JP6304996B2 - Water heater - Google Patents

Water heater Download PDF

Info

Publication number
JP6304996B2
JP6304996B2 JP2013208484A JP2013208484A JP6304996B2 JP 6304996 B2 JP6304996 B2 JP 6304996B2 JP 2013208484 A JP2013208484 A JP 2013208484A JP 2013208484 A JP2013208484 A JP 2013208484A JP 6304996 B2 JP6304996 B2 JP 6304996B2
Authority
JP
Japan
Prior art keywords
water
temperature
refrigerant
heat exchanger
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013208484A
Other languages
Japanese (ja)
Other versions
JP2015072102A (en
Inventor
暢紀 佐藤
暢紀 佐藤
祐二 垂水
祐二 垂水
大林 誠善
誠善 大林
善生 山野
善生 山野
勝徳 堀内
勝徳 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013208484A priority Critical patent/JP6304996B2/en
Priority to EP14162197.9A priority patent/EP2857761B1/en
Publication of JP2015072102A publication Critical patent/JP2015072102A/en
Application granted granted Critical
Publication of JP6304996B2 publication Critical patent/JP6304996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D17/00Domestic hot-water supply systems
    • F24D17/02Domestic hot-water supply systems using heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D19/00Details
    • F24D19/10Arrangement or mounting of control or safety devices
    • F24D19/1006Arrangement or mounting of control or safety devices for water heating systems
    • F24D19/1051Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
    • F24D19/1054Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses a heat pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/215Temperature of the water before heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/219Temperature of the water after heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/335Control of pumps, e.g. on-off control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/12Heat pump
    • F24D2200/123Compression type heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/04Sensors
    • F24D2220/042Temperature sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

この発明は、ヒートポンプを利用して流体を加熱する給湯装置に関するものである。   The present invention relates to a hot water supply apparatus that heats a fluid using a heat pump.

従来の給湯装置において、給湯装置の熱源としてヒートポンプ(冷凍サイクル)を利用して、水回路等を循環する水等の流体(以下、水を代表として説明する)を加熱する、ヒートポンプ装置を有する給湯装置が知られている。   In a conventional hot water supply apparatus, a hot water supply having a heat pump apparatus that uses a heat pump (refrigeration cycle) as a heat source of the hot water supply apparatus to heat a fluid such as water that circulates in a water circuit or the like (hereinafter, water will be described as a representative). The device is known.

このような給湯装置では、例えば、圧縮機の能力を変更可能に制御する能力制御部と、給水ポンプの駆動により水回路を流れる水の流量(以下、給水ポンプの水流量という)を変更可能に制御する流量制御部とを有するものがある(例えば、特許文献1参照)。そして、例えば、冷媒と水とを熱交換する冷媒−水熱交換器の水流入口側の水温が所定温度以下であるときには、流量制御部は給水ポンプの水流量を固定させ、能力制御部が圧縮機の能力を可変させる制御を行う。一方、冷媒−水熱交換器の水流入口側の水温が所定温度を超えているときには、能力制御部は圧縮機の能力を固定させ、流量制御部がポンプの流量を可変させる制御を行う。   In such a hot water supply apparatus, for example, a capacity control unit that controls the capacity of the compressor to be changeable, and a flow rate of water flowing through the water circuit by driving the feed water pump (hereinafter referred to as a water flow rate of the feed water pump) can be changed. There are some which have a flow control part to control (for example, refer to patent documents 1). For example, when the water temperature on the water inlet side of the refrigerant-water heat exchanger that exchanges heat between the refrigerant and water is equal to or lower than a predetermined temperature, the flow control unit fixes the water flow rate of the water supply pump and the capacity control unit compresses the water. Control to change the machine's ability. On the other hand, when the water temperature on the water inlet side of the refrigerant-water heat exchanger exceeds a predetermined temperature, the capacity control unit performs control to fix the capacity of the compressor and the flow rate control unit to vary the flow rate of the pump.

特開2002−228276号公報(図1)JP 2002-228276 A (FIG. 1)

しかしながら、上記の引用文献1のような給湯装置のヒートポンプ装置にあっては、ヒートポンプに用いる冷媒によって同じ飽和圧力(凝縮圧力)で得られる飽和温度は違う。このため、所定の飽和温度を得るために飽和圧力を高くせざるを得ない冷媒の場合には、冷媒配管等の変更をすることがあった。   However, in the heat pump apparatus of the hot water supply apparatus as in the above cited reference 1, the saturation temperature obtained at the same saturation pressure (condensation pressure) differs depending on the refrigerant used in the heat pump. For this reason, in the case of a refrigerant in which the saturation pressure has to be increased in order to obtain a predetermined saturation temperature, the refrigerant piping or the like may be changed.

例えば、レジオネラ菌を殺菌する場合について考える。貯湯槽内のレジオネラ菌の繁殖を抑制するためには、出湯温度として65℃を確保する。これは水温が55℃未満では熱による殺菌効果が期待できないからである。ここで、給湯装置において、例えば65℃の出湯温度を確保するため、ヒートポンプ装置にR407Cを冷媒として使用した場合とR410Aを冷媒として使用した場合とを比較すると、R410Aの方が凝縮圧力が高くなる。   For example, consider the case of sterilizing Legionella. In order to suppress the growth of Legionella in the hot water storage tank, 65 ° C. is secured as the hot water temperature. This is because if the water temperature is less than 55 ° C., the bactericidal effect due to heat cannot be expected. Here, in the hot water supply device, for example, in order to secure a hot water temperature of 65 ° C., when R407C is used as the refrigerant in the heat pump device and when R410A is used as the refrigerant, the condensing pressure is higher in R410A. .

上記の引用文献1の給湯装置では、冷媒−水熱交換器の水流入口側の水温に基づいて、圧縮機の能力又はポンプの流量の一方が固定制御される。このため、冷媒−水熱交換器の水流入口側の水温と水流出口側の水温とを同時に制御(連動して制御)することができず、冷媒の凝縮圧力上昇を制御することができなかった。   In the hot water supply device of the above cited document 1, one of the capacity of the compressor or the flow rate of the pump is fixedly controlled based on the water temperature on the water inlet side of the refrigerant-water heat exchanger. For this reason, the water temperature on the water inlet side of the refrigerant-water heat exchanger and the water temperature on the water outlet side cannot be controlled simultaneously (linked control), and the increase in the condensation pressure of the refrigerant could not be controlled. .

この発明は、上記のような課題を解決するためになされたもので、その目的は、冷媒の凝縮圧力の上昇を抑えつつ、より高い温度で水を出湯させることができる給湯装置を得るものである。   The present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a hot water supply apparatus that can discharge water at a higher temperature while suppressing an increase in the condensation pressure of the refrigerant. is there.

この発明に係る給湯装置は、冷媒を圧縮する能力可変の圧縮機、冷媒と水との熱交換を行う冷媒−水熱交換器、開度調整による冷媒の減圧を行う減圧装置及び熱交換により冷媒を蒸発させる蒸発器を配管接続して冷媒回路を構成し、冷媒−水熱交換器を通過させる水の流れを形成する水流量可変の給水ポンプと、冷媒−水熱交換器に流入する水の水入口温度を検出する水入口温度検出手段と、冷媒−水熱交換器から流出する水の水出口温度を検出する水出口温度検出手段と、水入口温度があらかじめ定められた第1温度になったものと判断すると、圧縮機の能力を固定制御し、水出口温度があらかじめ定められた第2温度になるように給水ポンプの水流量を可変制御する制御装置とを備え、冷媒−水熱交換器は、冷媒の流れる方向と水の流れる方向とが対向して流れる熱交換器であり、制御装置は、水出口温度検出手段の検出に係る温度が第2温度になるように給水ポンプによる水流量の制御を行い、かつ、冷媒−水熱交換器から流出した水が循環して、冷媒−水熱交換器に流入する水入口温度が第1温度になるように圧縮機を制御して、冷媒−水熱交換器における凝縮温度を調整するものである。 A hot water supply apparatus according to the present invention includes a variable capacity compressor that compresses a refrigerant, a refrigerant-water heat exchanger that performs heat exchange between the refrigerant and water, a decompression apparatus that depressurizes the refrigerant by adjusting an opening degree, and a refrigerant by heat exchange. An evaporator that evaporates water is connected to a pipe to form a refrigerant circuit, and a water flow variable feed water pump that forms a flow of water that passes through the refrigerant-water heat exchanger, and water that flows into the refrigerant-water heat exchanger The water inlet temperature detecting means for detecting the water inlet temperature, the water outlet temperature detecting means for detecting the water outlet temperature of the water flowing out from the refrigerant-water heat exchanger, and the water inlet temperature become a predetermined first temperature. A controller that variably controls the flow rate of the water supply pump so that the water outlet temperature becomes a predetermined second temperature, and the refrigerant capacity is fixed. The vessel has a flow direction of refrigerant and a flow of water. A heat exchanger flowing opposite the direction control device, and controls the water flow by the feed water pump so that the temperature of the detection of the water outlet temperature detection means becomes a second temperature, and the refrigerant - water The condensing temperature in the refrigerant-water heat exchanger is adjusted by controlling the compressor so that water flowing out from the heat exchanger circulates and the water inlet temperature flowing into the refrigerant-water heat exchanger becomes the first temperature. To do .

この発明の給湯装置によれば、例えば現地における給湯負荷変動に対して、冷媒の凝縮圧力を変えることなく、より高い出湯温度にまで水を加熱でき、かつ、高い出湯温度を維持制御することができる。   According to the hot water supply apparatus of the present invention, for example, it is possible to heat water to a higher hot water temperature without changing the condensing pressure of the refrigerant with respect to a hot water supply load fluctuation at the site, and to maintain and control the high hot water temperature. it can.

この発明の実施の形態におけるヒートポンプ装置を有する貯湯システムの構成を示す図である。It is a figure which shows the structure of the hot water storage system which has a heat pump apparatus in embodiment of this invention. この発明の実施の形態に係る制御系の装置の構成を示す図である。It is a figure which shows the structure of the apparatus of the control system which concerns on embodiment of this invention. 貯湯槽からの給湯使用負荷が低下したときの、水温と圧縮機及び給水ポンプ能力との関係を示す概略図である。It is the schematic which shows the relationship between a water temperature when a hot water supply use load from a hot water storage tank falls, a compressor, and a water supply pump capability. この発明の実施の形態に係る冷媒−水熱交換器を流れる冷媒と水の温度変化を示すT−s線図である。It is a Ts diagram which shows the temperature change of the refrigerant | coolant and water which flow through the refrigerant | coolant-water heat exchanger which concerns on embodiment of this invention. この発明の実施の形態に係る制御装置15による処理手順を示すフローチャートである。It is a flowchart which shows the process sequence by the control apparatus 15 which concerns on embodiment of this invention.

実施の形態.
本実施の形態では、この発明に係る給湯装置の一例として貯湯槽を備えた給湯装置について説明する。ここで、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、以下に記載する実施の形態の全文において共通することとする。そして、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、明細書に記載された形態に限定するものではない。また、図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。そして、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、装置等における状態、動作等において相対的に定まるものとする。
Embodiment.
In the present embodiment, a hot water supply apparatus provided with a hot water storage tank will be described as an example of the hot water supply apparatus according to the present invention. Here, in FIG. 1 and the following drawings, the same reference numerals denote the same or corresponding parts, and are common to the whole text of the embodiments described below. And the form of the component represented by the whole specification is an illustration to the last, Comprising: It does not limit to the form described in the specification. In the drawings, the size relationship of each component may be different from the actual one. The level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but is relatively determined in terms of the state and operation of the apparatus.

図1はこの発明の実施の形態におけるヒートポンプ装置を有する貯湯システムの構成を示す図である。図1において、冷媒の流れ方向を実線の矢印で示し、水の流れ方向を破線の矢印で示している。図1に示すように、本実施の形態の貯湯システムは、ヒートポンプ装置1と水回路6とを有している。そして、ヒートポンプ装置1と水回路6との間は、プレート式、二重管式等の冷媒−水熱交換器12を介して熱の伝達が行われる。ここで、本実施の形態の冷媒−水熱交換器12は、冷媒の流れる方向と水の流れる方向とが対向する対向流となるように対向流型の熱交換器であるものとする。   FIG. 1 is a diagram showing a configuration of a hot water storage system having a heat pump device according to an embodiment of the present invention. In FIG. 1, the flow direction of the refrigerant is indicated by solid arrows, and the flow direction of water is indicated by broken arrows. As shown in FIG. 1, the hot water storage system of the present embodiment includes a heat pump device 1 and a water circuit 6. Heat is transferred between the heat pump device 1 and the water circuit 6 via a refrigerant / water heat exchanger 12 such as a plate type or a double pipe type. Here, it is assumed that the refrigerant-water heat exchanger 12 of the present embodiment is a counterflow type heat exchanger such that the refrigerant flow direction and the water flow direction are opposed to each other.

ヒートポンプ装置1は、圧縮機2、凝縮器3、減圧装置4及び蒸発器5を配管接続して冷媒を循環させるヒートポンプ回路(冷媒回路)を構成する。そして、凝縮器3において冷媒に放熱させて熱交換により水回路6を流れる水を加熱する熱源となる。   The heat pump device 1 constitutes a heat pump circuit (refrigerant circuit) that circulates a refrigerant by connecting the compressor 2, the condenser 3, the decompression device 4, and the evaporator 5 by piping. And in the condenser 3, it becomes a heat source which heats the water which flows through the water circuit 6 by dissipating heat to the refrigerant and exchanging heat.

圧縮機2は、冷媒を吸入し、圧縮して吐出する。後述する能力制御手段13による制御に基づいて、例えば駆動周波数を任意に変化させることにより容量(単位時間あたりの送り出し量)を変化させることができる。冷媒−水熱交換器12の冷媒側流路は凝縮器(放熱器)3となる。凝縮器3は冷媒に放熱させ、冷媒−水熱交換器12の水側流路となる水熱交換器9を流れる水を加熱する。例えば膨張弁等を有する減圧装置4は、冷媒回路を流れる冷媒を減圧する。蒸発器(冷却器)5は、例えば空気と冷媒とを熱交換させ、冷媒を蒸発させる。   The compressor 2 draws in refrigerant, compresses it, and discharges it. Based on control by the ability control means 13 described later, for example, the capacity (feeding amount per unit time) can be changed by arbitrarily changing the drive frequency. The refrigerant side flow path of the refrigerant-water heat exchanger 12 serves as a condenser (heat radiator) 3. The condenser 3 radiates heat to the refrigerant, and heats the water flowing through the water heat exchanger 9 that becomes the water-side flow path of the refrigerant-water heat exchanger 12. For example, the decompression device 4 having an expansion valve or the like decompresses the refrigerant flowing through the refrigerant circuit. The evaporator (cooler) 5 evaporates the refrigerant by exchanging heat between air and the refrigerant, for example.

水回路6は、給水ポンプ7、水熱交換器9及び貯湯槽11を有している。給水ポンプ7は、水回路6内の水を加圧して循環させる。後述する水流量制御手段14による制御に基づいて、例えば駆動周波数を任意に変化させることにより水回路6を流れる水の流量を変化させることができる。また、冷媒−水熱交換器12の水側流路は水熱交換器9となる。水熱交換器9は、凝縮器3を流れる冷媒と水とを熱交換させる。熱交換により水は加熱され、冷媒は冷却される。貯湯槽11は、加熱された水(湯)を溜める。また、水熱交換器9に流入出する水の温度(水温)を検出する温度センサである水入口温度検出手段8及び水出口温度検出手段10を水回路6に取り付けている。   The water circuit 6 includes a water supply pump 7, a water heat exchanger 9, and a hot water tank 11. The water supply pump 7 pressurizes and circulates the water in the water circuit 6. Based on the control by the water flow rate control means 14 described later, for example, the flow rate of water flowing through the water circuit 6 can be changed by arbitrarily changing the drive frequency. Further, the water-side flow path of the refrigerant-water heat exchanger 12 serves as the water heat exchanger 9. The water heat exchanger 9 exchanges heat between the refrigerant flowing through the condenser 3 and water. Water is heated by heat exchange, and the refrigerant is cooled. The hot water storage tank 11 stores heated water (hot water). Further, a water inlet temperature detecting means 8 and a water outlet temperature detecting means 10 which are temperature sensors for detecting the temperature (water temperature) of water flowing into and out of the water heat exchanger 9 are attached to the water circuit 6.

ここで、給湯装置の各構成機器の動作について説明する。まず、ヒートポンプ装置1側の各構成機器の動作等を、冷媒回路を循環する冷媒の流れに基づいて説明する。圧縮機2は、吸入した冷媒を圧縮して高温高圧の気相状態にして吐出する。冷媒は凝縮器3に流入する。吐出した冷媒は凝縮器3に流入する。凝縮器3においては、水熱交換器9(水回路6)を流れる水の熱交換により、冷媒を凝縮液化する。凝縮液化した冷媒は減圧装置4を通過する。減圧装置4は凝縮液化した冷媒を減圧する。減圧した冷媒は、蒸発器5に流入する。蒸発器5は、例えば屋外の空気(外気)との熱交換により冷媒を蒸発、ガス化する。蒸発ガス化した冷媒を圧縮機2が吸入する。   Here, operation | movement of each component apparatus of a hot water supply apparatus is demonstrated. First, operation | movement of each component apparatus by the side of the heat pump apparatus 1 is demonstrated based on the flow of the refrigerant | coolant which circulates through a refrigerant circuit. The compressor 2 compresses the sucked refrigerant and discharges it in a gas phase of high temperature and pressure. The refrigerant flows into the condenser 3. The discharged refrigerant flows into the condenser 3. In the condenser 3, the refrigerant is condensed and liquefied by heat exchange of water flowing through the water heat exchanger 9 (water circuit 6). The condensed and liquefied refrigerant passes through the decompression device 4. The decompression device 4 decompresses the condensed and liquefied refrigerant. The decompressed refrigerant flows into the evaporator 5. The evaporator 5 evaporates and gasifies the refrigerant by heat exchange with, for example, outdoor air (outside air). The compressor 2 sucks the evaporated gas refrigerant.

次に水回路6側の各構成機器の動作等を、水の流れに基づいて説明する。給水ポンプ7が駆動し、水回路6において水の流れが発生する。貯湯槽11に貯留された水は水熱交換器9に流入する。水熱交換器9に流入した水は、ヒートポンプ装置1の凝縮器3を通過する冷媒との熱交換により加熱される。加熱された水は、水熱交換器9から流出して貯湯槽11に戻る。   Next, operation | movement of each component apparatus by the side of the water circuit 6 is demonstrated based on the flow of water. The water supply pump 7 is driven, and a water flow is generated in the water circuit 6. The water stored in the hot water tank 11 flows into the water heat exchanger 9. The water flowing into the water heat exchanger 9 is heated by heat exchange with the refrigerant passing through the condenser 3 of the heat pump device 1. The heated water flows out of the water heat exchanger 9 and returns to the hot water tank 11.

図2はこの発明の実施の形態に係る制御系の装置の構成を示す図である。能力制御手段13は、例えばインバータ回路等を有し、圧縮機2の能力(駆動周波数)を調整する。水流量制御手段14は、例えばインバータ回路等を有し、給水ポンプ7の駆動回転数(駆動周波数)を調整し、給水ポンプの水流量を調整する。   FIG. 2 is a diagram showing the configuration of the control system apparatus according to the embodiment of the present invention. The capacity control means 13 includes, for example, an inverter circuit and adjusts the capacity (drive frequency) of the compressor 2. The water flow rate control means 14 has, for example, an inverter circuit, and adjusts the drive rotation speed (drive frequency) of the water supply pump 7 to adjust the water flow rate of the water supply pump.

また、本実施の形態では、給湯装置全体の制御を行う制御装置15を有している。本実施の形態における制御装置15には、水入口温度検出手段8が検出した水入口温度を含む信号が入力される。また、水出口温度検出手段10が検出した水出口温度を含む信号が入力される。そして、圧縮機2の能力に係る指令の信号を能力制御手段13に送る。また、給水ポンプ7の水流量(駆動回転数)に係る指令の信号を水流量制御手段14に送る。   Moreover, in this Embodiment, it has the control apparatus 15 which controls the whole hot water supply apparatus. A signal including the water inlet temperature detected by the water inlet temperature detecting means 8 is input to the control device 15 in the present embodiment. Further, a signal including the water outlet temperature detected by the water outlet temperature detection means 10 is input. Then, a command signal related to the capacity of the compressor 2 is sent to the capacity control means 13. In addition, a command signal related to the water flow rate (drive rotational speed) of the water supply pump 7 is sent to the water flow rate control means 14.

制御装置15は、水入口温度検出手段8の検出に係る水入口温度があらかじめ定めた第1温度(例えば55℃)未満であると判断すると、圧縮機2の能力を可変制御を行うように能力制御手段13に指令の信号を送る。また、給水ポンプ7の水流量を固定制御し、水回路6を循環する水の流量を維持するように水流量制御手段14に指令の信号を送り、水出口温度検出手段10の検出に係る水出口温度が所定温度(例えば60℃)となるように制御する。   When the control device 15 determines that the water inlet temperature related to the detection by the water inlet temperature detecting means 8 is lower than a predetermined first temperature (for example, 55 ° C.), the control device 15 is capable of performing variable control on the capacity of the compressor 2. A command signal is sent to the control means 13. Further, the water flow rate of the water supply pump 7 is fixedly controlled, a command signal is sent to the water flow rate control means 14 so as to maintain the flow rate of the water circulating in the water circuit 6, and the water related to the detection by the water outlet temperature detection means 10. The outlet temperature is controlled to be a predetermined temperature (for example, 60 ° C.).

そして、水入口温度検出手段8の検出に係る水入口温度が第1温度(例えば55℃)になったものと判断した場合には、圧縮機2の能力を固定制御する指令の信号を能力制御手段13に送る。また、給水ポンプ7の水流量を可変制御するように水流量制御手段14に指令の信号を送ることにより、水出口温度検出手段10の検出に係る水出口温度が第2温度(例えば65℃)になるように制御する。   When it is determined that the water inlet temperature related to the detection by the water inlet temperature detecting means 8 has reached the first temperature (for example, 55 ° C.), a command signal for fixedly controlling the capacity of the compressor 2 is controlled. Send to means 13. Further, by sending a command signal to the water flow rate control means 14 so as to variably control the water flow rate of the water supply pump 7, the water outlet temperature related to the detection by the water outlet temperature detection means 10 becomes the second temperature (for example, 65 ° C.). Control to become.

また、制御装置15は、水入口温度検出手段8の検出に係る温度があらかじめ定めた第3温度(例えば57℃)を超えたと判断すると、圧縮機2の能力を可変制御を行う指令を能力制御手段13に送り、凝縮温度を下げるようにし、水入口温度検出手段8の検出に係る水入口温度を第1温度(例えば55℃)となるように制御する。また、給水ポンプ7の水流量を可変制御するように水流量制御手段14に指令を送って、水出口温度検出手段10の検出に係る水出口温度が第2温度(例えば65℃)になるように連動して制御する。ここで、第3温度は、第1温度と同じ温度であることが望ましいが、ここでは、制御の安定、温度誤差等を考慮して、第1温度よりも若干高い温度に設定する。   Further, when the control device 15 determines that the temperature related to detection by the water inlet temperature detection means 8 exceeds a predetermined third temperature (for example, 57 ° C.), the control device 15 issues a command for performing variable control on the capability of the compressor 2. The temperature is sent to the means 13 so as to lower the condensation temperature, and the water inlet temperature related to detection by the water inlet temperature detecting means 8 is controlled to be the first temperature (for example, 55 ° C.). Further, a command is sent to the water flow rate control means 14 so as to variably control the water flow rate of the water supply pump 7 so that the water outlet temperature related to the detection by the water outlet temperature detection means 10 becomes the second temperature (for example, 65 ° C.). Control in conjunction with. Here, it is desirable that the third temperature is the same as the first temperature, but here the temperature is set slightly higher than the first temperature in consideration of control stability, temperature error, and the like.

図3は貯湯槽からの給湯使用負荷が低下したときの、水温と圧縮機及び給水ポンプ能力との関係を示す概略図である。ここで、図3(a)は本実施の形態の給湯装置における関係を示す図である。図3(b)は従来の給湯装置における関係を示す図である。   FIG. 3 is a schematic view showing the relationship between the water temperature and the compressor and feed water pump capacity when the hot water use load from the hot water storage tank is lowered. Here, Fig.3 (a) is a figure which shows the relationship in the hot water supply apparatus of this Embodiment. FIG.3 (b) is a figure which shows the relationship in the conventional hot water supply apparatus.

例えば、図3(b)のような従来の給湯装置のように、圧縮機2と給水ポンプ7とにおける制御を別々に行う(連動して行わない)場合には、まず、水出口温度を定めた温度に保つために圧縮機2の能力を低下させる。そして、給湯使用負荷が低下し、圧縮機2の能力が最低に達した場合は、給水ポンプ7による流量を増加させるようにすることで水出口温度を一定の温度に維持するように制御していた。   For example, when the control in the compressor 2 and the feed water pump 7 are separately performed (not performed in conjunction with each other) as in the conventional hot water supply apparatus as shown in FIG. 3B, first, the water outlet temperature is determined. In order to maintain a high temperature, the capacity of the compressor 2 is reduced. And when the hot water supply use load decreases and the capacity of the compressor 2 reaches the minimum, the water outlet temperature is controlled to be maintained at a constant temperature by increasing the flow rate by the feed water pump 7. It was.

しかし、この間、水入口温度は上昇することになる。さらに水入口温度が上昇することで凝縮器3を通過する冷媒の温度と水入口温度の温度差とが小さくなり、凝縮温度が上昇するとともに凝縮圧力が上昇する。   However, during this time, the water inlet temperature rises. Furthermore, when the water inlet temperature rises, the temperature difference between the refrigerant passing through the condenser 3 and the water inlet temperature becomes smaller, and the condensation pressure rises as the condensation temperature rises.

そこで、本実施の形態の給湯装置では、水入口温度が第1温度になるように圧縮機2の能力を低下させ、かつ水出口温度が第2温度になるように給水ポンプ7の流量を減少させる制御を連動して行うことで、凝縮温度を抑えつつ、水出口温度と水入口温度とをともに所望する温度に維持するとともに、凝縮器3を通過する冷媒の圧力上昇を抑制する。   Therefore, in the hot water supply apparatus of the present embodiment, the capacity of the compressor 2 is reduced so that the water inlet temperature becomes the first temperature, and the flow rate of the water supply pump 7 is reduced so that the water outlet temperature becomes the second temperature. By performing the control to be interlocked, the water outlet temperature and the water inlet temperature are both maintained at desired temperatures while suppressing the condensation temperature, and the pressure increase of the refrigerant passing through the condenser 3 is suppressed.

図4はこの発明の実施の形態に係る冷媒−水熱交換器を流れる冷媒と水の温度変化を示すT−s線図である。制御装置15は、水入口温度検出手段8の検出に係る水入口温度が第1温度(例えば55℃)に達したとき、圧縮機2の能力を固定するように能力制御手段13に指令の信号を送る。また、給水ポンプ7の水流量を減少させるように水流量制御手段14に指令の信号を送って水流量を減少させる。熱交換の時間を長くし、水熱交換器9を通過する水を、冷媒の過熱蒸気域まで熱交換させることで、凝縮器3における冷媒の凝縮温度を上げることなく(冷媒の圧力を上げることなく)、水出口温度検出手段10の検出に係る水出口温度を第2温度(例えば65℃)に昇温させるようにする。   FIG. 4 is a Ts diagram showing temperature changes of refrigerant and water flowing through the refrigerant-water heat exchanger according to the embodiment of the present invention. The control device 15 sends a command signal to the capacity control means 13 so as to fix the capacity of the compressor 2 when the water inlet temperature detected by the water inlet temperature detection means 8 reaches a first temperature (for example, 55 ° C.). Send. Further, a command signal is sent to the water flow rate control means 14 so as to reduce the water flow rate of the water supply pump 7 to reduce the water flow rate. The heat exchange time is lengthened, and the water passing through the water heat exchanger 9 is heat exchanged to the superheated steam region of the refrigerant without increasing the refrigerant condensation temperature in the condenser 3 (increasing the refrigerant pressure). In other words, the water outlet temperature related to detection by the water outlet temperature detecting means 10 is raised to a second temperature (for example, 65 ° C.).

図5はこの発明の実施の形態に係る制御装置15による処理手順を示すフローチャートである。図4に基づいて、本実施の形態の給湯装置における動作について説明する。まず、ステップS1において、圧縮機2及び給水ポンプ7を駆動させて、給湯装置の運転を開始する(ステップS1)。そして、ステップS2で、水流量制御手段14に指令の信号を送り、あらかじめ定められた水流量により、給水ポンプ7の水流量を固定制御する(ステップS2)。このとき、水回路6を流れる流量(水熱交換器9に流入出する水の流量)も一定になる。また、ステップS3において、能力制御手段13に指令の信号を送り、水出口温度検出手段10の検出に係る水出口温度が所定温度(例えば60℃)で一定になるように圧縮機2の能力(駆動)を可変制御する(ステップS3)。   FIG. 5 is a flowchart showing a processing procedure by the control device 15 according to the embodiment of the present invention. Based on FIG. 4, the operation | movement in the hot water supply apparatus of this Embodiment is demonstrated. First, in step S1, the compressor 2 and the water supply pump 7 are driven, and the operation of the hot water supply apparatus is started (step S1). In step S2, a command signal is sent to the water flow rate control means 14, and the water flow rate of the water supply pump 7 is fixedly controlled by a predetermined water flow rate (step S2). At this time, the flow rate of the water circuit 6 (the flow rate of water flowing into and out of the water heat exchanger 9) is also constant. In step S3, a command signal is sent to the capacity control means 13, and the capacity of the compressor 2 (so that the water outlet temperature related to detection by the water outlet temperature detection means 10 becomes constant at a predetermined temperature (for example, 60 ° C.)). The driving is variably controlled (step S3).

次に、ステップS4では、水入口温度検出手段8の検出に係る水入口温度が、第1温度(例えば55℃)未満であるか否かを判定する(ステップS4)。第1温度未満であると判定すると、ステップS3に戻り、第1温度以上と判定するまで同様の制御処理を続ける。   Next, in step S4, it is determined whether or not the water inlet temperature related to detection by the water inlet temperature detecting means 8 is less than a first temperature (for example, 55 ° C.) (step S4). If it is determined that the temperature is lower than the first temperature, the process returns to step S3 and the same control process is continued until it is determined that the temperature is equal to or higher than the first temperature.

一方、ステップS4において、水入口温度検出手段8の検出に係る水入口温度が第1温度以上であると判定すると、ステップS5において、能力制御手段13に指令の信号を送り、圧縮機2の能力を固定制御する(ステップS5)。また、ステップS6で水出口温度検出手段10の検出に係る水出口温度が第2温度(例えば65℃)で一定となるように、水流量制御手段14に指令の信号を送って給水ポンプ7の水流量を可変制御し、水回路6を流れる流量を制御する(ステップS6)。   On the other hand, if it is determined in step S4 that the water inlet temperature related to detection by the water inlet temperature detecting means 8 is equal to or higher than the first temperature, a command signal is sent to the capacity control means 13 in step S5, and the capacity of the compressor 2 is Is fixedly controlled (step S5). Further, in step S6, a command signal is sent to the water flow rate control means 14 so that the water outlet temperature related to detection by the water outlet temperature detecting means 10 becomes constant at the second temperature (for example, 65 ° C.). The water flow rate is variably controlled to control the flow rate through the water circuit 6 (step S6).

ステップS6で給水ポンプ7の流量可変制御を行っているとき、ステップS7において、水入口温度検出手段8の水入口温度が第3温度(例えば57℃)を超えたか否かを判定する(ステップS7)。第3温度を超えていないと判定すると、ステップS6に戻り、水出口温度が第2温度で一定となるように給水ポンプ7の水流量を可変制御する。   When variable flow rate control of the feed water pump 7 is performed in step S6, it is determined in step S7 whether or not the water inlet temperature of the water inlet temperature detecting means 8 has exceeded a third temperature (for example, 57 ° C.) (step S7). ). If it determines with not having exceeded 3rd temperature, it will return to step S6 and the water flow rate of the feed water pump 7 will be variably controlled so that water outlet temperature may become fixed with 2nd temperature.

例えば、給湯使用負荷が低下し、貯湯槽11内に貯留する水(湯)の温度が上昇した場合を想定する。第3温度を超えたものと判定すると、ステップS8において、能力制御手段13に指令の信号を送り、水入口温度検出手段8の検出に係る水入口温度が第1温度(例えば55℃)で一定になるように、圧縮機2の能力の可変制御を行う(ステップS8)。このとき、給水ポンプ7においては、水出口温度検出手段10の検出に係る水出口温度が第2温度(例えば65℃)で一定とする可変制御を続ける。   For example, the case where the hot water supply use load falls and the temperature of the water (hot water) stored in the hot water storage tank 11 rises is assumed. If it is determined that the temperature exceeds the third temperature, in step S8, a command signal is sent to the capacity control means 13, and the water inlet temperature related to the detection by the water inlet temperature detection means 8 is constant at the first temperature (eg, 55 ° C.). Then, the variable control of the capacity of the compressor 2 is performed (step S8). At this time, the water supply pump 7 continues the variable control in which the water outlet temperature related to the detection by the water outlet temperature detecting means 10 is constant at the second temperature (for example, 65 ° C.).

次に、ステップS9では、水入口温度検出手段8の検出に係る水入口温度が、第1温度(例えば55℃)未満であるか否かを判定する(ステップS9)。第1温度未満でないと判定すると、ステップS6に戻り、第1温度未満と判定するまで同様の制御処理を続ける。   Next, in step S9, it is determined whether or not the water inlet temperature related to detection by the water inlet temperature detecting means 8 is lower than a first temperature (for example, 55 ° C.) (step S9). If it is determined that the temperature is not lower than the first temperature, the process returns to step S6 and the same control process is continued until it is determined that the temperature is lower than the first temperature.

一方、ステップS9において、水入口温度検出手段8の検出に係る水入口温度が第1温度未満になったものと判定すると、ステップS4に戻って、能力制御手段13に圧縮機2の能力を固定制御する指令の信号を送り、制御処理を続ける。   On the other hand, if it is determined in step S9 that the water inlet temperature related to detection by the water inlet temperature detecting means 8 has become lower than the first temperature, the process returns to step S4, and the capacity of the compressor 2 is fixed to the capacity control means 13. A control command signal is sent to continue the control process.

以上のように、本実施の形態の給湯装置によれば、給水ポンプ7の流量を制御することにより、水熱交換器9から流出する水の温度を、凝縮器3に流入する冷媒の過熱蒸気温度近傍にまで昇温することができる。このとき、水入口温度が上がれば、圧縮機2を可変制御にして凝縮温度を下げる等、圧縮機2と給水ポンプ7を連動して制御することにより、水熱交換器9に流入する水の温度と流出する水の温度とをともに制御することができる。   As described above, according to the hot water supply apparatus of the present embodiment, by controlling the flow rate of the water supply pump 7, the temperature of the water flowing out of the water heat exchanger 9 is changed to the superheated steam of the refrigerant flowing into the condenser 3. The temperature can be raised to near the temperature. At this time, if the water inlet temperature rises, the compressor 2 and the feed water pump 7 are controlled in conjunction with each other, for example, the compressor 2 is variably controlled to lower the condensation temperature, so that the water flowing into the water heat exchanger 9 is controlled. Both the temperature and the temperature of the outflowing water can be controlled.

1 ヒートポンプ装置、2 圧縮機、3 凝縮器、4 減圧装置、5 蒸発器、6 水回路、7 給水ポンプ、8 水入口温度検出手段、9 水熱交換器、10 水出口温度検出手段、11 貯湯槽、12 冷媒−水熱交換器、13 能力制御手段、14 水流量制御手段、15 制御装置。   DESCRIPTION OF SYMBOLS 1 Heat pump apparatus, 2 Compressor, 3 Condenser, 4 Decompression apparatus, 5 Evaporator, 6 Water circuit, 7 Water supply pump, 8 Water inlet temperature detection means, 9 Water heat exchanger, 10 Water outlet temperature detection means, 11 Hot water storage Tank, 12 Refrigerant-water heat exchanger, 13 Capacity control means, 14 Water flow rate control means, 15 Control device.

Claims (4)

冷媒を圧縮する能力可変の圧縮機、前記冷媒と水との熱交換を行う冷媒−水熱交換器、開度調整による前記冷媒の減圧を行う減圧装置及び熱交換により前記冷媒を蒸発させる蒸発器を配管接続して冷媒回路を構成し、
前記冷媒−水熱交換器を通過させる水の流れを形成する水流量可変の給水ポンプと、
前記冷媒−水熱交換器に流入する前記水の水入口温度を検出する水入口温度検出手段と、
前記冷媒−水熱交換器から流出する前記水の水出口温度を検出する水出口温度検出手段と、
前記水入口温度があらかじめ定められた第1温度になったものと判断すると、前記圧縮機の能力を固定制御し、前記水出口温度があらかじめ定められた第2温度になるように前記給水ポンプの水流量を可変制御する制御装置とを備え、
前記冷媒−水熱交換器は、前記冷媒の流れる方向と前記水の流れる方向とが対向して流れる熱交換器であり、
前記制御装置は、水出口温度検出手段の検出に係る温度が前記第2温度になるように前記給水ポンプによる水流量の制御を行い、かつ、前記冷媒−水熱交換器から流出した前記水が循環して、前記冷媒−水熱交換器に流入する前記水入口温度が前記第1温度になるように前記圧縮機を制御して、前記冷媒−水熱交換器における凝縮温度を調整することを特徴とする給湯装置。
Variable capacity compressor for compressing refrigerant, refrigerant-water heat exchanger for exchanging heat between the refrigerant and water, a decompression device for depressurizing the refrigerant by opening adjustment, and an evaporator for evaporating the refrigerant by heat exchange Connect the pipes to configure the refrigerant circuit,
A water supply variable feed pump that forms a flow of water that passes through the refrigerant-water heat exchanger;
Water inlet temperature detection means for detecting the water inlet temperature of the water flowing into the refrigerant-water heat exchanger;
Water outlet temperature detecting means for detecting the water outlet temperature of the water flowing out of the refrigerant-water heat exchanger;
When it is determined that the water inlet temperature has reached a predetermined first temperature, the capacity of the compressor is fixedly controlled so that the water outlet temperature becomes a predetermined second temperature. A control device that variably controls the water flow rate,
The refrigerant-water heat exchanger is a heat exchanger in which a direction in which the refrigerant flows and a direction in which the water flows are opposed to each other,
The control device controls the water flow rate by the feed water pump so that the temperature related to detection by the water outlet temperature detection means becomes the second temperature, and the water flowing out from the refrigerant-water heat exchanger is Circulating, adjusting the condensing temperature in the refrigerant-water heat exchanger by controlling the compressor so that the water inlet temperature flowing into the refrigerant-water heat exchanger becomes the first temperature. A hot water supply device.
前記制御装置は、
前記水入口温度検出手段の検出に係る温度が、前記第1温度以上に設定した第3温度を超えたものと判断すると、前記圧縮機の能力を小さくする制御を行い、前記水出口温度が前記第2温度となるように前記給水ポンプによる水流量の可変制御を行うことを特徴とする請求項1に記載の給湯装置。
The controller is
When it is determined that the temperature related to detection by the water inlet temperature detection means exceeds the third temperature set to be equal to or higher than the first temperature, control is performed to reduce the capacity of the compressor, and the water outlet temperature is The hot water supply apparatus according to claim 1, wherein the water flow rate is variably controlled by the water supply pump so that the second temperature is reached.
前記制御装置は、前記水出口温度検出手段の検出に係る温度が前記第2温度になるように前記給水ポンプによる水流量の可変制御を行うことを特徴とする請求項1又は2に記載の給湯装置。   The hot water supply according to claim 1 or 2, wherein the control device performs variable control of a water flow rate by the water supply pump so that a temperature related to detection by the water outlet temperature detection means becomes the second temperature. apparatus. 前記制御装置は、運転を開始してから前記水入口温度が前記第1温度になったものと判断するまでは、前記給水ポンプを固定制御することを特徴とする請求項1〜のいずれか一項に記載の給湯装置。 The control device, from the start of the operation until it is judged that the water inlet temperature is the first temperature, claim 1-3, characterized in that fixed control the water supply pump The hot water supply apparatus according to one item.
JP2013208484A 2013-10-03 2013-10-03 Water heater Active JP6304996B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013208484A JP6304996B2 (en) 2013-10-03 2013-10-03 Water heater
EP14162197.9A EP2857761B1 (en) 2013-10-03 2014-03-28 Water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013208484A JP6304996B2 (en) 2013-10-03 2013-10-03 Water heater

Publications (2)

Publication Number Publication Date
JP2015072102A JP2015072102A (en) 2015-04-16
JP6304996B2 true JP6304996B2 (en) 2018-04-04

Family

ID=50389306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013208484A Active JP6304996B2 (en) 2013-10-03 2013-10-03 Water heater

Country Status (2)

Country Link
EP (1) EP2857761B1 (en)
JP (1) JP6304996B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018025382A1 (en) * 2016-08-04 2018-02-08 三菱電機株式会社 Heat source system
CN107796122B (en) * 2016-09-06 2021-07-23 艾欧史密斯(中国)热水器有限公司 Heat pump water heater and control method thereof
CN108088086A (en) * 2016-11-21 2018-05-29 重庆海尔热水器有限公司 Improve the flow control methods and gas heater of user experience
WO2022119436A1 (en) * 2020-12-01 2022-06-09 Daikin Research & Development Malaysia Sdn. Bhd. An apparatus for heating water
JP7310964B1 (en) * 2022-03-28 2023-07-19 株式会社富士通ゼネラル heat pump equipment
CN115507562B (en) * 2022-11-24 2023-03-24 广东美格动力新能源有限公司 Heat pump unit water pump control method and heat pump unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3227651B2 (en) * 1998-11-18 2001-11-12 株式会社デンソー Water heater
JP4334153B2 (en) * 2001-01-30 2009-09-30 東芝キヤリア株式会社 Heat pump water heater
JP3719162B2 (en) * 2001-05-18 2005-11-24 松下電器産業株式会社 Heat pump water heater
JP3912035B2 (en) * 2001-05-18 2007-05-09 松下電器産業株式会社 Heat pump water heater
JP3642334B2 (en) * 2003-05-19 2005-04-27 松下電器産業株式会社 Heat pump water heater
JP4161968B2 (en) * 2005-01-21 2008-10-08 株式会社デンソー Heat pump water heater
JP5011713B2 (en) * 2005-11-22 2012-08-29 株式会社デンソー Heat pump type water heater
JP4407689B2 (en) * 2006-11-13 2010-02-03 三菱電機株式会社 Heat pump water heater
JP5558937B2 (en) * 2010-06-30 2014-07-23 株式会社コロナ Heat pump type water heater
JP2013079770A (en) * 2011-10-05 2013-05-02 Hitachi Appliances Inc Heat pump type water heater
JP5982839B2 (en) * 2012-01-31 2016-08-31 株式会社富士通ゼネラル Heat pump cycle equipment

Also Published As

Publication number Publication date
EP2857761A1 (en) 2015-04-08
EP2857761B1 (en) 2016-06-22
JP2015072102A (en) 2015-04-16

Similar Documents

Publication Publication Date Title
JP6304996B2 (en) Water heater
JP5524571B2 (en) Heat pump equipment
JP5054180B2 (en) Heat pump heating system
JP6058032B2 (en) Heat pump system
JP6595205B2 (en) Refrigeration cycle equipment
CN105378399B (en) Temperature control system with programmable ORIT valves
JP5300806B2 (en) Heat pump equipment
KR20160014033A (en) Heat pump for using environmentally compatible coolants
JP2008020125A (en) Refrigerating cycle device and heat storage device using the same
JP2015210033A (en) Steam generation heat pump
JP2009236403A (en) Geothermal use heat pump device
JP5734424B2 (en) Air conditioning and hot water supply complex system
JP2009092258A (en) Refrigerating cycle device
JP2004003825A (en) Heat pump system, and heat pump type hot water supplying machine
JP6326344B2 (en) Hot water heater
JP6607147B2 (en) Heat pump equipment
JP5052631B2 (en) Heat pump type hot water supply device
JP2014009829A (en) Refrigeration cycle device and hot water generating device
WO2015121993A1 (en) Refrigeration cycle device
JP4715852B2 (en) Heat pump water heater
JP6978242B2 (en) Refrigerant circuit equipment
JP4950004B2 (en) Heat pump type water heater
JP5338758B2 (en) Hot water supply apparatus and hot water control method thereof
JP2014005961A (en) Refrigeration cycle device and hot water generator including the same
JP2013249967A (en) Hot water generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180109

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R150 Certificate of patent or registration of utility model

Ref document number: 6304996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250