JP3642334B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3642334B2
JP3642334B2 JP2003140121A JP2003140121A JP3642334B2 JP 3642334 B2 JP3642334 B2 JP 3642334B2 JP 2003140121 A JP2003140121 A JP 2003140121A JP 2003140121 A JP2003140121 A JP 2003140121A JP 3642334 B2 JP3642334 B2 JP 3642334B2
Authority
JP
Japan
Prior art keywords
hot water
water supply
flow rate
circulation circuit
refrigerant circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003140121A
Other languages
Japanese (ja)
Other versions
JP2004340532A (en
JP2004340532A5 (en
Inventor
竹司 渡辺
昌宏 尾浜
啓次郎 國本
龍太 近藤
宣彦 藤原
誠一 安木
立群 毛
一彦 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003140121A priority Critical patent/JP3642334B2/en
Publication of JP2004340532A publication Critical patent/JP2004340532A/en
Application granted granted Critical
Publication of JP3642334B2 publication Critical patent/JP3642334B2/en
Publication of JP2004340532A5 publication Critical patent/JP2004340532A5/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来、この種のヒートポンプ給湯装置は、給湯温度と設定温度との差に応じて圧縮機のインバータ出力周波数を変換して給湯量を給湯温度で増減しないようにしている(例えば、特開文献1参照)。図9は特許文献1に記載されたヒートポンプ給湯装置を示すものである。
【0003】
図9において、閉回路に構成される圧縮機1、放熱器2、減圧手段3、吸熱器4が接続された冷媒循環回路5と、放熱器2の冷媒流路と熱交換を行う水流路7を備えた熱交換器6と、この水流路7に水道水を供給する給水管8と、前記水流路7とシャワーや蛇口等の給湯端末とを接続する給湯回路9と、給湯回路9に設け給湯温度を検出する温度センサ10と、圧縮機1の回転数を制御するインバータ11を備え、圧縮機1を温度センサ10の検出温度と設定温度との差に応じてインバータ11の出力周波数を変換するようにしていた。
【0004】
【特許文献1】
特開平2−223767号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来例の給湯装置の構成では、給湯時における給湯負荷が一定ではない。特に流量は使用者が給湯目的によってさまざまに変化させるために給湯負荷は大きく変ってしまう。例えば家庭用の給湯の場合、シャワーや風呂への湯張りに給湯する場合は10〜20L/minの大流量となるが、台所で食器を洗う場合や洗面への給湯では3〜5L/minと少流量である。また、1箇所の給湯端末から出湯している場合に他の給湯端末から出湯すると出湯流量が急変する。また、季節によっても給湯負荷は大きく変わり、また季節によってインバータの出力周波数が同じでも冷媒循環回路の加熱能力が変わる。
【0006】
こうした流量や水温の変化により大きくかわる給湯負荷を、出湯と連動して圧縮機を運転するようにした給湯システムにおいて、運転開始時に従来のヒートポンプ給湯装置のように圧縮機2を温度センサ10の検出温度と設定温度との差に応じてインバータ11の出力周波数を変換して給湯熱量を制御するフィードバック制御では、シャワー等の大流量の給湯負荷から台所や洗面等の小流量の給湯負荷まで対応して所定の給湯温度を短時間で得るのは困難であり、運転開始時に給湯温度および冷媒循環回路内の冷媒動作点が不安定となる。そして、運転中に給湯負荷(例えば出湯流量)が急変する場合に給湯温度を一定にするために頻繁にインバータなどによる出力変動を余儀なくされる。しかし、給湯温度はインバータ出力変動に対して遅れが生じるため、給湯温度が高温から低温まで変動して不安定になる。そして、ヒートポンプ動作点が急変し、給湯温度が高温に変動すると冷媒循環回路内の高圧側冷媒圧力が異常上昇して機器の運転を停止せざるを得ないなど、使い勝手が悪く、機器の耐久性を確保するにも課題となる。
【0007】
以上のように従来のヒートポンプ給湯装置では温度センサの検出温度と設定温度との差に応じてインバータの出力周波数を変換して給湯熱量を制御するために給湯負荷の出湯量が変化すると出湯温度が不安定となるばかりか、圧縮機の出力周波数を頻繁に変更するために圧縮機の信頼性が損なう。そのため、幅広い給湯負荷への対応が困難であったり、応答性が悪化したり、機器の耐久性が悪化するなどの問題があった。
【0008】
本発明は、前記従来の課題を解決するもので、幅広い給湯負荷に対して、出湯温度の制御性と耐久性の高いヒートポンプ給湯装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明のヒートポンプ給湯装置は、給湯端末への出湯状態を検出して冷媒循環回路の運転条件を設定し、設定条件で運転をおこなう制御手段を備えたものである。これによって、幅広い給湯負荷(出湯状態)に対して、安定した出湯温度が得られるように運転条件を設定して、利便性を向上するとともに機器の耐久性が向上する。
【0010】
【発明の実施の形態】
請求項1に記載の発明のヒートポンプ給湯装置は、圧縮機と放熱器を有する冷媒循環回路と、前記冷媒循環回路の能力を制御する能力制御手段と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、前記水流路に水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記熱交換器で加熱された湯を貯湯する貯湯槽と、給湯端末への出湯状態を検出する出湯検出手段と、少なくとも出湯状態に基づき冷媒循環回路の運転条件が予め設定された記憶装置と、前記出湯検出手段により検出した出湯状態から前記運転条件に基づき前記冷媒循環回路を運転する制御手段とを有するヒートポンプ給湯機とする。
【0011】
この発明によれば、幅広い給湯負荷(出湯状態)に対して、安定した出湯温度が得られるように運転条件を設定して、利便性を向上するとともに機器の耐久性が向上する。また、運転開始する際、検出した出湯流量に対応した最適加熱能力の冷媒循環回路で運転開始できる。また、運転中に給湯負荷、例えば、出湯流量が急変した場合でも、急変した出湯流量に対して最適加熱能力に冷媒循環回路の運転を切り換えるため、給湯温度の変動が少なく、短時間で所定温度に回復する。
【0012】
請求項2に記載の発明のヒートポンプ給湯装置は、特に、出湯状態と外気温度と前記熱交換器の入出口水温から冷媒循環回路の運転条件を予め設定された記憶装置とを備え、制御手段は、出湯状態と検出した外気温度と入水温度と出水温度から前記運転条件に基づき前記冷媒循環回路を運転することを特徴とする請求項1記載のヒートポンプ給湯機である。
【0013】
この発明によれば、運転開始する際、検出した出湯流量に対応した最適加熱能力の冷媒循環回路で運転開始できる。また、運転中に給湯負荷、例えば、出湯流量が急変した場合でも、急変した出湯流量に対して最適加熱能力に冷媒循環回路の運転を切り換えるため、給湯温度の変動が少なく、短時間で所定温度に回復する。
【0014】
請求項3に記載の発明のヒートポンプ給湯装置は、特に、制御手段は、出湯が所定時間継続した場合に冷媒循環回路の運転を開始するものである。
【0015】
この発明によれば、蛇口から短時間に頻繁に出湯をON−OFFして使われる場合、また、それを繰り返す場合、圧縮機を運転しないで貯湯槽から出湯して給湯負荷に対応する。そして、出湯が所定時間継続した場合に圧縮機を運転して、冷媒循環回路で加熱した温水を給湯端末へ通水する。したがって、圧縮機の頻繁なON−OFFを低減するため、給湯温度が安定するとともに高効率化と耐久性が向上する。
【0016】
請求項4に記載の発明のヒートポンプ給湯装置は、特に、制御手段は、出湯を検出した時刻に基づき冷媒循環回路の運転を制御するものである。
【0017】
この発明によれば、夏季昼間時間帯、あるいは電力負荷が大きい時間帯に出湯を検出した場合に貯湯槽から出湯して給湯負荷に対応する。また、深夜時間帯直前の午後10時ごろに出湯を検出した場合でも貯湯槽からの出湯を優先し、深夜時間帯に貯湯槽の水を沸き上げるようにすることができる。従って、電力負荷の平準化、電力ピークカットに対応可能となるばかりか安価で比較的電力供給に余裕のある深夜時間帯に運転を遅延することができる。
【0018】
また、給湯用途と出湯時間帯はある程度関係があり、例えば、朝6時〜8時頃は洗面、台所で出湯、昼間12時前後は台所、夕方6時〜11時は台所、風呂、洗面で利用される。従って、時刻から用途を判断して、用途に合った出湯流量、給湯負荷を想定し、負荷に対応した運転条件を設定して運転するため安定した出湯温度が得られる。
【0019】
また、時刻別の出湯流量、出湯温度、出湯時間を1週間単位で学習して、その時刻に合った運転が可能となるため安定した出湯温度が得られる。
【0020】
請求項5に記載の発明のヒートポンプ給湯装置は、特に、制御手段は、出湯流量が所定流量より多い場合に冷媒循環回路の運転を開始するものである。
【0021】
この発明によれば、風呂への湯張り、シャワーなど、大流量で比較的長時間の給湯負荷に対して、出湯流量センサーといった簡単な検出手段で給湯負荷の用途を判断してすぐに冷媒循環回路の運転を開始することができる。したがって、低コストで給湯温度の安定化、冷媒循環回路の連続運転が多くなり効率良く利用できる。
【0022】
請求項6に記載の発明のヒートポンプ給湯装置は、特に、制御手段は、出湯流量が所定流量より少ない場合に冷媒循環回路の運転をおこなわない、あるいは運転を停止するものである。
【0023】
この発明によれば、台所で食器を洗う場合や洗面への給湯などの場合でも冷媒循環回路の高圧が異常上昇しない所定流量に対して、その所定流量より少ない場合、あるいは少ない流量に給湯端末の蛇口で変更が生じた場合に、冷媒循環回路の運転をおこなわない、あるいは運転を停止して冷媒循環回路内の高圧異常上昇を防止して耐久性向上をはかる。
【0024】
請求項7に記載の発明のヒートポンプ給湯装置は、冷媒循環回路の運転中に出湯流量が急変した時に冷媒循環回路の運転能力制御を優先する優先制御手段を備えたものである。
【0025】
この発明によれば、給湯端末からの出湯流量が急変した場合、あるいはシャワー中に台所で出湯して出湯流量が急変した場合などに、給湯温度変化に基づき冷媒循環回路の運転能力制御をする制御から出湯流量が急変したことを検出して冷媒循環回路の運転能力制御をする制御を優先することによって、給湯温度の安定化、あるいは冷媒循環回路内の冷媒圧力の異常上昇を防止して機器の耐久性向上をはかる。
【0026】
請求項8に記載の発明のヒートポンプ給湯装置は、請求項1〜7のいずれか1に記載の冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱する構成である。
【0027】
そして、熱交換器の放熱器を流れる冷媒は、圧縮機で臨界圧力以上に加圧されているので、熱交換器の水流路の流水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換器全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0028】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をする部分については同一符号を付与し、詳細な説明を省略する。
【0029】
(実施例1)
図1は本発明の実施例1におけるヒートポンプ給湯装置の構成図である。図1において、5は冷媒循環回路で、圧縮機1、放熱器2、減圧手段3、吸熱器4が接続され、閉回路を構成する。そして、冷媒循環回路5は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。
【0030】
また、6は放熱器2の冷媒流路と熱交換を行う水流路7を備えた熱交換器である。12は貯湯槽であり、熱交換器6で加熱された湯を上部から貯湯する。13は流量制御手段であり、水流路7の流量を制御する。14は湯温制御手段であり、熱交換器6出口の水温センサー10の検出信号が所定信号となるように流量制御手段13を制御する。15は循環ポンプであり、給水管8、あるいは貯湯槽12下部の水を熱交換器6に通水する。16は能力制御手段であり、圧縮機1のインバータ(図示せず)駆動周波数を制御して冷媒循環回路5の能力を制御する。また、水流路7に水道水を供給する給水管8と、水流路7から給湯端末へ通水するように接続する給湯回路9が接続されている。17は貯湯槽12上部の湯を給湯回路9へ通水する出湯回路である。18は温度調整手段であり、貯湯槽12の湯と給湯回路9の湯を混合して所定温度に制御する。19は出湯検出手段であり、給湯端末への出湯状態を検出する。例えば、給湯端末へ通水する流量を検出する、あるいは給水管8、水流路7、給湯回路9などの水圧を検出する。20は制御手段であり、出湯検出手段19からの出湯状態を検出して、能力制御手段16に指令して冷媒循環回路5の能力調整とか運転ON、運転OFFなど冷媒循環回路5の運転条件を設定して運転する。21は湯水混合手段であり、貯湯槽12から出湯する場合など、給湯回路9に高温湯が通水する場合に給水管8の市水と混合して所定温度にミキシングして給湯端末に通水する。
【0031】
以上のように構成されたヒートポンプ給湯装置について、以下その動作、作用について説明する。最初に、貯湯槽に貯湯する貯湯運転について述べる。圧縮機1から吐出する高温高圧冷媒が放熱器2へ流入し、循環ポンプ15を介して貯湯槽12下部から水流路7へ流れる水を加熱する。その際、熱交換器6の出口温度が所定温度となるように流量制御手段13が水流路7を流れる流量を制御する。そして、所定温度に加熱された水は給湯回路9から温度調整手段18を経て貯湯槽12の上部に流入し貯湯される。一方、放熱器2で放熱した冷媒は減圧手段3で減圧されて吸熱器4に流入し、大気熱を吸熱して蒸発ガス化し、圧縮機1に戻る。このサイクルを繰り返しながら貯湯槽12上部から貯湯する。
【0032】
次に、給湯端末の蛇口が開かれて冷媒循環回路5で加熱された湯と貯湯槽12の湯と混合して出湯する場合について述べる。蛇口が開かれると給水管から貯湯槽12下部へ水道水が流れ込み、貯湯槽12上部から湯が出湯する。また、出湯検出手段19が出湯を検出して制御手段20が冷媒循環回路5の運転を開始する。そして、検出した出湯流量を基に制御手段20は熱交換器6で加熱される水が所定温度となるように能力制御する。そして、加熱された湯は熱交換器6出口から給湯回路9に流れ貯湯槽12上部から出湯する湯と混合して所定温度となって給湯端末から出湯される。その際、運転開始直後は熱交換器6出口の湯温は低いが、貯湯槽12の湯と混合して温度調整手段18で所定温度にミキシングされて給湯端末へ通水される。そして、時間経過とともに熱交換器6の出口湯温が次第に上昇して所定温度に達する。その間、熱交換器6出口の温水温度が上昇するにつれて貯湯槽12上部からの出湯量は次第に減少する。そして、冷媒循環回路で加熱できる最大能力時の流量より給湯端末からの出湯流量が多い場合は、冷媒循環回路で加熱する水量と貯湯槽から出湯する水量で給湯負荷を満たす。また、冷媒循環回路で加熱できる最大能力時の流量より給湯端末からの出湯流量が少ない場合は、冷媒循環回路で加熱する水量のみで給湯負荷を満たす。従って、給湯負荷の大小に関わらず、安定した出湯温度が得られる。
【0033】
また、流量制御手段13および循環ポンプ15の代わりに流量可変型ポンプ(DCポンプ)を用いて流量制御しても同様の効果がある。
【0034】
また、出湯状態として出湯流量以外に給水管、水流路、給湯回路のいづれかの水圧で出湯状態を検出しても同様の効果がある。出湯流量が多い場合には水圧の低下が大きく、出湯流量が少ない場合には水圧の低下が少ないため、水圧で出湯流量を判断して能力制御しても同様の効果がある。
【0035】
また、図2に示す如く、給水管を貯湯槽と接続して、貯湯槽から水流路に通水する構成でも同様の効果がある。
【0036】
また、図2に示す如く、貯湯運転時には図2の実線矢印方向で表すように水流路から開閉弁22を通じて貯湯槽上部に通水するようにして貯湯する。そして、冷媒循環回路から給湯端末へ出湯する場合は開閉弁22を閉にして図2の破線矢印方向で表すように水回路から給湯回路に通水するようにしても同様の効果がある。さらに、この場合には、貯湯運転と貯湯槽から出湯を同時に実現できる効果がある。
【0037】
また、ヒートポンプサイクルを、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルとしたが、もちろん一般の臨界圧力以下のヒートポンプサイクルでもよい。またこの場合、冷媒としてはフロンガス、アンモニア、ハイドロカーボンなどを用いても良い。
【0038】
(実施例2)
図3は本発明の実施例2におけるヒートポンプ給湯装置の構成図である。なお、実施例1の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図3において、23は記憶装置であり、運転条件を設定する際に、出湯状態と外気温度と熱交換器の入出口水温から予め設定された圧縮機の駆動周波数を設定する。24は制御手段であり、出湯を検出した時の外気温度を外気温度センサー25で検出し、熱交換器6に流入する水温を入水温度センサー(図示省略)で検出し、熱交換器6から流出する水温を出水温度センサー(図示省略)で検出し、検出した外気温度と入水温度と出水温度から記憶装置23に基づいた圧縮機駆動周波数で冷媒循環回路を運転する。例えば、出湯流量と熱交換器6に流入する水温および熱交換器6から流出する水温から給湯負荷を演算して、給湯負荷に相当する冷媒循環回路の能力を設定し、その時の外気温度から給湯負荷に対応する圧縮機駆動周波数を設定する。そして、給湯負荷が冷媒循環回路の最大能力より大きい場合は、圧縮機駆動周波数を最大に設定して運転する。
【0039】
以上の構成において、その動作、作用について説明する。この実施例2によれば、冬季と夏季で圧縮機1の駆動周波数が同じでも大気熱から吸熱する能力は冬季が小さくなる。そのため冬季と夏季で同じ出湯量、かつ熱交換器の出湯温度を同じにする場合には冬季は夏季より圧縮機駆動周波数を大きくして運転する。逆に夏季は圧縮機駆動周波数を小さくして運転する。また、出湯流量が少ない場合は圧縮機駆動周波数を小さく、出湯流量が多い場合は圧縮機駆動周波数を大きくして運転する。よって、冬季でも大能力で運転開始するため、熱交換器出口の湯温が所定温度に短時間で達する。従って、冬季から夏季まで年間を通じて、大出量流量から少出湯流まで給湯負荷に対応した温水温度をスピーディに出湯できる。
【0040】
(実施例3)
図4は本発明の実施例3におけるヒートポンプ給湯装置の制御動作を示すフローチャートである。なお、実施例1、実施例2の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図4において、25はタイマーであり、出湯を検出してからの出湯時間を計測する。26は制御手段であり、出湯が所定時間継続した場合に冷媒循環回路の運転を開始する。
【0041】
以上の構成において、その動作、作用について説明する。出湯を検出してタイマーが時間を計測する。そして、タイマーが所定時間経過するまで制御手段が冷媒循環回路の運転開始を指令しないため、貯湯槽の湯を給湯端末から出湯して給湯負荷に対応する。次に、タイマーが所定時間達した時、制御手段が冷媒循環回路の運転開始を指令する。そして、冷媒循環回路で加熱した湯を給湯回路に通水して貯湯槽の湯と混合して給湯端末から出湯する。従って、洗面、台所など、頻繁に出湯のオン、オフを繰り返す場合は貯湯槽から出湯し、浴槽への湯張り、シャワーなど所定時間、連続出湯する給湯負荷の場合に冷媒循環回路の運転をおこない給湯端末から出湯する。したがって、圧縮機の頻繁なON−OFFを低減できるため耐久性が向上する。
【0042】
また、給湯用途と出湯時間帯はある程度関係があり、例えば、朝6時〜8時頃は洗面、台所で出湯、昼間12時前後は台所、夕方6時〜11時は台所、風呂、洗面で利用される。そして、台所、洗面の出湯流量は3〜5L/minと少流量であり、シャワーや風呂への湯張りの出湯流量は10〜20L/minと大流量である。よって、出湯を検出した時刻が朝、昼の場合には、少流量の給湯負荷を想定した設定で運転する。そのため、給湯温度が安定する。従って、出湯時の時刻から用途を判断して、用途に合った出湯流量、給湯負荷を想定し、負荷に対応した運転条件を設定して運転するため安定した出湯温度が得られる。
【0043】
また、時刻別の出湯流量、出湯温度、出湯時間を例えば1週間単位で学習して、学習機能を持たせることにより、出湯時の時刻から給湯負荷に対応した運転条件で運転が可能となるため安定した出湯温度が得られる。
【0044】
また、シャワーや風呂への湯張りの時刻が近づく夕刻に貯湯槽へ貯湯する貯湯運転を設定することによって、湯切れの不安解消あるいは貯湯槽の小容量化を実現する。
【0045】
(実施例4)
図5は本発明の実施例4におけるヒートポンプ給湯装置の制御動作を示すフローチャートである。なお、実施例1〜実施例3の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図5において、27はクロック、28は制御手段であり、出湯を検出した時刻をクロック28から検出して、出湯時の時刻が予め設定した時間帯である場合に冷媒循環回路の運転をしない。そして、予め設定した時間帯以外の場合には冷媒循環回路の運転をおこなうように制御する。
【0046】
以上の構成において、その動作、作用について説明する。夏季昼間時間帯、あるいは電力負荷が大きい時間帯に出湯を検出した場合、貯湯槽の湯水を出湯して給湯負荷に対応する。また、深夜時間帯直前の午後10時ごろに出湯を検出した場合、貯湯槽から出湯して給湯負荷に対応して、深夜時間帯に達した時に貯湯槽の水を沸き上げる貯湯運転をおこなう。従って、電力負荷の平準化、電力ピークカットに対応するとともに安価で比較的電力供給に余裕のある深夜時間帯に貯湯運転をする。
【0047】
また、集合住宅に機器を設置する場合、運転開始の時間帯を各家庭別、あるいは一定戸数のゾーン毎に運転を遅延して突入電流を下げて受電設備を有効に活用することができる。
【0048】
(実施例5)
図6は本発明の実施例5におけるヒートポンプ給湯装置の制御動作を示すフローチャートである。なお、実施例1〜実施例4の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図6において、29は出湯流量センサーであり、出湯流量を計測する。30は制御手段であり、出湯流量センサー29の検出した出湯流量が所定流量より多い場合に冷媒循環回路の運転を開始する。
【0049】
以上の構成において、その動作、作用について説明する。この発明によれば、風呂への湯張り、シャワーなどの給湯時は比較的長時間利用され、かつ大流量である。そのような給湯負荷に対して、所定流量より多い出流量で出湯されたことを出湯流量センサー29が検出して、制御手段30は冷媒循環回路の運転を開始して加熱した湯を給湯回路を通水して給湯端末から出湯する。よって、出湯流量センサーといった簡単な検出手段を用いて低コストで給湯負荷の用途を判断してすぐに冷媒循環回路の運転を開始できる。したがって、低コストで給湯温度の安定化および、冷媒循環回路を連続運転できるため高効率運転が実現できる。
【0050】
(実施例6)
図7は本発明の実施例6におけるヒートポンプ給湯装置の制御動作を示すフローチャートである。なお、実施例1〜5の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図7において、31は制御手段であり、出湯流量センサー29の出湯流量が所定流量より少ない場合に冷媒循環回路の運転をおこなわない、あるいは運転を停止する。
【0051】
以上の構成において、その動作、作用について説明する。この発明によれば、台所で食器を洗う場合や洗面への給湯などにおいて、出湯流量センサー29で出湯流量を検出し、出湯流量が所定流量より少ない場合、制御手段31は冷媒循環回路の運転を開始しない。そして、貯湯槽の湯が給湯端末から出湯する。また、出湯中に端末の蛇口が絞られて出湯流量が所定流量より少なくなった場合、制御手段31は出湯流量が所定流量より少ないことを検出して冷媒循環回路の運転を停止する。そして、貯湯槽の湯のみで給湯負荷に対応する。従って、放熱器の放熱量低減による冷媒循環回路内の高圧異常上昇を防止できるようになり耐久性が向上する。
【0052】
(実施例7)
図8は本発明の実施例7におけるヒートポンプ給湯装置の制御動作を示すフローチャートである。なお、実施例1〜6の給湯装置と同一構造のものは同一符号を付与し、説明を省略する。図8において、32は優先制御手段であり、冷媒循環回路の運転中に出湯流量が急変した時に、急変した出湯流量を基に記憶装置23から圧縮機駆動周波数を再設定して冷媒循環回路の運転能力制御を湯温制御手段14より優先する。
【0053】
以上の構成において、その動作、作用について説明する。最初に、出湯流量が少ない場合から大出湯流量に急変した場合、例えば、シャワー中に台所の蛇口が開けられて同時出湯されて出湯流量が大きくなった場合について説明する。シャワー出湯時には熱交換器6出口の温水温度が所定温度となるように冷媒循環回路がされている。そして、台所で出湯されると熱交換器6を流れる水量が増加するため、熱交換器6出口の温水温度が低下する。そして、温水温度の低下を検出して温水温度を高くするように流量制御手段13は流量を絞る。そのため、貯湯槽からの出湯量が多くなり貯湯残湯量が減少する。あるいは、熱交換器6出口の温水温度の低下を検出して冷媒循環回路の能力を上げる制御がおこなわれる。しかし、温水温度の低下を検出しながら冷媒循環回路の能力アップ制御するため、冷媒循環回路が所定能力に達するのに時間がかかる。その間、シャワー温度が低下した状態であるため、利便性が悪い。
【0054】
次に、出湯流量が多い場合から出湯流量に急に減少した場合、例えば、シャワーと台所の同時出湯中に台所の蛇口が閉められて出湯流量が急に少なくなった場合について説明する。同時出湯中の大流量から少流量になると熱交換器6を流れる水量が減少するため、熱交換器6の出口水温が急激に上昇するとともに放熱器2で放熱量が減少して冷媒循環回路内の高圧側の冷媒圧力が急激に異常上昇する。そのため、高温水がシャワー端末から出湯するとともに機器の耐久性が課題となる。しかし、実施例7によれば、出湯流量が急変したことを検出して、検出した出湯流量を基に記憶装置23から圧縮機駆動周波数を再設定して冷媒循環回路の運転能力を湯温制御手段14より優先して制御する。そのため、熱交換器6の出口温度変化が少なく、所定温度に短時間で回復するとともに冷媒循環回路内の圧力が異常上昇することもない。従って、給湯温度が安定するとともに機器の耐久性が向上する。
【0055】
【発明の効果】
以上のように、本発明によれば、幅広い給湯負荷に対して、出湯温度の制御性と耐久性の高いヒートポンプ給湯装置を提供することができる。また、運転開始する際、検出した出湯流量に対応した最適加熱能力の冷媒循環回路で運転開始できる。また、運転中に給湯負荷、例えば、出湯流量が急変した場合でも、急変した出湯流量に対して最適加熱能力に冷媒循環回路の運転を切り換えるため、給湯温度の変動が少なく、短時間で所定温度に回 復する。
【図面の簡単な説明】
【図1】 本発明の実施例1におけるヒートポンプ給湯装置の構成図
【図2】 本発明の実施例1の他実施例を示すヒートポンプ給湯装置の構成図
【図3】 本発明の実施例2におけるヒートポンプ給湯装置の構成図
【図4】 本発明の実施例3におけるヒートポンプ給湯装置の制御動作を示すフローチャート
【図5】 本発明の実施例4におけるヒートポンプ給湯装置の制御動作を示すフローチャート
【図6】 本発明の実施例5におけるヒートポンプ給湯装置の制御動作を示すフローチャート
【図7】 本発明の実施例6におけるヒートポンプ給湯装置の制御動作を示すフローチャート
【図8】 本発明の実施例7におけるヒートポンプ給湯装置の制御動作を示すフローチャート
【図9】 従来のヒートポンプ給湯装置の構成図
【符号の説明】
1 圧縮機
2 放熱器
3 減圧手段
4 吸熱器
5 冷媒循環回路
6 熱交換器
7 水流路
8 給水管
9 給湯回路
10 温度センサー
12 貯湯槽
13 流量制御手段
14 湯温制御手段
16 能力制御手段
17 出湯回路
18 温度調整手段
19 出湯検出手段
20、24、26、28、30、31 制御手段
21 湯水混合手段
22 開閉弁
23 記憶装置
25 外気温センサー
26 タイマー
27 クロック
29 出湯流量センサー
32 優先制御手段
[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a heat pump water heater.
[0002]
[Prior art]
  Conventionally, this type of heat pump hot water supply apparatus converts the inverter output frequency of the compressor in accordance with the difference between the hot water supply temperature and the set temperature so that the hot water supply amount does not increase or decrease with the hot water supply temperature (for example, Japanese Patent Application Laid-Open No. H10-260260). reference). FIG. 9 shows a heat pump hot water supply apparatus described in Patent Document 1. In FIG.
[0003]
  In FIG. 9, a refrigerant circuit 5 connected to a compressor 1, a radiator 2, a decompressor 3, and a heat absorber 4 configured in a closed circuit, and a water channel 7 that exchanges heat with the refrigerant channel of the radiator 2. Provided in the hot water supply circuit 9, a water supply pipe 8 for supplying tap water to the water flow path 7, a hot water supply circuit 9 for connecting the water flow path 7 to a hot water supply terminal such as a shower or a faucet, and the like. A temperature sensor 10 that detects the hot water supply temperature and an inverter 11 that controls the rotation speed of the compressor 1 are provided. The compressor 1 converts the output frequency of the inverter 11 according to the difference between the temperature detected by the temperature sensor 10 and the set temperature. I was trying to do it.
[0004]
[Patent Document 1]
    JP-A-2-223767
[0005]
[Problems to be solved by the invention]
  However, in the configuration of the conventional hot water supply apparatus, the hot water supply load during hot water supply is not constant. In particular, since the flow rate is varied by the user depending on the purpose of hot water supply, the hot water supply load changes greatly. For example, in the case of hot water supply for home use, a large flow rate of 10 to 20 L / min is used when supplying hot water to a shower or bath, but 3 to 5 L / min for washing dishes in the kitchen or hot water supply to the wash surface. The flow rate is small. In addition, when the hot water is discharged from one hot water supply terminal, the hot water flow rate changes suddenly when the hot water is discharged from another hot water supply terminal. Also, the hot water supply load varies greatly depending on the season, and even if the output frequency of the inverter is the same, the heating capacity of the refrigerant circulation circuit varies depending on the season.
[0006]
  In the hot water supply system in which the compressor is operated in conjunction with the hot water supply, the hot water supply load which is largely changed by the change in the flow rate and the water temperature is detected by the temperature sensor 10 at the start of operation, like the conventional heat pump hot water supply device. In feedback control that controls the amount of hot water supply by converting the output frequency of the inverter 11 according to the difference between the temperature and the set temperature, it corresponds to a hot water supply load of a large flow rate such as a shower to a small flow rate of a hot water supply load such as a kitchen or a bathroom. Thus, it is difficult to obtain a predetermined hot water supply temperature in a short time, and the hot water supply temperature and the refrigerant operating point in the refrigerant circulation circuit become unstable at the start of operation. When the hot water supply load (for example, the hot water flow rate) changes suddenly during operation, the output is frequently fluctuated by an inverter or the like in order to keep the hot water supply temperature constant. However, since the hot water supply temperature is delayed with respect to the inverter output fluctuation, the hot water supply temperature varies from a high temperature to a low temperature and becomes unstable. And if the heat pump operating point changes suddenly and the hot water supply temperature fluctuates to a high temperature, the high-pressure side refrigerant pressure in the refrigerant circulation circuit rises abnormally and the operation of the equipment has to be stopped. It is also a problem to secure.
[0007]
  As described above, in the conventional heat pump hot water supply device, the temperature of the hot water supply is changed when the amount of hot water discharged from the hot water supply load changes in order to control the hot water supply amount by converting the output frequency of the inverter according to the difference between the temperature detected by the temperature sensor and the set temperature. Not only is it unstable, but the reliability of the compressor is impaired because the output frequency of the compressor is frequently changed. For this reason, there are problems that it is difficult to cope with a wide range of hot water supply loads, the responsiveness is deteriorated, and the durability of the device is deteriorated.
[0008]
  This invention solves the said conventional subject, and it aims at providing the heat pump hot-water supply apparatus with high controllability of hot-water temperature and high durability with respect to a wide hot-water supply load.
[0009]
[Means for Solving the Problems]
  In order to solve the above-mentioned problems, the heat pump hot water supply apparatus of the present invention includes control means for detecting the hot water supply state to the hot water supply terminal, setting the operating condition of the refrigerant circulation circuit, and performing the operation under the set condition. Is. Accordingly, operating conditions are set so that a stable hot water temperature can be obtained with respect to a wide range of hot water supply loads (hot water conditions), thereby improving convenience and improving the durability of the device.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
  The heat pump water heater of the invention described in claim 1 includes a refrigerant circulation circuit having a compressor and a radiator, capability control means for controlling the capability of the refrigerant circulation circuit, and a water flow path for exchanging heat with the radiator. A heat exchanger provided, a water supply pipe for supplying water to the water flow path, a hot water supply circuit connected to pass water from the water flow path to a hot water supply terminal, and hot water heated by the heat exchanger are stored. A hot water tank,Hot water detection means for detecting a hot water supply state to the hot water supply terminal, a storage device in which operating conditions of the refrigerant circulation circuit are set in advance based on at least the hot water state, and the hot water state detected by the hot water detection means based on the operating conditions. Heat pump water heater having control means for operating refrigerant circulation circuitAnd
[0011]
  According to the present invention, the operating conditions are set so that a stable hot water temperature can be obtained with respect to a wide range of hot water supply loads (hot water conditions), thereby improving convenience and improving durability of the device.Further, when the operation is started, the operation can be started with the refrigerant circulation circuit having the optimum heating capacity corresponding to the detected hot water flow rate. Even when the hot water supply load, for example, the hot water flow rate suddenly changes during operation, the operation of the refrigerant circuit is switched to the optimum heating capacity for the sudden hot water flow rate. To recover.
[0012]
  The heat pump hot water supply apparatus of the invention according to claim 2 is, in particular,A storage device in which the operating conditions of the refrigerant circulation circuit are set in advance from the hot water state, the outside air temperature, and the inlet / outlet water temperature of the heat exchanger, and the control means is based on the hot water state, the detected outside air temperature, the incoming water temperature, and the outgoing water temperature. The heat pump water heater according to claim 1, wherein the refrigerant circulation circuit is operated based on the operating conditions.It is.
[0013]
  According to this invention, when the operation is started, the operation can be started with the refrigerant circulation circuit having the optimum heating capacity corresponding to the detected hot water flow rate. Even when the hot water supply load, for example, the hot water flow rate suddenly changes during operation, the operation of the refrigerant circuit is switched to the optimum heating capacity for the sudden hot water flow rate. To recover.
[0014]
  In the heat pump hot water supply apparatus according to the third aspect of the invention, in particular, the control means starts the operation of the refrigerant circulation circuit when the hot water continues for a predetermined time.
[0015]
  According to the present invention, when the hot water is frequently turned on and off in a short time from the faucet, and when it is repeated, the hot water is discharged from the hot water storage tank without operating the compressor to cope with the hot water supply load. When the hot water continues for a predetermined time, the compressor is operated, and the hot water heated in the refrigerant circulation circuit is passed to the hot water supply terminal. Therefore, since the frequent ON-OFF of the compressor is reduced, the hot water supply temperature is stabilized and high efficiency and durability are improved.
[0016]
  In the heat pump hot water supply apparatus according to the fourth aspect of the invention, in particular, the control means controls the operation of the refrigerant circulation circuit based on the time when the hot water is detected.
[0017]
  According to the present invention, when hot water is detected during the daytime in summer or when the power load is large, the hot water is discharged from the hot water storage tank to cope with the hot water supply load. Further, even when hot water is detected at about 10:00 pm immediately before the midnight time zone, priority is given to the hot water from the hot water tank, and the water in the hot water tank can be boiled up at midnight time zone. Accordingly, it is possible not only to cope with power load leveling and power peak cut, but also to delay the operation in the midnight time zone that is inexpensive and has a relatively large power supply.
[0018]
  Also, there is a certain degree of relationship between the hot water supply usage and the hot spring time. For example, it is a washroom around 6 am-8am, hot water in the kitchen, a kitchen around 12:00 in the daytime, a kitchen, bath, and washroom at 6 pm-11am in the evening. Used. Accordingly, the use is determined from the time, the hot water flow rate and the hot water supply load suitable for the use are assumed, and the operation condition corresponding to the load is set for operation so that a stable hot water temperature can be obtained.
[0019]
  In addition, the hot water flow rate, the hot water temperature, and the hot water time for each time are learned in units of one week, and operation according to the time becomes possible, so that a stable hot water temperature can be obtained.
[0020]
  In the heat pump hot water supply apparatus according to the fifth aspect of the invention, in particular, the control means starts the operation of the refrigerant circulation circuit when the outgoing hot water flow rate is higher than a predetermined flow rate.
[0021]
  According to the present invention, for a hot water supply load with a large flow rate for a relatively long time, such as a hot water filling in a bath or a shower, the refrigerant circulation is immediately determined by determining the use of the hot water supply load with a simple detection means such as a hot water flow rate sensor. Circuit operation can begin. Therefore, the hot water supply temperature can be stabilized at a low cost and the continuous operation of the refrigerant circulation circuit can be increased so that it can be used efficiently.
[0022]
  In the heat pump hot water supply apparatus according to the sixth aspect of the invention, in particular, the control means does not operate the refrigerant circulation circuit or stops the operation when the outgoing hot water flow rate is less than a predetermined flow rate.
[0023]
  According to this invention, even when washing dishes in the kitchen or when supplying hot water to the wash surface, etc., when the high pressure of the refrigerant circulation circuit does not rise abnormally, it is less than the predetermined flow rate or less than the predetermined flow rate. When a change occurs in the faucet, the refrigerant circulation circuit is not operated, or the operation is stopped to prevent an abnormal increase in high pressure in the refrigerant circulation circuit, thereby improving durability.
[0024]
  The heat pump water heater of the invention described in claim 7 is provided with priority control means that prioritizes operation capacity control of the refrigerant circulation circuit when the hot water flow rate suddenly changes during operation of the refrigerant circulation circuit.
[0025]
  According to this invention, when the hot water flow rate from the hot water supply terminal changes suddenly, or when the hot water flow rate changes suddenly in the kitchen during showering, the control of controlling the operation capacity of the refrigerant circulation circuit based on the hot water supply temperature change Priority is given to control for controlling the operating capacity of the refrigerant circulation circuit by detecting that the hot water flow rate has suddenly changed from the hot water flow, thereby stabilizing the hot water supply temperature or preventing abnormal rise in refrigerant pressure in the refrigerant circulation circuit. Improve durability.
[0026]
  The heat pump hot water supply apparatus according to an eighth aspect of the present invention is the refrigerant circulation circuit according to any one of the first to seventh aspects, wherein the refrigerant circulation circuit is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure. It is the structure which heats the flowing water of the water flow path of a heat exchanger with the pressurized refrigerant | coolant.
[0027]
  And since the refrigerant flowing through the heat radiator of the heat exchanger is pressurized to a critical pressure or higher by the compressor, it can condense even if the temperature drops due to heat deprived by the flowing water in the water flow path of the heat exchanger. Absent. Therefore, it becomes easy to form a temperature difference between the refrigerant and water in the entire heat exchanger, high-temperature hot water can be obtained, and heat exchange efficiency can be increased.
[0028]
【Example】
  Embodiments of the present invention will be described below with reference to the drawings. In the conventional example and each example, parts having the same configuration and the same operation are denoted by the same reference numerals, and detailed description thereof is omitted.
[0029]
  Example 1
  FIG. 1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention. In FIG. 1, reference numeral 5 denotes a refrigerant circulation circuit, to which a compressor 1, a radiator 2, a decompression means 3, and a heat absorber 4 are connected to constitute a closed circuit. The refrigerant circuit 5 uses, for example, carbon dioxide (CO2) as a refrigerant, and uses a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant.
[0030]
  Reference numeral 6 denotes a heat exchanger provided with a water flow path 7 for exchanging heat with the refrigerant flow path of the radiator 2. A hot water storage tank 12 stores hot water heated by the heat exchanger 6 from above. Reference numeral 13 denotes a flow rate control means for controlling the flow rate of the water flow path 7. 14 is a hot water temperature control means, which controls the flow rate control means 13 so that the detection signal of the water temperature sensor 10 at the outlet of the heat exchanger 6 becomes a predetermined signal. A circulation pump 15 passes water in the lower portion of the water supply pipe 8 or the hot water tank 12 to the heat exchanger 6. Reference numeral 16 denotes capacity control means, which controls the drive frequency of an inverter (not shown) of the compressor 1 to control the capacity of the refrigerant circulation circuit 5. Further, a water supply pipe 8 that supplies tap water to the water flow path 7 and a hot water supply circuit 9 that is connected so as to pass water from the water flow path 7 to the hot water supply terminal are connected. Reference numeral 17 denotes a hot water discharge circuit for passing hot water in the upper part of the hot water storage tank 12 to the hot water supply circuit 9. Reference numeral 18 denotes temperature adjusting means for mixing the hot water in the hot water storage tank 12 and the hot water in the hot water supply circuit 9 and controlling the temperature to a predetermined temperature. 19 is a hot water detection means for detecting the state of hot water to the hot water supply terminal. For example, the flow rate of water flowing to the hot water supply terminal is detected, or the water pressure of the water supply pipe 8, the water flow path 7, the hot water supply circuit 9, etc. is detected. Reference numeral 20 denotes a control means that detects the condition of the hot water from the hot water detection means 19 and instructs the capacity control means 16 to adjust the operating conditions of the refrigerant circulation circuit 5 such as capacity adjustment of the refrigerant circulation circuit 5, operation ON, and operation OFF. Set and drive. Reference numeral 21 denotes hot water mixing means. When hot water flows through the hot water supply circuit 9 such as when hot water is discharged from the hot water storage tank 12, the hot water is mixed with city water in the water supply pipe 8, mixed to a predetermined temperature, and passed to the hot water supply terminal. To do.
[0031]
  About the heat pump hot-water supply apparatus comprised as mentioned above, the operation | movement and an effect | action are demonstrated below. First, a hot water storage operation in which hot water is stored in a hot water tank will be described. The high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the radiator 2 and heats the water flowing from the lower part of the hot water tank 12 to the water flow path 7 via the circulation pump 15. At that time, the flow rate control means 13 controls the flow rate through the water flow path 7 so that the outlet temperature of the heat exchanger 6 becomes a predetermined temperature. Then, the water heated to a predetermined temperature flows from the hot water supply circuit 9 through the temperature adjusting means 18 into the upper part of the hot water tank 12 and is stored therein. On the other hand, the refrigerant radiated by the radiator 2 is decompressed by the decompression means 3 and flows into the heat absorber 4, absorbs atmospheric heat, evaporates, and returns to the compressor 1. Hot water is stored from the upper part of the hot water tank 12 while repeating this cycle.
[0032]
  Next, the case where the faucet of the hot water supply terminal is opened and hot water heated in the refrigerant circulation circuit 5 and hot water in the hot water storage tank 12 are mixed and discharged will be described. When the faucet is opened, tap water flows from the water supply pipe to the lower part of the hot water tank 12, and hot water is discharged from the upper part of the hot water tank 12. Further, the hot water detection means 19 detects the hot water and the control means 20 starts the operation of the refrigerant circulation circuit 5. Then, based on the detected tapping flow rate, the control means 20 performs capacity control so that the water heated by the heat exchanger 6 has a predetermined temperature. The heated hot water flows from the outlet of the heat exchanger 6 to the hot water supply circuit 9 and is mixed with hot water discharged from the upper part of the hot water storage tank 12 to reach a predetermined temperature and is discharged from the hot water supply terminal. At that time, although the hot water temperature at the outlet of the heat exchanger 6 is low immediately after the start of operation, it is mixed with the hot water in the hot water storage tank 12, mixed at a predetermined temperature by the temperature adjusting means 18, and passed to the hot water supply terminal. And as time passes, the outlet hot water temperature of the heat exchanger 6 gradually increases and reaches a predetermined temperature. Meanwhile, the amount of hot water discharged from the upper part of the hot water storage tank 12 gradually decreases as the hot water temperature at the outlet of the heat exchanger 6 rises. When the hot water flow rate from the hot water supply terminal is higher than the flow rate at the maximum capacity that can be heated by the refrigerant circulation circuit, the hot water supply load is satisfied by the amount of water heated by the refrigerant circulation circuit and the amount of hot water discharged from the hot water storage tank. In addition, when the hot water flow rate from the hot water supply terminal is smaller than the flow rate at the maximum capacity that can be heated by the refrigerant circuit, the hot water supply load is satisfied only by the amount of water heated by the refrigerant circuit. Accordingly, a stable hot water temperature can be obtained regardless of the hot water supply load.
[0033]
  The same effect can be obtained by controlling the flow rate using a variable flow rate pump (DC pump) instead of the flow rate control means 13 and the circulation pump 15.
[0034]
  Further, the same effect can be obtained by detecting the hot water state as a hot water state by any one of the water pressure of the water supply pipe, water flow path, and hot water supply circuit in addition to the hot water flow rate. Since the decrease in water pressure is large when the tapping flow rate is large, and the decrease in water pressure is small when the tapping flow rate is small, the same effect can be obtained by determining the tapping flow rate based on the water pressure and controlling the capacity.
[0035]
  Moreover, as shown in FIG. 2, the same effect can be obtained by connecting the water supply pipe to the hot water storage tank and passing water from the hot water storage tank to the water flow path.
[0036]
  Further, as shown in FIG. 2, during hot water storage operation, hot water is stored by passing water from the water flow path to the upper portion of the hot water tank through the on-off valve 22 as indicated by the solid arrow direction in FIG. When the hot water is discharged from the refrigerant circulation circuit to the hot water supply terminal, the same effect can be obtained by closing the on-off valve 22 and passing water from the water circuit to the hot water supply circuit as indicated by the direction of the broken arrow in FIG. Further, in this case, there is an effect that hot water storage operation and hot water discharge from the hot water storage tank can be realized simultaneously.
[0037]
  In addition, the heat pump cycle is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure. However, the heat pump cycle may be of a general critical pressure or lower. In this case, chlorofluorocarbon gas, ammonia, hydrocarbon, or the like may be used as the refrigerant.
[0038]
  (Example 2)
  FIG. 3 is a configuration diagram of a heat pump hot water supply apparatus in Embodiment 2 of the present invention. In addition, the thing of the same structure as the hot water supply apparatus of Example 1 gives the same code | symbol, and abbreviate | omits description. In FIG. 3, reference numeral 23 denotes a storage device, which sets a compressor driving frequency set in advance from the hot water state, the outside air temperature, and the inlet / outlet water temperature of the heat exchanger when setting operating conditions. Reference numeral 24 denotes a control means, which detects the outside air temperature when the hot water is detected by the outside air temperature sensor 25, detects the water temperature flowing into the heat exchanger 6 by the incoming water temperature sensor (not shown), and flows out from the heat exchanger 6. The water temperature to be detected is detected by a water temperature sensor (not shown), and the refrigerant circulation circuit is operated at the compressor drive frequency based on the storage device 23 from the detected outside air temperature, water temperature, and water temperature. For example, the hot water supply load is calculated from the hot water flow rate, the water temperature flowing into the heat exchanger 6 and the water temperature flowing out of the heat exchanger 6, and the capacity of the refrigerant circulation circuit corresponding to the hot water load is set. Set the compressor drive frequency corresponding to the load. When the hot water supply load is larger than the maximum capacity of the refrigerant circulation circuit, the compressor driving frequency is set to the maximum and the operation is performed.
[0039]
  The operation and action of the above configuration will be described. According to the second embodiment, even if the driving frequency of the compressor 1 is the same in winter and summer, the ability to absorb heat from atmospheric heat is reduced in winter. Therefore, when the same amount of hot water is used in winter and summer and the hot water temperature of the heat exchanger is the same, the compressor is operated at a higher frequency in the winter than in the summer. Conversely, in summer, the compressor drive frequency is reduced. Further, when the discharged hot water flow rate is small, the compressor driving frequency is decreased, and when the discharged hot water flow rate is large, the compressor driving frequency is increased. Therefore, since the operation is started with high capacity even in winter, the hot water temperature at the outlet of the heat exchanger reaches a predetermined temperature in a short time. Therefore, the hot water temperature corresponding to the hot water supply load can be quickly discharged from a large flow rate to a small hot water flow throughout the year from winter to summer.
[0040]
  (Example 3)
  FIG. 4 is a flowchart showing the control operation of the heat pump water heater in Embodiment 3 of the present invention. In addition, the thing of the same structure as the hot-water supply apparatus of Example 1 and Example 2 gives the same code | symbol, and abbreviate | omits description. In FIG. 4, reference numeral 25 denotes a timer, which measures a hot water time after detecting hot water. Reference numeral 26 denotes control means, which starts the operation of the refrigerant circulation circuit when the hot water continues for a predetermined time.
[0041]
  The operation and action of the above configuration will be described. The timer measures the time when the hot water is detected. And since a control means does not command operation start of a refrigerant circulation circuit until a predetermined time passes, a hot water in a hot water storage tank is discharged from a hot water supply terminal to cope with a hot water supply load. Next, when the timer reaches a predetermined time, the control means commands the operation start of the refrigerant circulation circuit. The hot water heated in the refrigerant circulation circuit is passed through the hot water supply circuit, mixed with the hot water in the hot water storage tank, and discharged from the hot water supply terminal. Therefore, when the hot water is frequently turned on and off repeatedly, such as in the wash basin or kitchen, the hot water is discharged from the hot water tank, and the refrigerant circulation circuit is operated in the case of a hot water supply load for continuous hot water such as filling the bathtub or showering for a predetermined time. Take out hot water from the hot water supply terminal. Therefore, since frequent ON-OFF of a compressor can be reduced, durability improves.
[0042]
  Also, there is a certain degree of relationship between the hot water supply usage and the hot spring time. For example, it is a washroom around 6 am-8am, hot water in the kitchen, a kitchen around 12:00 in the daytime, a kitchen, bath, and washroom at 6 pm-11am in the evening. Used. And the discharge water flow rate of a kitchen and a wash surface is 3-5 L / min and a small flow rate, and the hot water supply flow rate of the hot water filling to a shower and a bath is 10-20 L / min and a large flow rate. Therefore, when the time when the hot water is detected is morning or noon, the operation is performed with a setting assuming a small flow rate of hot water supply load. Therefore, the hot water supply temperature is stabilized. Accordingly, the use is judged from the time of the hot water supply, and the hot water flow rate and hot water supply load suitable for the use are assumed, and the operation condition corresponding to the load is set and the operation is performed, so that a stable hot water temperature can be obtained.
[0043]
  Also, by learning the hot water flow rate, hot water temperature, and hot water time for each week, for example, in units of one week, and having a learning function, it is possible to operate from the time of hot water under the operating conditions corresponding to the hot water supply load. A stable tapping temperature can be obtained.
[0044]
  In addition, by setting up a hot water storage operation in which hot water is stored in the hot water tank in the evening when the time of filling the shower or bath is approaching, the fear of running out of hot water or a reduction in the capacity of the hot water tank can be realized.
[0045]
  (Example 4)
  FIG. 5 is a flowchart showing the control operation of the heat pump water heater in Embodiment 4 of the present invention. In addition, the thing of the same structure as the hot-water supply apparatus of Example 1- Example 3 gives the same code | symbol, and abbreviate | omits description. In FIG. 5, 27 is a clock, and 28 is a control means. The time when the hot water is detected is detected from the clock 28, and the refrigerant circulation circuit is not operated when the time of the hot water is in a preset time zone. And it controls so that a refrigerant | coolant circulation circuit may be drive | operated in times other than the preset time slot | zone.
[0046]
  The operation and action of the above configuration will be described. When hot water is detected during the daytime in summer or when the power load is high, the hot water in the hot water storage tank is discharged to respond to the hot water supply load. In addition, when hot water is detected at about 10:00 pm immediately before the midnight time zone, hot water storage operation is performed in which the hot water is discharged from the hot water tank and the hot water is heated when the midnight time zone is reached in response to the hot water supply load. Therefore, the hot water storage operation is performed in the midnight time zone corresponding to the leveling of the electric power load and the electric power peak cut and at a low price and having a relatively large power supply.
[0047]
  In addition, when equipment is installed in an apartment house, it is possible to effectively use the power receiving equipment by reducing the inrush current by delaying the operation start time for each home or for each zone of a certain number of units.
[0048]
  (Example 5)
  FIG. 6 is a flowchart showing the control operation of the heat pump water heater in Embodiment 5 of the present invention. In addition, the thing of the same structure as the hot-water supply apparatus of Example 1-4 is provided with the same code | symbol, and abbreviate | omits description. In FIG. 6, 29 is a hot water flow rate sensor and measures the hot water flow rate. Reference numeral 30 denotes control means, which starts the operation of the refrigerant circulation circuit when the hot water flow rate detected by the hot water flow rate sensor 29 is higher than a predetermined flow rate.
[0049]
  The operation and action of the above configuration will be described. According to the present invention, when hot water is supplied to a bath or when a hot water is supplied to a shower, it is used for a relatively long time and has a large flow rate. With respect to such a hot water supply load, the hot water flow rate sensor 29 detects that the hot water has been discharged at a flow rate higher than a predetermined flow rate, and the control means 30 starts the operation of the refrigerant circulation circuit to supply the heated hot water to the hot water supply circuit. Pass water and leave the hot water supply terminal. Therefore, the operation of the refrigerant circulation circuit can be started immediately after determining the use of the hot water supply load at low cost using a simple detection means such as a hot water flow rate sensor. Therefore, the hot water supply temperature can be stabilized and the refrigerant circulation circuit can be continuously operated at low cost, so that high efficiency operation can be realized.
[0050]
  (Example 6)
  FIG. 7 is a flowchart showing the control operation of the heat pump water heater in Embodiment 6 of the present invention. In addition, the thing of the same structure as the hot-water supply apparatus of Examples 1-5 gives the same code | symbol, and abbreviate | omits description. In FIG. 7, 31 is a control means, and when the hot water flow rate of the hot water flow rate sensor 29 is less than a predetermined flow rate, the refrigerant circulation circuit is not operated or the operation is stopped.
[0051]
  The operation and action of the above configuration will be described. According to this invention, when washing dishes in the kitchen or hot water supply to the wash surface, etc., the hot water flow rate sensor 29 detects the hot water flow rate, and when the hot water flow rate is lower than the predetermined flow rate, the control means 31 operates the refrigerant circulation circuit. Do not start. Then, the hot water in the hot water tank is discharged from the hot water supply terminal. Further, when the faucet of the terminal is squeezed during the hot water and the hot water flow rate becomes lower than the predetermined flow rate, the control means 31 detects that the hot water flow rate is lower than the predetermined flow rate and stops the operation of the refrigerant circuit. And it respond | corresponds to hot water supply load only with the hot water of a hot water tank. Therefore, it becomes possible to prevent an abnormal increase in high-pressure in the refrigerant circuit due to a reduction in the heat radiation amount of the radiator, and durability is improved.
[0052]
  (Example 7)
  FIG. 8 is a flowchart showing the control operation of the heat pump water heater in Embodiment 7 of the present invention. In addition, the same structure as the hot water supply apparatus of Examples 1-6 gives the same code | symbol, and abbreviate | omits description. In FIG. 8, 32 is a priority control means, and when the hot water flow rate suddenly changes during operation of the refrigerant circulation circuit, the compressor drive frequency is reset from the storage device 23 based on the suddenly changed hot water flow rate, and the refrigerant circulation circuit The driving ability control is prioritized over the hot water temperature control means 14.
[0053]
  The operation and action of the above configuration will be described. First, a case where the hot water flow rate is suddenly changed from a case where the hot water flow rate is small, for example, a case where the kitchen faucet is opened during the shower and the hot water is simultaneously discharged to increase the hot water flow rate will be described. A refrigerant circulation circuit is provided so that the hot water temperature at the outlet of the heat exchanger 6 becomes a predetermined temperature at the time of showering hot water. And since the amount of water which flows through the heat exchanger 6 will increase if it is tapped in the kitchen, the hot water temperature at the outlet of the heat exchanger 6 will decrease. And the flow control means 13 restrict | squeezes a flow volume so that the fall of warm water temperature may be detected and warm water temperature may be made high. Therefore, the amount of hot water discharged from the hot water storage tank increases and the amount of hot water remaining in the hot water storage decreases. Alternatively, a control for increasing the capacity of the refrigerant circulation circuit by detecting a decrease in the hot water temperature at the outlet of the heat exchanger 6 is performed. However, since the capacity increase control of the refrigerant circulation circuit is performed while detecting a decrease in the hot water temperature, it takes time for the refrigerant circulation circuit to reach a predetermined capacity. Meanwhile, since the shower temperature is in a lowered state, convenience is poor.
[0054]
  Next, a case will be described in which the tap water flow rate suddenly decreases when the tap water flow rate suddenly decreases, for example, when the faucet of the kitchen is closed during simultaneous shower and kitchen hot water. Since the amount of water flowing through the heat exchanger 6 decreases when the flow rate from the large flow rate in the simultaneous hot water is reduced, the outlet water temperature of the heat exchanger 6 rises rapidly and the heat dissipation amount decreases in the radiator 2 so that the inside of the refrigerant circulation circuit. The refrigerant pressure on the high pressure side suddenly rises abnormally. For this reason, hot water is discharged from the shower terminal and the durability of the device becomes a problem. However, according to the seventh embodiment, it is detected that the hot water flow rate has changed suddenly, and the compressor driving frequency is reset from the storage device 23 based on the detected hot water flow rate to control the operating capacity of the refrigerant circulation circuit with hot water temperature. Control is given priority over the means 14. Therefore, the change in the outlet temperature of the heat exchanger 6 is small, and the pressure in the refrigerant circulation circuit does not rise abnormally while recovering to a predetermined temperature in a short time. Therefore, the hot water supply temperature is stabilized and the durability of the device is improved.
[0055]
【The invention's effect】
  As described above, according to the present invention, it is possible to provide a heat pump hot water supply apparatus having high controllability and high durability of the hot water temperature for a wide range of hot water supply loads.Further, when the operation is started, the operation can be started with the refrigerant circulation circuit having the optimum heating capacity corresponding to the detected hot water flow rate. Even when the hot water supply load, for example, the hot water flow rate suddenly changes during operation, the operation of the refrigerant circulation circuit is switched to the optimum heating capacity for the sudden hot water flow rate, so that the hot water temperature does not fluctuate little and the predetermined temperature is reached in a short time. Times Recover.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump water heater in Embodiment 1 of the present invention.
FIG. 2 is a configuration diagram of a heat pump water heater illustrating another embodiment of the first embodiment of the present invention.
FIG. 3 is a configuration diagram of a heat pump water heater in Embodiment 2 of the present invention.
FIG. 4 is a flowchart showing a control operation of the heat pump water heater in Embodiment 3 of the present invention.
FIG. 5 is a flowchart showing a control operation of the heat pump water heater in Embodiment 4 of the present invention.
FIG. 6 is a flowchart showing a control operation of the heat pump water heater in Embodiment 5 of the present invention.
FIG. 7 is a flowchart showing the control operation of the heat pump water heater in Embodiment 6 of the present invention.
FIG. 8 is a flowchart showing a control operation of the heat pump water heater in Embodiment 7 of the present invention.
FIG. 9 is a block diagram of a conventional heat pump water heater
[Explanation of symbols]
  1 Compressor
  2 radiators
  3 Pressure reducing means
  4 heat absorber
  5 Refrigerant circuit
  6 Heat exchanger
  7 Water channel
  8 Water supply pipe
  9 Hot water supply circuit
  10 Temperature sensor
  12 Hot water tank
  13 Flow control means
  14 Hot water temperature control means
  16 Capacity control means
  17 Hot spring circuit
  18 Temperature adjustment means
  19 Hot water detection means
  20, 24, 26, 28, 30, 31 Control means
  21 Hot water mixing means
  22 On-off valve
  23 Storage device
  25 Outside air temperature sensor
  26 Timer
  27 clock
  29 Hot water flow sensor
  32 Priority control means

Claims (8)

圧縮機と放熱器を有する冷媒循環回路と、前記冷媒循環回路の能力を制御する能力制御手段と、前記放熱器と熱交換を行う水流路を備えた熱交換器と、前記水流路に水を供給する給水管と、前記水流路から給湯端末へと通水するように接続する給湯回路と、前記熱交換器で加熱された湯を貯湯する貯湯槽と、給湯端末への出湯状態を検出する出湯検出手段と、少なくとも出湯状態に基づき冷媒循環回路の運転条件が予め設定された記憶装置と、前記出湯検出手段により検出した出湯状態から前記運転条件に基づき前記冷媒循環回路を運転する制御手段とを有するヒートポンプ給湯装置。 A refrigerant circuit having a compressor and a radiator; capacity control means for controlling the capacity of the refrigerant circuit; a heat exchanger having a water channel for exchanging heat with the radiator; and water for the water channel. A water supply pipe to be supplied, a hot water supply circuit connected so as to pass water from the water flow path to the hot water supply terminal, a hot water storage tank for storing hot water heated by the heat exchanger, and a hot water supply state to the hot water supply terminal are detected. Hot water detection means, storage device in which operating conditions of the refrigerant circulation circuit are set in advance based on at least a hot water state, and control means for operating the refrigerant circulation circuit based on the operating conditions from the hot water state detected by the hot water detection means A heat pump hot water supply device having 出湯状態と外気温度と前記熱交換器の入出口水温から冷媒循環回路の運転条件を予め設定された記憶装置とを備え、制御手段は、出湯状態と検出した外気温度と入水温度と出水温度から前記運転条件に基づき前記冷媒循環回路を運転することを特徴とする請求項1記載のヒートポンプ給湯装置。A storage device in which the operating conditions of the refrigerant circulation circuit are set in advance from the hot water state, the outside air temperature, and the inlet / outlet water temperature of the heat exchanger, and the control means is based on the hot water state, the detected outside air temperature, the incoming water temperature and the outgoing water temperature The heat pump hot-water supply apparatus according to claim 1, wherein the refrigerant circulation circuit is operated based on the operation conditions. 制御手段は、給湯端末への出湯が所定時間継続した場合に冷媒循環回路の運転を開始する請求項1または2記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to claim 1 or 2, wherein the control means starts the operation of the refrigerant circuit when the hot water supply to the hot water supply terminal continues for a predetermined time. 制御手段は、給湯端末への出湯を検出した時刻に基づき冷媒循環回路の運転を制御する請求項1〜3のいずれか1項に記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 3, wherein the control means controls the operation of the refrigerant circulation circuit based on the time when the hot water discharged to the hot water supply terminal is detected. 制御手段は、給湯端末への出湯流量が所定流量より多い場合に冷媒循環回路の運転を開始する請求項1〜4のいずれか1項に記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 4, wherein the control means starts operation of the refrigerant circulation circuit when a hot water flow rate to the hot water supply terminal is higher than a predetermined flow rate. 制御手段は、給湯端末への出湯流量が所定流量より少ない場合に冷媒循環回路の運転をおこなわない、あるいは運転を停止する請求項1〜5のいずれか1項に記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 5, wherein the control means does not perform the operation of the refrigerant circulation circuit or stops the operation when the discharged hot water flow rate to the hot water supply terminal is smaller than a predetermined flow rate. 冷媒循環回路の運転中に出湯流量が急変した時に冷媒循環回路の能力制御を湯温制御手段より優先する優先制御手段を備えた請求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。  The heat pump hot water supply apparatus according to any one of claims 1 to 6, further comprising priority control means for prioritizing the capacity control of the refrigerant circulation circuit over the hot water temperature control means when the hot water flow rate suddenly changes during operation of the refrigerant circulation circuit. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により熱交換器の水流路の流水を加熱する請求項1〜7のいずれか1項に記載のヒートポンプ給湯装置。  The refrigerant circulation circuit is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and the flowing water in the water flow path of the heat exchanger is heated by the refrigerant whose pressure is increased to the critical pressure or higher. The heat pump hot-water supply apparatus of item 1.
JP2003140121A 2003-05-19 2003-05-19 Heat pump water heater Expired - Fee Related JP3642334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003140121A JP3642334B2 (en) 2003-05-19 2003-05-19 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003140121A JP3642334B2 (en) 2003-05-19 2003-05-19 Heat pump water heater

Publications (3)

Publication Number Publication Date
JP2004340532A JP2004340532A (en) 2004-12-02
JP3642334B2 true JP3642334B2 (en) 2005-04-27
JP2004340532A5 JP2004340532A5 (en) 2005-06-23

Family

ID=33528925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003140121A Expired - Fee Related JP3642334B2 (en) 2003-05-19 2003-05-19 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3642334B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4768394B2 (en) * 2005-10-24 2011-09-07 東京瓦斯株式会社 Water heater
JP4839141B2 (en) * 2006-06-26 2011-12-21 日立アプライアンス株式会社 Heat pump water heater
JP5034367B2 (en) * 2006-08-10 2012-09-26 パナソニック株式会社 Heat pump water heater
JP2009281674A (en) * 2008-05-23 2009-12-03 Mitsubishi Electric Corp Storage water heater
JP5127595B2 (en) * 2008-06-26 2013-01-23 中国電力株式会社 Hot water supply system, distribution board
US20130312443A1 (en) 2011-02-14 2013-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle control method
JP6304996B2 (en) * 2013-10-03 2018-04-04 三菱電機株式会社 Water heater

Also Published As

Publication number Publication date
JP2004340532A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4453662B2 (en) Heat pump type water heater
JP3642334B2 (en) Heat pump water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP4726573B2 (en) Heat pump hot water floor heater
JP2004347148A (en) Heat pump hot water supply device
JP3887781B2 (en) Heat pump water heater
JP3937715B2 (en) Heat pump water heater
JP2004340535A (en) Heat pump water heater
JP3800862B2 (en) Heat pump water heater
JP2009068804A (en) Hot water supply system
JP2009052798A (en) Storage water heater with bath hot water supply function
JP2005156156A (en) Multifunctional water heater
JP3864981B2 (en) Heat pump water heater
JP4389842B2 (en) Water heater
JP4016870B2 (en) Heat pump water heater
JP2005098530A (en) Heat pump type water heater
JP4033184B2 (en) Multi-function water heater
JP3945361B2 (en) Heat pump water heater
JP3849689B2 (en) Heat pump water heater
JP2004232912A (en) Heat pump water heater
JP2005147557A (en) Hot water supply apparatus
JP3975874B2 (en) Heat pump water heater
JP3695461B2 (en) Heat pump water heater
JP3811688B2 (en) Heat pump water heater
JP2004069195A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041007

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041007

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R151 Written notification of patent or utility model registration

Ref document number: 3642334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080204

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090204

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100204

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110204

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120204

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130204

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees