JP4033184B2 - Multi-function water heater - Google Patents

Multi-function water heater Download PDF

Info

Publication number
JP4033184B2
JP4033184B2 JP2004283892A JP2004283892A JP4033184B2 JP 4033184 B2 JP4033184 B2 JP 4033184B2 JP 2004283892 A JP2004283892 A JP 2004283892A JP 2004283892 A JP2004283892 A JP 2004283892A JP 4033184 B2 JP4033184 B2 JP 4033184B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
heat
circulation path
side circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004283892A
Other languages
Japanese (ja)
Other versions
JP2005009859A (en
Inventor
竹司 渡辺
啓次郎 國本
龍太 近藤
松本  聡
敏 今林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004283892A priority Critical patent/JP4033184B2/en
Publication of JP2005009859A publication Critical patent/JP2005009859A/en
Application granted granted Critical
Publication of JP4033184B2 publication Critical patent/JP4033184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps

Landscapes

  • Control For Baths (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

本発明は風呂追焚きあるいは暖房など多機能を備える給湯機に関するものである。   The present invention relates to a water heater having multiple functions such as bathing or heating.

従来、この種の給湯装置としては、例えば、特開平11−83156号公報に示すものがあった。図14は前記公報に記載された従来の風呂追焚き機能を備えた給湯装置を示すものである。図14において、1は貯湯槽、2は沸上げヒータ、3は急速沸上げヒータ、4、5は温度検出手段、6は電磁開閉弁、7は給湯管、8は浴槽、9は循環ポンプ、10は熱交換手段であり、貯湯槽1の上部の湯と浴槽8の水を熱交換して風呂追焚きするものである。
特開平11−83156号公報
Conventionally, as this type of hot water supply apparatus, for example, there has been one disclosed in JP-A-11-83156. FIG. 14 shows a conventional hot water supply apparatus having a bath reheating function described in the publication. In FIG. 14, 1 is a hot water storage tank, 2 is a boiling heater, 3 is a rapid boiling heater, 4 and 5 are temperature detecting means, 6 is an electromagnetic on-off valve, 7 is a hot water supply pipe, 8 is a bathtub, 9 is a circulation pump, 10 is a heat exchanging means for exchanging heat between the hot water in the upper part of the hot water tank 1 and the water in the bathtub 8 and chasing the bath.
Japanese Patent Laid-Open No. 11-83156

しかしながら、前記従来の構成では、放熱手段としての風呂追焚きの場合、風呂追焚き運転時に貯湯槽1の上部の湯が温度低下するため、放熱手段へ流入する温水温度が不安定となり、利便性も悪い。例えば、風呂追焚き回数を重ねる度に貯湯槽1上部の湯温と風呂追焚き循環水との温度差が少なくなって放熱量が小さくなる。また、加熱されて浴槽8にもどる温水温度も低くなる。さらに、貯湯槽1の上部の湯の利用温度に限界があって、有効に利用できない。   However, in the conventional configuration, in the case of bath reheating as the heat radiating means, the temperature of the hot water in the upper part of the hot water tank 1 is lowered during the bath reheating operation, so that the temperature of the hot water flowing into the heat radiating means becomes unstable, which is convenient. Is also bad. For example, the temperature difference between the hot water temperature at the upper part of the hot water storage tank 1 and the bath replenishment circulating water decreases as the number of times of bath replenishment increases, and the amount of heat radiation decreases. Moreover, the warm water temperature which is heated and returns to the bathtub 8 also becomes low. Furthermore, the use temperature of the hot water in the upper part of the hot water tank 1 is limited and cannot be used effectively.

本発明は、前記従来の課題を解決するもので、貯湯槽の湯を高効率で貯湯運転するとともに、貯湯温度の低下を防止して、放熱手段へ安定した温水温度を流し、放熱手段の利便性をはかるものである。   The present invention solves the above-described conventional problems, and operates hot water in hot water storage tanks with high efficiency, prevents a decrease in the hot water temperature, allows a stable hot water temperature to flow to the heat radiating means, and improves the convenience of the heat radiating means. It is intended for sex.

前記従来の課題を解決するために、貯湯槽と、前記貯湯槽の湯水を下部から上部へ循環させる給湯回路と、この給湯回路を循環する湯水を加熱して貯湯槽の上部から温水を貯湯させるための、圧縮機、給湯熱交換器、減圧装置、大気熱を吸熱する大気熱交換器からなり、冷媒を二酸化炭素としたヒートポンプサイクルである加熱手段と、前記貯湯槽の上部の温水を循環させる負荷側循環路と、熱交換器を介して前記負荷側循環路の温水で流体が加熱される放熱側循環路と、この放熱側循環路に接続された放熱手段と、端末へ出湯する出湯管と、前記放熱手段に流入する温水温度を検出し前記放熱側循環路に設けられた温度検出手段とを具備し、前記負荷側循環路には流量制御手段である貯湯水ポンプを設け、前記負荷側循環路と前記給湯回路と前記出湯管とはそれぞれ独立して構成し、かつ、前記給湯回路の下流側、前記出湯管および前記負荷側循環路の上流側の配管を、前記貯湯槽の上部にそれぞれ独立して接続するとともに、前記温度検出手段の検出温度が所定温度となるように前記貯湯水ポンプの動作を制御することで、前記負荷側循環路を循環する温水の流量制御を行うことを特徴とするものである。 In order to solve the conventional problems, a hot water storage tank, a hot water supply circuit for circulating hot water in the hot water storage tank from the lower part to the upper part, and hot water circulating in the hot water supply circuit are heated to store hot water from the upper part of the hot water tank. A heating device comprising a compressor, a hot water supply heat exchanger, a decompression device, and an atmospheric heat exchanger that absorbs atmospheric heat, and circulates heating means that is a heat pump cycle using carbon dioxide as a refrigerant, and hot water at the top of the hot water tank A load-side circulation path, a heat-dissipation-side circulation path in which fluid is heated by the hot water of the load-side circulation path via a heat exchanger, a heat-dissipating means connected to the heat-radiation-side circulation path, and a tapping pipe that discharges hot water to the terminal And a temperature detecting means for detecting the temperature of hot water flowing into the heat radiating means and provided in the heat radiating side circulation path , a hot water storage pump serving as a flow rate control means is provided in the load side circulation path, and the load Side circulation path and the hot water supply circuit The constructed independently from the hot water pipe, and a downstream side of the hot water supply circuit, upstream of the pipe of the hot water pipe and the load-side circulation path, as well as independently connected to the upper portion of the hot water storage tank The flow rate control of the hot water circulating through the load side circulation path is performed by controlling the operation of the hot water storage pump so that the temperature detected by the temperature detection means becomes a predetermined temperature .

これによって、安価な深夜電力を利用して貯湯した熱を放熱手段の目的に応じて活用できるもので、非常に安価な運転費で利便性の良い多機能給湯機となる。   This makes it possible to utilize the heat stored by using inexpensive late-night power according to the purpose of the heat dissipating means, and it becomes a convenient multi-function water heater with a very low operating cost.

本発明によれば、貯湯槽の湯を高効率で貯湯運転するとともに、貯湯温度の低下を防止して、放熱手段へ安定した流体を流し、しかも、放熱手段の利便性を高めることができるものである。   According to the present invention, the hot water in the hot water tank can be stored with high efficiency, the temperature of the hot water can be prevented from being lowered, a stable fluid can be flowed to the heat radiating means, and the convenience of the heat radiating means can be enhanced. It is.

本発明の実施の形態は、貯湯槽と、前記貯湯槽の湯水を下部から上部へ循環させる給湯回路と、この給湯回路を循環する湯水を加熱して貯湯槽の上部から温水を貯湯させるための、圧縮機、給湯熱交換器、減圧装置、大気熱を吸熱する大気熱交換器からなり、冷媒を二酸化炭素としたヒートポンプサイクルである加熱手段と、前記貯湯槽の上部の温水を循環させる負荷側循環路と、熱交換器を介して前記負荷側循環路の温水で流体が加熱される放熱側循環路と、この放熱側循環路に接続された放熱手段と、端末へ出湯する出湯管と、前記放熱手段に流入する温水温度を検出し前記放熱側循環路に設けられた温度検出手段とを具備し、前記負荷側循環路には流量制御手段である貯湯水ポンプを設け、前記負荷側循環路と前記給湯回路と前記出湯管とはそれぞれ独立して構成し、かつ、前記給湯回路の下流側、前記出湯管および前記負荷側循環路の上流側の配管を、前記貯湯槽の上部にそれぞれ独立して接続するとともに、前記温度検出手段の検出温度が所定温度となるように前記貯湯水ポンプの動作を制御することで、前記負荷側循環路を循環する温水の流量制御を行うことを特徴とするもので、非常に安価な運転費で利便性の良い多機能給湯機を実現できる。しかも、熱交換器のところで、貯湯槽側の温水と放熱手段側の流体とが縁切りされているため、使用する流体の種類に限定を受けない。 Embodiments of the present invention include a hot water storage tank, a hot water supply circuit for circulating hot water in the hot water tank from the lower part to the upper part, and heating hot water circulating in the hot water supply circuit to store hot water from the upper part of the hot water tank. , A compressor, a hot water supply heat exchanger, a decompression device, an atmospheric heat exchanger that absorbs atmospheric heat, a heating means that is a heat pump cycle using carbon dioxide as a refrigerant, and a load side that circulates hot water at the top of the hot water tank A circulation path, a heat radiation side circulation path in which the fluid is heated with the hot water of the load side circulation path via a heat exchanger, a heat radiation means connected to the heat radiation side circulation path, a tapping pipe for hot water to the terminal , A temperature detecting means for detecting the temperature of hot water flowing into the heat radiating means and provided in the heat radiating side circulation path, and a hot water storage pump serving as a flow control means is provided in the load side circulation path, Road, hot water supply circuit and hot spring Configure each independently of the, and, downstream of the hot water supply circuit, upstream of the pipe of the hot water pipe and the load-side circulation path, as well as independently connected to the upper portion of the hot water storage tank, the temperature By controlling the operation of the hot water pump so that the detection temperature of the detection means becomes a predetermined temperature, the flow rate control of the hot water circulating in the load side circulation path is performed , which is very inexpensive. A convenient multi-function water heater can be realized at operating costs. Moreover, since the hot water on the hot water tank side and the fluid on the heat radiating means side are cut off at the heat exchanger, the type of fluid to be used is not limited.

そして、負荷側循環路の湯水循環量を流量制御手段で制御して放熱制御を行うことができる。   And heat dissipation control can be performed by controlling the amount of hot and cold water circulating in the load-side circulation path with the flow rate control means.

流量制御手段としては、負荷側循環路に介在させた貯湯水ポンプの回転制御で達成することができる。貯湯水ポンプの回転制御において、放熱側循環路を循環する流体の温度と関連して、或いは、放熱側循環路を循環する流体の温度と負荷側循環路を循環する湯水の温度との相互関連にもとづいて回転制御を行う。   The flow rate control means can be achieved by rotational control of a hot water storage pump interposed in the load side circulation path. In rotation control of a hot water storage pump, it relates to the temperature of the fluid circulating in the heat dissipation side circulation path, or the correlation between the temperature of the fluid circulating in the heat dissipation side circulation path and the temperature of hot water circulating in the load side circulation path Based on this, rotation control is performed.

負荷側循環路の循環温水と放熱側循環路の循環流体との熱交換器内での流動方向を逆に設定すれば、熱交換効率が向上する。   If the flow direction in the heat exchanger between the circulating hot water in the load side circulation path and the circulating fluid in the heat radiation side circulation path is set in reverse, the heat exchange efficiency is improved.

また、負荷側循環路の熱交換器よりも下流側を、貯湯槽中間部へ戻す回路と貯湯槽下部へ戻す回路に分岐し、貯湯槽の残湯温度に関連して前記両回路への循環戻り湯水の流動を制御するようにした。   In addition, the downstream side of the heat exchanger of the load side circulation path is branched into a circuit for returning to the intermediate part of the hot water tank and a circuit for returning to the lower part of the hot water tank, and the circulation to both circuits in relation to the remaining hot water temperature of the hot water tank. The flow of return hot water was controlled.

加熱手段は、貯湯槽中間部の湯温が所定値以下となったときに駆動するようにした。   The heating means was driven when the hot water temperature in the intermediate portion of the hot water storage tank became a predetermined value or less.

放熱側循環路の流体循環停止と同期して負荷側循環路を閉じれば、放熱ロスを抑制できるものである。   If the load side circulation path is closed in synchronization with the fluid circulation stop of the heat radiation side circulation path, the heat radiation loss can be suppressed.

以下、本発明の実施例について、図面を参照しながら説明する。なお、従来例および各実施例において、同じ構成、同じ動作をするものについては同一符号を付し、一部説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, in a prior art example and each Example, the same code | symbol is attached | subjected about what has the same structure and the same operation | movement, and description is partially abbreviate | omitted.

(実施例1)
図1は本発明の第1の実施例における多機能給湯機の構成図を示す。
Example 1
FIG. 1 shows a configuration diagram of a multi-function water heater in a first embodiment of the present invention.

図1において、11は加熱手段であり、圧縮機12、放熱器13、減圧装置14、大気熱を吸熱する大気熱交換器15からなるヒートポンプサイクルを構成したヒートポンプ熱源である。そして、高圧側の冷媒圧力が臨界圧力以上となる二酸化炭素を冷媒とする。16は貯湯槽であり、下部から給水管16aを通って給水し、上部の出湯管16bから端末へ出湯する。17は循環ポンプ、18は給湯熱交換器であり、放熱器13と熱交換関係を有して、放熱器13を流れる冷媒と給湯熱交換器18を流れる水を対向流で熱交換する構成である。そして、貯湯槽16の下部から循環ポンプ17、給湯熱交換器18、貯湯槽16の上部を順次接続する給湯回路を構成する。19は温度検出手段であり、ヒートポンプ熱源15で加熱する湯温を検出するため給湯熱交換器18の出口に設けられている。20は湯水制御手段であり、給湯熱交換器18の出口湯水が所定温度となるように循環ポンプ17の回転数を制御して給湯回路の循環流量を制御する。21は放熱手段となる、例えば床暖房機であり、貯湯槽16上部の温水が循環して暖房する。22は温水温度検出手段であり、放熱手段21へ流れる温水温度を検出する。23はバイパス回路であり、放熱手段21から流出する温水を貯湯槽16をバイパスして放熱手段21へ流入する温水回路に合流させる接続回路である。24は温度調整弁であり、貯湯槽16から流れてきた高温水と放熱手段から流出してきた中温水をミキシングする。25は制御手段であり、温水温度検出手段22の温度検出信号が設定温度となるよう温度調整弁24を制御する。26は放熱用ポンプであり、放熱手段へ温水を流す。   In FIG. 1, reference numeral 11 denotes a heating means, which is a heat pump heat source that constitutes a heat pump cycle including a compressor 12, a radiator 13, a decompression device 14, and an atmospheric heat exchanger 15 that absorbs atmospheric heat. Then, carbon dioxide whose refrigerant pressure on the high pressure side is equal to or higher than the critical pressure is used as the refrigerant. Reference numeral 16 denotes a hot water storage tank, which supplies water from the lower part through the water supply pipe 16a and discharges the hot water from the upper hot water discharge pipe 16b to the terminal. Reference numeral 17 denotes a circulation pump, and 18 denotes a hot water supply heat exchanger, which has a heat exchange relationship with the radiator 13 and exchanges heat between the refrigerant flowing through the radiator 13 and the water flowing through the hot water heat exchanger 18 in a counterflow. is there. And the hot water supply circuit which connects the circulation pump 17, the hot water supply heat exchanger 18, and the upper part of the hot water storage tank 16 in order from the lower part of the hot water storage tank 16 is comprised. Reference numeral 19 denotes a temperature detecting means, which is provided at the outlet of the hot water supply heat exchanger 18 for detecting the temperature of the hot water heated by the heat pump heat source 15. A hot water control means 20 controls the circulation flow rate of the hot water supply circuit by controlling the rotation speed of the circulation pump 17 so that the outlet hot water of the hot water heat exchanger 18 reaches a predetermined temperature. Reference numeral 21 denotes, for example, a floor heater serving as a heat radiating unit, and the hot water in the upper part of the hot water tank 16 circulates and heats. Reference numeral 22 denotes hot water temperature detecting means for detecting the temperature of hot water flowing to the heat radiating means 21. Reference numeral 23 denotes a bypass circuit, which is a connection circuit that joins the hot water flowing out from the heat radiating means 21 to the hot water circuit that bypasses the hot water storage tank 16 and flows into the heat radiating means 21. A temperature adjusting valve 24 mixes the high temperature water flowing from the hot water tank 16 and the medium temperature water flowing out from the heat radiating means. Reference numeral 25 denotes a control means that controls the temperature adjustment valve 24 so that the temperature detection signal of the hot water temperature detection means 22 becomes a set temperature. Reference numeral 26 denotes a heat radiating pump for flowing hot water to the heat radiating means.

以上のように構成された多機能給湯機について、以下その動作、作用を説明する。図1において、ヒートポンプ熱源で大気熱を利用して給湯運転する場合について説明する。圧縮機12から吐出する臨界圧力以上の高温高圧の冷媒が放熱器13に流入し、ここで貯湯槽16下部から送られてきた水と給湯熱交換器18を介して熱交換する。そして、放熱器13に流入する高温冷媒と給湯熱交換器18から流出する水を対向流にして熱交換し、放熱器13に流入する高温冷媒で給湯熱交換器18の出口湯水が所定温度となるように循環ポンプ17の回転数を制御する。そして、所定温度の湯が貯湯槽16上部から流入し貯湯される。一方、放熱器13に流入した高温冷媒は放熱作用によって、温度を下げて放熱器13から流出して減圧装置14に流入し、減圧されて大気熱交換器15に流入する。そして、大気熱を吸熱して蒸発ガス化して圧縮機12へ戻る。このサイクルを繰り返しながら高温湯を貯湯槽16上部から貯湯槽16下部まで貯湯する。   The operation and action of the multi-function water heater configured as described above will be described below. In FIG. 1, a case where a hot water supply operation is performed using atmospheric heat with a heat pump heat source will be described. A high-temperature and high-pressure refrigerant having a pressure equal to or higher than the critical pressure discharged from the compressor 12 flows into the radiator 13 and exchanges heat with water sent from the lower part of the hot water storage tank 16 via the hot water supply heat exchanger 18. Then, the high-temperature refrigerant flowing into the radiator 13 and the water flowing out from the hot water supply heat exchanger 18 are exchanged to exchange heat, and the hot water flowing into the radiator 13 causes the outlet hot water of the hot water supply heat exchanger 18 to have a predetermined temperature. Thus, the rotational speed of the circulation pump 17 is controlled. And the hot water of predetermined temperature flows in from the hot water storage tank 16 upper part, and is stored. On the other hand, the high-temperature refrigerant that has flowed into the radiator 13 lowers the temperature by the heat radiation action, flows out of the radiator 13, flows into the decompression device 14, is decompressed, and flows into the atmospheric heat exchanger 15. Then, it absorbs atmospheric heat, evaporates, and returns to the compressor 12. Hot water is stored from the upper part of the hot water tank 16 to the lower part of the hot water tank 16 while repeating this cycle.

次に、貯湯槽に貯湯された高温水を給湯利用する場合について説明する。給湯に利用する場合は、端末のカランが開放されると給水圧によって貯湯槽16下部から給水されながら上部の出湯管16bから出湯して利用する。そして、貯湯槽16内の高温湯は出湯される度に上部に移動する。   Next, a case where hot water stored in a hot water tank is used for hot water supply will be described. When used for hot water supply, when the terminal curan is released, the hot water is discharged from the upper hot water discharge pipe 16b while being supplied from the lower part of the hot water storage tank 16 by the supply water pressure. And the hot water in the hot water storage tank 16 moves to the upper part whenever it is poured out.

次に、貯湯槽に貯湯された高温水を放熱手段で利用する運転について説明する。放熱手段が運転開始されると放熱用ポンプ26が貯湯槽16上部の高温湯を放熱手段21側に流す。そして、放熱手段21から流出する中低温水がバイパス回路23を通り貯湯槽16側から流れ出る高温湯とミキシングする。その際に、温度調整弁24がバイパス回路23の流量と貯湯槽16側の高温水の流量を調整して放熱手段21へ流す温水温度を所定温度となるように制御する。そして、所定温度となった温水が放熱手段21に流れて暖房する。一方、放熱手段21から流出してバイパス回路23に流れない中低温水は貯湯槽16に戻る。よって、床暖房機に流れる温水温度を一定にするため快適暖房が得られる。勿論、放熱手段21へ流れる温水温度を好みの所定温度に設定変更して、設定温度の温水を放熱手段21へ流すことは容易である。   Next, the operation | movement which utilizes the high temperature water stored by the hot water storage tank with a thermal radiation means is demonstrated. When the heat dissipating means is started, the heat dissipating pump 26 causes the hot water in the upper part of the hot water tank 16 to flow to the heat dissipating means 21 side. Then, the medium / low temperature water flowing out from the heat radiation means 21 mixes with the high temperature hot water flowing out from the hot water storage tank 16 side through the bypass circuit 23. At that time, the temperature adjustment valve 24 adjusts the flow rate of the bypass circuit 23 and the flow rate of the hot water on the hot water storage tank 16 side so as to control the temperature of the hot water flowing to the heat radiation means 21 to be a predetermined temperature. And the warm water which became predetermined temperature flows into the thermal radiation means 21, and heats it. On the other hand, the medium / low temperature water that flows out of the heat radiation means 21 and does not flow into the bypass circuit 23 returns to the hot water storage tank 16. Therefore, comfortable heating can be obtained to keep the temperature of the hot water flowing through the floor heater constant. Of course, it is easy to change the setting of the temperature of the hot water flowing to the heat radiating means 21 to a desired predetermined temperature and to flow the hot water at the set temperature to the heat radiating means 21.

そして、放熱負荷が大きい場合には、放熱手段21から流出する温水温度は低温となるため、所定の温水温度にミキシングする際には貯湯槽16の高温水のミキシング流量割合が大きくなる。逆に、放熱負荷が少なくなった場合には、放熱手段から流出する温水温度は比較的高温であるため、所定の温水温度にミキシングする際には貯湯槽16の高温水のミキシング流量割合が少なくなる。従って、放熱負荷に応じて、貯湯槽16の高温水を利用できる。   When the heat radiation load is large, the temperature of the hot water flowing out from the heat radiating means 21 is low. Therefore, when mixing to a predetermined hot water temperature, the mixing flow rate ratio of the hot water in the hot water tank 16 is increased. On the contrary, when the heat radiation load is reduced, the temperature of the hot water flowing out from the heat radiation means is relatively high. Therefore, when mixing to a predetermined hot water temperature, the mixing flow rate of the hot water in the hot water tank 16 is small. Become. Therefore, the hot water in the hot water tank 16 can be used according to the heat radiation load.

そして、図1に示す如く、温度調整弁24でミキシングした後と放熱手段21の入口の間に放熱用ポンプ26を設けることにより、1台の循環ポンプで実現できる。   Then, as shown in FIG. 1, by providing a heat radiation pump 26 between the mixing by the temperature control valve 24 and the inlet of the heat radiation means 21, this can be realized by one circulation pump.

また、図2に示す如く、温度調整弁の代わりにバイパス回路23に流量調整弁27を設けてバイパス流量を調整し、所定温度にミキシングして放熱手段に送っても同様の効果がある。   Further, as shown in FIG. 2, the same effect can be obtained by providing a flow rate adjusting valve 27 in the bypass circuit 23 in place of the temperature adjusting valve to adjust the bypass flow rate, mixing to a predetermined temperature, and sending it to the heat radiating means.

また、図3に示す如く、循環回路にバイパス回路を使うことなく、貯湯槽16からの高温水と放熱手段21から流れてきた中低温水を熱交換する温調用熱交換器28を設けて、貯湯槽16から流出する高温水を放熱手段21から流れてきた中低温水で温度調整して、放熱手段21へ流れる温水温度を所定温度にする。この場合には、ヒートポンプで沸き上げる給湯熱交換器18出口の温度、即ち貯湯槽16に貯湯する温度と放熱負荷の変動が少ない場合には、設計的に勿論可能である。   In addition, as shown in FIG. 3, without using a bypass circuit in the circulation circuit, a temperature adjustment heat exchanger 28 is provided for exchanging heat between the hot water from the hot water tank 16 and the medium / low temperature water flowing from the heat radiating means 21, The temperature of hot water flowing out from the hot water storage tank 16 is adjusted with the medium and low temperature water flowing from the heat radiating means 21, and the temperature of the hot water flowing to the heat radiating means 21 is set to a predetermined temperature. In this case, the temperature of the outlet of the hot water supply heat exchanger 18 heated by the heat pump, that is, the temperature of the hot water stored in the hot water storage tank 16 and the fluctuation of the heat radiation load can be naturally designed.

また、図4に示す如く、放熱手段21に流入する温水の循環流量を可変する流量制御手段29を設けて、負荷が非常に大きい場合、例えば、暖房の立ち上げ時に高能力暖房したい場合には、放熱手段21へ循環する温水温度を所定温度に維持しながら流量制御手段となる放熱用ポンプ26の回転数を増加して循環回路の循環流量を大きくして放熱量を増加する。そして、負荷が小さい場合には、放熱用ポンプ26の回転数を低減して循環回路の循環流量を小さくして放熱量を少なくする。よって、温水温度を所定温度に維持しながら好みの能力を実現する。   In addition, as shown in FIG. 4, when the flow control means 29 for changing the circulation flow rate of the hot water flowing into the heat radiating means 21 is provided and the load is very large, for example, when high capacity heating is desired at the start of heating Then, while maintaining the temperature of the hot water circulating to the heat radiating means 21 at a predetermined temperature, the number of rotations of the heat radiating pump 26 serving as the flow rate controlling means is increased to increase the circulation flow rate of the circulation circuit and increase the heat radiation amount. When the load is small, the number of heat radiation is reduced by reducing the number of revolutions of the heat radiation pump 26 to reduce the circulation flow rate of the circulation circuit. Therefore, the desired ability is realized while maintaining the hot water temperature at a predetermined temperature.

また、加熱手段としてヒートポンプ熱源を利用するため高能力あるいは低消費電力量を実現する。   Moreover, since a heat pump heat source is used as the heating means, high capacity or low power consumption is realized.

さらに、ヒートポンプ熱源に封入する冷媒を二酸化炭素とすることによって、貯湯槽に高温湯(およそ90℃)を貯湯する。そのため、貯湯槽の蓄熱量が増加して、放熱手段の放熱量、運転時間が増大する。また、地球環境保全にも貢献する。さらに、高温湯から中温湯まで沸き上げ温度の巾が大きくなって放熱手段の利便性が向上する。   Furthermore, hot water (approximately 90 ° C.) is stored in a hot water storage tank by using carbon dioxide as the refrigerant sealed in the heat pump heat source. Therefore, the amount of heat stored in the hot water storage tank increases, and the amount of heat released from the heat radiating means and the operation time increase. It also contributes to global environmental conservation. Furthermore, the boiling temperature range from high temperature hot water to medium hot water is increased, and the convenience of the heat radiating means is improved.

また、本発明では、放熱手段21として、床暖房で説明したけれども、当然、乾燥機、温風暖房機など、放熱機能を有するものは含む。   Moreover, in this invention, although demonstrated by floor heating as the thermal radiation means 21, naturally what has a thermal radiation function, such as a dryer and a warm air heater, is included.

(実施例2)
図5は本発明の実施例2の多機能給湯機の構成図である。図5において、30は熱交換器であり、貯湯槽16上部から貯湯槽16中間部あるいは下部に循環する貯湯槽16内の温水と放熱手段21を循環する循環水と熱交換する。31は貯湯水ポンプであり、貯湯槽16上部の温水を熱交換器30に循環して貯湯槽16中間部あるいは下部に戻す。
(Example 2)
FIG. 5 is a configuration diagram of a multi-function water heater according to Embodiment 2 of the present invention. In FIG. 5, reference numeral 30 denotes a heat exchanger that exchanges heat with hot water in the hot water tank 16 circulating from the upper part of the hot water tank 16 to the middle or lower part of the hot water tank 16 and circulating water circulating in the heat radiation means 21. A hot water storage pump 31 circulates the hot water in the upper part of the hot water tank 16 to the heat exchanger 30 and returns it to the middle or lower part of the hot water tank 16.

以上の構成において、その動作、作用について説明する。貯湯槽上部から流出する高温水を熱交換器30に流して、放熱手段21から流出する循環回路の中低温水を加熱する。その際、温水温度検出手段22の温度検出信号が所定温度となるように温度調整弁24が温度調整し、所定温度の温水を放熱手段21に循環して放熱する。一方、熱交換器30で
温度低下した貯湯槽水を貯湯槽の中間部あるいは下部に戻す。
The operation and action of the above configuration will be described. High temperature water flowing out from the upper part of the hot water storage tank is passed through the heat exchanger 30 to heat the medium and low temperature water in the circulation circuit flowing out from the heat radiation means 21. At that time, the temperature adjustment valve 24 adjusts the temperature so that the temperature detection signal of the hot water temperature detection means 22 becomes a predetermined temperature, and the hot water of the predetermined temperature is circulated to the heat dissipation means 21 to radiate heat. On the other hand, the hot water tank water whose temperature has been lowered by the heat exchanger 30 is returned to the middle part or the lower part of the hot water tank.

また、貯湯水ポンプ31を用いないで、熱交換器30で放熱する際の温水密度差を利用して自然循環でおこなっても同様の効果が得られる。そして、貯湯水ポンプ31の消費電力は削減できる。   Moreover, the same effect is acquired even if it carries out by natural circulation using the hot water density difference at the time of radiating heat with the heat exchanger 30, without using the hot water storage water pump 31. And the power consumption of the hot water storage pump 31 can be reduced.

また、図6に示す如く、放熱手段として浴槽32の風呂加熱に利用する場合、熱交換器30を設けることによって、貯湯槽16の温水と浴槽32水を別回路に分離して利用できる。そして、好みの温度にした温水を浴槽に流入することがでるため、マイルドな風呂加熱、風呂追焚きができる。また、温度調整弁24を制御し、バイパス回路23の流量を制御することによって、高温高能力で風呂追焚きを実現する。   Moreover, as shown in FIG. 6, when using for the bath heating of the bathtub 32 as a thermal radiation means, by providing the heat exchanger 30, the hot water of the hot water tank 16 and the water of the bathtub 32 can be isolate | separated and used for another circuit. And since warm water made into favorite temperature can be poured into a bathtub, mild bath heating and bath retreat can be performed. Further, by controlling the temperature adjusting valve 24 and controlling the flow rate of the bypass circuit 23, bath renewal is realized with high temperature and high capacity.

(実施例3)
図7は本発明の実施例3の多機能ヒートポンプ機の構成図である。図7において、33は温度検出手段であり、放熱手段21に流入する温水温度を検出する。34は貯湯水流量制御手段であり、温度検出手段33の温度検出信号が所定温度の信号となるように貯湯水ポンプ31を制御する。
(Example 3)
FIG. 7 is a configuration diagram of a multifunction heat pump machine according to the third embodiment of the present invention. In FIG. 7, reference numeral 33 denotes a temperature detection unit that detects the temperature of hot water flowing into the heat dissipation unit 21. Reference numeral 34 denotes a hot water storage flow rate control means, which controls the hot water pump 31 so that the temperature detection signal of the temperature detection means 33 becomes a predetermined temperature signal.

以上の構成において、その動作、作用について説明する。貯湯槽16上部から流出する高温水を熱交換器30に流して、放熱手段21から流出する循環回路の中低温水を加熱する。そして、放熱手段21に流入する温水温度が所定温度となるように貯湯水の流量を制御する。例えば、放熱手段21に流入する温水温度が所定温度より低温の場合には、貯湯水の流量を増加し、逆に、放熱手段21に流入する温水温度が所定温度より高温の場合には、貯湯水の流量を減少する。従って、放熱手段の負荷あるいは温水温度に対応して貯湯水を最適流量で利用するため、効果的に貯湯熱、貯湯湯量を利用する。   The operation and action of the above configuration will be described. High temperature water flowing out from the upper part of the hot water tank 16 is passed through the heat exchanger 30 to heat the medium and low temperature water in the circulation circuit flowing out from the heat radiating means 21. Then, the flow rate of the hot water is controlled so that the temperature of the hot water flowing into the heat radiating means 21 becomes a predetermined temperature. For example, when the temperature of the hot water flowing into the heat radiating means 21 is lower than a predetermined temperature, the flow rate of the hot water is increased. Conversely, when the temperature of the hot water flowing into the heat radiating means 21 is higher than the predetermined temperature, Reduce water flow. Therefore, since the hot water is used at an optimum flow rate corresponding to the load of the heat radiating means or the hot water temperature, the hot water storage amount and the hot water storage amount are effectively used.

(実施例4)
図8は本発明の実施例4の多機能ヒートポンプ機の構成図である。図8において、35は温度検出手段であり、貯湯槽の温水が熱交換器30から流出する温度を検出する。36は循環水温度検出手段であり、放熱手段21から流出して熱交換器30に流入する温水温度を検出する。37は貯湯水制御手段であり、温度検出手段35の検出信号が所定温度の信号となるように貯湯水ポンプ31を制御する。ここで所定温度とは、貯湯水温度検出手段36の温度検出信号による温水温度を基に、予め設定された温度差を上乗せした温度とする。
Example 4
FIG. 8 is a configuration diagram of a multifunction heat pump machine according to the fourth embodiment of the present invention. In FIG. 8, 35 is a temperature detection means, and detects the temperature at which the hot water in the hot water tank flows out of the heat exchanger 30. Reference numeral 36 denotes circulating water temperature detecting means for detecting the temperature of hot water flowing out from the heat radiating means 21 and flowing into the heat exchanger 30. Reference numeral 37 denotes hot water control means, which controls the hot water pump 31 so that the detection signal of the temperature detection means 35 becomes a signal of a predetermined temperature. Here, the predetermined temperature is a temperature obtained by adding a preset temperature difference based on the hot water temperature based on the temperature detection signal of the stored hot water temperature detecting means 36.

以上の構成において、その動作、作用について説明する。貯湯槽16上部から流出する高温水を熱交換器30に流して、熱交換器30に流入する循環回路の中低温水が所定温度となるように加熱する。その際、熱交換器30から流出する貯湯水の温度を熱交換器30に流入する循環回路の低温水温度より所定温度(設定温度だけ高温)となるように貯湯水の流量を制御する。従って、貯湯水温と放熱手段を循環する水温の温度差を最小かつ最適温度差にすることができるため、貯湯熱の効果的利用を実現する。   The operation and action of the above configuration will be described. High temperature water flowing out from the upper part of the hot water tank 16 is passed through the heat exchanger 30 and heated so that the medium and low temperature water in the circulation circuit flowing into the heat exchanger 30 reaches a predetermined temperature. At that time, the flow rate of the stored hot water is controlled so that the temperature of the stored hot water flowing out of the heat exchanger 30 becomes a predetermined temperature (higher by the set temperature) than the low temperature water temperature of the circulation circuit flowing into the heat exchanger 30. Accordingly, since the temperature difference between the hot water temperature and the water temperature circulating through the heat radiation means can be minimized and the optimum temperature difference, the hot water can be effectively used.

(実施例5)
図9は本発明の実施例5の多機能ヒートポンプ機の構成図である。図9において、38は切換え手段であり、貯湯槽上部から流出する温水を貯湯槽中間部に戻す回路A39と、貯湯槽上部から流出する温水を貯湯槽下部に戻す回路B40に切換える。41は残湯温度検出手段であり、貯湯槽16中間部に戻る位置近傍の貯湯槽内の残湯温度を検出する。42は制御手段であり、残湯温度検出手段41の温度信号を基に切換え手段38に指令する。そして、給湯、風呂追焚き、暖房などに使われる1日の総湯量に対して僅かの残湯となるように通常は貯湯槽容量を設定するため、ここで、貯湯槽中間部とは、風呂追い焚き時
、あるいは夕方の暖房時に貯湯槽下部から給水した低温水が貯水されている位置となる。
(Example 5)
FIG. 9 is a configuration diagram of a multifunction heat pump machine according to the fifth embodiment of the present invention. In FIG. 9, reference numeral 38 denotes a switching means, which switches between a circuit A39 for returning the hot water flowing out from the upper part of the hot water tank to the intermediate part of the hot water tank and a circuit B40 for returning the hot water flowing out from the upper part of the hot water tank to the lower part of the hot water tank. 41 is a remaining hot water temperature detecting means for detecting the remaining hot water temperature in the hot water storage tank in the vicinity of the position returning to the intermediate part of the hot water storage tank 16. Reference numeral 42 denotes a control means which commands the switching means 38 based on the temperature signal from the remaining hot water temperature detection means 41. And since the hot water tank capacity is usually set so that the remaining hot water capacity is a little with respect to the total amount of hot water used for hot water supply, bathing, heating, etc. It is the position where low-temperature water supplied from the lower part of the hot water tank is stored when chasing or heating in the evening.

以上の構成において、その動作、作用について説明する。最初に、貯湯槽16内に高温の湯量が多い場合について説明する。例えば、深夜時刻帯に沸き上げた貯湯槽16内の高温の湯量は朝方は満杯に近い。そして、朝方、放熱手段21として暖房などに利用する場合、貯湯槽16の高温湯を放熱手段に流入して暖房する。そして、放熱手段21から流出する中温水を回路40により貯湯槽16下部に戻す。従って、貯湯槽内の高温湯を維持するため、放熱手段へ安定した温水温度を流すことができる。そして、貯湯槽内の高温湯を長時間効果的に暖房熱源として利用する。   The operation and action of the above configuration will be described. First, a case where the amount of hot water in the hot water tank 16 is large will be described. For example, the amount of hot water in the hot water tank 16 boiled at midnight is close to full in the morning. And in the morning, when using as the heat dissipation means 21 for heating, etc., the hot water in the hot water storage tank 16 flows into the heat dissipation means for heating. Then, the medium-temperature water flowing out from the heat radiating means 21 is returned to the lower part of the hot water tank 16 by the circuit 40. Therefore, since the hot water in the hot water tank is maintained, a stable hot water temperature can be supplied to the heat radiating means. And the hot water in a hot water tank is effectively used as a heating heat source for a long time.

次に、貯湯槽内に高温の湯量が少ない場合について説明する。例えば、朝昼時間帯の給湯、また、風呂の湯張に使って貯湯槽内の高温湯量が少ない場合に、暖房、あるいは風呂追焚きに貯湯槽16内の高温湯を利用する時、貯湯槽16中間部近傍に低温水がある場合には、放熱手段21から流出する中温水を回路39により貯湯槽16中間部に戻す。そして、貯湯槽16内の高温湯と接している低温水は中間部から流入する中温水によって昇温する。そのため、高温湯の下部に中温水を貯湯することになり、給湯、あるいは中温水で利用する放熱手段に再利用することができる。従って、ヒートポンプで貯湯槽下部の低温水をヒートポンプで沸き上げるため、貯湯運転時の効率が良くなる。特に二酸化炭素を冷媒としたヒートポンプは著しい効率低下と加熱能力低下を防止できる。よって、貯湯槽内の湯量、湯温に対応して効果的に使い分けする。   Next, a case where the amount of hot water in the hot water tank is small will be described. For example, when the hot water in the hot water tank 16 is used for heating or bathing when the hot water amount in the hot water tank is small due to hot water supply in the morning and noon hours, or when the hot water in the hot water tank is small, When there is low-temperature water in the vicinity of the intermediate portion 16, the medium-temperature water flowing out from the heat radiation means 21 is returned to the intermediate portion of the hot water tank 16 by the circuit 39. And the low temperature water which is in contact with the high temperature hot water in the hot water tank 16 is heated by the medium temperature water flowing from the intermediate portion. Therefore, the intermediate hot water is stored in the lower part of the high temperature hot water, and can be reused for the hot water supply or the heat radiating means used for the intermediate hot water. Therefore, since the low-temperature water below the hot water storage tank is boiled by the heat pump with the heat pump, the efficiency during the hot water storage operation is improved. In particular, a heat pump using carbon dioxide as a refrigerant can prevent a significant decrease in efficiency and heating capacity. Therefore, it is used properly according to the amount of hot water in the hot water tank and the hot water temperature.

また、図10に示す如く、熱交換器30を介して貯湯槽16の湯と放熱手段21を循環する循環水を熱交換する場合も、同様の効果である。   In addition, as shown in FIG. 10, the same effect can be obtained when heat is exchanged between the hot water in the hot water storage tank 16 and the circulating water circulating through the heat dissipating means 21 via the heat exchanger 30.

(実施例6)
図11は本発明の実施例6の多機能ヒートポンプ機の構成図である。図11において、43は中間温度出湯管であり、貯湯槽16中間部に戻した位置近傍の貯湯槽の中間接続口44と出湯管16bと接続する。45は出湯調整弁であり、中間温度出湯管43から出湯する貯湯水と貯湯槽16上部から出湯する貯湯水を制御する。46は温度検出手段であり、貯湯槽接続口近傍の貯湯温度を検出する。47は制御手段であり、温度検出手段46の検出信号を基に出湯調整弁45を制御する。例えば、中間温度出湯管43の湯温で給湯温度を満たす場合には、中間温度出湯管43から出湯する。そして、中間温度出湯管43の湯温が給湯温度を満たない場合には、貯湯槽16上部から出湯する、あるいは中間温度出湯管43の湯と貯湯槽16上部の高温湯をミキシングして出湯する。
(Example 6)
FIG. 11 is a configuration diagram of a multifunction heat pump machine according to the sixth embodiment of the present invention. In FIG. 11, reference numeral 43 denotes an intermediate temperature hot water pipe, which is connected to the intermediate connection port 44 of the hot water tank and the hot water pipe 16b in the vicinity of the position returned to the intermediate part of the hot water tank 16. Reference numeral 45 denotes a hot water adjustment valve, which controls hot water discharged from the intermediate temperature hot water discharge pipe 43 and hot water discharged from the upper part of the hot water tank 16. Reference numeral 46 denotes temperature detection means for detecting the hot water storage temperature in the vicinity of the hot water tank connection port. 47 is a control means for controlling the hot water adjustment valve 45 based on the detection signal of the temperature detection means 46. For example, when the hot water temperature of the intermediate temperature hot water discharge pipe 43 is satisfied, the hot water is discharged from the intermediate temperature hot water discharge pipe 43. And when the hot water temperature of the intermediate temperature hot water discharge pipe 43 does not satisfy the hot water supply temperature, the hot water is discharged from the upper part of the hot water storage tank 16, or the hot water of the intermediate temperature hot water discharge pipe 43 and the hot water of the hot water storage tank 16 are mixed and discharged. .

以上の構成において、その動作、作用について説明する。貯湯槽16の高温湯を上部から流出して放熱手段の熱源として利用した中温水の湯を貯湯槽16中間部に戻す。そして、放熱手段21による運転を継続する間、貯湯槽16の中間部で中温水の湯を貯湯する。そして、貯湯槽16の中間部の湯温で給湯温度を満たす場合には、中間温度出湯管43から出湯する。また、中間温度出湯管43の湯温が給湯温度を満たない場合には、貯湯槽16上部から出湯する、あるいは中間温度出湯管43の湯と貯湯槽16上部の高温湯をミキシングして出湯する。よって、放熱手段の熱源として利用した中温水を再度、貯湯槽中間部の中間温度出湯管から出湯して給湯に利用するようにして、貯湯槽上部からの高温出湯をできる限り少なくして、放熱に利用する。   The operation and action of the above configuration will be described. The hot water in the hot water tank 16 flows out from the upper part, and the hot water in the medium temperature water used as a heat source for the heat radiating means is returned to the intermediate part of the hot water tank 16. And while continuing the operation | movement by the thermal radiation means 21, the hot water of middle temperature water is stored in the intermediate part of the hot water storage tank 16. FIG. When the hot water temperature is satisfied with the hot water temperature in the intermediate portion of the hot water tank 16, the hot water is discharged from the intermediate temperature hot water discharge pipe 43. Further, when the hot water temperature in the intermediate temperature hot water discharge pipe 43 does not satisfy the hot water supply temperature, the hot water is discharged from the upper part of the hot water storage tank 16, or the hot water in the intermediate temperature hot water discharge pipe 43 and the hot water in the upper part of the hot water storage tank 16 are mixed and discharged. . Therefore, the medium temperature water used as the heat source of the heat radiating means is again discharged from the intermediate temperature hot water discharge pipe in the middle of the hot water storage tank and used for hot water supply, so that the hot hot water from the upper part of the hot water storage tank is minimized as much as possible. To use.

(実施例7)
図12は本発明の実施例7の多機能ヒートポンプ機の構成図である。図12において、48は追焚き温度検出手段であり、貯湯槽中間部に戻した位置より上部の貯湯槽内の残湯温度を検出する。49は運転制御手段であり、追焚き温度検出手段48の温度検出信号が所定の温度信号に低下した時、ヒートポンプ運転を開始する。
(Example 7)
FIG. 12 is a configuration diagram of a multifunction heat pump machine according to the seventh embodiment of the present invention. In FIG. 12, reference numeral 48 denotes a reheating temperature detecting means for detecting the remaining hot water temperature in the upper hot water storage tank from the position returned to the intermediate portion of the hot water storage tank. 49 is an operation control means, and starts the heat pump operation when the temperature detection signal of the follow-up temperature detection means 48 falls to a predetermined temperature signal.

以上の構成において、その動作、作用について説明する。貯湯槽の湯を出湯中、あるいは暖房など放熱手段を運転中に高温湯が少なくなって追焚き温度検出手段48の検出信号が所定温度に低下した時、ヒートポンプ運転を開始して貯湯槽上部から高温湯を貯湯する。よって、貯湯槽上部の高温湯量が増加するため、安定して放熱手段に湯を供給することができる。   The operation and action of the above configuration will be described. When the hot water is reduced while the hot water in the hot water tank is being discharged or the heat radiating means such as heating is running, and the detection signal of the chasing temperature detecting means 48 is lowered to a predetermined temperature, the heat pump operation is started and the hot water tank is started from the upper part. Store hot water. Therefore, since the amount of hot water at the upper part of the hot water tank increases, hot water can be stably supplied to the heat dissipating means.

(実施例8)
図13は本発明の実施例8の多機能ヒートポンプ機の構成図である。図13において、50は開閉弁であり、貯湯槽16の温水が流れる回路に設ける。51は開閉弁制御手段であり、放熱手段21の運転停止信号52を基に開閉弁50を閉じる。
(Example 8)
FIG. 13 is a configuration diagram of a multifunction heat pump machine according to an eighth embodiment of the present invention. In FIG. 13, reference numeral 50 denotes an on-off valve, which is provided in a circuit through which hot water in the hot water tank 16 flows. Reference numeral 51 denotes on-off valve control means for closing the on-off valve 50 based on the operation stop signal 52 of the heat dissipating means 21.

以上の構成において、その動作、作用について説明する。放熱用ポンプ26など放熱手段21の運転停止信号52を検出して開閉弁50を閉じる。そのため、貯湯槽16、熱交換器30、貯湯槽16の温水回路において、回路内の温水が放熱して温度低下した場合でも、貯湯槽16内の高温湯と回路内の低温水の密度差によって貯湯槽16上部から回路内を下降する自然循環することがない。従って、貯湯槽上部の高温湯量を有効に利用できる。   The operation and action of the above configuration will be described. The operation stop signal 52 of the heat dissipating means 21 such as the heat dissipating pump 26 is detected and the on-off valve 50 is closed. Therefore, in the hot water circuit of the hot water storage tank 16, the heat exchanger 30, and the hot water storage tank 16, even when the hot water in the circuit radiates heat and the temperature is lowered, due to the difference in density between the hot water in the hot water storage tank 16 and the low temperature water in the circuit. There is no natural circulation descending in the circuit from the upper part of the hot water tank 16. Therefore, the amount of hot water at the top of the hot water tank can be used effectively.

以上のように、本発明にかかる多機能給湯機は、貯湯槽の湯を高効率で貯湯運転するとともに、貯湯温度の低下を防止して、放熱手段へ安定した流体を流し、しかも、放熱手段の利便性を高めることができるものであり、一般家庭の複合機器として極めて有用である。   As described above, the multi-function water heater according to the present invention operates the hot water in the hot water storage tank with high efficiency, prevents a decrease in the hot water temperature, allows a stable fluid to flow to the heat radiating means, and further radiates the heat. It is very useful as a general household composite device.

本発明の実施例1の多機能給湯機の構成図The block diagram of the multifunction hot-water supply machine of Example 1 of this invention 本発明の実施例1の他の多機能給湯機の構成図The block diagram of the other multi-function water heater of Example 1 of this invention 本発明の実施例1の他の多機能給湯機の構成図The block diagram of the other multi-function water heater of Example 1 of this invention 本発明の実施例1の他の多機能給湯機の構成図The block diagram of the other multi-function water heater of Example 1 of this invention 本発明の実施例2の多機能給湯機の構成図The block diagram of the multifunctional hot-water supply machine of Example 2 of this invention 本発明の実施例2の他の多機能給湯機の構成図The block diagram of the other multi-function water heater of Example 2 of this invention 本発明の実施例3の多機能給湯機の構成図The block diagram of the multifunctional water heater of Example 3 of this invention 本発明の実施例4の多機能給湯機の構成図The block diagram of the multifunctional water heater of Example 4 of this invention 本発明の実施例5の多機能給湯機の構成図The block diagram of the multi-function water heater of Example 5 of this invention 本発明の実施例5の他の多機能給湯機の構成図The block diagram of the other multi-function water heater of Example 5 of this invention 本発明の実施例6の多機能給湯機の構成図The block diagram of the multifunctional water heater of Example 6 of this invention 本発明の実施例7の多機能給湯機の構成図The block diagram of the multifunctional hot-water supply machine of Example 7 of this invention 本発明の実施例8の多機能給湯機の構成図The block diagram of the multi-function water heater of Example 8 of this invention 従来の多機能給湯装置の構成図Configuration diagram of a conventional multifunction hot water supply device

符号の説明Explanation of symbols

11 加熱手段
12 圧縮機
16 貯湯槽
21 放熱手段
23 バイパス回路
26 放熱用ポンプ
27 流量制御弁
29 流量制御手段
30 熱交換器
31 貯湯水ポンプ
33 温度検出手段
34 貯湯水流量制御手段
35 温度検出手段
36 循環水温度検出手段
38 切換え手段
DESCRIPTION OF SYMBOLS 11 Heating means 12 Compressor 16 Hot water storage tank 21 Heat radiation means 23 Bypass circuit 26 Radiation pump 27 Flow control valve 29 Flow control means 30 Heat exchanger 31 Hot water pump 33 Temperature detection means 34 Hot water flow rate control means 35 Temperature detection means 36 Circulating water temperature detection means 38 Switching means

Claims (7)

貯湯槽と、前記貯湯槽の湯水を下部から上部へ循環させる給湯回路と、この給湯回路を循環する湯水を加熱して貯湯槽の上部から温水を貯湯させるための、圧縮機、給湯熱交換器、減圧装置、大気熱を吸熱する大気熱交換器からなり、冷媒を二酸化炭素としたヒートポンプサイクルである加熱手段と、前記貯湯槽の上部の温水を循環させる負荷側循環路と、熱交換器を介して前記負荷側循環路の温水で流体が加熱される放熱側循環路と、この放熱側循環路に接続された放熱手段と、端末へ出湯する出湯管と、前記放熱手段に流入する温水温度を検出し前記放熱側循環路に設けられた温度検出手段とを具備し、前記負荷側循環路には流量制御手段である貯湯水ポンプを設け、前記負荷側循環路と前記給湯回路と前記出湯管とはそれぞれ独立して構成し、かつ、前記給湯回路の下流側、前記出湯管および前記負荷側循環路の上流側の配管を、前記貯湯槽の上部にそれぞれ独立して接続するとともに、前記温度検出手段の検出温度が所定温度となるように前記貯湯水ポンプの動作を制御することで、前記負荷側循環路を循環する温水の流量制御を行うことを特徴とする多機能給湯機。 A hot water storage tank, a hot water supply circuit for circulating hot water in the hot water tank from the lower part to the upper part, a compressor and a hot water supply heat exchanger for heating hot water circulating in the hot water supply circuit and storing hot water from the upper part of the hot water tank A heating unit that is a heat pump cycle using carbon dioxide as a refrigerant, a load-side circulation path for circulating hot water at the top of the hot water tank, and a heat exchanger. A heat-dissipating circuit in which fluid is heated with hot water in the load-side circuit, a heat dissipating means connected to the heat dissipating circuit, a hot water outlet pipe to the terminal, and a hot water temperature flowing into the heat dissipating means And a temperature detecting means provided in the heat radiation side circulation path, and a hot water storage pump as a flow rate control means is provided in the load side circulation path, and the load side circulation path, the hot water supply circuit, and the hot water supply are provided. Independent of the tube Form, and, downstream of the hot water supply circuit, upstream of the pipe of the hot water pipe and the load-side circulation path, as well as independently connected to the upper portion of the hot water storage tank, detects the temperature of said temperature detecting means A multifunction hot water supply apparatus that controls the flow rate of hot water that circulates through the load-side circulation path by controlling the operation of the hot water storage pump so as to reach a predetermined temperature . 貯湯水ポンプの回転制御により流量制御を行うようにした請求項1記載の多機能給湯機 The multi-function water heater according to claim 1, wherein the flow rate is controlled by rotation control of the hot water storage pump. 放熱側循環路を循環する流体の温度と負荷側循環路を循環する湯水の温度との相互関連にもとづいて貯湯水ポンプの回転制御を行うようにした請求項2記載の多機能給湯機。 The multifunction hot water supply device according to claim 2 , wherein the rotation control of the hot water storage water pump is performed based on the correlation between the temperature of the fluid circulating in the heat radiation side circulation path and the temperature of the hot water circulating in the load side circulation path. 負荷側循環路の循環温水と放熱側循環路の循環流体との熱交換器内での流動方向を逆に設定した請求項1記載の多機能給湯機。 The multi-function water heater according to claim 1, wherein the flow directions of the circulating hot water in the load side circulation path and the circulating fluid in the heat radiation side circulation path in the heat exchanger are set in reverse. 負荷側循環路の熱交換器よりも下流側は、貯湯槽中間部へ戻す回路と貯湯槽下部へ戻す回路に分岐し、貯湯槽の残湯温度に関連して前記両回路への循環戻り湯水の流動を制御するようにした請求項1記載の多機能給湯機。 The downstream side of the heat exchanger of the load-side circulation path branches into a circuit that returns to the middle part of the hot water tank and a circuit that returns to the lower part of the hot water tank, and circulates return hot water to both circuits in relation to the remaining hot water temperature of the hot water tank. The multi-function water heater according to claim 1, wherein the flow of the water is controlled. 貯湯槽中間部の湯温が所定値以下となったとき、加熱手段を駆動するようにした請求項5記載の多機能給湯機。 The multi-function water heater according to claim 5 , wherein the heating means is driven when the hot water temperature in the intermediate portion of the hot water storage tank becomes a predetermined value or less. 放熱側循環路の流体循環停止と同期して負荷側循環路を閉じるようにした請求項1記載の多機能給湯機。 The multi-function water heater according to claim 1, wherein the load side circulation path is closed in synchronization with the fluid circulation stop of the heat radiation side circulation path.
JP2004283892A 2004-09-29 2004-09-29 Multi-function water heater Expired - Fee Related JP4033184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004283892A JP4033184B2 (en) 2004-09-29 2004-09-29 Multi-function water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004283892A JP4033184B2 (en) 2004-09-29 2004-09-29 Multi-function water heater

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002047420A Division JP3747250B2 (en) 2002-02-25 2002-02-25 Multi-function water heater

Publications (2)

Publication Number Publication Date
JP2005009859A JP2005009859A (en) 2005-01-13
JP4033184B2 true JP4033184B2 (en) 2008-01-16

Family

ID=34101571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004283892A Expired - Fee Related JP4033184B2 (en) 2004-09-29 2004-09-29 Multi-function water heater

Country Status (1)

Country Link
JP (1) JP4033184B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007333253A (en) * 2006-06-13 2007-12-27 Sharp Corp Heater
JP4923812B2 (en) * 2006-07-24 2012-04-25 株式会社デンソー Brine heat dissipation heating system
JP5106567B2 (en) * 2010-04-15 2012-12-26 三菱電機株式会社 Hot water storage hot water supply system
KR101105561B1 (en) * 2010-05-13 2012-01-17 주식회사 경동나비엔 Solar heat system
JP6036534B2 (en) * 2013-05-14 2016-11-30 三菱電機株式会社 Water heater

Also Published As

Publication number Publication date
JP2005009859A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP5171410B2 (en) Hot water supply system
JP2007263517A (en) Heat pump water heater
JP4026654B2 (en) Water heater
JP2005164237A (en) Multifunctional water heater
JP4231863B2 (en) Heat pump water heater bathroom heating dryer
JP3747250B2 (en) Multi-function water heater
JP2005156156A (en) Multifunctional water heater
JP4033184B2 (en) Multi-function water heater
JP5176474B2 (en) Heat pump water heater
JP2004101134A (en) Hot water storage type hot-water feeder
JP2003247753A5 (en)
JP5034601B2 (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP3945511B2 (en) Multi-function water heater
JP4244533B2 (en) Multi-function water heater
JP4867517B2 (en) Heat pump water heater
JP4221724B2 (en) Hot water storage water heater
JP6281736B2 (en) Heat pump water heater
JP3741103B2 (en) Water heater
JP2005121331A (en) Hot water supply device
JP2011007340A (en) Hot water supply device
JP4102781B2 (en) Hot water storage heater
JP2004125306A (en) Hot water storage type water heater
JP2006010187A (en) Hot water storage type hot water supply heating device
JP2005003211A (en) Water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees