JP2004347148A - Heat pump hot water supply device - Google Patents

Heat pump hot water supply device Download PDF

Info

Publication number
JP2004347148A
JP2004347148A JP2003141711A JP2003141711A JP2004347148A JP 2004347148 A JP2004347148 A JP 2004347148A JP 2003141711 A JP2003141711 A JP 2003141711A JP 2003141711 A JP2003141711 A JP 2003141711A JP 2004347148 A JP2004347148 A JP 2004347148A
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
compressor
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003141711A
Other languages
Japanese (ja)
Inventor
Keijiro Kunimoto
啓次郎 國本
Takeji Watanabe
竹司 渡辺
Masahiro Ohama
昌宏 尾浜
Yoshitsugu Nishiyama
吉継 西山
Koji Oka
浩二 岡
Tetsuei Kuramoto
哲英 倉本
Seiichi Yasuki
誠一 安木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003141711A priority Critical patent/JP2004347148A/en
Publication of JP2004347148A publication Critical patent/JP2004347148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump hot water supply device having improved durability and operating efficiency by optimally controlling the operating frequency of a compressor at all times. <P>SOLUTION: In the heat pump hot water supply device, the operating frequency of the compressor 10 is controlled in accordance with at least one of values for an outside temperature, a boiling-up set temperature of a hot water supply circuit, an inlet temperature of a radiator 11 in the hot water supply circuit 17, an outlet temperature of the radiator 11 in the hot water supply circuit 17, and the temperature of refrigerant discharged from the compressor. Thus, the optimum operating condition is maintained at all times even when the operating conditions are changed, resulting in highly efficient, long lasting and safe operation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯装置に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯装置としては、特許文献1に記載されているようなヒートポンプ給湯装置が提案されていた。このヒートポンプ給湯装置は図3に示すように、圧縮機1と放熱器2と減圧手段3と吸熱器4とを含む冷媒循環回路5と、貯湯槽6と放熱器2と流量調整手段7とを有する給湯水回路8と、外気温度と、この外気温度に対して設定される貯湯槽6に貯留する温水の目標沸き上げ温度とに従って、圧縮機1の運転周波数を制御する制御装置を備えたもので、季節による外気温度の変化や湯の使用量の変化に対応して、沸き上げの無駄の少ない運転を可能にするようにしていた。
【0003】
しかし、この構成では給湯水回路8の放熱器4の入口温度が高くなった場合に、冷媒循環回路5の冷媒圧力が上昇したり、沸き上げ能力が変化したり、さらに運転効率が悪化するのに対応できない。この放熱器4の入口温度は通常貯湯槽6に流入する水道水温度であるが、貯湯槽6の沸き上げが終了直前になると沸き上げ温度と水道水温度の中間温度の湯が放熱器4に流入して入口温度を急上昇させたり、貯湯槽6内の湯全体が冷えて、中間温度の湯となって貯湯槽6の沸き上げ初期から放熱器4の入口に流入する場合もある。
【0004】
また、給湯水回路8の放熱器4の出口温度が、上記の放熱器4の入口温度の急上昇などにより急変した場合に対応できない。そのために放熱器4内で沸騰が起こったり、冷媒圧力が上昇して機器の寿命を低下させる可能性があった。
【0005】
さらに、圧縮機1からの冷媒の吐出温度が急上昇するような場合に対応していないので、冷媒圧力が上昇して機器の寿命を低下させる可能性があった。
【0006】
【特許文献1】
特開2003−28538号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記従来の課題を解決するもので、圧縮機の運転周波数を常に最適に制御し、耐久性が高く運転効率が良いヒートポンプ給湯装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は上記課題を解決するために、本発明のヒートポンプ給湯装置は、圧縮機の運転周波数を、外気温度と給湯水回路の沸き上げ設定温度と給湯水回路の放熱器の入口温度と給湯水回路の放熱器の出口温度と圧縮機からの冷媒の吐出温度の少なくとも1つの値に応じて制御するものである。
【0009】
上記発明によれば、運転条件が変化しても常に最適な運転状態が維持でき、高効率で高寿命で安全な運転ができる。
【0010】
【発明の実施の形態】
請求項1に記載の発明のヒートポンプ給湯装置は、圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、貯湯槽と前記放熱器と流量調整手段とを有する給湯水回路と、前記圧縮機の運転周波数を制御する周波数制御手段と、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度と給湯水回路の放熱器の出口温度と前記圧縮機からの冷媒の吐出温度のうち少なくとも1つの温度に応じて前記圧縮機の運転周波数を制御する制御手段を有するものである。
【0011】
この発明によれば、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度と給湯水回路の放熱器の出口温度と前記圧縮機からの冷媒の吐出温度との少なくとも1つの値が変化しても、圧縮機の最適な運転周波数となるように制御するので適正な運転状態が維持できる。
【0012】
請求項2に記載の発明のヒートポンプ給湯装置は、請求項1に記載の制御手段が、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度の各条件の組合わせにおける、圧縮機の周波数の設定値を予め記憶した記憶手段を備え、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度の各値より前記記憶手段から設定値を読み出して制御するものである。
【0013】
この発明によれば、外気温度や沸き上げ設定温度や放熱器の入口温度が変化しても、記憶手段にある適正の周波数に設定されるので、常に適正な運転状態を維持できる。
【0014】
請求項3に記載の発明のヒートポンプ給湯装置は、請求項1または2における制御手段が、給湯水回路の放熱器の出口温度が所定の温度を超えた場合に圧縮機の運転周波数を低下させるようにしたものである。
【0015】
この発明によれば、運転始動時のオーバーシュートや、給湯水回路の放熱器の入口温度の急上昇時や、さらに機器の故障などにより給湯水回路の放熱器の出口温度が異常に上昇する状況であっても、この出口温度が所定の温度を超えると圧縮機の運転周波数を低下させるので、出口温度を所定温度以下に抑えることができ、機器寿命の低下が抑えられる。
【0016】
請求項4に記載の発明のヒートポンプ給湯装置は、請求項1または2における制御手段が、圧縮機からの冷媒の吐出温度が所定の温度を超えた場合に圧縮機の運転周波数を低下させるようにしたものである。
【0017】
この発明によれば、運転始動時のオーバーシュートや、給湯水回路の放熱器の出口温度の急上昇時や、さらに機器の故障などにより冷媒の吐出温度が異常に上昇する状況であっても、この吐出温度が所定の温度を超えると圧縮機の運転周波数を低下させるので、吐出温度を所定温度以下に抑えることができ、安全でかつ機器寿命の低下が抑えられる。
【0018】
請求項5に記載の発明のヒートポンプ給湯装置は、請求項1〜7のいずれか1項に記載の制御手段が、周波数制御手段によって圧縮機の運転周波数を変更する際に、周波数の上昇速度を制限するようにしている。
【0019】
この発明によれば、外気温度、給湯水回路の沸き上げ設定温度、前記給湯水回路の放熱器の入口温度、湯水回路の放熱器の出口温度、圧縮機からの冷媒の吐出温度の各温度が変化して、これに応じて圧縮機の運転周波数を上昇させる際に、その上昇速度を制限して上昇を遅くするので、圧縮機の冷媒吐出圧力が急上昇したり、圧縮機や周波数制御手段に過電流が流れるのを防止できる。
【0020】
請求項6に記載の発明のヒートポンプ給湯装置は、請求項5における制御手段が、周波数の降下速度を上昇速度より速くするようにしている。
【0021】
この発明によれば、周波数の降下速度が上昇速度より速いので、圧縮機の冷媒吐出圧力が急上昇したり、圧縮機や周波数制御手段に過電流が流れるような状況では素早く周波数を低減できるので、冷媒の吐出温度や吐出圧力や電流のオーバーシュートを抑えることができる。
【0022】
請求項7に記載の発明のヒートポンプ給湯装置は、冷媒循環回路を、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯槽内の水を加熱するように構成している。
【0023】
この発明によれば、貯湯槽の水と熱交換する冷媒は、臨界圧力以上に加圧されているので、貯湯タンクの水により熱を奪われて温度低下しても凝縮することがない。したがって熱交換全域で冷媒と水とに温度差を形成しやすくなり、高温の湯が得られ、かつ熱交換効率を高くできる。
【0024】
【実施例】
以下本発明の実施例について、図面を参照しながら説明する。
【0025】
(実施例1)
図1は本発明の第1の実施例におけるヒートポンプ給湯装置の構成図を示す。本実施例は一般家庭用のヒートポンプ給湯装置で、主に割安な深夜電力を利用して給湯の湯を貯留するもので、圧縮機10と放熱器11と減圧手段12と吸熱器13とを直列に閉回路に接続した冷媒循環回路14と、貯湯槽15と放熱器11と流量調整手段16とを有する給湯水回路17と、制御手段18とで構成される。この冷媒循環回路14は、例えば炭酸ガス(CO2)を冷媒として使用し、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用している。そして圧縮機10は、内蔵する電動モータ(図示しない)によって駆動され、吸引した冷媒を臨界圧力を超える圧力まで圧縮して吐出する。また、放熱器11は冷媒循環回路14の冷媒と、給湯水回路17の水との熱交換を行うもので、例えば冷媒が流れる冷媒通路と水が流れる流水通路とが2重管構造に設けられ、且つ冷媒の流れ方向と流水の流れ方向が対向するように構成された対向流式熱交換器である。減圧手段12は、内蔵するステッピングモータ(図示しない)を駆動させることにより流路の開度を可変させて冷媒の減圧量を変更する。吸熱器13はファン(図示しない)によって大気熱を吸熱するように作用する。
【0026】
給湯水回路14は、貯湯槽15内の水を所定量すなわち貯湯槽15に高温の湯を満たすように流量調整手段16を制御する。これは、貯湯槽15底部から給水し貯湯槽15上部に戻す循環構成で、貯湯槽15内の沸き上げは、この給湯水回路14の水を放熱器11で所定温度に加熱して行う。流量調整手段16はDCポンプを用いて電圧制御により流量を可変する。
【0027】
19は出湯温度設定手段で、貯湯槽15の沸き上げ設定温度である設定給湯温度を設定するものである。この設定給湯温度は、貯湯槽5での1日の湯の使用量や、水温などによって決定する。20は冷媒の圧縮機10の吐出温度を検出する吐出温度検出手段、21は給湯水回路14の放熱器11への入口温度である入水温度を検出する入水温度検出手段、22は給湯水回路14の放熱器11からの出湯温度を検出する出湯温度検出手段、23は外気温度を検出する外気温度検出手段である。また、24は貯湯槽15への給水管で、25は貯湯槽15から蛇口26を接続する出湯管である。
【0028】
次に、図2に示す制御手段の動作系統図を用いて制御手段18の構成と作用を説明する。制御手段18は、基本周波数設定手段27と記憶手段28と補正周波数設定手段29と変更速度制御手段30と周波数制御手段31とで構成され、外気温度と入水温度と設定給湯温度と出湯温度と吐出温度に応じて圧縮機10の運転周波数を制御する。
【0029】
基本周波数制御手段27は、外気温度と入水温度と設定給湯温度に応じて記憶手段28から基本周波数を呼び出す。記憶手段28は、外気温度と入水温度と設定給湯温度の各条件の組合わせにおける、圧縮機10の最適周波数のテーブルを予め記憶させておき、各温度条件に応じた周波数を選定するものである。ここでの最適周波数とは圧縮機10の冷媒吐出圧力と吐出温度と電流値が使用範囲内にあり、所定の能力が確保されてかつ効率がよい条件である。
【0030】
補正周波数設定手段29は、出湯温度検出手段22または吐出温度検出手段20の検出温度がそれぞれの所定温度を超えた場合に圧縮機の運転周波数を低下させるために、その低減周波数を設定する。例えば出湯温度が所定温度である92℃を超えた場合に、低減周波数を4Hzとし、さらに95℃を超えた場合に低減周波数を10Hzとする。そして、95℃を超えてかつ3分経過しても95℃を下回らない場合は周波数の運転を停止させる。同様に吐出温度が、この場合の所定温度である115℃を超えた場合に、低減周波数を4Hzとし、さらに120℃を超えた場合に低減周波数を10Hzとする。そして、120℃を超えてかつ3分経過しても120℃を下回らない場合は周波数の運転を停止させる。
【0031】
変更速度制御手段30は、基本周波数から低減周波数を減じた目標周波数が変更された場合に、その周波数の変更速度に制限を加えるように作用する。そして、変更速度の制限は周波数の降下速度が上昇速度より速くなるように設定する。例えば、周波数が上昇する場合は、30秒に1Hzの上昇に制限し、周波数が降下する場合は、1秒に1Hzの降下に制限する。
【0032】
なお運転起動時の周波数上昇は例えば1秒に1Hzで上昇させる等の措置をすることで、周波数の立上リを速くするようにしてもよい。
【0033】
31は周波数制御手段であり、変更速度制御手段30からの周波数制御信号を受けて、圧縮機10の運転周波数を制御するインバータ回路(図示せず)で構成している。
【0034】
以上実施例1の構成によれば、高圧側の冷媒圧力が冷媒の臨界圧以上となる超臨界ヒートポンプサイクルを使用して、放熱器に冷媒の流れ方向と流水の流れ方向が対向する対向流式熱交換器を採用しているので、高温でかつ効率の良い給湯ができる。
【0035】
また、外気温度と入水温度と設定給湯温度の各値より記憶手段から最適な基本周波数を読み出して圧縮機の運転周波数を制御するので、外気温度や設定給湯温度や放熱器の入水温度が変化しても、記憶手段にある適正な周波数に設定されるので、常に最適な運転状態を維持できる。さらに、制御手段の変更速度制御手段によって圧縮機の運転周波数を変更する際に、周波数の上昇速度は遅く、降下速度は速くなるようにを制限するようにしているので、外気温度や入水温度や設定給湯温度や出湯温度や吐出温度の各温度が変化して、これに応じて圧縮機の運転周波数を変更させる際に、その上昇速度は遅く、降下速度は速くなるので、圧縮機の冷媒吐出圧力が急上昇したり、圧縮機や周波数制御手段に過電流が流れるのを防止できる。
【0036】
なお、本実施例では加熱手段に超臨界ヒートポンプサイクルを用いたが、もちろん通常のヒートポンプサイクルでも良い。また、その場合の冷媒としてはフロンガス、アンモニア、ハイドロカーボン冷媒(プロパン、ブタンなど)が有用である。
【0037】
【発明の効果】
以上のように、本発明によれば、本発明は圧縮機の運転周波数を常に最適に制御し、耐久性が高く運転効率が良いヒートポンプ給湯装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例1におけるヒートポンプ給湯装置の構成図
【図2】同実施例1におけるヒートポンプ給湯装置の制御手段の動作系統図
【図3】従来のヒートポンプ給湯装置の構成図
【符号の説明】
10 圧縮機
11 放熱器
12 減圧手段
13 吸熱器
14 冷媒循環回路
15 貯湯槽
16 流量調整手段
17 給湯水回路
18 制御手段
19 出湯温度設定手段
20 吐出温度検出手段
21 入水温度検出手段
23 外気温度検出手段
28 記憶手段
31 周波数制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heat pump water heater.
[0002]
[Prior art]
As a conventional heat pump hot water supply device, a heat pump hot water supply device as described in Patent Document 1 has been proposed. As shown in FIG. 3, this heat pump hot water supply apparatus includes a refrigerant circulation circuit 5 including a compressor 1, a radiator 2, a pressure reducing means 3, and a heat absorber 4, a hot water tank 6, a radiator 2, and a flow rate adjusting means 7. A control device for controlling the operating frequency of the compressor 1 in accordance with a hot water supply circuit 8 having an external air temperature and a target boiling temperature of the hot water stored in the hot water storage tank 6 set for the external air temperature. Thus, in response to seasonal changes in the outside air temperature and changes in the amount of hot water used, it has been possible to enable operation with less waste of boiling water.
[0003]
However, in this configuration, when the inlet temperature of the radiator 4 of the hot water supply circuit 8 increases, the refrigerant pressure of the refrigerant circuit 5 increases, the boiling capacity changes, and the operation efficiency further deteriorates. Can not respond to The inlet temperature of the radiator 4 is usually the temperature of tap water flowing into the hot water storage tank 6, but immediately before the completion of boiling of the hot water storage tank 6, hot water having an intermediate temperature between the boiling temperature and the tap water temperature is supplied to the radiator 4. The hot water may flow into the hot water storage tank 6 so that the temperature of the hot water is suddenly increased, or the whole hot water in the hot water storage tank 6 is cooled to become an intermediate temperature hot water and flows into the inlet of the radiator 4 from an initial stage of boiling the hot water storage tank 6.
[0004]
Further, it is not possible to cope with a case where the outlet temperature of the radiator 4 of the hot water supply circuit 8 suddenly changes due to a sudden rise in the inlet temperature of the radiator 4 or the like. As a result, there is a possibility that boiling occurs in the radiator 4 or the refrigerant pressure increases, thereby shortening the life of the device.
[0005]
Furthermore, since it does not correspond to the case where the discharge temperature of the refrigerant from the compressor 1 rises sharply, there is a possibility that the refrigerant pressure increases and the life of the device is shortened.
[0006]
[Patent Document 1]
JP 2003-28538 A
[Problems to be solved by the invention]
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a heat pump hot water supply apparatus that always controls an operation frequency of a compressor optimally and has high durability and high operation efficiency.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a heat pump hot water supply apparatus comprising: an operating frequency of a compressor; an outside air temperature; a set temperature of a hot water supply circuit; an inlet temperature of a radiator of the hot water supply circuit; The control is performed in accordance with at least one of the outlet temperature of the radiator of the circuit and the discharge temperature of the refrigerant from the compressor.
[0009]
According to the above-described invention, an optimum operation state can be always maintained even when the operation conditions change, and a highly efficient, long life, and safe operation can be performed.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The heat pump hot water supply apparatus according to the first aspect of the present invention includes a refrigerant circulation circuit including a compressor, a radiator, a pressure reducing unit, and a heat absorber, a hot water supply circuit including a hot water tank, the radiator, and a flow rate adjusting unit. Frequency control means for controlling an operation frequency of the compressor, an outside air temperature, a set-up temperature of the hot water circuit, an inlet temperature of a radiator of the hot water circuit, an outlet temperature of a radiator of the hot water circuit, and the compression. And a control means for controlling an operating frequency of the compressor in accordance with at least one of the discharge temperatures of the refrigerant from the compressor.
[0011]
According to this invention, the outside air temperature, the set boiling temperature of the hot water circuit, the inlet temperature of the radiator of the hot water circuit, the outlet temperature of the radiator of the hot water circuit, the discharge temperature of the refrigerant from the compressor, and Even if at least one of the values changes, the compressor is controlled so as to have an optimum operating frequency, so that an appropriate operating state can be maintained.
[0012]
According to a second aspect of the present invention, in the heat pump hot water supply apparatus, the control means according to the first aspect is configured such that the control means sets the respective conditions of an outside air temperature, a set-up temperature of the hot water supply circuit, and an inlet temperature of a radiator of the hot water supply circuit. Storage means for storing in advance a set value of the frequency of the compressor in the combination, wherein the storage means is determined based on respective values of an outside air temperature, a set-up temperature of the hot water supply circuit and an inlet temperature of a radiator of the hot water supply circuit. The control is performed by reading the set value from the.
[0013]
According to the present invention, even if the outside air temperature, the set boiling temperature, or the inlet temperature of the radiator changes, the proper frequency stored in the storage means is set, so that the proper operating state can be always maintained.
[0014]
According to a third aspect of the present invention, in the heat pump hot water supply apparatus, the control means in the first or second aspect reduces the operating frequency of the compressor when the outlet temperature of the radiator of the hot water supply circuit exceeds a predetermined temperature. It was made.
[0015]
According to the present invention, an overshoot at the time of starting operation, a sudden rise in the inlet temperature of the radiator of the hot water circuit, or a situation in which the outlet temperature of the radiator of the hot water circuit abnormally rises due to a failure of the device or the like. Even if the outlet temperature exceeds a predetermined temperature, the operating frequency of the compressor is reduced, so that the outlet temperature can be suppressed to a predetermined temperature or less, and a reduction in the life of the device can be suppressed.
[0016]
According to a fourth aspect of the present invention, there is provided a heat pump water heater, wherein the control means according to the first or second aspect reduces the operating frequency of the compressor when the discharge temperature of the refrigerant from the compressor exceeds a predetermined temperature. It was done.
[0017]
According to the present invention, even when the discharge temperature of the refrigerant abnormally rises due to an overshoot at the time of starting operation, a sudden rise in the outlet temperature of the radiator of the hot water supply circuit, or a malfunction of the device, If the discharge temperature exceeds a predetermined temperature, the operating frequency of the compressor is reduced, so that the discharge temperature can be suppressed to a predetermined temperature or less, and the safety and the life of the device can be suppressed.
[0018]
According to a fifth aspect of the present invention, when the control means according to any one of the first to seventh aspects changes the operating frequency of the compressor by the frequency control means, it increases the frequency increasing speed. I try to limit it.
[0019]
According to the present invention, the outside air temperature, the set boiling temperature of the hot water circuit, the inlet temperature of the radiator of the hot water circuit, the outlet temperature of the radiator of the hot water circuit, and the discharge temperature of the refrigerant from the compressor are: When the operating frequency of the compressor is increased in response to the change, the rising speed is limited and the increase is slowed down. Overcurrent can be prevented from flowing.
[0020]
According to a sixth aspect of the present invention, in the heat pump water heater, the control means in the fifth aspect makes the frequency decreasing speed faster than the increasing speed.
[0021]
According to the present invention, since the frequency decreasing speed is higher than the increasing speed, the refrigerant discharge pressure of the compressor sharply increases, or the frequency can be rapidly reduced in a situation where an overcurrent flows to the compressor or the frequency control means. Overshoot of the refrigerant discharge temperature, discharge pressure and current can be suppressed.
[0022]
The heat pump water heater of the invention according to claim 7 is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and the water in the hot water storage tank is increased by the refrigerant whose pressure is increased to the critical pressure or higher. It is configured to heat.
[0023]
According to the present invention, since the refrigerant that exchanges heat with the water in the hot water storage tank is pressurized to a critical pressure or higher, the refrigerant is not condensed even if the temperature is reduced by the heat of the water in the hot water storage tank. Therefore, it is easy to form a temperature difference between the refrigerant and the water in the entire heat exchange area, so that high-temperature hot water can be obtained and the heat exchange efficiency can be increased.
[0024]
【Example】
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0025]
(Example 1)
FIG. 1 shows a configuration diagram of a heat pump water heater according to a first embodiment of the present invention. The present embodiment is a general household heat pump hot water supply apparatus for storing hot water mainly by using inexpensive midnight power, and includes a compressor 10, a radiator 11, a pressure reducing means 12, and a heat absorber 13 connected in series. And a hot-water supply circuit 17 having a hot water storage tank 15, a radiator 11, and a flow rate adjusting means 16, and a control means 18. The refrigerant circulation circuit 14 uses, for example, a supercritical heat pump cycle in which carbon dioxide gas (CO2) is used as a refrigerant and the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant. The compressor 10 is driven by a built-in electric motor (not shown), compresses the sucked refrigerant to a pressure exceeding a critical pressure, and discharges the compressed refrigerant. The radiator 11 performs heat exchange between the refrigerant in the refrigerant circuit 14 and the water in the hot water supply circuit 17. For example, a refrigerant passage through which the refrigerant flows and a flowing water passage through which the water flows are provided in a double pipe structure. And a counter-flow heat exchanger configured such that the flow direction of the refrigerant and the flow direction of the flowing water face each other. The pressure reducing means 12 changes the degree of pressure reduction of the refrigerant by driving a built-in stepping motor (not shown) to change the degree of opening of the flow path. The heat absorber 13 acts to absorb atmospheric heat by a fan (not shown).
[0026]
The hot water supply circuit 14 controls the flow rate adjusting means 16 so that the water in the hot water tank 15 is filled with a predetermined amount, that is, the hot water tank 15 is filled with hot water. This is a circulation configuration in which water is supplied from the bottom of the hot water storage tank 15 and returned to the upper part of the hot water storage tank 15, and the boiling in the hot water storage tank 15 is performed by heating the water in the hot water supply circuit 14 to a predetermined temperature by the radiator 11. The flow rate adjusting means 16 varies the flow rate by voltage control using a DC pump.
[0027]
19 is a tap water temperature setting means for setting a set hot water supply temperature which is a set temperature of boiling water in the hot water storage tank 15. The set hot water supply temperature is determined by the amount of hot water used in hot water storage tank 5 per day, the water temperature, and the like. 20 is a discharge temperature detecting means for detecting the discharge temperature of the refrigerant of the compressor 10, 21 is an incoming water temperature detecting means for detecting an incoming water temperature of an inlet of the hot water circuit 14 to the radiator 11, and 22 is a hot water circuit 14 Is a hot water temperature detecting means for detecting the hot water temperature from the radiator 11, and 23 is an outside air temperature detecting means for detecting the outside air temperature. Reference numeral 24 denotes a water supply pipe to the hot water storage tank 15, and reference numeral 25 denotes a hot water supply pipe connecting the faucet 26 to the hot water storage tank 15.
[0028]
Next, the configuration and operation of the control means 18 will be described with reference to the operation system diagram of the control means shown in FIG. The control means 18 is composed of a basic frequency setting means 27, a storage means 28, a correction frequency setting means 29, a change speed control means 30, and a frequency control means 31. The outside air temperature, the incoming water temperature, the set hot water supply temperature, the hot water temperature, and the discharge The operating frequency of the compressor 10 is controlled according to the temperature.
[0029]
The basic frequency control unit 27 calls up the basic frequency from the storage unit 28 according to the outside air temperature, the incoming water temperature, and the set hot water supply temperature. The storage means 28 stores in advance a table of the optimum frequency of the compressor 10 in the combination of each condition of the outside air temperature, the incoming water temperature, and the set hot water supply temperature, and selects a frequency according to each temperature condition. . Here, the optimum frequency is a condition in which the refrigerant discharge pressure, the discharge temperature, and the current value of the compressor 10 are within the use range, the predetermined capacity is secured, and the efficiency is high.
[0030]
The correction frequency setting means 29 sets the reduction frequency in order to lower the operating frequency of the compressor when the detected temperature of the hot water temperature detection means 22 or the discharge temperature detection means 20 exceeds the respective predetermined temperature. For example, when the tapping temperature exceeds a predetermined temperature of 92 ° C., the reduction frequency is 4 Hz, and when it exceeds 95 ° C., the reduction frequency is 10 Hz. If the temperature exceeds 95 ° C. and does not fall below 95 ° C. even after 3 minutes, the operation of the frequency is stopped. Similarly, when the discharge temperature exceeds 115 ° C. which is the predetermined temperature in this case, the reduction frequency is set to 4 Hz, and when the discharge temperature exceeds 120 ° C., the reduction frequency is set to 10 Hz. If the temperature exceeds 120 ° C. and does not fall below 120 ° C. even after 3 minutes, the operation of the frequency is stopped.
[0031]
When the target frequency obtained by subtracting the reduced frequency from the fundamental frequency is changed, the changing speed control means 30 acts to limit the changing speed of the frequency. The limitation of the changing speed is set so that the frequency decreasing speed is faster than the increasing speed. For example, if the frequency increases, the frequency is limited to 1 Hz in 30 seconds. If the frequency decreases, the frequency is limited to 1 Hz in 1 second.
[0032]
The frequency rise at the start of operation may be increased at a rate of 1 Hz per second, for example, so that the frequency rises faster.
[0033]
Reference numeral 31 denotes frequency control means, which is configured by an inverter circuit (not shown) that receives a frequency control signal from the change speed control means 30 and controls the operating frequency of the compressor 10.
[0034]
According to the configuration of the first embodiment described above, using a supercritical heat pump cycle in which the refrigerant pressure on the high pressure side is equal to or higher than the critical pressure of the refrigerant, the counterflow type in which the flow direction of the refrigerant and the flow direction of the flowing water are opposed to the radiator Since a heat exchanger is used, hot water can be supplied efficiently at high temperature.
[0035]
In addition, since the optimum basic frequency is read from the storage means from each value of the outside air temperature, the incoming water temperature, and the set hot water supply temperature, and the operating frequency of the compressor is controlled, the outside air temperature, the set hot water supply temperature, and the radiator incoming water temperature change. However, since the frequency is set to an appropriate frequency stored in the storage means, the optimum operation state can always be maintained. Further, when the operating frequency of the compressor is changed by the changing speed control means of the control means, the frequency increasing speed is limited so that the decreasing speed is limited so that the outside air temperature, the incoming water temperature and the like are reduced. When each of the set hot water supply temperature, tap water temperature, and discharge temperature changes, and the operating frequency of the compressor is changed accordingly, the rising speed is slow and the descending speed is fast. It is possible to prevent a sudden rise in pressure and an overcurrent from flowing to the compressor and the frequency control means.
[0036]
In this embodiment, a supercritical heat pump cycle is used as the heating means, but a normal heat pump cycle may be used. In this case, as the refrigerant, Freon gas, ammonia, and a hydrocarbon refrigerant (propane, butane, etc.) are useful.
[0037]
【The invention's effect】
As described above, according to the present invention, the present invention can provide a heat pump hot water supply apparatus that always controls the operating frequency of the compressor optimally and has high durability and high operating efficiency.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a heat pump water heater according to a first embodiment of the present invention; FIG. 2 is an operation system diagram of control means of the heat pump water heater in the first embodiment; FIG. 3 is a configuration diagram of a conventional heat pump water heater; Description]
DESCRIPTION OF SYMBOLS 10 Compressor 11 Radiator 12 Decompression means 13 Heat sink 14 Refrigerant circulation circuit 15 Hot water tank 16 Flow rate adjustment means 17 Hot water circuit 18 Control means 19 Hot water temperature setting means 20 Discharge temperature detection means 21 Incoming water temperature detection means 23 Outside air temperature detection means 28 storage means 31 frequency control means

Claims (7)

圧縮機と放熱器と減圧手段と吸熱器とを含む冷媒循環回路と、貯湯槽と前記放熱器と流量調整手段とを有する給湯水回路と、前記圧縮機の運転周波数を制御する周波数制御手段と、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度と給湯水回路の放熱器の出口温度と前記圧縮機からの冷媒の吐出温度のうち少なくとも1つの温度に応じて前記圧縮機の運転周波数を制御する制御手段を有するヒートポンプ給湯装置。A refrigerant circulation circuit including a compressor, a radiator, a pressure reducing means, and a heat absorber, a hot water supply circuit having a hot water tank, the radiator, and a flow rate adjusting means, and a frequency control means for controlling an operating frequency of the compressor. At least one of an outside air temperature, a set boiling temperature of the hot water circuit, an inlet temperature of a radiator of the hot water circuit, an outlet temperature of a radiator of the hot water circuit, and a discharge temperature of refrigerant from the compressor. A heat pump water heater having control means for controlling an operating frequency of the compressor according to the condition. 制御手段は、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度の各条件の組合わせにおける圧縮機の周波数の設定値を予め記憶した記憶手段を備え、外気温度と前記給湯水回路の沸き上げ設定温度と前記給湯水回路の放熱器の入口温度の各値より前記記憶手段から設定値を読み出して制御する請求項1に記載のヒートポンプ給湯装置。The control unit includes a storage unit that stores in advance a set value of a frequency of the compressor in a combination of each condition of an outside air temperature, a set-up temperature of the hot-water supply circuit, and an inlet temperature of a radiator of the hot-water supply circuit, The heat pump hot water supply apparatus according to claim 1, wherein a set value is read from the storage unit based on respective values of an outside air temperature, a set boiling temperature of the hot water circuit, and an inlet temperature of a radiator of the hot water circuit, and controlled. 制御手段は、給湯水回路の放熱器の出口温度が所定の温度を超えた場合に圧縮機の運転周波数を低下させる請求項1または2に記載のヒートポンプ給湯装置。The heat pump hot water supply device according to claim 1, wherein the control unit reduces the operating frequency of the compressor when an outlet temperature of the radiator of the hot water supply circuit exceeds a predetermined temperature. 制御手段は、圧縮機からの冷媒の吐出温度が所定の温度を超えた場合に圧縮機の運転周波数を低下させる請求項1または2に記載のヒートポンプ給湯装置。The heat pump hot water supply apparatus according to claim 1, wherein the control unit decreases the operating frequency of the compressor when a discharge temperature of the refrigerant from the compressor exceeds a predetermined temperature. 制御手段は、周波数制御手段によって圧縮機の運転周波数を変更する際に、周波数の上昇速度を制限する請求項1〜4のいずれか1項に記載のヒートポンプ給湯装置。The heat pump hot water supply device according to any one of claims 1 to 4, wherein the control means limits a rising speed of the frequency when the operating frequency of the compressor is changed by the frequency control means. 制御手段は、周波数の降下速度を上昇速度より速くする請求項5に記載のヒートポンプ給湯装置。The heat pump hot-water supply device according to claim 5, wherein the control means makes the frequency decreasing speed faster than the increasing speed. 冷媒循環回路は、冷媒の圧力が臨界圧力以上となる超臨界ヒートポンプサイクルであり、前記臨界圧力以上に昇圧された冷媒により貯湯槽内の水を加熱する請求項1〜6のいずれか1項に記載のヒートポンプ給湯装置。The refrigerant circulation circuit is a supercritical heat pump cycle in which the pressure of the refrigerant is equal to or higher than the critical pressure, and heats the water in the hot water storage tank with the refrigerant pressurized to the critical pressure or higher. The heat pump water heater according to the above.
JP2003141711A 2003-05-20 2003-05-20 Heat pump hot water supply device Pending JP2004347148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141711A JP2004347148A (en) 2003-05-20 2003-05-20 Heat pump hot water supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141711A JP2004347148A (en) 2003-05-20 2003-05-20 Heat pump hot water supply device

Publications (1)

Publication Number Publication Date
JP2004347148A true JP2004347148A (en) 2004-12-09

Family

ID=33529997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141711A Pending JP2004347148A (en) 2003-05-20 2003-05-20 Heat pump hot water supply device

Country Status (1)

Country Link
JP (1) JP2004347148A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317038A (en) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd Heat pump type water heater
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device
EA013454B1 (en) * 2006-11-30 2010-04-30 Ифг Солар Кг Heating apparatus
JP2010159934A (en) * 2009-01-09 2010-07-22 Panasonic Corp Air conditioner
US20120017620A1 (en) * 2009-01-20 2012-01-26 Panasonic Corporation Refrigeration cycle apparatus
JP2013117373A (en) * 2013-03-18 2013-06-13 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
KR101321200B1 (en) 2011-11-28 2013-10-23 엘지전자 주식회사 A heat pump system and a control method the same
US20130312443A1 (en) * 2011-02-14 2013-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle control method
EP2360439A4 (en) * 2009-12-28 2016-07-06 Daikin Ind Ltd Heat pump system
JP2016136080A (en) * 2015-01-23 2016-07-28 東芝キヤリア株式会社 Heat pump water heater
CN105874282A (en) * 2013-12-25 2016-08-17 三菱电机株式会社 Air conditioner
US9562696B2 (en) 2010-04-15 2017-02-07 Mitsubishi Electric Corporation Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method
WO2017026007A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Heat pump system
CN109209849A (en) * 2018-09-28 2019-01-15 洁定医疗器械(苏州)有限公司 A method of improving the frequency conversion air pump compressor service life
CN112178978A (en) * 2020-10-15 2021-01-05 广东纽恩泰新能源科技发展有限公司 Protection control method for overhigh exhaust temperature of variable frequency heat pump

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006317038A (en) * 2005-05-11 2006-11-24 Matsushita Electric Ind Co Ltd Heat pump type water heater
EA013454B1 (en) * 2006-11-30 2010-04-30 Ифг Солар Кг Heating apparatus
JP2009041860A (en) * 2007-08-09 2009-02-26 Toshiba Carrier Corp Control method of heat pump hot water supply device
JP2010159934A (en) * 2009-01-09 2010-07-22 Panasonic Corp Air conditioner
US20120017620A1 (en) * 2009-01-20 2012-01-26 Panasonic Corporation Refrigeration cycle apparatus
EP2360439A4 (en) * 2009-12-28 2016-07-06 Daikin Ind Ltd Heat pump system
US9562696B2 (en) 2010-04-15 2017-02-07 Mitsubishi Electric Corporation Hot water supply system control apparatus and hot water supply system control program and hot water supply system operating method
US20130312443A1 (en) * 2011-02-14 2013-11-28 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle control method
KR101321200B1 (en) 2011-11-28 2013-10-23 엘지전자 주식회사 A heat pump system and a control method the same
JP2013117373A (en) * 2013-03-18 2013-06-13 Mitsubishi Electric Corp Refrigeration cycle device and refrigeration cycle control method
CN105874282B (en) * 2013-12-25 2019-03-22 三菱电机株式会社 Air-conditioning device
CN105874282A (en) * 2013-12-25 2016-08-17 三菱电机株式会社 Air conditioner
US20160245540A1 (en) * 2013-12-25 2016-08-25 Mitsubishi Electric Corporation Air-conditioning apparatus
US10393418B2 (en) * 2013-12-25 2019-08-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP2016136080A (en) * 2015-01-23 2016-07-28 東芝キヤリア株式会社 Heat pump water heater
JPWO2017026007A1 (en) * 2015-08-07 2017-11-09 三菱電機株式会社 Heat pump system
WO2017026007A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Heat pump system
CN109209849A (en) * 2018-09-28 2019-01-15 洁定医疗器械(苏州)有限公司 A method of improving the frequency conversion air pump compressor service life
CN112178978A (en) * 2020-10-15 2021-01-05 广东纽恩泰新能源科技发展有限公司 Protection control method for overhigh exhaust temperature of variable frequency heat pump

Similar Documents

Publication Publication Date Title
JP2004347148A (en) Heat pump hot water supply device
JP2004271164A (en) Storage type electric water heater
JP5034367B2 (en) Heat pump water heater
JP3855902B2 (en) Heat pump water heater
JP2004340535A (en) Heat pump water heater
JP3855695B2 (en) Heat pump water heater
JP2010266135A (en) Heat pump type water heater
JP2003247759A (en) Heat pump type hot water supply unit
JP2005147542A (en) Heat pump water heater
JP2007278656A (en) Heat pump water heater
JP4665736B2 (en) Control method for refrigeration cycle apparatus and refrigeration cycle apparatus using the same
JP2007093113A (en) Heat pump type water heater
JP3937715B2 (en) Heat pump water heater
JP3912035B2 (en) Heat pump water heater
JP2011075257A (en) Heat pump type water heater
JP3755422B2 (en) Heat pump water heater
JP3800497B2 (en) Water heater
JP3864981B2 (en) Heat pump water heater
JP2005098530A (en) Heat pump type water heater
JP2005140439A (en) Heat pump water heater
JP3642334B2 (en) Heat pump water heater
JP2010071546A (en) Heat pump type water heater
JP2005188923A (en) Heat pump water heater
JP2007155157A (en) Heat pump water heater
JP2010133598A (en) Heat pump type water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040924

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115