for exchanging heat between the branch flow path reconnected to the refrigerant pipe, the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor, and the high-low pressure heat exchange A second expansion valve that is provided in the branch flow path from the evaporator to the evaporator, and decompresses the refrigerant; a suction temperature detector that measures and detects the temperature of the refrigerant sucked into the compressor; and the evaporation Evaporation temperature detection to measure and detect refrigerant temperature A stage and a discharge temperature detection means for measuring the detection temperature of the refrigerant discharged from the compressor, and a measurement control means for adjusting the opening degree of the first expansion valve and the second expansion valve, The measurement control means adjusts the opening of the second expansion valve according to temperature information from the discharge temperature detection means, and then receives temperature information from the suction temperature detection means and temperature information from the evaporation temperature detection means. And calculating the degree of intake superheat of the refrigerant from the difference, and adjusting the opening of the first expansion valve according to the intake superheat .

本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁とを備えたヒートポンプ給湯機の制御方法であって、前記圧縮機に吸入される冷媒の吸入温度を計測し、前記蒸発器での冷媒の蒸発温度を計測し、前記圧縮機から吐出される冷媒の吐出温度を計測し、前記吐出温度検知手段から温度情報によって前記第2の膨張弁の開度を調整してから、前記吸入温度検知手段からの温度情報と前記蒸発温度検知手段からの温度情報との差から冷媒の吸入過熱度を算出し、該吸入過熱度によって前記第1の膨張弁の開度を調整することを特徴とする。 The method for controlling a heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first expansion that depressurizes the refrigerant. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant circulates by sequentially connecting the valve and the evaporator with the refrigerant pipe, and the refrigerant reaches the first expansion valve, and the evaporation from the first expansion valve. A branch flow path reconnected to the refrigerant pipe while reaching the compressor, a high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor, A control method of a heat pump water heater provided in the branch flow path from a low pressure heat exchanger to the evaporator and having a second expansion valve for decompressing the refrigerant, and is sucked into the compressor Measure the refrigerant suction temperature and cool the evaporator. The evaporation temperature is measured, the discharge temperature of the refrigerant discharged from the compressor is measured, after adjusting the opening degree of the second expansion valve by the temperature information from said discharge temperature detecting means, the suction temperature detecting Calculating the degree of refrigerant superheating from the difference between the temperature information from the means and the temperature information from the evaporating temperature detecting means, and adjusting the opening of the first expansion valve according to the degree of suction superheat. .

本発明に係るヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁と、前記圧縮機に吸入される冷媒の温度を計測検知する吸入温度検知手段と、前記蒸発器での冷媒の温度を計測検知する蒸発温度検知手段と、前記圧縮機から吐出される冷媒の温度を計測検知する吐出温度検知手段と、前記第1の膨張弁及び前記第2の膨張弁の開度を調整する計測制御手段とを有し、前記計測制御手段は、前記吐出温度検知手段から温度情報によって前記第2の膨張弁の開度を調整してから、前記吸入温度検知手段からの温度情報と前記蒸発温度検知手段からの温度情報との差から冷媒の吸入過熱度を算出し、該吸入過熱度によって前記第1の膨張弁の開度を調整するので、設置場所の環境負荷に応じて最適な能力を発揮することができる。 A heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, a first expansion valve that depressurizes the refrigerant, and evaporation. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant is sequentially connected by the refrigerant pipe and the refrigerant circulates, and from the radiator to the first expansion valve, and reaches the evaporator from the first expansion valve. A high-low pressure heat exchanger for exchanging heat between the branch flow path reconnected to the refrigerant pipe, the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor, and the high-low pressure heat exchange A second expansion valve that is provided in the branch flow path from the evaporator to the evaporator, and decompresses the refrigerant; a suction temperature detector that measures and detects the temperature of the refrigerant sucked into the compressor; and the evaporation Evaporation temperature detection to measure and detect refrigerant temperature A stage and a discharge temperature detection means for measuring the detection temperature of the refrigerant discharged from the compressor, and a measurement control means for adjusting the opening degree of the first expansion valve and the second expansion valve, The measurement control means adjusts the opening of the second expansion valve according to temperature information from the discharge temperature detection means, and then receives temperature information from the suction temperature detection means and temperature information from the evaporation temperature detection means. Since the refrigerant intake superheat degree is calculated from the difference between the two and the opening degree of the first expansion valve is adjusted based on the intake superheat degree, the optimum capacity can be exhibited according to the environmental load of the installation location.

本発明に係るヒートポンプ給湯機の制御方法は、冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁とを備えたヒートポンプ給湯機の制御方法であって、前記圧縮機に吸入される冷媒の吸入温度を計測し、前記蒸発器での冷媒の蒸発温度を計測し、前記圧縮機から吐出される冷媒の吐出温度を計測し、前記吐出温度検知手段から温度情報によって前記第2の膨張弁の開度を調整してから、前記吸入温度検知手段からの温度情報と前記蒸発温度検知手段からの温度情報との差から冷媒の吸入過熱度を算出し、該吸入過熱度によって前記第1の膨張弁の開度を調整するので、設置場所の環境負荷に応じて最適な能力を発揮することができる。 The method for controlling a heat pump water heater according to the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, and a first expansion that depressurizes the refrigerant. The refrigerant pipe is branched between the refrigeration cycle in which the refrigerant circulates by sequentially connecting the valve and the evaporator with the refrigerant pipe, and the refrigerant reaches the first expansion valve, and the evaporation from the first expansion valve. A branch flow path reconnected to the refrigerant pipe while reaching the compressor, a high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor, A control method of a heat pump water heater provided in the branch flow path from a low pressure heat exchanger to the evaporator and having a second expansion valve for decompressing the refrigerant, and is sucked into the compressor Measure the refrigerant suction temperature and cool the evaporator. The evaporation temperature is measured, the discharge temperature of the refrigerant discharged from the compressor is measured, after adjusting the opening degree of the second expansion valve by the temperature information from said discharge temperature detecting means, the suction temperature detecting Calculating the degree of refrigerant superheating from the difference between the temperature information from the means and the temperature information from the evaporating temperature detecting means, and adjusting the opening of the first expansion valve by the suction superheat degree. The optimum ability can be demonstrated according to the environmental load.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の実施の形態に係るヒートポンプ給湯機100の冷媒回路構成を示す概略構成図である。このヒートポンプ給湯機1は、大きく分けてヒートポンプユニット1と、タンクユニット2とで構成されている。このヒートポンプユニット1には、圧縮機3と、放熱器4と、第1の膨張弁5と、蒸発器6とを冷媒配管15で順次環状に接続した冷凍サイクル20が搭載されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a refrigerant circuit configuration of a heat pump water heater 100 according to an embodiment of the present invention. The heat pump water heater 1 is roughly composed of a heat pump unit 1 and a tank unit 2. The heat pump unit 1 is equipped with a refrigeration cycle 20 in which a compressor 3, a radiator 4, a first expansion valve 5, and an evaporator 6 are sequentially connected in an annular manner by a refrigerant pipe 15.

冷凍サイクル20は、一般にヒートポンプサイクルと称されおり、冷媒を循環させて水を湯に加熱する機能を有している。圧縮機3は、冷媒を圧縮して高温高圧の冷媒とするものである。放熱器4は、一般に熱交換器と称されており、圧縮機3から吐出された高温高圧の冷媒と給湯用の水との熱交換を行い、水を加熱するものである。第1の膨張弁5は、加熱を行った後の冷媒を減圧し低温低圧の冷媒にするものである。蒸発器6は、一般に室外熱交換器と称されており、冷媒に空気から吸熱させるものである。   The refrigeration cycle 20 is generally called a heat pump cycle, and has a function of heating water to hot water by circulating a refrigerant. The compressor 3 compresses the refrigerant into a high-temperature and high-pressure refrigerant. The radiator 4 is generally called a heat exchanger, and heats water by exchanging heat between the high-temperature and high-pressure refrigerant discharged from the compressor 3 and hot water. The first expansion valve 5 is used to depressurize the refrigerant after being heated to obtain a low-temperature and low-pressure refrigerant. The evaporator 6 is generally called an outdoor heat exchanger, and causes the refrigerant to absorb heat from the air.

冷媒配管15は、冷凍サイクル20内において冷媒を循環させるものである。この冷媒配管15は、放熱器4から第1の膨張弁5に至る間で分岐し、第1の膨張弁5から蒸発器6に至る間に接続するようになっている。この分岐させた方の冷媒配管15を、分岐流路8と称する。なお、冷媒には、冷凍サイクル20における高圧側が臨界圧力(約73kg/cm2 )以上で超臨界状態となり、かつ容易に入手できる二酸化炭素(CO2 )を使用している。 The refrigerant pipe 15 circulates the refrigerant in the refrigeration cycle 20. The refrigerant pipe 15 branches from the radiator 4 to the first expansion valve 5 and is connected to the evaporator 6 from the first expansion valve 5. The branched refrigerant pipe 15 is referred to as a branch flow path 8. As the refrigerant, carbon dioxide (CO 2 ), which is in a supercritical state at the high pressure side in the refrigeration cycle 20 and reaches a critical pressure (about 73 kg / cm 2 ) or more and is easily available, is used.

また、ヒートポンプユニット1には、ファン7と、高低圧熱交換器9と、第2の膨張弁10と、ポンプ11とが搭載されている。ファン7は、蒸発器6に外気を送風する機能を果たす。高低圧熱交換器9は、蒸発器6から圧縮機3に至る間に配置されており、冷媒配管15及び分岐流路8に接続している。図1では、高低圧熱交換器9が二重管熱交換器である場合を例に示している。この高低圧熱交換器9は、外管側を高圧側流路、内管側を低圧側流路としている場合を図示しているが、外管側を低圧側流路、内管側を高圧側流路としてもよい。なお、内管側と外管側とを流れる冷媒の流れ方向は、対向流であることが望ましく、ここでは対向流であるものとする。   The heat pump unit 1 is equipped with a fan 7, a high / low pressure heat exchanger 9, a second expansion valve 10, and a pump 11. The fan 7 functions to blow outside air to the evaporator 6. The high-low pressure heat exchanger 9 is disposed between the evaporator 6 and the compressor 3, and is connected to the refrigerant pipe 15 and the branch flow path 8. In FIG. 1, the case where the high-low pressure heat exchanger 9 is a double pipe heat exchanger is shown as an example. This high / low pressure heat exchanger 9 shows a case where the outer pipe side is a high pressure side flow path and the inner pipe side is a low pressure side flow path, but the outer pipe side is a low pressure side flow path and the inner pipe side is a high pressure side. It is good also as a side channel. In addition, as for the flow direction of the refrigerant | coolant which flows through the inner pipe side and the outer pipe side, it is desirable that it is a counterflow, and shall be a counterflow here.

第2の膨張弁10は、高低圧熱交換器9から冷媒配管15に至るまでの間の分岐流路8に配置されている。この第2の膨張弁10は、高低圧熱交換器9で低圧冷媒と熱交換して冷却された冷媒を減圧し低温低圧の冷媒にするものである。ポンプ11は、給湯水回路30を構成しており、負荷側媒体である水をタンク12から放熱器4に送水し、放熱器4で加熱された温水をタンク12に送水する機能を果たす。   The second expansion valve 10 is disposed in the branch flow path 8 from the high-low pressure heat exchanger 9 to the refrigerant pipe 15. The second expansion valve 10 serves to depressurize the refrigerant cooled by heat exchange with the low-pressure refrigerant in the high-low pressure heat exchanger 9 to obtain a low-temperature and low-pressure refrigerant. The pump 11 constitutes a hot water supply circuit 30 and functions to supply water as a load-side medium from the tank 12 to the radiator 4 and supply hot water heated by the radiator 4 to the tank 12.

タンクユニット2には、ポンプ11からの送水により放熱器4を介して加熱された温水を貯留するためのタンク12が搭載されている。なお、タンクユニット2内のタンク12と、ヒートポンプユニット1内の放熱器4とを水配管16で接続して給湯水回路30を構成している。水配管16は、給湯水回路30内において負荷側媒体である水及び温水を循環させるものである。すなわち、給湯水回路30は、タンク12内の負荷側媒体である水を放熱器4で加熱させ、その温水をポンプ11によってタンク12に貯留させるようになっているのである。   The tank unit 2 is equipped with a tank 12 for storing hot water heated via the radiator 4 by water supplied from the pump 11. In addition, the tank 12 in the tank unit 2 and the radiator 4 in the heat pump unit 1 are connected by a water pipe 16 to constitute a hot water supply water circuit 30. The water pipe 16 circulates water and hot water that are load-side media in the hot water supply circuit 30. That is, the hot water supply circuit 30 heats the water that is the load-side medium in the tank 12 by the radiator 4 and stores the hot water in the tank 12 by the pump 11.

ヒートポンプユニット1内には、給水温度センサ13aが放熱器4の水入口側に、出湯温度センサ13bが放熱器4の水出口側にそれぞれ設けられている。この給水温度センサ13a及び出湯温度センサ13bは、それぞれの設置場所において水配管16内を流れている水温度を計測する機能を果たす。また、ヒートポンプユニット1内には、外気の温度を計測するための外気温度センサ13cが設けられている。この外気温度センサ13cは、ヒートポンプユニット1内であればどこに設けられていてもよい。たとえば、外気温度センサ13cを外気と接触するような場所に設けるとよい。   In the heat pump unit 1, a feed water temperature sensor 13 a is provided on the water inlet side of the radiator 4, and a tapping temperature sensor 13 b is provided on the water outlet side of the radiator 4. The feed water temperature sensor 13a and the tapping temperature sensor 13b serve to measure the temperature of the water flowing in the water pipe 16 at each installation location. In addition, in the heat pump unit 1, an outside air temperature sensor 13c for measuring the temperature of outside air is provided. The outside air temperature sensor 13 c may be provided anywhere within the heat pump unit 1. For example, the outside air temperature sensor 13c may be provided in a place that comes into contact with outside air.

さらに、ヒートポンプユニット1内には、吐出温度センサ13dが圧縮機3の冷媒出口側に、吸入温度センサ13eが圧縮機の冷媒入口側に、蒸発温度センサ13fが蒸発器6の入口から中間部までの間にそれぞれ設けられている。この吐出温度センサ13d、吸入温度センサ13e及び蒸発温度センサ13fは、それぞれの設置場所において冷媒配管15内を流れている冷媒の温度(吐出温度、吸入温度、蒸発温度)を計測する機能を果たす。   Further, in the heat pump unit 1, the discharge temperature sensor 13 d is on the refrigerant outlet side of the compressor 3, the suction temperature sensor 13 e is on the refrigerant inlet side of the compressor, and the evaporation temperature sensor 13 f is from the inlet of the evaporator 6 to the middle part. Are provided respectively. The discharge temperature sensor 13d, the suction temperature sensor 13e, and the evaporation temperature sensor 13f function to measure the temperature (discharge temperature, suction temperature, evaporation temperature) of the refrigerant flowing through the refrigerant pipe 15 at each installation location.

なお、ヒートポンプユニット1内には、計測制御装置14が設けられている。この計測制御装置14は、給水温度センサ13aや出湯温度センサ13b、外気温度センサ13c、吐出温度センサ13d、吸入温度センサ13e、蒸発温度センサ13fが計測した温度情報や、ヒートポンプ給湯機100の使用者から図示省略の操作部を介して指示される運転指令情報等に基づいて、圧縮機3の運転方法や第1の膨張弁5の開度、第2の膨張弁10の開度、ポンプ11の運転方法等を制御する機能を有している。   Note that a measurement control device 14 is provided in the heat pump unit 1. The measurement control device 14 includes temperature information measured by the feed water temperature sensor 13a, the tapping temperature sensor 13b, the outside air temperature sensor 13c, the discharge temperature sensor 13d, the suction temperature sensor 13e, and the evaporation temperature sensor 13f, and the user of the heat pump water heater 100. From the operation command information instructed through the operation unit (not shown), the operation method of the compressor 3, the opening of the first expansion valve 5, the opening of the second expansion valve 10, the pump 11 It has a function to control the driving method.

次に、このヒートポンプ給湯機100の運転動作について説明する。ヒートポンプユニット1の冷凍サイクル20において、圧縮機3から吐出された高温高圧のガス冷媒は、放熱器4で給湯水回路30側へ放熱(水を加熱)しながら温度低下する。このとき、高圧側冷媒圧力が臨界圧以上であれば、この冷媒は超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、この冷媒は液化しながら放熱する。   Next, the operation of the heat pump water heater 100 will be described. In the refrigeration cycle 20 of the heat pump unit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 decreases in temperature while radiating heat (heats water) to the hot water supply circuit 30 side by the radiator 4. At this time, if the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the refrigerant radiates heat at a reduced temperature without undergoing a gas-liquid phase transition in a supercritical state. Further, if the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while being liquefied.

つまり、冷媒から放熱された熱を負荷側媒体(給湯水回路30を流れる水等)に与えることで給湯加熱を行うのである。給湯加熱して放熱器4から流出した高圧低温の冷媒は、第1の膨張弁5を通過するものと分岐流路8に流入するものとに分岐される。第1の膨張弁5を通過する冷媒は、ここで低圧気液二相の状態に減圧される。一方、分岐流路8に流入する冷媒は、高低圧熱交換器9の高圧側流路を通過し、蒸発器6から流出した高低圧熱交換器9の低圧側流路を通過する低圧冷媒との熱交換に利用される。   That is, hot water heating is performed by applying heat radiated from the refrigerant to a load-side medium (water flowing through the hot water supply circuit 30). The high-pressure and low-temperature refrigerant flowing out of the radiator 4 by heating with hot water is branched into one that passes through the first expansion valve 5 and one that flows into the branch flow path 8. Here, the refrigerant passing through the first expansion valve 5 is decompressed to a low-pressure gas-liquid two-phase state. On the other hand, the refrigerant flowing into the branch flow path 8 passes through the high pressure side flow path of the high and low pressure heat exchanger 9 and flows through the low pressure side flow path of the high and low pressure heat exchanger 9 flowing out of the evaporator 6. Used for heat exchange.

この分岐流路8に流入する冷媒は、高低圧熱交換器9において低圧側流路を通過する低圧冷媒に熱を与えて冷却され、その後、第2の膨張弁10を通過して低圧気液二相の状態に減圧される。第1の膨張弁5を通過した冷媒及び第2の膨張弁10を通過した冷媒は、蒸発器6の入口前で合流して蒸発器6に流入する。そして、冷媒は、そこで外気空気から吸熱し、蒸発ガス化される。蒸発器6を出た低圧冷媒は、高低圧熱交換器9を通過することで高圧側流路を通過する高圧冷媒と熱交換して加熱ガス化される。それから、圧縮機3に吸入されるようになっている。こうして、冷媒が循環することによって冷凍サイクル20を形成している。   The refrigerant flowing into the branch channel 8 is cooled by applying heat to the low-pressure refrigerant that passes through the low-pressure side channel in the high-low pressure heat exchanger 9, and then passes through the second expansion valve 10 and passes through the low-pressure gas-liquid. Depressurized to a two-phase state. The refrigerant that has passed through the first expansion valve 5 and the refrigerant that has passed through the second expansion valve 10 merge before entering the evaporator 6 and flow into the evaporator 6. Then, the refrigerant absorbs heat from outside air and is evaporated and gasified. The low-pressure refrigerant that has exited the evaporator 6 passes through the high-low pressure heat exchanger 9 to exchange heat with the high-pressure refrigerant that passes through the high-pressure channel, and is heated and gasified. Then, it is sucked into the compressor 3. In this way, the refrigeration cycle 20 is formed by circulating the refrigerant.

一方、給湯水回路30側では、放熱器4で放熱された熱が水等の負荷側媒体に与えられる。この負荷側媒体は、放熱器4の流入側に設けられたポンプ11によりタンク12の下部から導かれて放熱器4に送水されるようになっている。そして、ここで加熱された負荷側媒体は、ポンプ11によりタンク12の上部へ送水されるようになっている。こうして、負荷側媒体がタンク12上部から流入し、タンク12内に貯留され蓄熱されるようになっているのである。   On the other hand, on the hot water supply circuit 30 side, the heat radiated by the radiator 4 is given to a load side medium such as water. This load-side medium is guided from the lower part of the tank 12 by the pump 11 provided on the inflow side of the radiator 4 and is sent to the radiator 4. The load-side medium heated here is fed to the upper part of the tank 12 by the pump 11. Thus, the load side medium flows in from the upper part of the tank 12 and is stored in the tank 12 so as to store heat.

図2は、第2の膨張弁10の開度を変化させた場合の各部位における冷媒の状態変化を示す説明図である。図2(a)は、第2の膨張弁10と吸入過熱度との関係を示している。図2(b)は、第2の膨張弁10と吐出温度との関係を示している。図2(c)は、第2の膨張弁10と放熱器出口温度及び吸入温度との関係を示している。図2(d)は、第2の膨張弁10と高圧側圧力との関係を示している。図2(e)は、第2の膨張弁10と加熱能力との関係を示している。なお、図2に示しているA、B及びXは、それぞれ第2の膨張弁10の開度(以後、開度A、開度B及び開度Xと称する)を示している。   FIG. 2 is an explanatory diagram showing changes in the state of the refrigerant in each part when the opening degree of the second expansion valve 10 is changed. FIG. 2A shows the relationship between the second expansion valve 10 and the suction superheat degree. FIG. 2B shows the relationship between the second expansion valve 10 and the discharge temperature. FIG. 2C shows the relationship between the second expansion valve 10 and the radiator outlet temperature and suction temperature. FIG. 2D shows the relationship between the second expansion valve 10 and the high pressure side pressure. FIG. 2E shows the relationship between the second expansion valve 10 and the heating capacity. Note that A, B, and X shown in FIG. 2 indicate the opening degree of the second expansion valve 10 (hereinafter referred to as opening degree A, opening degree B, and opening degree X).

図2(a)は、横軸が第2の膨張弁開度を、縦軸が吸入過熱度(deg)をそれぞれ表している。この吸入過熱度は、吸入温度センサ13eからの温度情報と蒸発温度検センサ13fからの温度情報との差から求められるようになっている。図2(a)で示すように、吸入過熱度は、第2の膨張弁10の開度が大きくなるにつれて上昇することがわかる。すなわち、第2の膨張弁10を開度Aとしているときに比べて、開度X及び開度Bとしたときの方が、圧縮機3に吸入される冷媒の吸入過熱度が上昇するのである。   In FIG. 2A, the horizontal axis represents the second expansion valve opening, and the vertical axis represents the intake superheat (deg). The degree of suction superheat is obtained from the difference between the temperature information from the suction temperature sensor 13e and the temperature information from the evaporation temperature detection sensor 13f. As shown in FIG. 2A, it can be seen that the suction superheat degree increases as the opening degree of the second expansion valve 10 increases. That is, when the opening degree X and the opening degree B are set to the opening degree A of the second expansion valve 10, the suction superheat degree of the refrigerant sucked into the compressor 3 is increased. .

図2(b)は、横軸が第2の膨張弁開度を、縦軸が吐出温度(℃)をそれぞれ表している。この吐出温度とは、圧縮機3から吐出された際に吐出温度センサ13dで検知される冷媒の温度のことである。図2(b)には、吐出温度の目標値が設定してある。なお、図2(b)からは、第2の膨張弁10の開度の大きさに応じて目標値以上の吐出温度にならないことがわかる。すなわち、第2の膨張弁10を開度Aとしたときは、目標値と同じ程度の吐出温度となるが、第2の膨張弁10を開度Xとしたときは、目標値よりも低い吐出温度となってしまい、また、第2の膨張弁10を開度Bとしたときは、目標値と同じ程度以上の吐出温度となるのである。   In FIG. 2B, the horizontal axis represents the second expansion valve opening, and the vertical axis represents the discharge temperature (° C.). This discharge temperature is the temperature of the refrigerant detected by the discharge temperature sensor 13d when discharged from the compressor 3. In FIG. 2B, a target value of the discharge temperature is set. In addition, it turns out from FIG.2 (b) that it does not become discharge temperature more than a target value according to the magnitude | size of the opening degree of the 2nd expansion valve 10. FIG. That is, when the second expansion valve 10 is set to the opening A, the discharge temperature is about the same as the target value. However, when the second expansion valve 10 is set to the opening X, the discharge is lower than the target value. When the second expansion valve 10 is set to the opening B, the discharge temperature is equal to or higher than the target value.

図2(c)は、横軸が第2の膨張弁開度を、縦軸が放熱器出口温度及び吸入温度(℃)をそれぞれ表している。この放熱器出口温度とは、放熱器4の出口における冷媒の温度のことであり、この吸入温度とは、圧縮機3に吸入される際に吸入温度センサ13eで検知される冷媒の温度のことである。図2(c)で示すように、いずれの温度についても、第2の膨張弁10の開度が大きくなるにつれて上昇することがわかる。すなわち、第2の膨張弁10を開度Aとしているときに比べて、開度X及び開度Bとしたときの方が、放熱器出口温度及び吸入温度が上昇するのである。   In FIG. 2C, the horizontal axis represents the second expansion valve opening, and the vertical axis represents the radiator outlet temperature and the suction temperature (° C.). The radiator outlet temperature is the refrigerant temperature at the outlet of the radiator 4, and the suction temperature is the refrigerant temperature detected by the suction temperature sensor 13e when sucked into the compressor 3. It is. As shown in FIG. 2 (c), it can be seen that at any temperature, the temperature increases as the opening of the second expansion valve 10 increases. That is, the radiator outlet temperature and the suction temperature rise when the opening degree X and the opening degree B are set compared to when the second expansion valve 10 is set to the opening degree A.

図2(d)は、横軸が第2の膨張弁開度を、縦軸が高圧側圧力(MPa)をそれぞれ表している。この高圧側圧力とは、圧縮機3で圧縮された冷媒の高圧側の圧力のことである。図2(d)で示すように、高圧側圧力は、第2の膨張弁10の開度が大きくなるにつれて低くなることがわかる。すなわち、第2の膨張弁10を開度Aとしているときに比べて、開度X及び開度Bとしたときの方が、冷媒の高圧側圧力が低くなるのである。   In FIG. 2D, the horizontal axis represents the second expansion valve opening, and the vertical axis represents the high-pressure side pressure (MPa). This high-pressure side pressure is the pressure on the high-pressure side of the refrigerant compressed by the compressor 3. As shown in FIG. 2D, it can be seen that the high pressure side pressure decreases as the opening of the second expansion valve 10 increases. That is, the high pressure side pressure of the refrigerant is lower when the opening degree X and the opening degree B are set than when the second expansion valve 10 is set to the opening degree A.

図2(e)は、横軸が第2の膨張弁開度を、縦軸が加熱能力(kW)をそれぞれ表している。この加熱能力とは、圧縮機3で圧縮された冷媒が負荷側媒体(水)を加熱する能力のことである。図2(e)で示すように、加熱能力は、第2の膨張弁10の開度が所定の開度となるまではほぼ変わりないが、その所定の開度よりも大きくなるにつれて低下することがわかる。すなわち、第2の膨張弁10が開度Aから開度Xまでは加熱能力はあまり変化がないが、開度X以上とすると加熱能力が急激に低下するのである。   In FIG. 2E, the horizontal axis represents the second expansion valve opening, and the vertical axis represents the heating capacity (kW). This heating capability is the capability that the refrigerant compressed by the compressor 3 heats the load-side medium (water). As shown in FIG. 2 (e), the heating capacity does not substantially change until the opening degree of the second expansion valve 10 reaches a predetermined opening degree, but decreases as the opening degree becomes larger than the predetermined opening degree. I understand. That is, the heating capacity of the second expansion valve 10 does not change much from the opening A to the opening X, but when the opening is equal to or higher than the opening X, the heating capacity is rapidly reduced.

まず、第2の膨張弁10の開度を変化させた場合における冷媒の状態変化について説明する。第2の膨張弁10を開度Xより大きくすると、放熱器出口温度が急に上昇する(図2(c))。前述したとおり、高低圧熱交換器9は、高圧冷媒(外管側)と低圧冷媒(内管側)とが対向流となっている。つまり、放熱器4から流出した冷媒が高低圧熱交換器9の外管に流入するので、放熱器出口温度と高低圧熱交換器9の高圧側入口温度とは等しく、また、蒸発器6から流出した冷媒が高低圧熱交換器9の内管に流入するので、圧縮機3に吸入する冷媒の温度と高低圧熱交換器9の低圧側出口温度とは等しいものである。   First, the state change of the refrigerant when the opening degree of the second expansion valve 10 is changed will be described. When the second expansion valve 10 is made larger than the opening degree X, the radiator outlet temperature suddenly rises (FIG. 2 (c)). As described above, in the high-low pressure heat exchanger 9, the high-pressure refrigerant (outer pipe side) and the low-pressure refrigerant (inner pipe side) are opposed to each other. That is, since the refrigerant flowing out of the radiator 4 flows into the outer pipe of the high / low pressure heat exchanger 9, the radiator outlet temperature is equal to the high pressure side inlet temperature of the high / low pressure heat exchanger 9, and from the evaporator 6 Since the refrigerant that has flowed out flows into the inner pipe of the high-low pressure heat exchanger 9, the temperature of the refrigerant sucked into the compressor 3 is equal to the low-pressure side outlet temperature of the high-low pressure heat exchanger 9.

したがって、放熱器出口温度の上昇に伴って、吸入温度が上昇し(図2(c))、圧縮機3の吸入過熱度も上昇する(図2(a))。そして、吸入温度の上昇に伴って、圧縮機3の吐出温度が上昇する(図2(b))。第2の膨張弁10の開度を大きくすると、圧縮機3の吐出温度は一旦低下したのちに上昇する動作となる。つまり、第2の膨張弁10を開度Aとしたときは、目標値と同じ程度の吐出温度となるが、第2の膨張弁10を開度Aから開度Xまでとしたときは、目標値よりも低い吐出温度となり、第2の膨張弁10を開度Bとしたときは、目標値以上の吐出温度となるのである。   Therefore, as the radiator outlet temperature rises, the suction temperature rises (FIG. 2 (c)), and the suction superheat degree of the compressor 3 also rises (FIG. 2 (a)). As the suction temperature rises, the discharge temperature of the compressor 3 rises (FIG. 2B). When the opening degree of the second expansion valve 10 is increased, the discharge temperature of the compressor 3 is increased and then increased. That is, when the second expansion valve 10 is set to the opening A, the discharge temperature is about the same as the target value. However, when the second expansion valve 10 is set from the opening A to the opening X, the target The discharge temperature is lower than the value, and when the second expansion valve 10 is set to the opening degree B, the discharge temperature is equal to or higher than the target value.

また、第2の膨張弁10を開度Aと開度Bとしたときでは、圧縮機3の吐出温度はいずれも目標値とほぼ等しくなるが、加熱能力は開度Aとしたときに比べて開度Bとしたときの方が低下している(図2(e))。したがって、第2の膨張弁10を制御することによって冷媒の吐出温度を調節するだけでは、所定の加熱能力を確保するというのが難しいことがわかる。すなわち、冷媒の吐出温度の調節に加えて、吸入過熱度の制御も必要なのである。   When the second expansion valve 10 is set to the opening A and the opening B, the discharge temperature of the compressor 3 is almost equal to the target value, but the heating capacity is set to the opening A. The direction when it is set to the opening degree B is decreasing (FIG. 2 (e)). Therefore, it can be seen that it is difficult to ensure a predetermined heating capacity only by adjusting the refrigerant discharge temperature by controlling the second expansion valve 10. That is, in addition to adjusting the discharge temperature of the refrigerant, it is also necessary to control the suction superheat degree.

次に、第1の膨張弁5の開度を変化させた場合における冷媒の状態変化について説明する。第1の膨張弁5の開度を大きくすると、分岐流路8に流れ込む冷媒量が少なくなり、高低圧熱交換器9での熱交換量も併せて少なくなる。一方、第1の膨張弁5の開度を小さくすると、分岐流路8をに流れ込む冷媒量が多くなり、高低圧熱交換器9での熱交換量も併せて多くなる。   Next, the refrigerant state change when the opening degree of the first expansion valve 5 is changed will be described. When the opening degree of the first expansion valve 5 is increased, the amount of refrigerant flowing into the branch flow path 8 is reduced, and the amount of heat exchange in the high / low pressure heat exchanger 9 is also reduced. On the other hand, if the opening degree of the first expansion valve 5 is reduced, the amount of refrigerant flowing into the branch flow path 8 increases, and the amount of heat exchange in the high-low pressure heat exchanger 9 also increases.

図3は、高低圧熱交換器9における熱交換量が変動したときの冷凍サイクル20の圧力とエンタルピとの関係を示す説明図である。図3では、縦軸が圧力(P)を、横軸がエンタルピ(H)をそれぞれ表している。また、実線が高低圧熱交換器9における熱交換量小の場合を、破線が高低圧熱交換器9における熱交換量大の場合をそれぞれ示している。さらに、点Cは、高低圧熱交換器9を流出した冷媒が第2の膨張弁10で減圧された状態を示しており、点Dは、放熱器4の出口における冷媒が第1の膨張弁5で減圧された状態を示している。   FIG. 3 is an explanatory diagram showing the relationship between the pressure of the refrigeration cycle 20 and the enthalpy when the amount of heat exchange in the high / low pressure heat exchanger 9 varies. In FIG. 3, the vertical axis represents pressure (P) and the horizontal axis represents enthalpy (H). The solid line indicates the case where the heat exchange amount in the high / low pressure heat exchanger 9 is small, and the broken line indicates the case where the heat exchange amount in the high / low pressure heat exchanger 9 is large. Further, point C shows a state in which the refrigerant flowing out of the high and low pressure heat exchanger 9 is decompressed by the second expansion valve 10, and point D shows that the refrigerant at the outlet of the radiator 4 is the first expansion valve. 5 shows a state where the pressure is reduced.

なお、点Eは、点Cと点Dとが合流した蒸発器6の入口における冷媒の状態を示しており、分岐回路8を流れる冷媒流量と第1の膨張弁5を通過する冷媒流量との比率で決定する。図3に示すように、高低圧熱交換器9における熱交換量が多くなると、第2の膨張弁10の入口における冷媒の温度は低下し、冷却量が増加する。すなわち、蒸発器6の入口における冷媒状態は、エンタルピが低く、乾き度が小さくなる。この場合の冷凍サイクル20は、図中の破線で示す経路をたどる。   Point E indicates the state of the refrigerant at the inlet of the evaporator 6 where point C and point D merge. The refrigerant flow rate flowing through the branch circuit 8 and the refrigerant flow rate passing through the first expansion valve 5 Determine by ratio. As shown in FIG. 3, when the amount of heat exchange in the high / low pressure heat exchanger 9 increases, the temperature of the refrigerant at the inlet of the second expansion valve 10 decreases and the amount of cooling increases. That is, the refrigerant state at the inlet of the evaporator 6 has a low enthalpy and a low dryness. The refrigeration cycle 20 in this case follows a path indicated by a broken line in the figure.

一方、高低圧熱交換器9における熱交換量が少なくなると、第2の膨張弁10の入口における冷媒の温度は上昇し、冷却量が低下する。すなわち、蒸発器6の入口における冷媒状態は、エンタルピが高く、乾き度が大きくなる。この場合の冷媒サイクルは、図中の実線で示す経路をたどる。つまり、第1の膨張弁5の開度を大きくすると、高低圧熱交換器9の熱交換量が少なくなるために、吸入過熱度が小さくなり、第1の膨張弁5の開度を小さくすると、高低圧熱交換器9の熱交換量が多くなるために、吸入過熱度が大きくなるのである。   On the other hand, when the amount of heat exchange in the high / low pressure heat exchanger 9 decreases, the temperature of the refrigerant at the inlet of the second expansion valve 10 increases and the amount of cooling decreases. That is, the refrigerant state at the inlet of the evaporator 6 has a high enthalpy and a high dryness. The refrigerant cycle in this case follows a path indicated by a solid line in the figure. That is, if the opening degree of the first expansion valve 5 is increased, the heat exchange amount of the high / low pressure heat exchanger 9 is reduced, so that the suction superheat degree is reduced and the opening degree of the first expansion valve 5 is reduced. Since the heat exchange amount of the high / low pressure heat exchanger 9 increases, the suction superheat degree increases.

次に、このヒートポンプ給湯機100の運転制御動作について説明する。まず、回転数等で制御される圧縮機3の運転容量及びポンプ11の回転数は、外気温度センサ13cで計測検知される周囲の外気温度や給水温度センサ13aで計測検知される給水温度の情報等に基づいて調整される。つまり、それらの情報に基づいて、加熱能力及び温度センサ13bで計測検知される放熱器4の出口における水の温度が予め定められた目標値となるように調整制御されるのである。たとえば、目標加熱能力4.5kW、目標水出口温度65℃となるように、圧縮機3及びポンプ11の回転数が制御される。また、蒸発器6の熱交換量は、伝熱媒体である空気を搬送するファン7の回転数を予め定められた状態で運転して制御される。   Next, the operation control operation of the heat pump water heater 100 will be described. First, the operating capacity of the compressor 3 controlled by the rotational speed and the rotational speed of the pump 11 are information on the ambient outside temperature measured and detected by the outside temperature sensor 13c and the feed water temperature measured and detected by the feed water temperature sensor 13a. It is adjusted based on etc. That is, based on such information, adjustment control is performed so that the temperature of water at the outlet of the radiator 4 measured and detected by the heating capacity and the temperature sensor 13b becomes a predetermined target value. For example, the rotation speeds of the compressor 3 and the pump 11 are controlled so that the target heating capacity is 4.5 kW and the target water outlet temperature is 65 ° C. Further, the heat exchange amount of the evaporator 6 is controlled by operating the rotational speed of the fan 7 that conveys the air as the heat transfer medium in a predetermined state.

図4は、第1の膨張弁5及び第2の膨張弁10の開度を制御する動作の流れを示すフローチャートである。まず、吐出温度センサ13dで圧縮機3の出口における冷媒の温度が計測検知される(ステップS101)。そして、計測制御装置14は、吐出温度センサ13dで計測検知された冷媒の吐出温度が予め定められた目標値となるように第2の膨張弁10を制御する(ステップS102)。つまり、吐出温度が目標値に達している場合(ステップS102;N)は、第2の膨張弁10の開度が増加される(ステップS103)。反対に、吐出温度が目標値に満たない場合(ステップS102;Y)は、第2の膨張弁10の開度が減少される(ステップS104)。   FIG. 4 is a flowchart showing a flow of operations for controlling the opening degrees of the first expansion valve 5 and the second expansion valve 10. First, the refrigerant temperature at the outlet of the compressor 3 is measured and detected by the discharge temperature sensor 13d (step S101). And the measurement control apparatus 14 controls the 2nd expansion valve 10 so that the discharge temperature of the refrigerant | coolant measured and detected by the discharge temperature sensor 13d may become a predetermined target value (step S102). That is, when the discharge temperature has reached the target value (step S102; N), the opening degree of the second expansion valve 10 is increased (step S103). On the other hand, when the discharge temperature is less than the target value (step S102; Y), the opening degree of the second expansion valve 10 is decreased (step S104).

次に、吸入温度センサ13eで圧縮機3の入口における冷媒の温度が計測検知される(ステップS105)。それから、蒸発温度センサ13fで蒸発器6における冷媒の温度が計測検知される(ステップS106)。これら計測検知された吸入温度と蒸発温度とに基づいて、計測制御装置14は、吸入過熱度を算出する(ステップS107)。計測制御装置14は、算出した吸入過熱度が予め定められた目標値であるかどうか判定する(ステップS108)。   Next, the refrigerant temperature at the inlet of the compressor 3 is measured and detected by the suction temperature sensor 13e (step S105). Then, the refrigerant temperature in the evaporator 6 is measured and detected by the evaporation temperature sensor 13f (step S106). Based on the measured suction temperature and evaporation temperature, the measurement control device 14 calculates the suction superheat degree (step S107). The measurement control device 14 determines whether or not the calculated suction superheat degree is a predetermined target value (step S108).

つまり、吸入過熱度が目標値に達している場合(ステップS108;N)は、第1の膨張弁5の開度が増加される(ステップS109)。この第1の膨張弁5の開度を増加させることにより、高低圧熱交換器9での熱交換量を減少させるのである。その後、制御動作の最初に戻り吐出温度の検出が行われる。一方、吸入過熱度が目標値に満たない場合(ステップS108;Y)は、第1の膨張弁5の開度が減少される(ステップS110)。この第1の膨張弁5の開度を減少させることにより、高低圧熱交換器9での熱交換量を増加させるのである。その後、制御動作の最初に戻り吐出温度の検出が行われる。   That is, when the suction superheat degree has reached the target value (step S108; N), the opening degree of the first expansion valve 5 is increased (step S109). By increasing the opening degree of the first expansion valve 5, the amount of heat exchange in the high / low pressure heat exchanger 9 is decreased. Thereafter, returning to the beginning of the control operation, the discharge temperature is detected. On the other hand, when the suction superheat degree is less than the target value (step S108; Y), the opening degree of the first expansion valve 5 is decreased (step S110). The amount of heat exchange in the high / low pressure heat exchanger 9 is increased by decreasing the opening degree of the first expansion valve 5. Thereafter, returning to the beginning of the control operation, the discharge temperature is detected.

以上のように、第1の膨張弁5及び第2の膨張弁10の開度を制御することにより、冷凍サイクル20の吐出温度と吸入過熱度とを予め定められた目標値に近づけることができるのである。すなわち、このヒートポンプ給湯機100は、設置される環境の負荷条件に応じて、第1の膨張弁5及び第2の膨張弁10を調整制御することが可能となっているので、設置場所に関わらずに冷凍サイクル20の所定の能力を発揮、維持することができるのである。   As described above, by controlling the opening degrees of the first expansion valve 5 and the second expansion valve 10, the discharge temperature and the suction superheat degree of the refrigeration cycle 20 can be brought close to predetermined target values. It is. That is, the heat pump water heater 100 can adjust and control the first expansion valve 5 and the second expansion valve 10 according to the load conditions of the environment in which the heat pump water heater 100 is installed. Therefore, the predetermined capacity of the refrigeration cycle 20 can be exhibited and maintained.

実施の形態に係るヒートポンプ給湯機の冷媒回路構成を示す概略構成図である。It is a schematic block diagram which shows the refrigerant circuit structure of the heat pump water heater which concerns on embodiment. 第2の膨張弁の開度を変化させた場合の各部位における冷媒の状態変化を示す説明図である。It is explanatory drawing which shows the state change of the refrigerant | coolant in each site | part at the time of changing the opening degree of a 2nd expansion valve. 高低圧熱交換器における熱交換量が変動したときの冷凍サイクルの圧力とエンタルピとの関係を示す説明図である。It is explanatory drawing which shows the relationship between the pressure of a refrigerating cycle when the heat exchange amount in a high-low pressure heat exchanger fluctuates, and enthalpy. 第1の膨張弁5及び第2の膨張弁10の開度を制御する動作の流れを示すフローチャートである。3 is a flowchart showing a flow of an operation for controlling the opening degrees of the first expansion valve 5 and the second expansion valve 10.

符号の説明Explanation of symbols

1 ヒートポンプユニット、2 タンクユニット、3 圧縮機、4 放熱器、5 第1の膨張弁、6 蒸発器、7 ファン、8 分岐流路、9 高低圧熱交換器、10 第2の膨張弁、11 ポンプ、12 タンク、13a 給水温度センサ、13b 出湯温度センサ、13c 外気温度センサ、13d 吐出温度センサ、13e 吸入温度センサ、13f 蒸発温度センサ、14 計測制御装置、15 冷媒配管、16 水配管、20 冷凍サイクル、30 給湯水回路、100 ヒートポンプ給湯機。
DESCRIPTION OF SYMBOLS 1 Heat pump unit, 2 Tank unit, 3 Compressor, 4 Heat radiator, 5 1st expansion valve, 6 Evaporator, 7 Fan, 8 Branch flow path, 9 High-low pressure heat exchanger, 10 2nd expansion valve, 11 Pump, 12 tank, 13a Feed water temperature sensor, 13b Hot water temperature sensor, 13c Outside air temperature sensor, 13d Discharge temperature sensor, 13e Suction temperature sensor, 13f Evaporation temperature sensor, 14 Measurement control device, 15 Refrigerant piping, 16 Water piping, 20 Refrigeration Cycle, 30 hot water supply circuit, 100 heat pump water heater.

Claims (4)

冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、
前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁と、
前記圧縮機に吸入される冷媒の温度を計測検知する吸入温度検知手段と、
前記蒸発器での冷媒の温度を計測検知する蒸発温度検知手段と、
前記圧縮機から吐出される冷媒の温度を計測検知する吐出温度検知手段と、
前記第1の膨張弁及び前記第2の膨張弁の開度を調整する計測制御手段とを有し、
前記計測制御手段は、
前記吐出温度検知手段から温度情報によって前記第2の膨張弁の開度を調整してから、前記吸入温度検知手段からの温度情報と前記蒸発温度検知手段からの温度情報との差から冷媒の吸入過熱度を算出し、該吸入過熱度によって前記第1の膨張弁の開度を調整する
ことを特徴とするヒートポンプ給湯機。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor;
A second expansion valve that is provided in the branch flow path from the high-low pressure heat exchanger to the evaporator and depressurizes the refrigerant;
Suction temperature detection means for measuring and detecting the temperature of refrigerant sucked into the compressor;
Evaporating temperature detecting means for measuring and detecting the temperature of the refrigerant in the evaporator;
Discharge temperature detection means for measuring and detecting the temperature of the refrigerant discharged from the compressor;
Measurement control means for adjusting the opening of the first expansion valve and the second expansion valve;
The measurement control means includes
After adjusting the opening of the second expansion valve based on temperature information from the discharge temperature detecting means, the refrigerant is sucked from the difference between the temperature information from the suction temperature detecting means and the temperature information from the evaporation temperature detecting means. A heat pump water heater characterized by calculating a degree of superheat and adjusting an opening degree of the first expansion valve according to the degree of suction superheat .
前記高低圧熱交換器は、
前記高低圧熱交換器内における低圧側冷媒が流れる冷媒配管と高圧側冷媒が流れる分岐流路とが対向流となっている
ことを特徴とする請求項1に記載のヒートポンプ給湯機。
The high / low pressure heat exchanger is:
The heat pump water heater according to claim 1, wherein a refrigerant pipe in which the low-pressure side refrigerant flows and a branch flow path in which the high-pressure side refrigerant flows are opposed to each other in the high-low pressure heat exchanger.
前記冷凍サイクルに使用する冷媒が二酸化炭素である
ことを特徴とする請求項1又は2に記載のヒートポンプ給湯機。
The heat pump water heater according to claim 1 or 2, wherein the refrigerant used in the refrigeration cycle is carbon dioxide.
冷媒を超臨界圧力まで圧縮する圧縮機、前記圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁及び蒸発器を冷媒配管で順次接続して冷媒が循環する冷凍サイクルと、
前記放熱器から前記第1の膨張弁に至る間で前記冷媒配管を分岐させ、前記第1の膨張弁から前記蒸発器に至る間で前記冷媒配管に再接続させた分岐流路と、
前記分岐流路を流れる高圧冷媒と前記圧縮機に吸入される低圧冷媒とを熱交換する高低圧熱交換器と、
前記高低圧熱交換器から前記蒸発器に至る間の前記分岐流路に設けられ、冷媒を減圧する第2の膨張弁とを備えたヒートポンプ給湯機の制御方法であって、
前記圧縮機に吸入される冷媒の吸入温度を計測し、
前記蒸発器での冷媒の蒸発温度を計測し、
前記圧縮機から吐出される冷媒の吐出温度を計測し、
前記吐出温度検知手段から温度情報によって前記第2の膨張弁の開度を調整してから、前記吸入温度検知手段からの温度情報と前記蒸発温度検知手段からの温度情報との差から冷媒の吸入過熱度を算出し、該吸入過熱度によって前記第1の膨張弁の開度を調整する
ことを特徴とするヒートポンプ給湯機の制御方法。
A compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, a first expansion valve that depressurizes the refrigerant, and an evaporator are sequentially connected by a refrigerant pipe. A refrigeration cycle in which the refrigerant circulates;
A branch flow path branched from the radiator to the first expansion valve and reconnected to the refrigerant pipe from the first expansion valve to the evaporator;
A high-low pressure heat exchanger for exchanging heat between the high-pressure refrigerant flowing through the branch flow path and the low-pressure refrigerant sucked into the compressor;
A control method for a heat pump water heater provided in the branch flow path from the high-low pressure heat exchanger to the evaporator, and comprising a second expansion valve for decompressing the refrigerant,
Measure the suction temperature of the refrigerant sucked into the compressor,
Measure the refrigerant evaporation temperature in the evaporator,
Measure the discharge temperature of the refrigerant discharged from the compressor,
After adjusting the opening of the second expansion valve based on temperature information from the discharge temperature detecting means, the refrigerant is sucked from the difference between the temperature information from the suction temperature detecting means and the temperature information from the evaporation temperature detecting means. A control method for a heat pump water heater , wherein the degree of superheat is calculated, and the opening degree of the first expansion valve is adjusted by the suction superheat degree .
JP2005282418A 2005-09-28 2005-09-28 Heat pump water heater and control method of heat pump water heater Active JP4140625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005282418A JP4140625B2 (en) 2005-09-28 2005-09-28 Heat pump water heater and control method of heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005282418A JP4140625B2 (en) 2005-09-28 2005-09-28 Heat pump water heater and control method of heat pump water heater

Publications (2)

Publication Number Publication Date
JP2007093097A JP2007093097A (en) 2007-04-12
JP4140625B2 true JP4140625B2 (en) 2008-08-27

Family

ID=37979029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005282418A Active JP4140625B2 (en) 2005-09-28 2005-09-28 Heat pump water heater and control method of heat pump water heater

Country Status (1)

Country Link
JP (1) JP4140625B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029124B2 (en) * 2007-04-27 2012-09-19 パナソニック株式会社 Heat pump water heater
JP5034657B2 (en) * 2007-04-27 2012-09-26 パナソニック株式会社 Heat pump water heater
CN106708223B (en) * 2016-12-20 2024-02-27 中山联昌电器有限公司 Integrated compressor heat dissipation case
WO2021245788A1 (en) * 2020-06-02 2021-12-09 三菱電機株式会社 Heat exchanger and heat pump device
CN112629020B (en) * 2020-12-17 2023-04-14 青岛海尔新能源电器有限公司 Heat pump water heater and control method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1089779A (en) * 1996-09-11 1998-04-10 Daikin Ind Ltd Air conditioner
JP2003214713A (en) * 2002-01-23 2003-07-30 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP3869804B2 (en) * 2003-01-31 2007-01-17 三洋電機株式会社 Heat pump water heater / heater

Also Published As

Publication number Publication date
JP2007093097A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
KR100856991B1 (en) Refrigerating air conditioner, operation control method of refrigerating air conditioner, and refrigerant quantity control method of refrigerating air conditioner
EP2107322B1 (en) Heat pump type hot water supply outdoor apparatus
JP4269323B2 (en) Heat pump water heater
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
JP5452138B2 (en) Refrigeration air conditioner
JP6242321B2 (en) Air conditioner
JP6595205B2 (en) Refrigeration cycle equipment
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
US20100152903A1 (en) Refrigerating cycle apparatus and operation control method therefor
WO2007110908A9 (en) Refrigeration air conditioning device
JPH11193967A (en) Refrigerating cycle
JP4206870B2 (en) Refrigeration cycle equipment
WO1999010686A1 (en) Cooling cycle
US6568199B1 (en) Method for optimizing coefficient of performance in a transcritical vapor compression system
JP4273493B2 (en) Refrigeration air conditioner
JP2002081766A (en) Refrigerating cycle device
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP2001235239A (en) Supercritical vapor compressing cycle system
JP4407689B2 (en) Heat pump water heater
JP2006336943A (en) Refrigeration system, and cold insulation box
JP2009052880A (en) Heat pump water heater
JP4716935B2 (en) Refrigeration cycle apparatus and heat pump water heater
JP2002228282A (en) Refrigerating device
JP2009243881A (en) Heat pump device and outdoor unit of heat pump device
JP6766239B2 (en) Refrigeration cycle equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080513

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4140625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250