JP4407689B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP4407689B2
JP4407689B2 JP2006306228A JP2006306228A JP4407689B2 JP 4407689 B2 JP4407689 B2 JP 4407689B2 JP 2006306228 A JP2006306228 A JP 2006306228A JP 2006306228 A JP2006306228 A JP 2006306228A JP 4407689 B2 JP4407689 B2 JP 4407689B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
hot water
radiator
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006306228A
Other languages
Japanese (ja)
Other versions
JP2008121977A (en
Inventor
宗 野本
国博 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006306228A priority Critical patent/JP4407689B2/en
Publication of JP2008121977A publication Critical patent/JP2008121977A/en
Application granted granted Critical
Publication of JP4407689B2 publication Critical patent/JP4407689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は、ヒートポンプ給湯機、特に冷媒として二酸化炭素(CO2 )を用いるヒートポンプ給湯機に関するものである。 The present invention relates to a heat pump water heater, and more particularly to a heat pump water heater that uses carbon dioxide (CO 2 ) as a refrigerant.

従来の冷凍空調装置に、冷媒としてCO2 を用いるとともに、圧縮機とガスクーラと高低圧熱交換器と膨張手段と蒸発器と低圧冷媒レシーバからなり、ガスクーラ出口冷媒温度を膨張手段で調整するようにしたものがある(例えば、特許文献1参照)。また、従来のヒートポンプ給湯機に、圧縮機と放熱器と膨張手段と蒸発器からなり、吐出温度を膨張手段で制御するものがある(例えば、特許文献2参照)。また従来の冷凍空調装置に、冷媒としてCO2 を用いるとともに、圧縮機とガスクーラと高低圧熱交換器と膨張手段と蒸発器からなり、高圧側圧力を高低圧熱交換器冷媒回路の膨張手段で調整するようにしたものがある(例えば、特許文献3参照)。 The conventional refrigeration and air-conditioning apparatus uses CO 2 as a refrigerant, and includes a compressor, a gas cooler, a high-low pressure heat exchanger, an expansion means, an evaporator, and a low-pressure refrigerant receiver, and adjusts the gas cooler outlet refrigerant temperature by the expansion means. (For example, refer to Patent Document 1). Moreover, some conventional heat pump water heaters include a compressor, a radiator, an expansion means, and an evaporator, and the discharge temperature is controlled by the expansion means (see, for example, Patent Document 2). The conventional refrigeration and air-conditioning apparatus uses CO 2 as a refrigerant, and includes a compressor, a gas cooler, a high-low pressure heat exchanger, an expansion means, and an evaporator. The high-pressure side pressure is increased by the expansion means of the high-low pressure heat exchanger refrigerant circuit. Some are adjusted (for example, see Patent Document 3).

特許2931668号公報(第2−3頁、第3図)Japanese Patent No. 2931668 (page 2-3, FIG. 3) 特開2004−340535号公報(第4−6頁、第1図)JP 2004-340535 A (page 4-6, FIG. 1) 特開2005−315558号公報(第10−11頁、第12図)Japanese Patent Laying-Open No. 2005-315558 (pages 10-11, FIG. 12)

従来の冷凍空調装置においては、高低圧熱交換器を有するため、圧縮機吸入冷媒を過熱ガス化することができ、圧縮機に液冷媒を吸入させないため圧縮機信頼性を向上することができる。また、従来のヒートポンプ給湯機は吐出温度を膨張手段で制御しているため、圧縮機の過剰な温度上昇を避けることができ、圧縮機信頼性を向上することができる。   Since the conventional refrigeration air conditioner has a high and low pressure heat exchanger, the compressor suction refrigerant can be converted into superheated gas, and the compressor reliability can be improved because the liquid refrigerant is not sucked into the compressor. Moreover, since the conventional heat pump water heater controls the discharge temperature by the expansion means, it is possible to avoid an excessive temperature rise of the compressor and improve the compressor reliability.

しかし、給湯装置の場合、ユーザーが常に望む温度のお湯を供給する必要があり、冷凍サイクルから見ると負荷側である水をお湯に加熱する加熱能力を目標とする所定の値に、即ち指定された温度のお湯に加熱する能力を維持することが求められるという問題があった。これに対し、従来の装置を組合せ、高低圧熱交換器を用いて、吐出温度を膨張手段で制御する冷媒回路を評価した結果、吐出温度を目標値に制御する場合、同一吐出温度に対して安定状態が複数存在することがわかった。一例として膨張弁開度を変化させた場合の吐出温度と加熱能力を調査したところ、図2に示す様に、膨張弁開度がAの場合、所定能力を得ることができるが、膨張弁開度がBの場合、所定能力を得ることができない。つまり、高低圧熱交換器を含む冷媒回路において、膨張弁で吐出温度制御した場合、必ずしも所定能力を得られないという課題がある。 However, in the case of a hot water supply device, it is necessary to always supply hot water at a temperature desired by the user, and when viewed from the refrigeration cycle, it is specified to a predetermined value that targets the heating ability to heat the water on the load side to hot water. There was a problem that it was required to maintain the ability to heat hot water at a high temperature. On the other hand, as a result of evaluating a refrigerant circuit that combines a conventional apparatus and uses a high-low pressure heat exchanger to control the discharge temperature with expansion means, and controls the discharge temperature to a target value, It was found that there are multiple stable states. As an example, when the discharge temperature and the heating capacity when the expansion valve opening is changed are investigated, as shown in FIG. 2, when the expansion valve opening is A, a predetermined capacity can be obtained. When the degree is B, the predetermined ability cannot be obtained. That is, in a refrigerant circuit including a high-low pressure heat exchanger, there is a problem that a predetermined capacity cannot always be obtained when the discharge temperature is controlled by the expansion valve.

本発明は以上のような課題を解決するためになされたもので、高低圧熱交換器を含むヒートポンプ給湯機において、膨張手段で吐出温度を制御し、かつ、所定の加熱能力を得ることを目的とする。   The present invention has been made in order to solve the above-described problems. It is an object of the present invention to control discharge temperature with expansion means and obtain a predetermined heating capacity in a heat pump water heater including a high-low pressure heat exchanger. And

本発明に係るヒートポンプ給湯機は、圧縮機から吐出された高圧冷媒ととを熱交換する放熱器、放熱器からの高圧冷媒を減圧する第1の膨張弁、第1の膨張弁にて減圧された低圧冷媒を蒸発させる蒸発器を環状に接続して、冷媒を循環させる冷凍サイクルと、放熱器で加熱されたをポンプにより循環させてタンクに貯留する給湯回路と、給湯回路にて放熱器で加熱された水の温度である出湯温度を検出し目標出湯温度に制御する出湯温度制御手段と、冷凍サイクルの放熱器と第1の膨張弁の間から分岐し蒸発器の入口側へ接続され、下流側に第2の膨張弁を配置した分岐流路と、分岐流路の上流側に配置され高圧である分岐流路の冷媒と蒸発器からの低圧冷媒との間で熱交換する高低圧熱交換器と、高圧冷媒の吐出温度を吐出温度検知手段にて検出しこの検出された吐出温度を目標吐出温度に制御する吐出温度制御手段と、冷凍サイクルの冷媒の状態及び給湯回路の出湯温度の少なくとも一方が安定状態になったことを判定する安定状態判定手段と、を備え、安定状態判定手段が安定状態と判定し、この安定状態の加熱能力が所定の能力に不足している場合は放熱器の加熱能力を増加させるものである。 The heat pump water heater according to the present invention includes a radiator that exchanges heat between the high-pressure refrigerant discharged from the compressor and water , a first expansion valve that depressurizes the high-pressure refrigerant from the radiator, and a pressure reduction by the first expansion valve. An evaporator that evaporates the generated low-pressure refrigerant is connected in a ring shape, a refrigeration cycle that circulates the refrigerant, a hot water supply circuit that circulates water heated by a radiator by a pump and stores it in a tank, and heat dissipation by the hot water supply circuit a hot water temperature control means for controlling the detected target hot water temperature of the hot water temperature is the temperature of the heated water in the vessel, connected to the inlet side of the branched evaporator from between radiator and the first expansion valve of the refrigeration cycle And a high temperature for exchanging heat between the branch flow path in which the second expansion valve is arranged on the downstream side, and the refrigerant in the high pressure branch flow path arranged on the upstream side of the branch flow path and the low-pressure refrigerant from the evaporator. Discharge temperature detector that detects the discharge temperature of the low-pressure heat exchanger and high-pressure refrigerant A discharge temperature control means for controlling the detected discharge temperature to the target discharge temperature, and a stable state for determining that at least one of the refrigerant state of the refrigeration cycle and the hot water temperature of the hot water supply circuit is in a stable state Determining means for determining that the stable state determining means is in a stable state, and increasing the heating capacity of the radiator when the heating capacity in the stable state is insufficient for a predetermined capacity.

本発明のヒートポンプ給湯機によれば、高低圧熱交換器を有した冷媒回路において、吐出温度制御手段により吐出温度を制御し、かつ、所定の加熱能力を得られるという効果がある。   According to the heat pump water heater of the present invention, in the refrigerant circuit having the high and low pressure heat exchanger, there is an effect that the discharge temperature is controlled by the discharge temperature control means and a predetermined heating capacity can be obtained.

実施の形態1.
以下、本発明の実施の形態1を図1に示す。図1は本発明のヒートポンプ給湯機の冷媒回路図であり、ヒートポンプユニット1内には圧縮機3、放熱器4、第1の膨張弁5、蒸発器6を順次環状に接続し冷媒を循環させる室外に配置された冷凍サイクルと、蒸発器6に室外から吸い込んだ外気を送風するファン7と、放熱器4から第1の膨張弁5に至る間で分岐し、第1の膨張弁5から蒸発器6に至る間の配管に接続されている分岐流路8上に配置された高低圧熱交換器9および第2の膨張弁10と、給湯水回路における放熱器4で加熱された負荷側媒体である水を送水するポンプ11とが搭載されており、一方、タンクユニット2内にはポンプ11の送水により放熱器4を介して加熱された温水を貯留するタンク12が搭載されている。
Embodiment 1 FIG.
A first embodiment of the present invention is shown in FIG. FIG. 1 is a refrigerant circuit diagram of a heat pump water heater of the present invention. In the heat pump unit 1, a compressor 3, a radiator 4, a first expansion valve 5, and an evaporator 6 are sequentially connected in an annular manner to circulate the refrigerant. A refrigeration cycle arranged outdoors, a fan 7 that blows outside air sucked into the evaporator 6 from outside, and a branch from the radiator 4 to the first expansion valve 5, evaporating from the first expansion valve 5. The high- and low-pressure heat exchanger 9 and the second expansion valve 10 disposed on the branch flow path 8 connected to the pipe leading to the heater 6, and the load-side medium heated by the radiator 4 in the hot water supply circuit On the other hand, a tank 12 for storing hot water heated via the radiator 4 by the pump 11 is mounted in the tank unit 2.

高低圧熱交換器9は例えば二重管熱交換器であり、あるいは、低圧側配管と高圧側配管を外部接触させ、ロウ付けした構成としてもよい。冷媒の流れ方向は対向流が好ましい。図1のヒートポンプ給湯機の冷媒回路図には給湯回路のタンク12から例えば風呂などにタンク内に貯留した一定温度のお湯を供給する給湯装置は省略してある。又図1の給湯回路には水を供給する回路なども省略してある。又圧縮機として吐出する高圧冷媒の圧力や温度を変化させられるように圧縮機駆動装置としてインバータ制御のDCブラシレスモータを使用して回転数を可変としたもので説明するが、圧縮機の出力を複数台の圧縮機を組合せてこの組合せを切換えて全体の能力を可変にしても良い。又圧縮機の吸入側に冷媒音を低減させるサクションマフラーのような容器を設けたり、圧縮機の吐出側に流出した潤滑油を回収する装置を設けるなど図1の構成に他の目的の構造を付加することは構わない。即ち図1はヒートポンプ給湯機の基本的な回路だけを説明している。このヒートポンプ給湯機の冷凍サイクルに循環させる冷媒としては冷凍サイクルにおける高圧側が臨界圧力(約73kg/cm2 )以上で超臨界状態となり、かつ容易に入手できる自然冷媒、たとえば二酸化炭素(CO2 )が用いられる。 The high-low pressure heat exchanger 9 is, for example, a double-tube heat exchanger, or may be configured such that the low-pressure side pipe and the high-pressure side pipe are brought into external contact and brazed. The flow direction of the refrigerant is preferably counterflow. In the refrigerant circuit diagram of the heat pump water heater of FIG. 1, a hot water supply device that supplies hot water having a constant temperature stored in the tank from the tank 12 of the hot water supply circuit to a bath or the like is omitted. The circuit for supplying water is also omitted from the hot water supply circuit of FIG. In addition, the explanation will be made assuming that the rotation speed is variable by using an inverter-controlled DC brushless motor as a compressor drive so that the pressure and temperature of the high-pressure refrigerant discharged as a compressor can be changed. A plurality of compressors may be combined and this combination may be switched to make the overall capacity variable. In addition, a structure such as a suction muffler that reduces refrigerant noise is provided on the suction side of the compressor, and a device that collects the lubricating oil that has flowed out is provided on the discharge side of the compressor. It does not matter if it is added. That is, FIG. 1 illustrates only the basic circuit of a heat pump water heater. As a refrigerant to be circulated in the refrigeration cycle of this heat pump water heater, a natural refrigerant, for example, carbon dioxide (CO 2 ), which is easily available since the high pressure side in the refrigeration cycle becomes a supercritical state at a critical pressure (about 73 kg / cm 2 ) or higher. Used.

ヒートポンプユニット1内には、給湯水回路において、給水温度センサ13aが給水側である放熱器4水入口側、湯出温度センサ13bが放熱器4にて加熱された水出口側に設けられており、それぞれ設置場所の水温度を計測する。また、ヒートポンプユニット1の外郭またはその近傍に設けた外気温度センサ13cはヒートポンプユニット1周囲の外気温度を計測する。冷媒が循環する冷媒回路において吐出温度センサ13dが圧縮機3出口側、吸入温度センサ13eが圧縮機3入口側、蒸発温度センサ13fが蒸発器6入口から中間部に設けられており、それぞれ配置場所の冷媒温度を計測する。   In the heat pump unit 1, in the hot water supply circuit, the water supply temperature sensor 13a is provided on the water inlet side of the radiator 4 on the water supply side, and the hot water discharge temperature sensor 13b is provided on the water outlet side heated by the radiator 4. Measure the water temperature at each installation location. In addition, an outside air temperature sensor 13 c provided at or near the heat pump unit 1 measures the outside air temperature around the heat pump unit 1. In the refrigerant circuit in which the refrigerant circulates, the discharge temperature sensor 13d is provided on the outlet side of the compressor 3, the suction temperature sensor 13e is provided on the inlet side of the compressor 3, and the evaporation temperature sensor 13f is provided on the intermediate portion from the inlet of the evaporator 6. Measure the refrigerant temperature.

また、ヒートポンプユニット1内には、計測制御装置14が設けられている。計測制御装置14は、各温度センサ13などによる計測情報や、ヒートポンプ給湯機使用者からリモコン装置などにより指示される運転指令情報の内容に基づいて、圧縮機3の運転方法、第1の膨張弁5の開度、第2の膨張弁10の開度、ポンプ11の運転方法などを制御する機能を有する。   A measurement control device 14 is provided in the heat pump unit 1. The measurement control device 14 is based on the measurement information from each temperature sensor 13 and the content of operation command information instructed by a heat pump water heater user by a remote control device or the like. 5, the opening of the second expansion valve 10, the operation method of the pump 11, and the like.

次に、このヒートポンプ給湯機での運転動作について説明する。ヒートポンプユニット1の冷凍サイクルにおいて、圧縮機3から吐出された高温高圧のガス冷媒は放熱器4で給湯水回路2側へ放熱しながら温度低下する。このとき高圧側冷媒圧力が臨界圧以上であれば、冷媒は超臨界状態のまま気液相転移しないで温度低下して放熱する。また、高圧側冷媒圧力が臨界圧以下であれば、冷媒は液化しながら放熱する。冷媒から放熱された熱を負荷側(給湯水回路)の水などの負荷側媒体に与えることで給湯加熱を行う。給湯加熱をして放熱器4から流出した高圧低温の冷媒は、第1の膨張弁5を通過する流路と分岐流路8を通過する流路に分岐される。   Next, the operation of the heat pump water heater will be described. In the refrigeration cycle of the heat pump unit 1, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3 is lowered in temperature while radiating heat to the hot water supply circuit 2 side by the radiator 4. At this time, if the high-pressure side refrigerant pressure is equal to or higher than the critical pressure, the refrigerant radiates heat at a reduced temperature without undergoing a gas-liquid phase transition in a supercritical state. If the high-pressure side refrigerant pressure is equal to or lower than the critical pressure, the refrigerant radiates heat while liquefying. Hot water supply heating is performed by applying heat radiated from the refrigerant to a load side medium such as water on the load side (hot water supply circuit). The high-pressure and low-temperature refrigerant that has flowed out of the radiator 4 through hot water heating is branched into a flow path that passes through the first expansion valve 5 and a flow path that passes through the branch flow path 8.

第1の膨張弁5を通過した冷媒は、ここで低圧気液二相の状態に減圧される。分岐流路8を通過した高圧冷媒は、高低圧熱交換器9の高圧側流路を通過し、蒸発器6から流出した高低圧熱交換器9の低圧側流路を通過する低圧冷媒と熱交換して冷却された後、第2の膨張弁10を通過して低圧気液二相の状態に減圧される。第1の膨張弁5を通過した冷媒と、第2の膨張弁10を通過した冷媒は蒸発器6入口前で合流して蒸発器6に流入し、そこで外気空気から吸熱し、蒸発ガス化される。蒸発器6を出た低圧冷媒は高低圧熱交換器9を通過して、高圧側流路を通過する高圧冷媒と熱交換して過熱ガス化され、圧縮機3に吸入されて循環し冷凍サイクルを形成する。 The refrigerant that has passed through the first expansion valve 5 is decompressed to a low-pressure gas-liquid two-phase state. The high-pressure refrigerant that has passed through the branch flow path 8 passes through the high-pressure side flow path of the high-low pressure heat exchanger 9 and flows through the low-pressure side flow path of the high-low pressure heat exchanger 9 that flows out of the evaporator 6 and heat. After being exchanged and cooled, the pressure is reduced to a low-pressure gas-liquid two-phase state through the second expansion valve 10. The refrigerant that has passed through the first expansion valve 5 and the refrigerant that has passed through the second expansion valve 10 merge before flowing into the evaporator 6 and flow into the evaporator 6 where they absorb heat from the outside air and are evaporated and gasified. The The low-pressure refrigerant exiting the evaporator 6 passes through the high-low pressure heat exchanger 9 and exchanges heat with the high-pressure refrigerant passing through the high-pressure side flow path to be superheated gas, and is sucked into the compressor 3 and circulated to be refrigerated cycle. Form.

また、給湯水回路側では、放熱器4で冷媒から放熱された熱は、放熱器4の流入側に設けられたポンプ11によりタンク12の下部から導かれて放熱器4の給湯水回路側へ搬送される水などの負荷側媒体に与えられる。ここで加熱された負荷側媒体はタンク12の上部から流入し、タンク12内に蓄熱される。即ちタンク内には上部がお湯で下部が水の状態となる。   On the hot water supply circuit side, the heat radiated from the refrigerant by the radiator 4 is guided from the lower part of the tank 12 by the pump 11 provided on the inflow side of the radiator 4 to the hot water supply circuit side of the radiator 4. It is given to a load side medium such as water to be conveyed. The heated load-side medium flows in from the upper part of the tank 12 and is stored in the tank 12. That is, the upper part of the tank is hot water and the lower part is water.

次に、このヒートポンプ給湯機での運転制御動作について説明する。ヒートポンプ給湯機は、放熱器で負荷である水を加熱するために必要な所定の能力と、あらかじめ設定された目標出湯温度に基づいて動作する。所定の能力は使用者からリモコンにて指示される運転指令情報から、例えば圧縮機の出力値を一定値とするように設定される。目標出湯温度は、使用者からリモコンにて指示される運転指令情報から設定されるか、あるいはリモコン内もしくは計測制御装置14に設けられたマイコンにて過去の給湯使用量から算出される蓄熱エネルギーを確保できるように設定される。また、目標出湯温度は、あらかじめ範囲が決められており、例えば65℃から90℃の範囲に設定されている。   Next, the operation control operation in this heat pump water heater will be described. The heat pump water heater operates based on a predetermined capacity necessary for heating water as a load with a radiator and a preset target hot water temperature. The predetermined capacity is set so that, for example, the output value of the compressor is a constant value based on the operation command information instructed by the user from the remote controller. The target hot water temperature is set from the operation command information instructed by the remote controller from the user, or the heat storage energy calculated from the past hot water use amount in the remote controller or by the microcomputer provided in the measurement control device 14 is used. It is set so that it can be secured. Further, the target hot water temperature has a predetermined range, for example, a range of 65 ° C. to 90 ° C.

圧縮機3の回転数は、目標出湯温度で所定の能力が得られるように制御される。タンク下部から流入する給水温度は沸上げ終了までほぼ一定温度で供給されるため、目標出湯温度が決まれば、負荷はほぼ一定で運転される。目標出湯温度範囲の加熱に必要な最大値で所定の能力を確保する状態に設定できれば、目標出湯温度の範囲内で所定の能力を確保できる。したがって、放熱器4の加熱能力である圧縮機3の回転数は、例えば外気温度と給水温度の関数とすることで、どのような目標出湯温度においても所定能力を確保することができる。言いかえれば圧縮機の出力はどのような外部条件に対しても給湯器として要求されるお湯の温度を何時でも確保できる能力を準備しており、この結果常に所望の温度のお湯が給湯装置として得ることができる。図では圧縮機3は1台となっているが、複数台を並列もしくは直列に接続してもよく、その場合には圧縮機3の回転数に加え、運転台数を制御して能力を確保することができる。また、圧縮機3の回転数は、長期運転を継続した場合の信頼性維持を考えた圧縮機耐久性を確保するため上限回転数および下限回転数が設けられている。   The rotation speed of the compressor 3 is controlled so that a predetermined capacity is obtained at the target hot water temperature. Since the feed water temperature flowing in from the bottom of the tank is supplied at a substantially constant temperature until the completion of boiling, the load is operated at a substantially constant once the target hot water temperature is determined. If the predetermined capacity can be secured at the maximum value required for heating in the target hot water temperature range, the predetermined capacity can be secured within the target hot water temperature range. Therefore, the rotation speed of the compressor 3 which is the heating capacity of the radiator 4 can be ensured at any target hot water temperature by, for example, a function of the outside air temperature and the feed water temperature. In other words, the output of the compressor is prepared with the ability to ensure the hot water temperature required as a water heater at any time for any external conditions. As a result, hot water at the desired temperature is always used as a water heater. Obtainable. Although the number of compressors 3 is one in the figure, a plurality of units may be connected in parallel or in series. In that case, in addition to the number of rotations of the compressor 3, the number of operating units is controlled to ensure the capacity. be able to. Moreover, the rotation speed of the compressor 3 is provided with an upper limit rotation speed and a lower limit rotation speed in order to ensure compressor durability in consideration of maintaining reliability when a long-term operation is continued.

第2の膨張弁10の開度は、吐出温度を所定値(目標吐出温度)になるように制御される。目標吐出温度は、目標出湯温度を確保できる温度とするため、目標出湯温度より高い温度、すなわち目標出湯温度+α[deg]に設定されている。値αは、例えば外気温度や目標出湯温度の関数とする。このように目標出湯温度に応じた目標吐出温度とすることで、要求された出湯温度を確保することができる。また、圧縮機耐久性や冷凍機油劣化などの観点から、通常、吐出温度には上限温度が設けられている。   The opening degree of the second expansion valve 10 is controlled so that the discharge temperature becomes a predetermined value (target discharge temperature). The target discharge temperature is set to a temperature higher than the target hot water temperature, that is, the target hot water temperature + α [deg], in order to make the target hot water temperature secureable. The value α is, for example, a function of the outside air temperature or the target hot water temperature. Thus, the required hot water temperature can be ensured by setting it as the target discharge temperature according to the target hot water temperature. Also, from the viewpoint of compressor durability and refrigeration machine oil degradation, an upper limit temperature is usually provided for the discharge temperature.

第1の膨張弁5の開度は、圧縮機3の信頼性の観点から、圧縮機3に吸入される冷媒を液冷媒とせずに過熱ガスに保つため、高低圧熱交換器9で十分に加熱されるよう、通常運転時は閉止状態となっている。ところが、目標吐出温度が上限値付近で運転される場合や、圧縮機3の回転数が上限値付近で運転される場合、例えば、外気温度が低く、目標出湯温度が高い場合には、所定の能力が不足する場合がある。また、外気温度が低く、蒸発器6の蒸発温度が0℃以下となる場合、蒸発器6は着霜して能力が低下するため、除霜運転を実施する必要がある。除霜運転中はポンプ11が停止して加熱能力が発生しないため、平均的な加熱能力は低下する。   From the viewpoint of the reliability of the compressor 3, the opening of the first expansion valve 5 is sufficient in the high-low pressure heat exchanger 9 in order to keep the refrigerant sucked into the compressor 3 as superheated gas instead of being liquid refrigerant. It is closed during normal operation so that it can be heated. However, when the target discharge temperature is operated near the upper limit value, or when the rotation speed of the compressor 3 is operated near the upper limit value, for example, when the outside air temperature is low and the target hot water temperature is high, There is a case where the ability is insufficient. Further, when the outside air temperature is low and the evaporation temperature of the evaporator 6 is 0 ° C. or less, the evaporator 6 is frosted and its capacity is reduced, so that it is necessary to perform a defrosting operation. During the defrosting operation, since the pump 11 is stopped and no heating capacity is generated, the average heating capacity is lowered.

このような場合には、第1の膨張弁5の開度を開くことで、高低圧熱交換器9の熱交換量を低下させ、圧縮機3に吸入する冷媒の吸入過熱度を低下させる。つまり、吸入過熱度低下で圧縮機3の吸入冷媒密度が増加し、冷媒循環量が増加するので、加熱能力が増大する。即ち外部条件次第では第1の膨張弁5の開度を、例えば外気温度と目標沸上げ温度の関数として制御する。   In such a case, by opening the opening of the first expansion valve 5, the heat exchange amount of the high / low pressure heat exchanger 9 is decreased, and the suction superheat degree of the refrigerant sucked into the compressor 3 is decreased. That is, the suction refrigerant density of the compressor 3 increases due to a decrease in the degree of suction superheat, and the amount of refrigerant circulation increases, so the heating capacity increases. That is, depending on the external conditions, the opening degree of the first expansion valve 5 is controlled as a function of, for example, the outside air temperature and the target boiling temperature.

ポンプ11の回転数は、出湯温度が目標出湯温度となるように制御される。第2の膨張弁10で吐出温度が目標出湯温度+α[deg]に制御されるため、即ち冷凍サイクル側の加熱能力が一定に維持されているため、確実に出湯温度を確保することができる。以上の各制御、圧縮機の回転数による加熱能力制御、第2の膨張弁開度による出湯温度制御、などはそれぞれ別個にそれぞれのパラメータに基づきそれぞれの目標に対し制御を行う。   The rotation speed of the pump 11 is controlled so that the tapping temperature becomes the target tapping temperature. Since the discharge temperature is controlled to the target hot water temperature + α [deg] by the second expansion valve 10, that is, the heating capacity on the refrigeration cycle side is maintained constant, the hot water temperature can be reliably ensured. Each of the above controls, heating capacity control based on the number of rotations of the compressor, and hot water temperature control based on the second expansion valve opening degree, etc. are individually controlled based on the respective parameters.

図2は本発明のヒートポンプ給湯機における制御内容の一例を説明する図であって、第1の膨張弁開度、圧縮機の回転数、ポンプの回転数を一定にした状況で第2の膨張弁10の開度を横軸の様に変化させて冷凍サイクルに各計測装置を設け計測した各部位における冷媒の変化状態特性を示すデータである。図2の縦軸の一番上は第2膨張弁10の開度に対する放熱器4が通過する冷媒が負荷側媒体である水を加熱能力(kW)であって出湯温度や水量から求められる。図が示す様に加熱能力は開度がXまではあまり変化しないがそれ以上に成ると加熱能力が不足してきて急激に低下している。上から2番目の高圧側圧力(MPa)は圧縮機3で圧縮された高圧冷媒の圧力で、開度が大きくなるにつれて徐々に低下する。第2の膨張弁10の開度Aに比べ開度X、開度Bでは冷媒の高圧側圧力が低くなる。上から3番目の温度は放熱器出口と圧縮機吸入の位置における開度に対応した冷媒の温度(℃)であり、いずれの温度も開度を大きくすると温度は上昇する。上から4番目は圧縮機の吐出温度であって圧縮機3から吐出される際に吐出温度センサ13dで検知される冷媒温度で、目標値が設定してありこの目標値に対し、開度Aと開度Bでは目標値に達しているが、開度Xでは低く、開度B以上では目標値以上になっていることが示されている。一番下は横軸が第2の膨張弁10の開度で縦軸は圧縮機の吸入過熱度(deg)で有る。吸入温度センサ13eからの温度情報と蒸発温度検出センサ13fからの温度情報との差から求められる。吸入温度センサは蒸発器出口、又は、高低圧熱交換器出口に置き換えて求めることも可能である。   FIG. 2 is a diagram for explaining an example of control contents in the heat pump water heater of the present invention. The second expansion is performed in a state where the first expansion valve opening degree, the compressor rotation speed, and the pump rotation speed are constant. It is the data which shows the change state characteristic of the refrigerant | coolant in each site | part which measured by providing each measuring device in the refrigerating cycle by changing the opening degree of the valve 10 like a horizontal axis. The top of the vertical axis in FIG. 2 is the heating capacity (kW) of the refrigerant through which the radiator 4 passes the opening degree of the second expansion valve 10 as the load-side medium, and is obtained from the tapping temperature and the amount of water. As shown in the figure, the heating capacity does not change so much until the opening degree is X, but when it exceeds that, the heating capacity becomes insufficient and rapidly decreases. The second high-pressure side pressure (MPa) from the top is the pressure of the high-pressure refrigerant compressed by the compressor 3, and gradually decreases as the opening degree increases. Compared with the opening degree A of the second expansion valve 10, the high pressure side pressure of the refrigerant is lower at the opening degree X and the opening degree B. The third temperature from the top is the refrigerant temperature (° C.) corresponding to the opening at the radiator outlet and the compressor suction position, and the temperature rises when the opening is increased. The fourth from the top is the discharge temperature of the compressor, which is the refrigerant temperature detected by the discharge temperature sensor 13d when discharged from the compressor 3, and a target value is set. It is shown that the target value is reached at the opening degree B, but is low at the opening degree X and above the target value at the opening degree B or higher. At the bottom, the horizontal axis represents the opening of the second expansion valve 10 and the vertical axis represents the suction superheat (deg) of the compressor. It is obtained from the difference between the temperature information from the suction temperature sensor 13e and the temperature information from the evaporation temperature detection sensor 13f. The suction temperature sensor can be obtained by replacing it with an evaporator outlet or a high / low pressure heat exchanger outlet.

図2から、第2の膨張弁10で吐出温度を制御すると、運転条件によっては同一吐出温度で安定状態が少なくとも2点ある場合が存在し、所定能力を得られない状態Bに制御される場合があることがわかる。即ち吐出温度を目標値に合わせる様に制御するだけでは加熱能力が不足してユーザーが求めるお湯に加熱する能力が得られないことになる。言いかえると吐出温度と略同じ温度である出湯温度を検出していても能力が不足し給湯装置としては問題を発生することが分かる。すなわち、少なくとも吐出温度及び出湯温度のいずれか一方が目標値に達していたとしても必要な加熱能力が低下し得られない状態となりタンク12に貯留するお湯の量が得られないなど給湯に支障をきたすなどの問題を生ずる。   From FIG. 2, when the discharge temperature is controlled by the second expansion valve 10, there are cases where there are at least two stable states at the same discharge temperature depending on the operating conditions, and the state is controlled to a state B where a predetermined capacity cannot be obtained. I understand that there is. In other words, simply controlling the discharge temperature so as to match the target value does not provide the ability to heat the hot water required by the user because the heating ability is insufficient. In other words, it can be seen that even if a hot water temperature that is substantially the same as the discharge temperature is detected, the capacity is insufficient and a problem occurs as a hot water supply device. That is, even if at least one of the discharge temperature and the tapping temperature reaches the target value, the necessary heating capacity cannot be lowered, and the amount of hot water stored in the tank 12 cannot be obtained. It causes problems such as coming.

図3は冷凍サイクルの運転状況を示す特性図で、縦軸が圧力(P)、横軸がエンタルピ(H)を示すモリエル線図で、実線が開度Aの加熱能力が大きく目標値を維持している冷凍サイクル運転状態で、破線が開度Bの加熱能力が小さく所定の加熱能力に達していない運転状態を示している。図2に示したように、開度Aより開度Bの方が開度が大きく、圧縮機の吸入温度と吸入圧力から求まる飽和温度の差である吸入過熱度は開度Bの方が大きくなっている。吸入過熱度が異なる状態から圧縮した場合、吐出温度が同じ場合、吸入過熱度が大きい開度Bから圧縮した方が、所定の加熱能力が得られる開度Aよりも加熱能力、高圧圧力とも低い状態で運転することを示している。したがって、出湯温度と吐出温度が目標値に到達して運転状態が安定したときに、検知した吸入過熱度と所定の吸入過熱度βを比較することで、すなわち所定の吸入過熱度より高ければ所定の能力が得られていないということを判定できる。所定の吸入過熱度βは、例えば外気温度や目標出湯温度の関数とする。   FIG. 3 is a characteristic diagram showing the operating state of the refrigeration cycle. The vertical axis is pressure (P), the horizontal axis is enthalpy (H), and the solid line is the heating capacity of the opening A and maintains the target value. In the refrigeration cycle operation state, the broken line indicates an operation state in which the heating capacity at the opening degree B is small and has not reached the predetermined heating capacity. As shown in FIG. 2, the opening degree B is larger than the opening degree A, and the degree of suction superheat, which is the difference between the saturation temperature obtained from the suction temperature and the suction pressure of the compressor, is larger in the opening degree B. It has become. When compression is performed from a state where the suction superheat degree is different, when the discharge temperature is the same, the compression from the opening degree B where the suction superheat degree is large is lower than the opening degree A where the predetermined heating ability is obtained, both in the heating capacity and the high pressure. It shows driving in the state. Therefore, when the tapping temperature and the discharge temperature reach the target values and the operation state is stabilized, the detected suction superheat degree is compared with the predetermined suction superheat degree β, that is, if it is higher than the predetermined suction superheat degree, a predetermined value is obtained. It can be determined that the ability of is not obtained. The predetermined suction superheat degree β is, for example, a function of the outside air temperature or the target hot water temperature.

安定状態に達した、即ち少なくとも吐出温度及び出湯温度のいずれか一方が目標値に達していたとしても必要な加熱能力が低下し得られない状態で放熱器が必要なお湯の温度を維持できる加熱能力が得られているかの判断を行う能力判定手段として圧縮機吸入過熱度を求めて判定する構造を説明したが、図2の開度との関係説明図にて示す様に、高圧側冷媒圧力検知手段を設け圧力を監視してもよいし、放熱器出口温度検知手段を設け放熱器出口の温度が目標値より高すぎないことを検知して判断することもできる。更に又出湯温度とともに給湯回路の流量をポンプ回転数などで監視し、加熱能力を演算により求めて判定することでも良い。   Heating that can maintain the temperature of hot water that requires a radiator without reaching the required heating capacity even if at least one of the discharge temperature and tapping temperature reaches the target value. As a capability determination means for determining whether or not the capability has been obtained, the structure for determining and determining the compressor intake superheat degree has been described. However, as shown in the relationship explanatory diagram with respect to the opening degree in FIG. A detector may be provided to monitor the pressure, or a radiator outlet temperature detector may be provided to detect and determine that the radiator outlet temperature is not too high. Furthermore, the flow rate of the hot water supply circuit together with the temperature of the hot water may be monitored by the number of revolutions of the pump, etc., and the heating capacity may be determined by calculation.

次に、所定の能力が得られない状態Bで安定した場合、つまり検知された吸入過熱度が所定の吸入過熱度より大きい場合、所定の能力を得る状態Aに移行させる動作について説明する。この動作は計測制御装置14に設けたマイコンに設定された制御フローにて実行される。この制御フローを図4のフローチャートに示す。図4においてST1は計測制御装置14に設けられる、加熱能力を所定の能力に回復させる加熱能力回復制御手段の制御を含めた冷凍サイクル運転の判断を行うフローを開始するステップ、ST2は圧縮機回転数を外気温度センサ13cにて計測されるような周囲の環境条件などに合わせて設定された回転数にマイコンにて制御するステップ、ST3は給湯回路のポンプ11を目標とする出湯温度に合わせて制御装置14にて回転させるステップ、ST4は吐出温度を目標吐出温度に合わせて制御装置14にて制御する開度に設定するステップ、ST5は安定状態に達した後で能力が不足しているかどうかの能力を判定し能力回復運転を実施しているかどうかを判断するステップであって能力回復運転に入った場合には計測制御装置14の中のマイコンの制御フローにて後ほど説明するステップST8にて例えばフラグ1を立てるのでこのフラグにて判断できる様になっている。ST6は冷媒の状態又は出湯温度の状態から安定状態判定手段にてこの状態安定が継続しているかを制御装置14のマイコンにて判定するステップ、ST7は制御装置14に設けられる能力判定手段である吸入過熱度が所定値以上であるかどうかを判断するステップ、ST8は能力運転を開始するステップでであってフラグがゼロであれば1に置き換える。ST9は制御装置14の中に設けた能力回復制御手段にて第1の膨張弁5の開度を少しずつ広げる様に、例えばまずγ度大きくするステップ、ST10は検出する吐出温度が目標吐出温度に接近しているかどうかを判断するステップ、ST11は第1の膨張弁の開度を小さくしていくステップ、ST12は能力回復運転を終了させるステップでフラグを1からゼロに戻している。   Next, the operation of shifting to the state A for obtaining the predetermined ability when the state becomes stable in the state B where the predetermined ability cannot be obtained, that is, when the detected suction superheat degree is larger than the predetermined suction superheat degree will be described. This operation is executed according to a control flow set in a microcomputer provided in the measurement control device 14. This control flow is shown in the flowchart of FIG. In FIG. 4, ST1 is a step of starting a flow for determining a refrigeration cycle operation including control of a heating capacity recovery control means provided in the measurement control device 14 to recover the heating capacity to a predetermined capacity, and ST2 is rotation of the compressor The step of controlling the number of revolutions by a microcomputer to a rotational speed set in accordance with ambient environmental conditions as measured by the outside air temperature sensor 13c, ST3 is adjusted to the target hot water temperature of the pump 11 of the hot water supply circuit. A step of rotating by the control device 14, ST4 is a step of setting the discharge temperature to an opening controlled by the control device 14 in accordance with the target discharge temperature, and ST5 is whether the capacity is insufficient after reaching a stable state Is a step of determining whether or not the ability recovery operation is being carried out, and if the ability recovery operation is entered, Since a flag 1 for example at step ST8 that will be described later by the control flow of the microcomputer has become as can be determined by this flag. ST6 is a step of determining by the microcomputer of the control device 14 whether or not this state stability is continued by the stable state determination means from the state of the refrigerant or the tapping temperature, and ST7 is a capacity determination means provided in the control device 14. Step ST8 is a step for determining whether or not the suction superheat degree is equal to or greater than a predetermined value, and ST8 is a step for starting capacity operation. If the flag is zero, it is replaced with 1. ST9 is a step of increasing the opening degree of the first expansion valve 5 little by little by the capacity recovery control means provided in the control device 14, for example, a step of increasing γ degrees first, and ST10 is a discharge temperature to be detected is a target discharge temperature. ST11 is a step of decreasing the opening of the first expansion valve, and ST12 is a step of ending the capacity recovery operation, returning the flag from 1 to zero.

図4の制御フローの動作を説明する。加熱運転を開始すると(ST1)、少なくとも設定された所定の加熱能力、外気温度センサ13cにて検出された外気温度、給水温度センサ13a、出湯温度センサ13bにて得られた各情報に基づき計測制御装置14にて圧縮機3の回転数が必要よりも大きめに設定され、同様にポンプ11の回転数、第2の膨張弁10の開度はそれぞれの目標値に対して制御動作する(ST2、ST3、ST4)。それぞれ目標値へ到達するまで、つまり動作状態が安定するまで、制御動作を継続する(ST5、ST6、ST7)。状態が安定していないと判定された時は予めマイコンに記憶されている周囲環境などに応じて設定された目標値への制御がステップ2まで戻り繰返される。   The operation of the control flow in FIG. 4 will be described. When the heating operation is started (ST1), measurement control is performed based on at least the set predetermined heating capacity, the outside air temperature detected by the outside air temperature sensor 13c, each information obtained by the feed water temperature sensor 13a and the hot water temperature sensor 13b. The rotation speed of the compressor 3 is set to be larger than necessary in the device 14, and similarly, the rotation speed of the pump 11 and the opening of the second expansion valve 10 are controlled with respect to the respective target values (ST2, ST3, ST4). The control operation is continued until the target value is reached, that is, until the operation state is stabilized (ST5, ST6, ST7). When it is determined that the state is not stable, the control to the target value set in accordance with the ambient environment stored in the microcomputer in advance is returned to Step 2 and repeated.

動作状態が安定した後、吸入過熱度が所定の吸入過熱度β以上であれば、即ち加熱能力が不足と判断されれば能力回復運転を実施する(ST7、ST8)。加熱能力が所定の能力があると判断されれば通常の圧縮機3や第2膨張弁10の目標値に対する加熱を維持する運転を継続する(ST2、ST3、ST4)。能力回復運転を開始すると(ST7、ST8)、第1の膨張弁5の開度をγ開く(ST9)。第1の膨張弁5の開度を開くことで圧縮機3の吐出温度が下がり、第2の膨張弁10が目標吐出温度制御することで、第2の膨張弁10の開度が小さくなる。同時にポンプ11の出湯温度制御により、ポンプ11の回転数が上昇する。   After the operating state is stabilized, if the suction superheat degree is equal to or higher than the predetermined suction superheat degree β, that is, if it is determined that the heating capacity is insufficient, the capacity recovery operation is performed (ST7, ST8). If it is determined that the heating capacity has a predetermined capacity, the operation for maintaining the heating of the target values of the normal compressor 3 and the second expansion valve 10 is continued (ST2, ST3, ST4). When the capacity recovery operation is started (ST7, ST8), the opening of the first expansion valve 5 is γ-opened (ST9). By opening the opening of the first expansion valve 5, the discharge temperature of the compressor 3 decreases, and when the second expansion valve 10 controls the target discharge temperature, the opening of the second expansion valve 10 decreases. At the same time, the rotational speed of the pump 11 is increased by controlling the hot water temperature of the pump 11.

目標吐出温度と吐出温度の差がδ以下となれば(ST10)、第1の膨張弁5の開度をγ閉じ(SY11)、能力回復運転を終了する(ST12)。引き続き、第2の膨張弁10の吐出温度制御等を継続し(ST2、ST3、ST4)、吐出温度が目標吐出温度に到達すると、図2の如く第2の膨張弁10の開度は移行前の状態Bより小さくなり、ポンプ11の回転数も上昇するため、能力が上昇し、所定の能力が得られる状態Aになる。   If the difference between the target discharge temperature and the discharge temperature is equal to or less than δ (ST10), the opening degree of the first expansion valve 5 is closed by γ (SY11), and the capacity recovery operation is terminated (ST12). Subsequently, the discharge temperature control of the second expansion valve 10 is continued (ST2, ST3, ST4), and when the discharge temperature reaches the target discharge temperature, the opening degree of the second expansion valve 10 is not changed as shown in FIG. Since the rotational speed of the pump 11 is also increased, the capacity is increased, and a state A in which a predetermined capacity is obtained is obtained.

なお、上記の目標値はいずれも特定の温度の関数としているが、あらかじめ定められたマップを記憶しておき、マップに対応した目標値としてもよい。また、例として参照する温度を特定して記載しているが、その他の環境条件で置き換えることも可能である。したがって、第2の膨張弁10で吐出温度制御、ポンプ11で出湯温度制御、圧縮機3で能力制御、第1の膨張弁5で能力回復制御することで、環境負荷条件に応じて常にユーザー要求に対応した所定能力を維持出来るヒートポンプ給湯機の運転を実現できる。   The above target values are all functions of a specific temperature. However, a predetermined map may be stored and set as a target value corresponding to the map. Moreover, although the temperature to be referred to is specified and described as an example, it can be replaced with other environmental conditions. Therefore, the discharge temperature control with the second expansion valve 10, the tapping temperature control with the pump 11, the capacity control with the compressor 3, and the capacity recovery control with the first expansion valve 5 are always requested by the user according to the environmental load conditions. It is possible to realize the operation of the heat pump water heater that can maintain the predetermined capacity corresponding to the above.

ヒートポンプ給湯の場合、通常は夜間時間帯を利用して冷凍サイクルが所定の加熱能力を維持しながら設定された温度に沸き上げる。沸き上げ後も図4のフローチャートにて説明してきた能力回復制御を行い出湯温度を目標値に維持する準備をしている。しかしながら給湯装置に応じて、或いは、風呂などの様に使用時間帯が固定されている時間帯に応じて、必ずしも同一の加熱能力を維持する必要性が無い。このような場合、用途(温度)別、時間帯別に所定の加熱能力を大小に切換えられると省エネルギー対策として効果が大きい。このような加熱能力の設定の切換えはユーザーが利用するリモコンで設定できる様にしたり、或いは計測制御装置のマイコンに記憶させ自動的に切り換えられるようにしても良い。あまり使用されないような低い加熱能力を選択されるような場合は、図4で説明した能力回復運転を行わず、大きな加熱能力に切換えられる場合に能力回復運転を行うことも出来る。言いかえると、能力回復運転(図4のステップ5-ステップ12)を実施するかやしないかを選択できるヒートポンプ給湯機を得ることが出来る。   In the case of heat pump hot water supply, the refrigeration cycle is usually heated to a set temperature while maintaining a predetermined heating capacity using a night time zone. Even after boiling, the ability recovery control described in the flowchart of FIG. 4 is performed to prepare for maintaining the tapping temperature at the target value. However, it is not always necessary to maintain the same heating capacity depending on the hot water supply device or the time zone in which the use time zone is fixed, such as a bath. In such a case, if the predetermined heating capacity can be switched between large and small according to use (temperature) and time period, the effect is great as an energy saving measure. Such switching of the setting of the heating capacity may be set by a remote controller used by the user, or may be stored in a microcomputer of the measurement control device and automatically switched. When a low heating capacity that is not frequently used is selected, the capacity recovery operation described in FIG. 4 is not performed, and the capacity recovery operation can be performed when switching to a large heating capacity. In other words, it is possible to obtain a heat pump water heater that can select whether or not to perform the capacity recovery operation (step 5 to step 12 in FIG. 4).

本発明のヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、該圧縮機から吐出した高温高圧の冷媒と水のような負荷側媒体とを熱交換する放熱器、冷媒を減圧する第1の膨張弁、および蒸発器を環状に接続して、冷媒が循環する冷凍サイクルと、放熱器を流通する冷媒により加熱された負荷側媒体をタンクに貯留し風呂のような給湯に利用する給湯回路と、水道水などのような給水やタンク内の水を循環させる給湯回路上に設けられたポンプと、放熱器と膨張弁の間から分岐して蒸発器の入口側へ接続された分岐流路に設けられて高圧である該分岐流路の冷媒とメイン流路の低圧側冷媒との間で熱交換する高低圧熱交換器と、分岐流路の高低圧熱交換器の下流側に配置された第2の膨張弁と、圧縮機吐出温度を検出する吐出温度検知手段と、圧縮機吸入過熱度を検知する吸入過熱度検知手段と、吐出温度を目標吐出温度に制御する吐出温度制御手段と、出湯温度を目標出湯温度に制御する出湯温度制御手段と、加熱能力を所定の能力に制御する能力制御手段と、冷凍サイクルの運転が吐出温度が目標吐出温度になり、あるいは、出湯温度が目標値になることで、又は両方が目標に到達し安定状態となったことを判定する安定状態判定手段と、安定状態判定手段が安定状態と判定し、安定状態の加熱能力が所定の能力であるか判定する能力判定手段と、能力判定手段が能力不足と判定した場合に、加熱能力を所定能力に制御する能力回復制御手段を備えたものである。   The heat pump water heater of the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a heat exchanger that exchanges heat between a high-temperature and high-pressure refrigerant discharged from the compressor and a load-side medium such as water, and a first depressurizing refrigerant. The hot water supply which connects the expansion valve of 1 and an evaporator cyclically, stores the load side medium heated by the refrigerant | coolant which distribute | circulates a refrigerant | coolant, and the refrigerant | coolant which distribute | circulates a radiator in a tank, and uses it for hot water supply like a bath A branch flow connected to the inlet side of the evaporator by branching from the circuit, a pump provided on a hot water supply circuit that circulates water such as tap water and water in the tank, and a radiator and an expansion valve A high-low pressure heat exchanger that exchanges heat between the high-pressure refrigerant in the branch flow path and the low-pressure side refrigerant in the main flow path, and a downstream of the high-low pressure heat exchanger in the branch flow path. Second expansion valve and discharge temperature for detecting compressor discharge temperature Intelligent means, suction superheat degree detecting means for detecting compressor superheat degree, discharge temperature control means for controlling discharge temperature to target discharge temperature, tapping temperature control means for controlling tapping temperature to target tapping temperature, heating Capacity control means for controlling the capacity to a predetermined capacity and the operation of the refrigeration cycle, the discharge temperature becomes the target discharge temperature, or the tapping temperature reaches the target value, or both reach the target and become stable. The stable state determining means for determining that the stable state determining means is determined to be in the stable state, the ability determining means for determining whether the heating capacity in the stable state is a predetermined capacity, and the capability determining means are determined to be insufficient in capacity. In this case, a capability recovery control means for controlling the heating capability to a predetermined capability is provided.

本発明のヒートポンプ給湯機の安定状態判定手段は、吐出温度制御手段で吐出温度が目標吐出温度となり、かつ、出湯温度制御手段で出湯温度が目標出湯温度となったとき、安定状態と判定する。なお給湯回路の上部には出湯温度のお湯が貯湯され風呂などの給湯装置への給湯はこの貯えられたお湯と水を混合して供給される。   The stable state determination means of the heat pump water heater of the present invention determines that the discharge temperature control means is in the stable state when the discharge temperature becomes the target discharge temperature and the discharged hot water temperature control means reaches the target hot water temperature. Note that hot water having a tapping temperature is stored in the upper part of the hot water supply circuit, and hot water supplied to a hot water supply device such as a bath is supplied by mixing the stored hot water and water.

本発明のヒートポンプ給湯機の能力判定手段は、一例として吸入過熱度検知手段で検知された吸入過熱度が所定値より大きい場合に能力不足と判定することで説明したが、図2で分かる様に全体の冷媒状態から推定することが出来、そのために必要な検出手段を設けるか他のセンサーを利用して推定すれば良い。   The capability determination means of the heat pump water heater of the present invention has been described by determining that the capability is insufficient when the suction superheat degree detected by the suction superheat degree detection means is larger than a predetermined value as an example. It is possible to estimate from the whole refrigerant state, and it is only necessary to provide a detecting means necessary for that purpose or use another sensor.

本発明のヒートポンプ給湯機の能力回復制御手段は、冷凍サイクルに設けた第1の膨張弁である。本発明のヒートポンプ給湯器の能力制御手段は、少なくとも所定の加熱能力と、外気温度と、給水温度と、の情報から、圧縮機の回転数を決定する。   The capacity recovery control means of the heat pump water heater of the present invention is a first expansion valve provided in the refrigeration cycle. The capacity control means of the heat pump water heater of the present invention determines the rotational speed of the compressor from information on at least a predetermined heating capacity, the outside air temperature, and the feed water temperature.

加熱能力を回復する能力回復制御手段を第1の膨張弁として、加熱能力を常時維持する能力制御手段として圧縮機の回転数を可変とする構成で説明してきたが必ずしもこの構成でなくとも良い。たとえば、複数の圧縮機を組み合わせて能力を切りえる回路構成の回路を切り替える構成でもよい。さらに冷凍サイクル中に圧縮機の圧力を補助する膨張機構やエジェクターのような補助機器を設けこれらの補助機器を制御したり切り替えたりしてもよい。   Although the description has been made with the configuration in which the capacity recovery control means for recovering the heating capacity is the first expansion valve and the speed of the compressor is variable as the capacity control means for constantly maintaining the heating capacity, this configuration is not necessarily required. For example, a configuration in which a circuit having a circuit configuration capable of cutting the capability by combining a plurality of compressors may be switched. Further, an auxiliary device such as an expansion mechanism or an ejector that assists the pressure of the compressor may be provided during the refrigeration cycle, and these auxiliary devices may be controlled or switched.

本発明のヒートポンプ給湯機の吐出温度制御手段は、少なくとも外気温度と、目標出湯温度と、の情報から、目標吐出温度を決定する。   The discharge temperature control means of the heat pump water heater of the present invention determines the target discharge temperature from information on at least the outside air temperature and the target hot water temperature.

本発明のヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、該圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する膨張弁、および蒸発器を環状に接続して、冷媒が循環する冷凍サイクルと、放熱器を流通する冷媒により加熱された負荷側媒体をタンクに貯留する給湯回路と、給湯回路上に設けられたポンプと、放熱器と前記膨張弁の間から分岐して蒸発器の入口側へ接続された分岐流路に設けられて高圧である該分岐流路の冷媒とメイン流路の低圧側冷媒との間で熱交換する高低圧熱交換器と、分岐流路の高低圧熱交換器の下流側に配置された第2の膨張弁と、圧縮機吐出温度を検出する吐出温度検知手段と、吐出温度を目標吐出温度に制御する吐出温度制御手段と、出湯温度を目標出湯温度に制御する出湯温度制御手段と、加熱能力を所定の能力に制御する能力制御手段と、を設け、能力制御手段は、少なくとも設定された所定の能力と、外気温度と、給水温度と、の情報から、圧縮機の回転数などを決定する。   The heat pump water heater of the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, an expansion valve that decompresses the refrigerant, and an evaporator. A refrigeration cycle in which the refrigerant circulates, a hot water supply circuit that stores a load-side medium heated by the refrigerant flowing through the radiator in a tank, a pump provided on the hot water supply circuit, a radiator, and the expansion High and low pressure heat that is provided in a branch flow path that branches from between the valves and is connected to the inlet side of the evaporator and that exchanges heat between the high pressure refrigerant in the branch flow path and the low pressure side refrigerant in the main flow path An exchanger, a second expansion valve arranged on the downstream side of the high and low pressure heat exchanger of the branch flow path, a discharge temperature detecting means for detecting the compressor discharge temperature, and a discharge for controlling the discharge temperature to the target discharge temperature Temperature control means and control the tapping temperature to the target tapping temperature A hot water temperature control means and a capacity control means for controlling the heating capacity to a predetermined capacity are provided, and the capacity control means compresses from information on at least the predetermined capacity, the outside air temperature, and the feed water temperature. Determine the speed of the machine.

本発明のヒートポンプ給湯機は、冷媒を超臨界圧力まで圧縮する圧縮機、該圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する膨張弁、および蒸発器を環状に接続して、冷媒が循環する冷凍サイクルと、放熱器を流通する冷媒により加熱された負荷側媒体をタンクに貯留する給湯回路と、給湯回路上に設けられたポンプと、放熱器と膨張弁の間から分岐して蒸発器の入口側へ接続された分岐流路に設けられて高圧である該分岐流路の冷媒とメイン流路の低圧側冷媒との間で熱交換する高低圧熱交換器と、分岐流路の高低圧熱交換器の下流側に配置された第2の膨張弁と、圧縮機吐出温度を検出する吐出温度検知手段と、吐出温度を目標吐出温度に制御する吐出温度制御手段と、出湯温度を目標出湯温度に制御する出湯温度制御手段と、加熱能力を所定の能力に制御する能力制御手段と、吐出温度制御手段は、少なくとも外気温度と、目標出湯温度と、の情報から、目標吐出温度を決定する。   The heat pump water heater of the present invention includes a compressor that compresses a refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and a load-side medium, an expansion valve that decompresses the refrigerant, and an evaporator. A refrigeration cycle in which the refrigerant circulates, a hot water supply circuit that stores a load-side medium heated by the refrigerant flowing through the radiator in a tank, a pump provided on the hot water supply circuit, a radiator, and an expansion valve High-low pressure heat exchange that is provided in a branch flow path that branches from between the two and is connected to the inlet side of the evaporator and that exchanges heat between the high-pressure refrigerant in the branch flow path and the low-pressure refrigerant in the main flow path , A second expansion valve disposed on the downstream side of the high / low pressure heat exchanger of the branch flow path, discharge temperature detecting means for detecting the compressor discharge temperature, and discharge temperature for controlling the discharge temperature to the target discharge temperature Control means and outlet for controlling the tapping temperature to the target tapping temperature A temperature control means, and capacity control means for controlling the heating capacity to a predetermined capacity, discharge temperature control means determines at least the outside air temperature, and the target outgoing hot water temperature, from the information, the target discharge temperature.

本発明のヒートポンプ給湯機は高低圧熱交換器を有するため、圧縮機吸入冷媒を過熱ガス化することができ、圧縮機信頼性を向上することができる。また、このヒートポンプ給湯機は吐出温度を膨張手段で制御しているため、圧縮機の過剰な温度上昇を避けることができ、圧縮機信頼性を向上させる。しかし高低圧熱交換器を用いて、吐出温度を膨張手段で制御する冷媒回路を評価した結果、吐出温度を目標値に制御する場合、同一吐出温度に対して安定状態が複数存在し、必ずしも所定能力を得られないという課題がありこの課題を解決している。すなわち冷媒を超臨界圧力まで圧縮する圧縮機、該圧縮機から吐出した冷媒と負荷側媒体とを熱交換する放熱器、冷媒を減圧する膨張弁、および蒸発器を環状に接続して、冷媒が循環する冷凍サイクルと、放熱器を流通する冷媒により加熱された負荷側媒体をタンクに貯留する給湯回路と、給湯回路上に設けられたポンプと、放熱器と膨張弁の間から分岐して蒸発器の入口側へ接続された分岐流路に設けられて高圧である該分岐流路の冷媒とメイン流路の低圧側冷媒との間で熱交換する高低圧熱交換器と、分岐流路の高低圧熱交換器の下流側に配置された第2の膨張弁と、圧縮機吐出温度を検出する吐出温度検知手段と、圧縮機吸入過熱度を検知する吸入過熱度検知手段と、吐出温度を目標吐出温度に制御する吐出温度制御手段と、出湯温度を目標出湯温度に制御する出湯温度制御手段と、加熱能力を所定の能力に制御する能力制御手段と、を備えたものである。   Since the heat pump water heater of the present invention has a high-low pressure heat exchanger, the refrigerant sucked from the compressor can be superheated and the compressor reliability can be improved. Moreover, since this heat pump water heater controls the discharge temperature by the expansion means, it is possible to avoid an excessive temperature rise of the compressor and improve the compressor reliability. However, as a result of evaluating the refrigerant circuit that controls the discharge temperature by the expansion means using the high and low pressure heat exchanger, when the discharge temperature is controlled to the target value, there are a plurality of stable states for the same discharge temperature, which are not always predetermined. There is a problem that ability cannot be acquired, and this problem is solved. That is, a compressor that compresses the refrigerant to a supercritical pressure, a radiator that exchanges heat between the refrigerant discharged from the compressor and the load-side medium, an expansion valve that decompresses the refrigerant, and an evaporator are connected in an annular shape, A refrigeration cycle that circulates, a hot water supply circuit that stores a load-side medium heated by refrigerant flowing through the radiator in a tank, a pump provided on the hot water supply circuit, and a branching and evaporation from the radiator and the expansion valve A high-low pressure heat exchanger that is provided in a branch channel connected to the inlet side of the vessel and exchanges heat between the high-pressure refrigerant in the branch channel and the low-pressure side refrigerant in the main channel; A second expansion valve disposed downstream of the high-low pressure heat exchanger, a discharge temperature detecting means for detecting the compressor discharge temperature, a suction superheat degree detecting means for detecting the compressor suction superheat degree, and a discharge temperature. Discharge temperature control means for controlling to the target discharge temperature and tapping temperature A hot water temperature control means for controlling the target hot water temperature, and capacity control means for controlling the heating capacity to a predetermined capacity, but with the.

この発明のヒートポンプ給湯機は各制御、上記で説明してきたように、圧縮機の回転数による加熱能力制御、第2の膨張弁開度による出湯温度制御、第1の膨張弁開度により吸入過熱度を制御する、など複数の制御をそれぞれ独立して別個にそれぞれのパラメータに基づきそれぞれの目標に対し制御を行うので第2の膨張弁開度が複数の状態で冷媒の状態やお湯の温度が安定してしまい望ましい開度に維持できないという問題があり冷媒の状態やお湯の温度というこれらの安定状態を必要な加熱能力が得られる状態かどうかを判別してさらに能力を回復させることにより信頼性の高い装置が得られるものである。 The heat pump water heater of the present invention has each control, as described above, heating capacity control based on the number of rotations of the compressor, hot water temperature control based on the second expansion valve opening degree, and suction overheating based on the first expansion valve opening degree. Since a plurality of controls are controlled independently for each target based on each parameter independently, the refrigerant state and the hot water temperature are in a plurality of states of the second expansion valve opening degree. There is a problem that it is stable and cannot be maintained at the desired opening, and reliability is determined by determining whether or not these stable states such as the state of the refrigerant and the temperature of hot water can obtain the required heating capacity, and further recovering the capacity A device with high accuracy can be obtained.

この発明の冷凍サイクルに用いる冷媒が超臨界状態になりうる冷媒、例えば二酸化炭素を使用する例で説明しているがこれにより地球環境対策として有用である。 The refrigerant used in the refrigeration cycle of the present invention is described as an example in which a refrigerant that can be in a supercritical state, such as carbon dioxide, is used, but this is useful as a countermeasure for the global environment.

本発明の実施の形態1に係るヒートポンプ給湯機の冷媒回路図である。It is a refrigerant circuit figure of the heat pump water heater which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第2の膨張弁10を変化させた時のヒートポンプ給湯機の運転状況を表した図である。It is a figure showing the operating condition of the heat pump water heater when changing the 2nd expansion valve 10 concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る第2の膨張弁10を変化させたときのヒートポンプ給湯機の運転状況を表したP−H線図である。It is a PH diagram showing the driving | running state of the heat pump water heater when the 2nd expansion valve 10 which concerns on Embodiment 1 of this invention is changed. 本発明の実施の形態1に係る能力回復制御のフローチャートである。It is a flowchart of the capability recovery control which concerns on Embodiment 1 of this invention.

符号の説明Explanation of symbols

1 ヒートポンプユニット、2 タンクユニット、3 圧縮機、4 放熱器、5 第1の膨張弁、6 蒸発器、7 ファン、8 分岐流路、9 高低圧熱交換器、10 第2の膨張弁、11 ポンプ、12 タンク、13 温度センサ、14 計測制御装置。   DESCRIPTION OF SYMBOLS 1 Heat pump unit, 2 Tank unit, 3 Compressor, 4 Heat radiator, 5 1st expansion valve, 6 Evaporator, 7 Fan, 8 Branch flow path, 9 High-low pressure heat exchanger, 10 2nd expansion valve, 11 Pump, 12 tanks, 13 temperature sensor, 14 measurement control device.

Claims (7)

圧縮機から吐出された高圧冷媒ととを熱交換する放熱器、前記放熱器からの前記高圧冷媒を減圧する第1の膨張弁、前記第1の膨張弁にて減圧された低圧冷媒を蒸発させる蒸発器を環状に接続して、冷媒を循環させる冷凍サイクルと、
前記放熱器で加熱された前記をポンプにより循環させてタンクに貯留する給湯回路と、
前記給湯回路にて前記放熱器で加熱された水の温度である出湯温度を検出し目標出湯温度に制御する出湯温度制御手段と、
前記冷凍サイクルの前記放熱器と前記第1の膨張弁の間から分岐し前記蒸発器の入口側へ接続され、下流側に第2の膨張弁を配置した分岐流路と、
前記分岐流路の上流側に配置され高圧である該分岐流路の冷媒と前記蒸発器からの低圧冷媒との間で熱交換する高低圧熱交換器と、
前記高圧冷媒の吐出温度を吐出温度検知手段にて検出しこの検出された吐出温度を目標吐出温度に制御する吐出温度制御手段と、
前記冷凍サイクルの冷媒の状態及び前記給湯回路の出湯温度の少なくとも一方が安定状態となったことを判定する安定状態判定手段と、を備え、
前記安定状態判定手段が安定状態と判定し、この安定状態の加熱能力が所定の能力に不足している場合は前記放熱器の加熱能力を増加させることを特徴とするヒートポンプ給湯機。
A radiator that exchanges heat between the high-pressure refrigerant discharged from the compressor and water , a first expansion valve that decompresses the high-pressure refrigerant from the radiator, and evaporates the low-pressure refrigerant decompressed by the first expansion valve A refrigerating cycle in which the evaporator is connected in a ring and the refrigerant is circulated;
A hot water supply circuit that circulates the water heated by the radiator by a pump and stores it in a tank;
A tapping temperature control means for detecting a tapping temperature which is a temperature of water heated by the radiator in the hot water supply circuit and controlling it to a target tapping temperature;
A branch flow path branching from between the radiator and the first expansion valve of the refrigeration cycle and connected to the inlet side of the evaporator, and a second expansion valve disposed on the downstream side;
A high-low pressure heat exchanger that is arranged upstream of the branch flow path and exchanges heat between the high-pressure refrigerant in the branch flow path and the low-pressure refrigerant from the evaporator;
A discharge temperature control means for detecting a discharge temperature of the high-pressure refrigerant by a discharge temperature detection means and controlling the detected discharge temperature to a target discharge temperature;
Stable state determination means for determining that at least one of the refrigerant state of the refrigeration cycle and the hot water temperature of the hot water supply circuit is in a stable state,
The heat pump water heater according to claim 1, wherein the stable state determining means determines that the stable state is satisfied, and the heating capacity of the radiator is increased when the heating capacity in the stable state is insufficient for a predetermined capacity.
前記安定状態判定手段は、前記吐出温度制御手段で吐出温度が目標吐出温度となり、かつ、前記出湯温度制御手段で出湯温度が目標出湯温度となったとき、安定状態と判定することを特徴とする請求項1記載のヒートポンプ給湯機。   The stable state determining means determines that the stable state is obtained when the discharge temperature becomes the target discharge temperature by the discharge temperature control means and the hot water temperature becomes the target hot water temperature by the hot water temperature control means. The heat pump water heater according to claim 1. 前記安定状態判定手段が安定状態と判定し、この安定状態における加熱能力が所定の能力に不足と判定した場合に、前記放熱器の加熱能力を前記所定能力に制御する能力回復制御手段を備え、前記能力回復制御手段は、前記冷凍サイクルに設けた前記第1の膨張弁であることを特徴とする請求項1又は請求項2記載のヒートポンプ給湯機。   When the stable state determining means determines that the stable state, and when it is determined that the heating capacity in the stable state is insufficient for the predetermined capacity, the capacity recovery control means for controlling the heating capacity of the radiator to the predetermined capacity, The heat pump water heater according to claim 1 or 2, wherein the capacity recovery control means is the first expansion valve provided in the refrigeration cycle. 前記放熱器の加熱能力が所定の能力を得られているかを判定する能力判定手段を設け、この能力判定手段として圧縮機吸入過熱度を検知する吸入過熱度検知手段、高圧冷媒の圧力を検知する高圧冷媒圧力検知手段、放熱器出口冷媒の温度を検知する放熱器出口冷媒温度検知手段、及び、給湯回路の流量を検知して加熱能力を演算する能力演算手段の少なくとも1つを使用することを特徴とする請求項1又は請求項2又は請求項3記載のヒートポンプ給湯機。   Capability judging means for judging whether or not the heating capacity of the radiator has a predetermined ability is provided, and as this ability judging means, a suction superheat degree detecting means for detecting a compressor suction superheat degree, a pressure of a high-pressure refrigerant is detected. Use at least one of high pressure refrigerant pressure detection means, heat radiator outlet refrigerant temperature detection means for detecting the temperature of the radiator outlet refrigerant, and capacity calculation means for calculating the heating capacity by detecting the flow rate of the hot water supply circuit. The heat pump water heater according to claim 1, claim 2, or claim 3. 少なくとも設定された所定の能力、外気温度、及び給水温度の情報から、前記圧縮機の回転数を決定することを特徴とする請求項1乃至請求項4のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 1 to 4, wherein the number of rotations of the compressor is determined from information on at least a predetermined capacity, an outside air temperature, and a feed water temperature. 前記吐出温度制御手段は、少なくとも外気温度及び目標出湯温度の情報から、目標吐出温度を決定することを特徴とする請求項1乃至請求項4のいずれかに記載のヒートポンプ給湯機。   The heat pump water heater according to any one of claims 1 to 4, wherein the discharge temperature control means determines a target discharge temperature from at least information of an outside air temperature and a target hot water temperature. 前記冷凍サイクルに用いる冷媒が二酸化炭素であることを特徴とする請求項1乃至請求項のいずれかに記載のヒートポンプ給湯機。 The heat pump water heater according to any one of claims 1 to 6 , wherein the refrigerant used in the refrigeration cycle is carbon dioxide.
JP2006306228A 2006-11-13 2006-11-13 Heat pump water heater Active JP4407689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006306228A JP4407689B2 (en) 2006-11-13 2006-11-13 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006306228A JP4407689B2 (en) 2006-11-13 2006-11-13 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2008121977A JP2008121977A (en) 2008-05-29
JP4407689B2 true JP4407689B2 (en) 2010-02-03

Family

ID=39506921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006306228A Active JP4407689B2 (en) 2006-11-13 2006-11-13 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP4407689B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010216685A (en) * 2009-03-13 2010-09-30 Daikin Ind Ltd Heat pump system
JP5718013B2 (en) * 2010-10-14 2015-05-13 株式会社長府製作所 Heat pump control method
CN104755856B (en) * 2013-06-20 2017-03-08 三菱电机株式会社 Heat pump assembly
JP6304996B2 (en) * 2013-10-03 2018-04-04 三菱電機株式会社 Water heater
JP6781034B2 (en) * 2016-12-14 2020-11-04 三菱重工サーマルシステムズ株式会社 Refrigerant circuit system and control method of refrigerant circuit system
CN110486939A (en) * 2019-07-29 2019-11-22 四季沐歌科技集团有限公司 A kind of air energy constant temperature and pressure hot-water heating system and its control method
JPWO2023100233A1 (en) * 2021-11-30 2023-06-08

Also Published As

Publication number Publication date
JP2008121977A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
JP4269323B2 (en) Heat pump water heater
JP4670329B2 (en) Refrigeration air conditioner, operation control method of refrigeration air conditioner, refrigerant amount control method of refrigeration air conditioner
CN103180676B (en) Refrigerating circulatory device and kind of refrigeration cycle control method
JP5042058B2 (en) Heat pump type hot water supply outdoor unit and heat pump type hot water supply device
EP2492612B1 (en) Heat pump device
JP5071434B2 (en) Heat pump water heater
JP4407689B2 (en) Heat pump water heater
JP4698697B2 (en) Heat pump water heater
JP5524571B2 (en) Heat pump equipment
JP2007093100A (en) Control method of heat pump water heater, and heat pump water heater
JP2007278686A (en) Heat pump water heater
JP4273493B2 (en) Refrigeration air conditioner
JP2007187407A (en) Refrigeration cycle device and operation method for refrigeration cycle device
JP5264936B2 (en) Air conditioning and hot water supply complex system
WO2012090579A1 (en) Heat source system and control method therefor
JP2009052880A (en) Heat pump water heater
JP4793328B2 (en) Heat pump equipment
JP2007139415A (en) Heat pump water heater
JP4140625B2 (en) Heat pump water heater and control method of heat pump water heater
JP2011257098A (en) Heat pump cycle device
JP6589946B2 (en) Refrigeration equipment
JP7012208B2 (en) Refrigeration cycle device and liquid heating device equipped with it
WO2014103013A1 (en) Heat pump system
JP5903577B2 (en) Refrigeration equipment
JP2010203677A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091102

R151 Written notification of patent or utility model registration

Ref document number: 4407689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250